University of the Aegean
School of Business
Department of Financial and Management Engineering

Emergency evacuation planning in natural disasters: Models and solution approaches

Evangelia Baou

Dissertation Committee:

Professor Ioannis Minis, Supervisor
Professor Agapios Platis, Examination Committee Member
Vasileios Zeimpekis, Ph.D., Examination Committee Member

Acknowledgements

Firstly, I would like to thank my Professor Ioannis Minis for giving me the opportunity to undertake the present diploma thesis, for his time, as well for the supervision. I would also like to thank Mr Vasileios Koutras, Lecturer of the University of the Aegean, for his guidance and for his contributions during the past year; without his support I would not be able to complete my diploma thesis.

Furthermore, I am grateful to Vasileios Zeimpekis, PhD Candidate of the University of the Aegean, for his advises throughout the project. Finally, I am grateful to all members of the Design, Operations \& Production Systems Lab (DeOPSys) of the Financial and Management Engineering (FME) Department of the University of the Aegean, and mainly to Mrs. Christina Arampantzi.

Last but not least, I would like to thank my parents, Panagiotis and Maria, my sister, Vasia, and all my lovely friends for their continued psychological support and encouragement.

(Summary in Greek)

Еıб $\sigma \gamma \omega \gamma \dot{\prime}$

 غ́лоขтаı $\tau\rceil \varsigma \kappa \alpha \tau \alpha \sigma \tau \rho о \emptyset ŋ ́ \varsigma$.

 $\sigma \chi \varepsilon \delta 1 \alpha \sigma \mu$ о́ $\varepsilon \kappa \kappa \varepsilon ́ v \omega \sigma \eta \varsigma ~ \chi \alpha \rho \alpha \kappa \tau \eta \rho i \zeta \varepsilon \varepsilon \tau \alpha 1 ~ \omega \varsigma ~ \mu \varepsilon ́ \tau \rho o ~ \tau \eta \varsigma ~ \delta \varepsilon v ́ \tau \varepsilon \rho \eta \varsigma ~ \varphi \alpha ́ \sigma \eta \varsigma ~(' \varepsilon \tau о \mu о ́ \tau \eta \tau \alpha ’) ~ к \alpha ı ~ \eta$

 $\mu \varepsilon \gamma \alpha \lambda o ́ \tau \varepsilon \rho \eta{ }^{\prime} \alpha \sigma \alpha \dot{\lambda} \lambda \varepsilon \iota \alpha$.

 oı $\alpha \rho \chi \varepsilon ́ \varsigma ~ \alpha v \alpha \lambda \alpha \mu ß \alpha ́ v o v v ~ \tau o v ~ \sigma \chi \varepsilon \delta ı \alpha \sigma \mu o ́ ~ \sigma u v \tau o v ı \sigma \mu \varepsilon ́ v \eta \varsigma ~ \varepsilon \kappa \kappa \varepsilon ́ v \omega \sigma \eta \varsigma ~ \mu \varepsilon ~ \delta \eta \mu o ́ \sigma \iota \alpha ~ \mu \varepsilon ́ \sigma \alpha . ~$

Oрıб μ о́ $\boldsymbol{\pi \rho о \beta \lambda \eta ́ \mu \alpha \tau о \varsigma ~}$

 МАГП．

$\Delta \varepsilon \delta о \mu \varepsilon ́ v \alpha \pi \rho o \beta \lambda \eta ́ \mu \alpha \tau \sigma \varsigma$

 ка兀пүорía $\alpha \varphi о р \alpha ́ \alpha ́ \alpha ́ \tau о \mu \alpha ~ \tau \alpha ~ о \pi о і ́ \alpha ~ \theta \alpha ~ \mu \varepsilon \tau \alpha \varphi \varepsilon \rho \theta о o ́ v ~ \mu \varepsilon ~ \alpha \sigma \theta \varepsilon v о ф о ́ \rho о . ~$

 єккєvต日と́vт๓v．

Пробє $\gamma \gamma \iota \sigma \tau \iota к \mathfrak{~ Е л i ́ \lambda v \sigma \eta ~ П р о ß \lambda \eta ́ \mu \alpha \tau о \varsigma ~}$

 $\sigma v v \delta v \alpha \sigma \mu o ́ ~ о \chi \eta \mu \alpha ́ \tau \omega v-\pi \lambda \eta \theta v \sigma \mu \mu \kappa ळ ́ v ~ \sigma v \gamma \kappa \varepsilon v \tau \rho \omega ́ \sigma \varepsilon \omega v$ $\delta \eta \mu ı v \rho \gamma \eta ́ \theta \eta \kappa \alpha v 100 \pi \rho о \beta \lambda \eta \mu \alpha \tau \alpha, \tau \alpha$
 $\chi \rho o ́ v o v ~ \varepsilon \kappa \kappa \varepsilon ́ v \omega \sigma \eta \varsigma ~ \gamma 1 \alpha ~ \kappa \alpha ́ \theta \varepsilon ~ \sigma v v \delta v \alpha \sigma \mu o ́ ~ \pi \rho о \beta \lambda \eta \mu \alpha ́ \tau \omega v ~ \gamma 1 \alpha ~ \kappa \alpha ́ \theta \varepsilon ~ \alpha \lambda \gamma o ́ \rho ı \theta \mu о$.

Мє $\lambda \varepsilon ́ \tau \eta ~ П \varepsilon \rho i ́ л \tau \omega \sigma \eta \varsigma ~$

 Campillo.
$\Sigma \tau \eta v \mu \varepsilon \lambda \varepsilon ́ \tau \eta \pi \varepsilon \rho i ́ \pi \tau \omega \sigma \eta \varsigma$ tov Teruel $\alpha \nu \tau \tau \varepsilon \tau \omega \pi i \sigma \tau \eta \kappa \varepsilon$ ๆ $\pi \rho o ́ \kappa \lambda \eta \sigma \eta \mu \varepsilon \tau \alpha \varphi о \rho \alpha ́ \varsigma$

 χ ро́vo єккย́vตбๆऽ.

Abstract

The thesis presents and solves the Population Evacuation using Heterogeneous Fleet Problem (PEHFP), which concerns evacuation planning of certain pick-up locations and the transportation of the evacuees to safe shelters. To address PEHFP, a Mixed Integer Linear Programming (MILP) mathematical formulation and two heuristic algorithms have been developed. Initially, the heuristic algorithms are tested on a simple scenario of the evacuation problem, in which none of the evacuees faces mobility constraints. Then, the heuristic algorithm with the minimum evacuation time is applied to the more complex scenario, in which some of the evacuees are characterized by a physical disability. The selected heuristic algorithm is applied to a case study that focuses on developing an evacuation plan to deal with a forest fire in the Province of Teruel, Spain.

Table of Contents

Abstract v
Table of Contents. vi
List of Figures vii
List of Tables. viii
List of Abbreviations. ix

1. Introduction 1
1.1 Scope of the thesis 1
1.2 Problem Description 2
1.3 Literature Review. 3
1.4 Thesis Structure 5
2. Mathematical formulation for the Population Evacuation using Heterogeneous Fleet Problem (PEHFP) 6
2.1 PEFHP Description 6
2.2 Mathematical Formulation 6
2.3 Inputs for PEHFP 10
3. Solution approach for PEHFP 12
3.1 H 1 for PEHFP for enabled population 12
3.2 H2 for PEHFP for enabled population 14
4. Comparison between H 1 and H 2 and application to the general problem 16
4.1. Scenario 1:Fixed number of operating vehicles 17
4.2. Scenario 2: Fixed number of pick up nodes 18
4.3. Comparison of the two heuristics 20
4.4. PEHFP for a population that comprises enabled and disabled evacuees 23
5. Case Study 29
5.1 Scenario A: PEHFP solution for point-to point evacuation 30
5.2 Scenario B: PEHFP solution for multipoint-to point evacuation. 32
5.3 Scenario C: PEHFP solution for multi-point-to point evacuation 33
6. Conclusions 37
References. 39
Appendix A. PEHFP: Algorithm and Pseudo code for H1. 42
Appendix.B PEHFP: Algorithm and Pseudocode for Heuristic Algorithm 2 49
Appendix C. PEHFP: Pseudo code of Heuristic for enabled and disabled population evacuation 54
Appendix D: Input data for the case study 63

List of Figures

Figure 4.1 Mean Evacuation Time for Heuristics $1 \& 2$ for $v=5$ vehicles and $i=1, \ldots, 15$ nodes... 18

Figure 4.2 Mean Total Distance Of Heuristics $1 \& 2$ for $\mathrm{v}=5$ vehicles and $\mathrm{i}=1, \ldots, 15$ nodes
Figure 4.3 Percentage Difference of mean evacuation time for Heuristics $1 \& 2 \mathrm{v}=5$ vehicles and $\mathrm{i}=1, . ., 15$ nodes 18
Figure 4.4 Percentage Difference of mean total distance for Heuristics $1 \& 2$ for 5 vehicles and $\mathrm{i}=1, . .15$ nodes 18
Figure 4.5 Mean Values Of Heuristics $1 \& 2$ for $\mathrm{v}=1, \ldots, 15$ vehicles and $\mathrm{i}=5$ nodes. 19
Figure 4.6 Mean Values Of Total Distance Of Heuristics $1 \& 2$ for $\mathrm{v}=1, \ldots, 15$ vehicles and i $=5$ nodes 19
Figure 4.7 Percentage Difference of mean evacuation time for Heuristics $1 \& 2$ for $v=1, \ldots$, 15 vehicles and $\mathrm{i}=5$ nodes 20
Figure 4.8 Percentage Difference of mean total distance for Heuristics $1 \& 2$ for k vehicles and 5 nodes 20
Figure 5.1 Pick-up point Tramacastiel and shelters of Villel and Teruel 30
Figure 5.2 Evacuation routes for PEHFP: Tramacastiel-Villel 31
Figure 5.3 Pick-up points Tramacastiel, Rubiales, El Campillo and shelter of Teruel 32
Figure 5.4 Evacuation routes for PEHFP: Tramacastiel, Rubiales, ElCampillo-Teruel. 33
Figure 5.5 Pick-up point Tramacastiel and shelter of Teruel 34
Figure 5.6. Evacuation routes for PEHFP: Tramacastiel -Teruel 35
Figure 5.7. Pick-up points Rubiales, El Campillo and shelter of Teruel 35
Figure 5.8. Evacuation routes for PEHFP: Rubialles, El Campillo -Teruel 36

List of Tables

Table 4.1. Mean total evacuation times, mean total distances and percentage differences for heuristic algorithms 1 and 2 for $\mathbf{v}=5$ vehicles and i nodes
 17

Table 4.2 Mean total evacuation times, mean total distances and their percentage difference for heuristic algorithms 1 and 2 for \mathbf{k} vehicles and 5 nodes 19
Table 4.3 Travel time between nodes 20
Table 4.4 Travel time from shelter to each node 20
Table 4.5 Travel time from each vehicle's starting point to each node 21
Table 4.6 Node demand 21
Table 4.7 Vehicle's capacity 21
Table 4.8 Routes of heuristics 1\&2 21
Table 5.1 List of evacuees of Tramacastiel 30
Table 5.2 Emergency plan for the evacuation of Tramacastiel to Villel 31
Table 5.3 List of evacuees of pick-up points 32
Table 5.4 Emergency evacuation plan for Tramacastiel, Rubialles and El Campillo to Teruel 32
Table 5.5 List of evacuees of pick-up points 34
Table 5.6 Emergency evacuation plan for Pilot Test Event: Tramacastiel to Teruel 34
Table 5.7 List of evacuees of Rubiales and El Campillo 34
Table 5.8 Emergency evacuation plan for Pilot Test Event: Rubiales and El Campillo to Teruel 35

List of Abbreviations

Abbreviation	Description
BEP	Bus-based Evacuation Planning
H1	Heuristic Algorithm 1
H2	Heuristic Algorithm 2
IBEP	Integrated Bus Evacuation Problem
LRP	Location Routing Problems
MILP	Mixed Integer Linear Programming
MTVRP	Multi-Trip Vehicle Routing Problem
PEHFP	Population Evacuation using Heterogeneous Fleet Problem
VRPSF	Vehicle Routing Problem with Satellite Facilities

1. Introduction

1.1 Scope of the thesis

An emergency refers to an unexpected event that may cause damages which may not be dealt with the existing resources of the affected community. Disasters have both physical and human impacts such as human deaths and property losses and the level of such effects vary from disaster to disaster.

Although disasters can take several forms, they are classified to three major categories; natural, technological and social. The aforementioned types of disasters relate to a management cycle consisting of four phases. The first two phases, mitigation and preparedness, precede a disaster while the last two phases, response and recovery, occur post the disaster occurrence [1].

When a disaster strikes and sets people lives in danger, evacuation planning and transportation of population to safer places is of great importance so that human losses are avoided. Evacuation can be defined as the process in which affected people are relocated from threatened areas to safer places and consists a common and effective strategy to deal with emergency situations. The designing of evacuation plans is characterized as a mitigation measure while its execution takes place during the response phase.

The proposed approaches in evacuation planning vary and they have been developed under different aspects. Such aspects are traffic control strategies, identification of optimal evacuation routing plans in complex road networks, household behavior etc. [1]. Evacuation is a complex process consisting of various stages [2]. Due to the complexity of evacuation process, its effectiveness depends on several factors such as warning time, the traffic flow conditions etc. [3].

The necessity and importance of developing evacuation plans, has significantly increased due to the steep rise of the number of disasters during the last ten years. In particular, disasters caused economic damages of 1.4 trillion dollars in total and affected 1.7 billion people including 0.7 million fatalities. Roughly, 70% of deaths are caused by natural disasters such as earthquakes and tsunamis and 30% due to other types of disasters [5].

Despite the fact that a part of the population would use their own vehicles during the evacuation process, individual evacuation could lead to traffic congestion and impede operations. Moreover, due to the chaotic nature of a disaster it is hard for individuals to get access to reliable vehicles. Therefore, other forms of transportation such as public
transportation resources are needed [4]. Authorities and evacuation planning managers are responsible for the development of evacuation plans, which aim to define optimal evacuation policies for the individuals/households from areas under risk and uncertainty [2].

This thesis deals with the development of a mathematical model and a solution method for the logistics problem under consideration; that is, planning the evacuation from certain pick-up locations and the transportation of the evacuees to shelters in the minimum evacuation time, subject to related constraints.

The contribution of the approach proposed in this thesis is two-fold. Firstly, a novel approach of evacuation planning is introduced, which deals effectively with some unique features of the problem compared to the existing literature. The main differences of the proposed approach consist in considering that a) vehicles are of different types and, thus, capacities (heterogeneous fleet), b) evacuees are also of different type in terms of mobility characteristics, c) vehicles are allowed to make multiple trips in order to collect evacuees, and d) each pick-up location can be visited at least once. Secondly, most of evacuation plans are, usually, car-based which means that they cannot satisfy the needs of transit-dependent population such as elderly or people with mobility issues. In this thesis, the needs of transitdependent population are taken under consideration.

To address the problem we developed a novel Mixed Integer Linear Programming (MILP) and two heuristic algorithms for the evacuation of population, a part of which deals with a form of disability. By comparing the two proposed heuristics, in evacuation time terms, helped us produce an effective solution approach.

We applied this approach to a real case study and obtained very encouraging results.

1.2 Problem Description

This thesis introduces, models, and solves the Population Evacuation using Heterogeneous Fleet Problem (PEHFP), thereinafter called PEHFP. PEHFP concerns planning the evacuation of population from assembly points, and transporting the evacuees to safe shelters. The related case study concerns the evacuation of one or more villages of the Province of Teruel, in case of a major forest fire, and the transportation of the evacuees into one or more shelters.

In this thesis, we present a new mathematical model for the above problem along with all appropriate assumptions, available data and information related to this problem. The model for PEHFP seeks to determine the set of routes that minimize the total evacuation time. Among the possibly multiple solutions with the minimum evacuation time, the one with the
minimum operational cost (total travel time) is selected. The proposed model includes multiple constraints that concern key operational issues, such as routing constraints, timing constraints, capacity constraints and other constraints. In order to develop the proposed model, we initially identify certain similarities and differences of the problem under consideration with the existing evacuation problems in the relevant literature. Accordingly, leveraging the related modeling work of the literature and considering fully the special characteristics of the problems under study, we developed the novel MILP.

To solve this problem we developed two heuristic algorithms. Moreover, we compared the algorithms in terms of the total evacuation time, and selected the most superior one to deal with the population evacuation planning for the case study of Province of Teruel.

This complex case study deals with the multipoint-to-point evacuation of Tramacastiel, Rubiales, and El Campillo, three small villages with 44, 31 and 40 citizens respectively, and the transportation of the evacuees to the Sports Hall "Los Planos" in Teruel. The latter is a province of Aragon, in the northeast part of Spain. The main types of emergencies in the area are floods and forest fires. In particular, the frequency of forest fires in Spain is one forest fire every 2.3 years. In addition, the fact that these three villages are located inside a forest, makes their evacuation planning an issue of great importance.

1.3 Literature Review

Prior to modeling and developing efficient algorithms to solve PEHFP, an extended literature review was carried out in order to identify similar problems. In [6], the author introduces a model specifically designed for Bus-based Evacuation Planning (BEP) along with two mathematical programming formulations, which are used to develop a heuristic algorithm. Using these models, the author analyzes the differences in the structural properties of optimal solutions between this problem and traditional vehicle routing problems. The objective in [6] is to transport evacuees from pickup points to shelters in a minimal amount of time by using a fleet of capacitated and homogenous buses. The BEP model has a key feature: it is assumed that the demand is predefined and fixed during the evacuation process. In an extended version of BEP, called robust bus evacuation problem, the demand is assumed to be known at later evacuation stages. In [7] the authors consider a set of estimates for the demand. The decision about whether buses need to be dispatched immediately (based on the estimates of demand) or to wait (until exact demand information is available) must be taken. Moreover, once a bus is routed, its plan cannot be changed. The model aims to minimize the maximum travel time of the buses.

In [8] the evacuation of a carless population under a no-notice scenario, in which buses perform a single trip without returning to pick up the rest of the carless population, is considered. All buses are initially located at a depot and the optimal departure time to demand points, so that the minimum travel time of buses is achieved, is discussed. In addition, travel times on network links are produced by a simulation model as a function of time.

In [9] a binary integer programming model is developed. The objective is to maximize the number of carless evacuated people within a certain time horizon. It is assumed that buses are located at the demand points at the beginning of evacuation and they have to return to the same demand point. The area under threat is divided by the zip code, and pick up points are assigned inside each zip code. Finally, the demand of each zip code is a certain percentage of the population within that zip code.

In [10] the authors present a simplified version of BEP. A Branch and Bound framework is used to identify lower and upper bounds of evacuation time. In [11] the authors focus on using public transport in emergency evacuation, aiming to maximize the number of evacuees. In the related work, a constraint of single trips of vehicles is considered and, therefore, it is assumed that not all evacuees may be transported. In [12] the authors propose a two index MILP to address the evacuation problem and its variants, and they developed a hybrid solution framework. They present extensive experimental results indicating that the proposed framework provides efficient solutions in reasonable computational times.

In [13] an emergency evacuation strategy is presented, in which buses serve a set of pick-up requests and delivery points using a certain routing strategy aiming to minimize the exposed casualty time. The delivery nodes of this case are of limited capacity and include both train stations and shelters.

Interested readers may also refer to [14], [15], [16] and [17] for research advances in the area of evacuation planning and emergency response. Recently, the work in [18] introduced the Integrated Bus Evacuation Problem (IBEP) that extends the simplified model of [10] by determining both the pick-up and the shelter points for evacuating a region using buses. To address this problem, the authors developed a branch-and-price strategy and compared its efficiency using a commercial IP solver. In general, the case of evacuation upon advance notice of threat bears similarities with the Vehicle Routing Problem with Satellite Facilities (VRPSF) studied in [19].

Other known problems that share common attributes with BEP include the Multi-Trip Vehicle Routing Problem (MTVRP) [20], [21], [22], [23], in which only one depot is available for vehicles to replenish their load between trips, and the VRP with Intermediate

Facilities or with inter-depot routes [24], [25], in which the vehicles may visit intermediate depots for load replenishment along their trips.

A related, but more general, class of problems includes the Location Routing Problems (LRP), in which the appropriate number and location of distribution centers are determined simultaneously while optimizing the routing costs to serve a set of customers. An extensive review of LRP is provided in [26], and recent interesting cases are addressed in [27] and [28]. In [29] the authors address an LRP that considers depots and vehicles with limited capacities, as well as fixed costs to establish a depot or to use a vehicle. In [30] a stochastic optimization model to minimize the total evacuation time is developed. However, the assumption that the demand is under uncertainty is not appropriate.

From the existing literature, the problems that are closer to the PEHFP evacuation case are those discussed in [6] and especially in [12]. Notable differences of the problem introduced in [12] with PEHFP include the following:

- In [12] all vehicles are assumed to be of equal capacity, though in PEHFP the vehicles are of different types and, thus, capacities (heterogeneous fleet)
- In PEHFP each vehicle is allowed to make multiple trips in order to collect evacuees. This is not the case in [12]
- In [12], when a vehicle visits a pick-up location it has to pick up the entire demand. In the PEHFP problem this constraint is relaxed. Consequently in [12] each pick-up location is visited exactly once, while in the PEHFP problem each pick-up location is visited at least once.
- In PEHFP, the evacuation of different types of evacuees, as far as their mobility problems concerns, is considered. This is not included in [12].

1.4 Thesis Structure

The rest of this thesis is organized as follows: In Chapter 2, the problem description, along with the mathematical formulation for PEHFP are presented. In Chapter 3 two heuristic algorithms developed to deal with the PEHFP are presented and discussed. Furthermore, computational results for comparing and evaluating the performance of the proposed algorithms are provided. In Chapter 4 the selected heuristic algorithm is applied to a more complex scenario, in which different types of evacuees, who need different treatment as far as their transportation is concerned, are considered. Chapter 5 describes the implementation of the proposed algorithm to the case study of Province of Teruel and the related computational results. Finally, the conclusions of this thesis are summarized in Chapter 6.

2. Mathematical formulation for the Population Evacuation using Heterogeneous Fleet Problem (PEHFP)

In this chapter a MILP mathematical formulation is proposed for the Population Evacuation using Heterogeneous Fleet Problem (PEHFP). Furthermore, the inputs of the mathematical formulation are also presented.

2.1 PEFHP Description

In PEHFP a fleet of vehicles with different characteristics (as far as their capacity and their capability of transferring different types of evacuees with mobility problems) has to pick up citizens from certain locations under threat and transport them to safe locations (shelters). In the problem under consideration, the shelter is a single facility of unlimited capacity and the objective is to determine the set of routes that minimize the total evacuation time; among the possibly multiple solutions with the minimum evacuation time, the one with the minimum operational cost (total time spent all resources) is selected. Note that the evacuation time is defined by the point in time the last evacuee arrives to a shelter, and the total operation time is the sum of the operation times of all vehicles (till they return to the ending depots).

As for the available vehicle fleet, it consists of different capacity as mentioned before and the capacity of its vehicle is known in advance. Moreover, all vehicles start and finish their routes from/to different locations (depots).

2.2 Mathematical Formulation

Let $\{t\}$ be the shelter of unlimited capacity (a single node) in which all the evacuees will be transferred to, and let $K=\{1, \ldots, u\}$ be the set of available vehicles, assuming that u is their total number, each of capacity $Q_{k}, k \in K$. All vehicles start and finish their routes from/to different locations (depots), and thus we define two sets for the vehicle starting and ending locations - sets S and E, where $S=\left\{s^{k} \mid k \in K\right\}$ is the set of originating locations and $E=\left\{e^{k} \mid k \in K\right\}$ is the set of the ending locations. Each of these locations may be considered to be a single parking space. The locations are used in order to address the requirement to separate the total vehicle operation time from the evacuation time.

Let C be the set of all nodes representing the evacuee locations, hereafter called pickup nodes. Additionally, let $d_{i} \in \mathbb{N}^{+}, i \in C$ be the number of evacuees waiting at pick-up node i. Moreover, let $V^{k}=\left\{v_{1}^{k}, v_{2}^{k}, \ldots, v_{\left|V^{k}\right|}^{k}\right\}, k \in K$ be an ordered set containing the possible trips
of each vehicle k, assuming that $\left|V^{k}\right|=\left\lceil\frac{\sum i_{i \in C} d i}{Q_{k}}\right\rceil, k \in K$, i.e. the maximum number of trips required to pick-up all evacuees by (utilizing the full capacity of) vehicle k. Let also $\bar{V}=$ $\mathrm{U}_{k \in K} V^{k}$, be the set of all possible trips. Note that we use ancillary parameter $Q^{v}=Q_{k}, v \in$ $V^{k}, k \in K$ to denote that the capacity of the trips is equal to the capacity of the corresponding vehicle making the trip.

We formalize now the definition of directed graph $G(N, A)$, in which $N=\{t\} \cup S \cup$ $E \cup C$ is the set of nodes, A is the arc set connecting the nodes of N and $\bar{A}=A_{S} \cup A_{C} \cup A_{t} \cup$ A_{E} is a set of triplets, with each triplet comprising an arc and a trip. Thus, let

- $A_{S}=\left\{\left(s^{k}, j, v_{1}^{k}\right) \mid j \in C \cup\left\{e^{k}\right\}, k \in K\right\}$ be triplets containing the arcs starting from the originating location of each vehicle k, and the corresponding first trip. The first trip may be directed to a pick-up location, or to the ending location. The latter is used to model idle vehicles (if any)
- $A_{C}=\left\{(i, j, v) \mid i \in C, j \in(C \backslash\{i\}) \cup\{t\}, v \in V^{k} \backslash\left\{v_{\left|V^{k}\right|}^{k}\right\}, k \in K\right\}$ be triplets containing: a) arcs connecting each pick-up location $i \in C$ to all other pick-up locations and to the shelter, and b) all trips besides the last trip that is dedicated to the return of the vehicle to its ending location (from the shelter or from the originating location for possible idle vehicles)
- $A_{t}=\left\{(t, j, v) \mid j \in C, v \in V^{k} \backslash\left\{v_{1}^{k}, v_{\left|V^{k}\right|}^{k}\right\}, k \in K\right\}$ be triplets containing arcs departing from the shelter to all pick-up locations by all trips besides the first and the last one
- $A_{E}=\left\{\left(t, e^{k}, v_{\left|V^{k}\right|}^{k}\right) \mid k \in K\right\}$ be triplets comprising of arcs connecting the shelter with the ending location of each vehicle by its last trip

Additionally, we define a set of pairs comprising trips related to certain nodes of the directed graph. Thus, we define the set $\bar{N}=N_{S} \cup N_{C} \cup N_{E}$, where:

- $\quad N_{S}=\left\{\left(s^{k}, v_{1}^{k}\right) \mid k \in K\right\}$ contains only the first trip of each vehicle
- $N_{C}=\left\{(i, v) \mid i \in C \cup\{t\}, v \in V^{k} \backslash\left\{v_{\left|V^{k}\right|}^{k}\right\}, k \in K\right\}$ contains all trips, except the last trip of each vehicle, that may arrive to the pick-up location and to the shelter
- $N_{E}=\left\{\left(e^{k}, v\right) \mid v \in\left\{v_{1}^{k}, v_{\left|V^{k}\right|}^{k}\right\}, k \in K\right\}$ contains the last trip of each vehicle that arrives at the corresponding ending location. Note that an idle vehicle will be directed from the originating location to its ending location at its first trip, though a non-idle vehicle will make its last trip to its ending location.

Let $t_{i j}^{v},(i, j, v) \in \bar{A}$ be the minimum travel time between nodes i and j by trip v. Let also:

- $w_{i}^{v},(i, v) \in \bar{N}$ be the time that trip v arrives to node i
- $\quad q_{i}^{v},(i, v) \in\{\bar{N} \mid i \in C \cup E\}$ be the number of evacuees onboard the vehicle of trip v just before its arrival to node i
- $\quad d_{i}^{v},(i, v) \in\{\bar{N} \mid i \in C\}$ be the number of evacuees picked-up form node i during trip v
- $\quad x_{i j}^{v},(i, j, v) \in \bar{A}$ be assigned the value 1 if $\operatorname{arc}(\mathrm{i}, \mathrm{j}) \in \mathrm{A}$ is traversed by trip v, and 0 otherwise
- $\quad T_{\text {evac }}$ be the duration of the evacuation, i.e. the time span defined by the start of the evacuation until the time the last evacuee arrives to a shelter

Then the objective function of the PEHFP is defined as follows:

$$
\begin{equation*}
\min T C=T_{e v a c}+\frac{1}{L} \sum_{(i, j, v) \in \bar{A}} t_{i j}^{v} x_{i j}^{v} \tag{2.1}
\end{equation*}
$$

where the second term is the total vehicle operation time (cost) and L ensures that the first term of (2.1) dominates lexicographically the second term: $L>\sum_{(i, j, v) \in \bar{A}} t_{i j}^{v}$. In particular, in case there are more than one optimal solutions, in terms of evacuation time, the one with less total "cost" is selected.

Optimization of (2.1) is subject to:

Routing constraints

$$
\begin{gather*}
\sum_{j \in N \mid\left(s^{k}, j, v_{1}^{k}\right) \in \bar{A}} x_{s^{k} j}^{v_{1}^{k}}=1, \quad k \in K \tag{2.2}\\
\sum_{v \in \bar{V}, j \in N \mid(i, j, v) \in \bar{A}} x_{i j}^{v} \geq 1, \quad i \in C \tag{2.3}\\
\sum_{i \in N \mid\left(i, t, v_{n}^{k}\right) \in \bar{A}} x_{i t}^{v_{n}^{k}}=\sum_{j \in N \mid\left(t, j, v_{n+1}^{k}\right) \in \bar{A}} x_{t j}^{v_{n+1}^{k},} \quad n=1, \ldots,\left|V^{k}\right|-1, k \in K \tag{2.4}\\
x_{s^{k} e^{k}}^{v_{1}^{k}}+\sum_{i \in N \mid(i, t, v) \in \bar{A}} x_{i t}^{v}=1, \quad v \in V^{k} \backslash\left\{v_{\left|V^{k}\right|}^{k}\right\}, k \in K \tag{2.5}\\
x_{s^{k} e^{v_{1}^{k}}}+x_{t e^{k}}^{v_{\left|v^{k}\right|}^{k}}=1, \quad k \in K \tag{2.6}
\end{gather*}
$$

$$
\begin{equation*}
\sum_{i \in N(\bar{i}, h, v) \in A} x_{i h}^{v}=\sum_{j \in N \mid(h h, j, v) \in \bar{A}} x_{h}^{v}, \quad h \in C, v \in V^{k} \backslash\left\{v_{\left|V^{k}\right|}^{k}\right\}, k \in K \tag{2.7}
\end{equation*}
$$

Timing constraints

$$
\begin{array}{cl}
T_{\text {evac }} \geq w_{t}^{v}, & v \in\left\{v_{\left|v^{k}\right|-1}^{k} \mid k \in K\right\} \\
w_{i}^{v}+t_{i j}^{v}-B\left(1-x_{i j}^{v}\right) \leq w_{j}^{v}, & (i, j, v) \in \bar{A}, i \in S \cup C \\
w_{t}^{v_{n}^{k}}+t_{t j}^{v_{n+1}^{k}}-B\left(1-x_{t j}^{v_{n+1}^{k}}\right) \leq w_{j}^{v_{n+1}^{k},}, & \left(t, j, v_{n+1}^{k}\right) \in \bar{A}, n=1, \ldots,\left|V^{k}\right|-1, \\
& k \in K, j \in C \cup\left\{e^{k}\right\} \\
0 \leq w_{j}^{v} \leq B \sum_{(i, j, v) \in \bar{A}} x_{i j}^{v}, & (j, v) \in \bar{N} \backslash N_{S} \tag{2.11}
\end{array}
$$

Capacity constraints

$$
\begin{align*}
& q_{i}^{v}+d_{i}^{v}-B\left(1-x_{i j}^{v}\right) \leq q_{j}^{v}, \quad(i, j, v) \in \bar{A}, i \in C \tag{2.12}\\
& q_{j}^{v} \leq B\left(1-x_{i j}^{v}\right), \quad(i, j, v) \in \bar{A}, i \in\{t\} \cup S, j \in C \tag{2.13}\\
& \quad \sum_{k \in K} q_{e^{k}}^{v_{\left|v^{k}\right|}^{k}+\sum_{k \in K} w_{s^{k}}^{v_{1}^{k}}=0} \tag{2.14}\\
& 0 \leq q_{j}^{v} \leq Q^{v} \sum_{(i, j, v) \in \bar{A}} x_{i j}^{v}, \quad(j, v) \in \bar{N} \backslash N_{S} \cup N_{E} \tag{2.15}
\end{align*}
$$

Other constraints

$$
\begin{align*}
\sum_{v \in \bar{V} \mid(i, v) \in \bar{N}} d_{i}^{v}=d_{i}, & i \in C \tag{2.16}\\
d_{i}^{v} \in \mathbb{N}_{0}, & i \in C,(i, v) \in \bar{N} \tag{2.17}\\
x_{i j}^{v} \in\{0,1\}, & (i, j, v) \in \bar{A} \tag{2.18}
\end{align*}
$$

Regarding the routing constraints: Constraint (2.2) indicates that the first vehicle trip should depart from the related originating depot. Constraint (2.3) ensures that all pick-up locations should be visited at least once. Constraint (2.4) ensures that when a vehicle trip arrives to the shelter, the next vehicle trip should depart from it. Constraint (2.5) indicates that trips of non-idle vehicles should arrive at the shelter, or idle vehicles should head directly to
the ending location. Constraint (2.6) ensures that the first or the last trip should arrive at the ending depot. Constraint (2.7) ensures that if a vehicle arrives to an evacuee location, it should also depart from the location within the same trip.

Regarding the timing constraints: Inequality (2.8) ensures that the evacuation time should be greater than the last visit to the shelter. Constraint (2.9) defines the change of the arriving time at each node within the same trip. Constraint (2.10) defines the change of arriving time between successive trips (through the shelter). Constraint (2.11) ensures that the time of arrival to any node, other that the starting location, will be greater or equal to zero, with $B \gg 1$, and, specifically, it will be equal to zero if the location is not visited. Constraint (2.14) denotes that the first trip of each vehicle starts at time equal to zero (and that each vehicle arrives at the ending location empty).

Regarding the capacity constraints: Constraint (2.12) defines the change of load for each trip, where $B \gg 1$. Constraint (2.13) ensures that every vehicle trip departs empty after a visit to the shelter and departs empty from the starting location. Constraint (2.14) denotes that each vehicle arrives at the ending position empty (and that the vehicle leaves its starting position at time equals to zero). Inequality (2.15) ensures that at any node, other than the starting locations, the number of evacuees aboard the vehicles will not exceed the vehicle's (trip) capacity nor will it be negative.

Regarding the rest of the constraints: Constraint (2.16) ensures that all evacuees should be picked-up from all pick-up locations by one or more vehicle trips. Finally, constraint (2.17) defines the nature of the variable that represents the number of evacuees picked up. Constraint (2.18) defines the binary nature of the arc variables at each trip v.

2.3 Inputs for PEHFP

For PEHFP, the formulation of the appropriate mathematical programming model assumes prior knowledge of the population at each village to be evacuated, including enabled and disabled citizens, since these citizen categories have different transportation needs. Specifically, for each village (pick-up point), problem inputs include the number of enabled evacuees, the number of disabled evacuees using wheelchairs who will be transported by vehicles with certain technical characteristics, and the number of disabled evacuees who need to be transported by ambulances. Note that for each village we assume that there will be a single pick-up point (assembly point) already been identified. This assumption does not present significant restrictions, since the intra village distances and travel times for citizens that require home pick ups are significantly shorter than the inter-village or the village to city
distances and travel times. Note that the proposed approach does not address the case of citizens that evacuate using their own means of transport.

Further input data include the exact village locations (pick-up points), and the corresponding road network connecting all villages and the city (shelter). Note that the road network may offer the opportunity for more than one route between any two locations. Consequently, all network nodes and arcs should be provided, along with the corresponding distances and travel times.

Vehicle-related information includes the location of the starting point of each vehicle and the connecting road network, vehicle capacities and other characteristics. The latter concerns vehicles which may be used for transportation of enabled evacuees, wheel chair users, or citizens in need of special care (ambulance users).

Finally, additional input data include the exact shelter location. In the proposed approach we assume that the capacity of each shelter is unlimited.

3. Solution approach for PEHFP

Mathematical programming problems like the one presented in Section 2 for PEHFP are difficult to solve to optimality. In fact, such problems become harder to solve as complexity increases due to problem size. Consequently, trying to obtain an optimal solution for practical, complex, problems in reasonable time usually is not feasible. To overcome such difficulties, heuristic and other algorithms are developed in order to obtain efficient, near optimal solutions in reasonable time.

In this thesis two (related) heuristic approaches for PEHFP are presented. In both approaches, the algorithms schedule routes for the available vehicles in order to evacuate the population waiting at the pick-up locations and transport the evacuees to the shelter. The routing and pick up plan evacuate the entire population, minimizing operational time span, and respecting the capacities of the available vehicles, the traveling times between network nodes, and all other constraints. The heuristic algorithms are applied initially to an instance of the evacuation problem, in which none of the evacuees faces any mobility disabilities. The heuristics are compared in terms of total evacuation time and the one with the minimum evacuation time is then applied to the more complex case, in which some of the evacuees are characterized by a form of disability.

Both heuristics developed to solve this problem use the following input information.

- Number of available vehicles and the corresponding capacities
- Number of evacuees to be collected from each pick-up location (node)
- The network comprised by the vehicle starting points, the vehicle ending points, the shelter, and the pick-up locations, as well as all arcs feasibly connecting these nodes
- Travel times for all arcs in this network.

3.1 H1 for PEHFP for enabled population

For the first algorithm we create a list of the available vehicles (List) arranged in descending order with respect to their capacity. Thereafter, the vehicles in List are routed simultaneously. In particular, the first vehicle of List is routed to the node with the highest demand (always keeping a record of the corresponding traveling time), the second vehicle of List to the second node with the highest demand (record traveling time), etc., until the List is exhausted, or the demand of all pick-up locations is met. If the List is exhausted and the demand is not met, the algorithm sorts the vehicle traveling times in ascending order and the vehicle with the minimum traveling time is routed after it completes its first pick up route. If
the vehicle with minimum traveling time is at the shelter, it is routed to the node with the highest demand, otherwise it is routed to its nearest node.

The steps of the proposed algorithm to deal with PEHFP are the following:
Step 1. Sort the vehicles in descending order with respect to their initial capacity (List).
Step 2. Sort the demand of nodes in descending order (Demand_List).
Step 3. Set the first vehicle k in List as current vehicle (CV), delete it from List and route it to the node with the highest demand.

Step 4. Update $C V^{\prime}$ s travel time (Time_List), travel distance (Total_Distance), capacity and update the demand of current node ($C N$).

Step 5. If List is not exhausted and demand is not met go to Step 2
elseif demand is met
route the vehicles which are not at the shelter to the shelter, update their traveling time and their travel distance. Set $T_{\text {evac }}=$ maximum element in Time_List, set Distance $=\operatorname{sum}($ Total_Distance $)$ and stop.
elseif List is exhausted and demand is not met sort Time_List in ascending order and route the vehicle with the minimum travel time. Repeat steps 4-5.
end
In the following, the pseudo-code of the corresponding heuristic algorithm is given:
Step 1. Set $T_{\text {evac }}=0$, Time_List $=0$, Total_Distance $=0$
Step 2. While $\sum_{c \in C} D_{c}>0$
Step 3. While List is not empty
3.1. Set the first vehicle $k \in K$ in List as current vehicle ($C V=k$), delete it from List and route it
3.2. Update $C V^{\prime} s$ travel time (Time_List), travel distance (Total_Distance), capacity and update the demand of current node $C N$
Step 4. Sort Time_List in ascending order
4.1 Set the vehicle $k \in K$ with the minimum travel time as current vehicle ($C V=k$) and route it to the nearest node if $C V$ is at any demand point, otherwise route it to the node with the highest demand.
4.2 Repeat 3.2.

Step 5. Find the vehicles which are not at the shelter and route them to the shelter. Update their travel time (Time_List) and their travel distance (Total_Distance)

Step 6. Find maxelement $\{$ Time_List $\}$, set $T_{-} e v a c=\operatorname{maxelement}\left\{T i m e _L i s t\right\}$ and Distance $=\sum_{k \in K}$ Total_Distance (k)
The detailed algorithm and the corresponding pseudo-code are given in Appendix A.

3.2 H2 for PEHFP for enabled population

In this second algorithm a list of vehicles (List) is uses also arranged in descending order with respect to their capacity. Thereafter, the first vehicle of List is routed to the node with the highest demand (always keeping a record of the corresponding traveling time), and subsequently, if the capacity of the vehicle is not exhausted, it is routed to its nearest node. The process is continued in the same manner until its capacity is exhausted or the total demand is met. The vehicle returns to the depot. If the routing process of the first vehicle is completed and the total demand is not satisfied, then the algorithm continues with the second vehicle of the List following the same process until the List is empty. In case that the List is empty and the demand is not satisfied, the algorithm identifies the vehicle that will return first to the shelter and continues performing the process described above until the total demand is met.

The corresponding steps of the second algorithm are the following:

Step 1. Sort the vehicles in descending order with respect to their initial capacity (List).
Step 2. If List is not empty and demand is not met, set the first vehicle k in List as current vehicle (CV) and delete it from List.
Elseif List is empty
Sort Time_List in ascending order and set the vehicle with the minimum travel time as $C V$.

Step 3. Route $C V$ from its starting point (or from the shelter) to the node with the highest demand and then to its nearest node until its residual capacity is equal to zero or the demand is met. Record its travel time (Time_List), travel distance (Total_Distance), capacity and update the demand of each node that $C V$ services.

Step 4. If demand is not met, repeat steps 2-4

Else

Route the vehicles which are not at the shelter to the shelter. Update their travel time and their travel distance. Set $T_{\text {evac }}=$ maximum element in Time_List, set Distance $=\operatorname{sum}($ Total_Distance $)$ and stop.

end

Accordingly, the pseudo-code for the second algorithm is given below:

Step 1. Set $T_{\text {evac }}=0$, Time_List $=0$, Total_Distance $=0$
Step 2. While $\sum_{c \in C} D_{c}>0$
Step 3. If List is not empty
3.1 Set the first vehicle $k \in K$ in List as current vehicle $(C V=k)$ and delete it from List
3.2 Route $C V$ from its starting point (or from the shelter) to the node with the highest demand and then to its nearest node until its capacity is equal to zero or the demand is met. Record its travel time (Time_List), travel distance (Total_Distance), capacity and update the demand of each node that CV services.

3.3 Else

3.4 Sort the Arrival_List in ascending order and set the first vehicle k in Arrival_List as current vehicle $(C V=k)$. Route it according to step 3.2

Step 4. Find the vehicles which are not at the shelter and route them to the shelter. Update their travel time (Time_List) and their travel distance (Total_Distance)

Step 5. Find maxelement $\{$ Time_List $\}$, set T_evac = maxelement $\{$ Time_List $\}$ and Distance $=\sum_{k \in K}$ Total_Distance (k)

The detailed version of the second algorithm and the corresponding pseudo-code are given in Appendix B.

4. Comparison between H 1 and H 2 and application to the general problem

In order to evaluate and validate the proposed heuristic algorithms, a set of sample evacuation problems is generated and solved. To this end, a problem generator has been developed.

Both heuristics have been tested under two different scenarios that vary key parameters. In the first one, the number of pick up nodes is fixed and the number of vehicles varies, while in the second scenario, the number of nodes increases and the number of vehicles is fixed. For each vehicle-node combination, 100 problems have been generated and solved by both heuristics. Subsequently, the mean evacuation time is computed for each heuristic per vehicle-node combination.

The problem generator has been provided with the following inputs:

- Number of vehicles
- Number of nodes
- Vehicle capacities
- Node demand
- Travel times from each vehicle starting point to each node
- Travel times between nodes
- Travel times from shelter to each node
- Coordinates of each vehicle's starting point
- Coordinates of shelter
- Coordinates of nodes
- Average speed of each vehicle

Additionally, note that the following probability distributions have been used for the generated data:

- Vehicle capacity is generated from a Normal distribution $N(10,4)$.
- Node demand is generated from a Normal distribution $N(25,25)$.
- The coordinates of the shelter, nodes and vehicle starting points are generated from a Uniform distribution $U(0,100)$.
- Distances are calculated using the Euclidean norm.
- For each problem, the mean speed of all vehicles is generated from a Uniform distribution $U(45,55)$.
- The travel times are calculated as $\frac{s}{v}$, where s is the distance between nodes in km and v is the mean speed assumed for vehicles, generated from a Uniform distribution $U(45,55) \mathrm{km} / \mathrm{h}$ for each vehicle.

4.1. Scenario 1:Fixed number of operating vehicles

Under the first scenario, the number of vehicles v is fixed while the number of nodes i varies. Initially, for $i=1$ node and $v=5$ vehicles the generator creates 100 different problems. Both heuristics 1 and 2 are used to calculate the evacuation time and the total distance covered by all vehicles for each problem. Subsequently, the corresponding mean values are computed. The same process is followed for $i=2,3, \ldots, 15$.

The results obtained are presented in Table 4.1, and in Figures 4.1, 4.2, 4.3 and 4.4. In Figure 4.1, the mean evacuation time for both algorithms is shown with respect to the number of nodes (increasing as expected). Similarly, in Figure 4.2, the mean total distance covered by all operating vehicles during the evacuation problem increases with the number of nodes for both heuristics. Due to its nature, H1 utilizes more vehicles for meeting the demand. Thus, H 1 is better, in terms of evacuation time, in comparison to H 2 , which is better in terms of total covered distance, since it uses fewer vehicles.

Table 4.1. Mean total evacuation times, mean total distances and percentage differences for heuristic algorithms 1

i	$\begin{aligned} & \text { Mean } \boldsymbol{T}_{\text {evac } 1} \\ & \text { in min } \end{aligned}$	$\begin{aligned} & \text { Mean } T_{\text {evac } 2} \\ & \text { in min } \end{aligned}$	$\begin{aligned} & \text { Mean Total_Dist }{ }_{l} \\ & \text { in } k m \end{aligned}$	$\begin{aligned} & \text { Mean Total_Dist } t_{2} \\ & \text { in km } \end{aligned}$	Percentage Difference of $T_{\text {evac }}(\mathrm{H} 2-\mathrm{H} 1)$	Percentage Difference of Total_Dist (H2-H1)
1	151.7	151.7	215.47	215.4	0.00\%	0.00\%
2	184.6	211.5	557.68	439.8	12.70\%	-26.79\%
3	221.1	235.8	652.62	636.9	6.24\%	-2.45\%
4	294.4	322.7	894.5	852.2	8.77\%	-4.95\%
5	333.5	365.4	1090.1	1037.4	8.73\%	-5.08\%
6	399.7	425.1	1335.7	1289.5	5.98\%	-3.57\%
7	442.5	476.2	1525.5	1460.2	7.07\%	-4.47\%
8	478.6	511.7	1681.4	1625.5	6.47\%	-3.43\%
9	523.9	564.2	1852.5	1782.0	7.15\%	-3.95\%
10	587.2	624.3	2075.2	1999.4	5.93\%	-3.78\%
11	631.3	665.4	2260.5	2166.7	5.12\%	-4.32\%
12	669.6	718.6	2445.6	2366.1	6.81\%	-3.36\%
13	720.2	769.2	2644.1	2545.3	6.35\%	-3.88\%
14	753.9	804.5	2781.6	2674.2	6.28\%	-4.01\%
15	814.2	855.9	3020.9	2917.2	4.86\%	-3.55\%

Moreover, in Figure 4.3, the percentage difference for the mean evacuation time between the two heuristics is shown. The percentage difference of the mean evacuation time decreases. This may be attributed to the fact that as the number of nodes increases the population to be evacuated also increases and, consequently, in both algorithms more routes are needed in order to evacuate the entire population. Since more routes are executed for
meeting the demand, the evacuation time increases in both algorithms and their percentage difference, in term of total evacuation time, reduces. Thus the predominance of H1fades out as the number of demand points increases.

In Figure 4.4, the corresponding percentage difference of the mean total distance is given which is stabilized. Since the same number of vehicles serves more nodes, the covered distance in both algorithms is increased and their percentage difference is stabilized.

Figure 4.1 Average evacuation time for heuristics 1 $\& 2$ for $v=5$ vehicles and $i=1, \ldots, 15$ nodes

Figure 4.2. Mean Total Distance Of Heuristics 1 \& 2 for
$v=5$ vehicles and $i=1, \ldots, 15$ nodes

Figure 4.3 Percentage difference of average evacuation time for heuristic 2 vs. heuristic $1(v=5$ vehicles and $i=1, \ldots, 15$ nodes) distance for heuristic $2 v$ s. heuristic $1(v=5$ vehicles and $i=1, \ldots, 15$ nodes)

4.2. Scenario 2: Fixed number of pick up nodes

In the second scenario, the number of nodes is maintained constant while the number of vehicles v varies. Initially, for $v=1$ vehicles and $i=5$ nodes, 100 different problems are generated and heuristics 1 and 2 are used to determine the evacuation time and the total distance for each problem. The mean values are computed and recorded for each heuristic. This process is repeated for $i=5$ and $v=2,3, \ldots, 15$.

Table 4.2 includes the results obtained. These results are also presented in Figures 4.5, 4.6, 4.7 and 4.8. In Figure 4.5 the mean evacuation times for both algorithms are presented with respect to the number of vehicles used. As expected, the evacuation time reduces with the number of operating vehicles since the same number of pick-up locations are
served by more vehicles. Similarly, in Figure 4.6, the mean total distance for both algorithms reduces with the number of vehicles for both heuristics.

Table 4.2 Mean total evacuation times, mean total distances and their percentage difference for heuristic algorithms 1 and 2 for k vehicles and 5 nodes

k	$\begin{aligned} & \text { Mean } T_{\text {evac }} \\ & \text { in min } \end{aligned}$	$\begin{aligned} & \text { Mean } T_{\text {evac } 2} \\ & \text { in min } \end{aligned}$	$\begin{aligned} & \text { Mean Total_Dist } \\ & \text { in } k m \end{aligned}$	$\begin{aligned} & \text { Mean Total_Dist } \\ & \text { in } k m \end{aligned}$	Percentage Difference of $T_{\text {evac }}(\mathrm{H} 2-\mathrm{H} 1)$	Percentage Difference of Total_Dist (H2-H1)
1	1332.337	1332.337	1057.9542	1057.954	0.00\%	0,00\%
2	676.618	690.912	1051,.615	1034.285	2.07\%	-1,68\%
3	489.120	512.858	1077.149	1050.720	4.63\%	-2,52\%
4	391.300	416.897	1069.378	1035.949	6.14\%	-3,23\%
5	337.887	368.899	1081.782	1049.800	8.41\%	-3,05\%
6	308.832	349.316	1121.711	1065.205	11.59\%	-5,30\%
7	275.471	309.127	1084.043	1023.118	10.89\%	-5,95\%
8	241.683	272.031	1062.912	1029.039	11.16\%	-3,29\%
9	224.658	261.642	1079.255	1037.393	14.14\%	-40,35\%
10	202.767	248.686	1066.8726	1006.079	18.46\%	-6,04\%
11	194.623	245.510	1126.600	978.794	20.73\%	-15,10\%
12	195.703	244.126	1085.523	992.689	19.84\%	-9,35\%
13	201.397	252.357	1060.189	1010.959	20.19\%	-0,49\%
14	195.217	250.606	1061.407	1003.759	22.10\%	-5,74\%
15	199.372	248.468	1036.897	957.072	19.76\%	-8,34\%

Finally, in Figure 4.7, the percentage difference of the mean evacuation time between the two heuristics is presented, while in Figure 4.8, the corresponding percentage difference of the mean total distance is provided. Due to its nature, H1 utilizes more vehicles for meeting the demand in comparison to H2. Therefore, as the number of the available vehicles increase, H1 uses more vehicles and manages to complete the evacuation process earlier than H2. Consequently, the percentage difference of the mean evacuation time between the two heuristics increases.

Figure 4.5 Mean Values Of Heuristics $1 \& 2$ for $v=1$, ..., 15 vehicles and $i=5$ nodes

Figure 4.6 Mean Values Of Total Distance Of Heuristics $1 \& 2$ for $v=1, \ldots, 15$ vehicles and $i=5$ nodes

Figure 4.7 Percentage difference of average evacuation time for heuristic 2 vs . heuristic 1 ($v=1, \ldots, 15$ vehicles and $i=5$ nodes)

Figure 4.8 Percentage difference of average total distance for heuristic $2 v s$. heuristic 1 ($v=1, \ldots, 15$ vehicles and $i=5$ nodes)

4.3. Comparison of the two heuristics

Considering Figures 4.2 and 4.6, it is deduced that heuristic algorithm 1 (H1) is superior in terms of $T_{\text {evac }}$ than heuristic algorithm $2(\mathrm{H} 2)$. The reason lies in the fact that H 2 is greedy in terms of distance and attempts to fully load each vehicle during each trip. In H1 the vehicles operate in parallel. Thus, H1 tends to minimize the total traveling time. Contrarily, as shown in Figures 4.3 and 4.7, H2 is superior with respect to the total distance covered by all vehicles, since less vehicles operate in parallel. To confirm this statement, the following example is presented. In this example let $v=7$ vehicles, $i=5$ nodes.

Input Data:

Table 4.3 Travel time between nodes

From	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
To	0	72.1139	41.4709	22.9490	70.1249
1	72.1139	0	73.2866	54.0694	29.9720
2	41.4709	73.2866	0	29.1830	54.3531
3	22.9490	54.0694	29.1830	0	47.4931
4	70.1249	29.9720	54.3531	47.4931	0

Table 4.4 Travel time from shelter to each node

From	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
To					
Shelter	45.2821	57.0145	77.7297	48.7042	74.067

Table 4.5 Travel time from each vehicle's starting point to each node (Note: S^{k} indicates the starting point of

vehicle k)						
To	From	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
S^{1}	24.2659	89.7237	64.2596	46.6567	92.6210	
S^{2}	49.0665	120.2944	78.1593	71.2473	118.7385	
S^{3}	59.0027	32.7607	78.6444	51.0082	56.3768	
S^{4}	59.1934	16.3588	56.9286	39.1825	20.4996	
S^{5}	50.2553	95.8922	91.6881	68.1829	107.6253	
S^{6}	36.2560	41.8239	59.3286	30.3415	53.5540	
S^{7}	14.4474	67.2251	27.3765	13.2964	59.8673	

Table 4.6 Node demand

\mathbf{i}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Demand D_{i}	22	24	27	17	27

Table 4.7 Vehicle's capacity

\boldsymbol{k}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
Capacity Q_{k}	10	14	5	14	11	12	7

The resulting routes for the evacuation problem for both heuristics are presented in the following Table 4.8:

Table 4.8 Routes of heuristics $1 \& 2$

Heuristic 1	Heuristic2
Route $1=S^{2}-3$-shelter with vehicle 2	Route $1=S^{2}-3$-shelter with vehicle 2
Route $2=S^{4}-5$-shelter with vehicle 4	Route $2=S^{4}-5$-shelter with vehicle 4
Route $3=S^{6}-2$-shelter with vehicle 6	Route $3=S^{6}-2$-shelter with vehicle 6
Route4 $=S^{5}-1$-shelter with vehicle 5	Route4 $=S^{5}-1$-shelter with vehicle 5
$\text { Route } 5=S^{1}-4 \text {-shelter with vehicle } 1$	$\text { Route } 5=S^{1}-4 \text {-shelter with vehicle } 1$
Route6= ${ }^{7}-3$-shelter with vehicle 7	Route6= ${ }^{7}$-3-shelter with vehicle 7
Route $7=S^{3}-5$-shelter with vehicle 3	Route $7=S^{3}-5$-shelter with vehicle 3
Route8=shelter-2-shelter with vehicle 4	Route8=shelter-2-5-shelter with vehicle 4
Route9=shelter-1-shelter with vehicle 1	Route $9=$ shelter-1-shelter with vehicle 1
Route $10=$ shelter-5-shelter with vehicle 5	Route10=shelter-4-1-3-shelter with vehicle 5
Route11=shelter-4-shelter with vehicle 6	Route11=shelter-5-3-shelter with vehicle 6
Route $12=$ shelter-3-shelter with vehicle 7	
Route $13=$ shelter-1-shelter with vehicle 3	

The first trips for all vehicles are identical for both heuristics. Let's examine further the second step of each algorithm. In both algorithms, vehicle 4 is the first vehicle that arrives at the shelter after its first trip at time $t^{4}=l_{S^{4}, 5}+l_{5, \text { shelter }}=20.5+74.1=94.6 \mathrm{~min}$, where $L_{i, j}$ is the travel time between nodes i and j and t^{i} is the traveling time of vehicle i.

According to H 1 , vehicle 4 leaves the shelter at time $t^{4}=94.566 \mathrm{~min}$, visits node 2 , picks up the residual demand (12 evacuees) and returns to the shelter although it has some residual capacity (2 seats). Vehicle 4 returns to the shelter at time $t^{4}=t^{4}+l_{\text {shelter }, 2}+l_{2, \text { shelter }}=$ 208.6 min . Note that, at time $t^{5}=l_{S^{5}, 1}+l_{1, \text { shelter }}=95.5 \mathrm{~min}$, vehicle 5 leaves the shelter, visits node 5 , picks up the residual demand (8 evacuees) and returns to the shelter to drop off the evacuees at time $t^{5}=t^{5}+l_{\text {shelter, } 5}+l_{5, \text { shelter }}=243.7 \mathrm{~min}$. Thus, under H1, node 5 is completely evacuated at time $t^{5}=243.7 \mathrm{~min}$.

According to H 2 , vehicle 4 leaves the shelter at time $t^{4}=94.566 \mathrm{~min}$, visits node 2 and picks up the residual demand (12 evacuees). However, there is still free space onboard vehicle 4 (2 seats). Due to this reason, the vehicle visits the nearest node, which is node 5 , to collect more evacuees. At node 5, it picks up 2 evacuees (residual capacity) and then returns to shelter at time $t^{4}=t^{4}+l_{\text {shelter }, 2}+l_{2,5}+l_{5, \text { shelter }}=255.6 \mathrm{~min}$. But not all evacuees are picked up from node 5 and thus another vehicle needs to visit node 5 to collect the remaining evacuees. Consequently, the evacuation time of node 5 when H 2 is applied, is higher than the corresponding evacuation time with H1. Therefore, H1 manages to completely evacuate node 5 faster than H 2 .

Note that this pattern is repeated through the following trips planned by the algorithms, and hence, the accumulated difference of evacuation time increases. Consequently, H1 manages to complete the evacuation process earlier than H 2 . On the other hand, under algorithm H 2 , less distance is covered to complete the evacuation process. In particular, vehicle 4 returns to the shelter after its first trip and then, in both algorithms, it is routed to the node with the highest demand. According to H 2 , vehicle 4 is routed to node 2. After it serves node 2, it is routed to the nearest node because its remaining capacity is greater than zero. In H1, vehicle 4 is routed to node 2 and, although its residual capacity is greater than zero, it is not routed to the next node because the vehicle with the minimum travel time (vehicle 1) has priority to be routed. In that way, H 1 uses more vehicles for meeting the demand and the total distance covered by the vehicles of H 1 is greater than the total distance of H 2 .

4.4. PEHFP for a population that comprises enabled and disabled evacuees

Based on the results of Section 4.3, the first heuristic algorithm (H1), which performs better in terms of evacuation time, is selected to be implemented in the case of multiple evacuee types.

In particular, we deal with three evacuee types in total. The type of evacuee depends on her/his mobility status. The first types of evacuees, enabled evacuees, are those who have been considered in the previous section. The second type of evacuees concerns people with partial disability who use a wheel chair. The third type concerns citizens with more severe disability who need to be transported on stretchers. In other words, in contrast with the enabled evacuees, due to their mobility problems, the last two categories need special transportation treatment.

Due to evacuees' special needs for transportation, vehicles with special characteristics are required, contrarily to the previous approach where vehicles pick up only enabled evacuees and they do not need to be specially equipped. Specifically, partially disabled evacuees need to be transferred by vehicles that are equipped with ramps so that wheel chairs can easily get onboard. Totally disabled evacuees can only be transferred by ambulances. Furthermore, we assume that both partially and totally disabled evacuees are accompanied by a relative or a doctor/nurse. The aforementioned difference is critical for the evacuation problem since the fleet to be used needs to include specific types of vehicles. Note that a vehicle that can transport partially disabled evacuees can also transport enabled evacuees, while a vehicle that can transfer enabled evacuees cannot necessarily transfer partially or totally disabled evacuees. In addition, a vehicle that can transfer totally disabled evacuees may transfer partially disabled evacuees.

Additionally, it is worth mentioning that another critical difference with the problem so far presented concerns the service time. In particular, the service time of a partially or totally disabled evacuee is higher compared to the service time for an enabled evacuee, a fact that clearly affects the total evacuation time since the pick-up and drop-off processes last longer. Taking into account the aforementioned constraint along with the fact that a disabled evacuee may need immediate medical help, indicates that disabled citizens should be evacuated first. This decision affects the solution approach, since vehicles that can transport disabled evacuees should be routed with a priority.

Consequently, we have divided the problem in two parts according to the aforementioned constraints concerning the order of citizens' evacuation. The first part deals with partially and totally disabled evacuees, and the second part deals with partially disabled and enabled evacuees.

In the first part of H1, a list of available ambulances arranged in descending order with respect to their capacity for the partially disabled, is initially created. Note that in case none of the ambulances is adapted for partially disabled evacuees, the ambulances are sorted in descending order with respect to their capacity for enabled evacuees. Thereafter, the ambulances in List are routed simultaneously. In particular, the first ambulance of List is routed to the node with the highest demand for totally disabled (always keeping a record of the corresponding traveling time), the second ambulance of List to the second node with the highest demand for totally disabled (record traveling time), etc., until the List is empty, or the demand of pick-up locations for totally disabled is met. If the List is empty and the demand of totally disabled is not met, the algorithm sorts the traveling times in ascending order and the ambulance with the minimum traveling time is routed after it completes its first trip to the node with the highest demand for totally disabled.

According to the second part of H1, a list of the available vehicles (List) is initially created as follow: in case that there are vehicles adapted for partially disabled, they are sorted in descending order with respect to their capacity for partially disabled and then, the rest of the vehicles are sorted in descending order with respect to their capacity for enabled. Thereafter, the first vehicle of List is routed to the node with the highest demand (If the vehicle is adapted for partially disabled, it is routed to the node with the highest demand for partially disabled, otherwise it is routed to the node with the highest demand for enabled) and always keeping a record of the corresponding traveling time, the second vehicle of List to the second node with the highest demand (record traveling time) etc. This process is repeated until List is exhausted or the demand for both partially disabled and enabled is met. If the List is empty and the demand is not met, the algorithm sorts the vehicle travel times in ascending order and the vehicle with the minimum travel time is selected to be routed. In case that the vehicle with the minimum travel time is adapted for partially disabled, the demand for them is not met and the current node of this vehicle is any demand point, then, it is routed to its nearest node with nonzero demand for partially disabled, otherwise, if it is at the shelter, it is routed to the node with the highest demand for partially disabled. In case that the vehicle with the minimum travel time cannot serve partially disabled and its current node is any demand point, then, it is routed to its nearest node with nonzero demand for enabled, otherwise, it is routed to the node with the highest demand for enabled.

The steps of the proposed algorithm to deal with PEHFP for enabled and disabled population are the following:

Step 1. If the demand for totally disabled is higher than zero execute steps 2-5,

Else

got to step 6.

Step 2. Sort the ambulances in descending order with respect to their initial capacity (List).

Step 3. If List is not empty set the first vehicle in List as current vehicle and delete it from List,

Else

sort the Time_List in ascending order and set as current vehicle (CV) the vehicle with the minimum travel time.

Step 4. If $C V$ is at its starting point or at the shelter, sort the demand of nodes for totally disabled in descending order (Demand_List ${ }^{3}$) and route it to the node with the highest demand for totally disabled.

Else

route it to the nearest node with nonzero demand for partially disabled.

Step 5. Update $C V^{\prime}$ s travel time (Time_List), travel distance (Total_Distance), capacity and update the demand of current node $(C N)$. Go to Step 1.

Step 6. Sort the vehicles for enabled and partially disabled in descending order with respect to their initial capacity (List).

Step 7. If the demand for partially disabled OR the demand for enabled is greater than zero execute steps 8-11,

Else

got to step 12.

Step 8.

- Case 1: In case that List is not empty, set the first vehicle in List as current vehicle and delete it from List.
- Case 2: Otherwise, sort the Time_List in ascending order and set as current vehicle the one with the minimum travel time. Note that if the demand for enabled is met, only the travel times of vehicles adapted for partially disabled are sorted.

Step 9.

- Case 1: In case that $C V$ is at its starting point or at the shelter, sort the demand of nodes in descending order with respect to their demand for partially disabled (Demand_List ${ }^{2}$) or with respect to their demand for enabled (Demand_List ${ }^{1}$) (It depends on either $C V$ is adapted for partially disabled or not). Set as current node (CN) the node i with demand $D_{i}=$ Demand_List $^{2}(1)\left(\right.$ or $D_{i}=$ Demand_List $\left.^{1}(1)\right)$ and route $C V$ to $C N$.
- Case 2: In case that $C V$ is at any demand point, route it to its nearest node with nonzero demand for enabled or for partially disabled (It depends on either CV is adapted for partially disabled or not).
Step 10. Update $C V^{\prime} s$ travel time (Time_List), travel distance (Total_Distance), capacity and update the demand of current node $(C N)$.

Step 11. In case that there are vehicles adapted for partially disabled and the demand for partially disabled is met, convert their remaining capacity for partially disabled into capacity for enabled. Go to step 7.

Step 12. Route the vehicles which are not at the shelter to the shelter, update their traveling time and their travel distance. Set $T_{\text {evac }}=$ maximum element in Time_List, set Distance $=\operatorname{sum}($ Total_Distance $)$ and stop.

In the following, a pseudo-code of the above heuristic algorithm is given:
Step 1. Set $T_{\text {evac }}=0$, Time_List $=0$, Total_Distance $=0$, List $=\varnothing$
Step 2. If $\sum_{k \in K} S t r_{k}>0$ AND $\sum_{c \in C} D_{c}^{3}>0$
2.1. Sort the vehicles with descending order with respect to their capacity for partially disabled
2.2.Else
2.3. Sort the vehicles in descending order with respect to their capacity for enabled

Step 3. Insert the sorted vehicles into List
Step 4. While $\sum_{c \in C} D_{c}^{3}>0$
Step 5. While List is not empty
5.1. Set the first vehicle $k \in K$ in List as current vehicle $(C V=k)$, delete it from List. In case that it is at its starting point or at the shelter and it is a vehicle adapted for
partially disabled, among the nodes with the greatest demand for totally disabled route it to the node with the highest demand for partially disabled. If it is not a vehicle adapted for partially disabled route it to the node with the highest demand for totally disabled. In case that $C V$ is at any demand point route it to its nearest node.
5.2. Update $C V^{\prime} s$ travel time (Time_List), travel distance (Total_Distance), capacity and update the demand of current node $C N$.
Step 6. Sort Time_List in ascending order
Step 7. Set the vehicle $k \in K$ with the minimum travel time as current vehicle $(C V=k)$, route it according to step 5.1 and repeat step 5.2.
Step 8. While $\sum_{p=1}^{2} \sum_{c \in C} D_{c}^{p}>0$
Step 9. If List is not empty set the first vehicle $k \in K$ in List as current
vehicle $(C V=k)$
9.1 If $r_{C V}^{p}=1$ OR node $=\{t\}$
9.2 If Dis_veh $\neq 0$ AND $x_{c v}=1$ AND $\sum_{c \in C} D_{c}^{2}>0$
9.3 Set as $C N$ the node with the highest demand for partially disabled
9.4 Elseif (Dis_veh $\neq 0$ AND $x_{c v}=0$) OR Dis_veh $=0$ OR (Dis_veh $\neq 0$ AND $\left.\sum_{c \in C} D_{c}^{2}=0\right)$
9.5 Set as $C N$ the node with the highest demand for enabled
9.6 Elseif node $\neq\{t\}$
9.7 If $x_{c v}=1 \mathbf{A N D} \sum_{c \in C} D_{c}^{2}>0$ AND $Q_{C V}^{2}>0$
9.8 Route vehicle $C V$ to node l with $\min \left\{L_{C N l} l \in C \backslash\{C N\}\right\}$ and demand $\mathrm{D}_{l}^{2} \neq 0$.
9.9 Elseif $x_{c v}=0 \mathbf{O R}\left(x_{c v}=1 \mathbf{A N D}\left(\sum_{c \in C} D_{c}^{2}=0 \mathbf{O R} Q_{C V}^{2}=0\right)\right)$
9.10 Route vehicle $C V$ to node l with $\min \left\{L_{C N l}, l \in C \backslash\{C N\}\right\}$ and demand $\mathrm{D}_{l}^{1} \neq 0$.

Step 10. Repeat step 5.2
Step 11. Elseif List is empty, Repeat step 6
Step 12. If $\sum_{c \in C} D_{c}^{2}=0$
12.1 Set as $C V$ the vehicle with the minimum travel time and the highest capacity for enabled
12.2 Elseif $\sum_{c \in C} D_{c}^{1}=0$
12.3 Set as $C V$ the vehicle with the minimum travel time and the highest capacity for partially disabled
12.4 Elseif $\sum_{c \in C} D_{c}^{2}>0$ AND $\sum_{c \in C} D_{c}^{1}>0$
12.5 Set as $C V$ the first vehicle in Time_List

Step 13. Find the vehicles which are not at the shelter and route them to the shelter. Update their travel time (Time_List) and their travel distance (Total_Distance)

Step 14. Find maxelement $\{$ Time_List \}, set T_evac $=$ maxelement $\{$ Time_List $\}$ and Distance $=\sum_{k \in K}$ Total_Distance (k)

The corresponding pseudo-code for enabled and disabled population is given in Appendix C.

5. Case Study

The case study considered in this thesis focuses on a forest fire in the Province of Teruel, which evolves dynamically. The aim is to develop an appropriate population evacuation plan for the Province of Teruel, by using heuristic algorithm H1, enhanced to address the evacuee (and vehicle) types. In particular, we focus in obtaining near-optimal solutions for three different case scenarios.

- The first one (Scenario A) concerns the evacuation of the small village of Tramacastiel at the province of Teruel and the transportation of evacuees to Villel (point-to- point PEHFP).
- The second scenario (Scenario B) deals with the evacuation of Tramacastiel, Rubiales and El Campillo (small villages) and the transportation of the evacuees to a safe shelter at the city of Teruel (multipoint-to-point PEHFP).
- Finally, the third scenario (Scenario C) deals with evacuating the three aforementioned villages in case of a forest fire that evolves according to weather condition changes. More specifically, under Scenario C, the fire initially threatens the village of Tramacastiel and its evacuation is ordered by the local authorities. Later the fire evolves and threatens both the villages of Rubiales and El Campillo. An order to evacuate these villages is then given by local authorities.

In order to apply the heuristic algorithm presented in Section 4.4 to the aforementioned evacuation scenarios, three categories of data need to be provided: (a) Evacuees and demand, (b) Network, (c) Available Vehicles.

Regarding the evacuees to be picked up, the total population of each village (Tramacastiel, Rubiales, El Campillo) should be provided. Additionally, in order to use the appropriate vehicles for the transportation of the evacuees, for each village the number of enabled evacuees, the number of wheel chair users and the number of evacuees to be transported by ambulances is required.

Regarding the nodes of the network, the pick-up locations (villages), and their exact location should be provided. The same holds for the starting and ending locations of each vehicle, as well as of the shelter. For the network arcs, input data required include the distances a) between the originating points of available vehicles and the pick-up locations, b) between each pick-up location and the shelter, c) between the pick-up locations, d) between
the shelter and the ending locations of each vehicle. Note that when possible, any alternative arcs should be also be provided.

For each of the available vehicles input information should include the capacity per type of evacuee (enabled, wheel chair users, totally disabled).

All the aforementioned necessary input data are provided in Appendix D.
It is also important to note that the total evacuation time depends on the circumstances under which the physical disaster evolves. For instance, there may significant traffic along the road network used by the proposed solution, resulting in an increase of the total evacuation time. If one of the operating vehicles becomes incapacitated (for any reason), then the load and the exact location of the vehicle should be known in order to decide on how to overcome such a difficulty, e.g. either by sending another vehicle to take over the mission of the failed one, or to reach the location of the accident and transfer its load. To deal with such unplanned situations, redundant vehicles should be also available.

5.1 Scenario A: PEHFP solution for point-to point evacuation

The evacuation of Tramacastiel and the transportation of all types of evacuees to Villel is a small scale evacuation problem. Note that Villel can be considered as a safe assembly point for inhabitants of Tramacastiel during an emergency.

Figure 5.1 Pick-up point Tramacastiel and shelters of Villel and Teruel

Table 5.1 List of evacuees of Tramacastiel

Village	Village ID	Enabled Evacuees	Disabled Evacuees (with total disability)	Disabled Evacuees (with partial disability)
Tramacastiel	100	37	1	6
Teruel (Shelter)	1000			
Villel (Shelter)	2000			

Table 5.1 provides the population of Tramacastiel village that need to be evacuated in Scenario A. The evacuees are categorized as follows: a) enabled evacuees that will be transported via buses, 4×4 vehicles, and vans, b) disabled evacuees with total disability that will be transported via ambulances and emergency mobile units and, c) disabled evacuees with partial disability that will be transported via vans or ambulances (if needed). The results of evacuation planning for Scenario A are shown in Table 5.2. The Table provides each route to be operated indicating which vehicle operates the route, the starting point, the pick-up location and the delivery location, and the exact number of evacuees collected at each route per type of evacuee. According to Table 5.2, only one ambulance and three vehicles for enabled and partially disabled evacuees are adequate for evacuating Tramacastiel. The total evacuation time is 97 min and the total distance covered by all vehicles to accomplish the evacuation plan is 202.4 km ; 4 vehicles were employed during the evacuation operation.

Route No	Operating Vehicle ID	Type of Vehicle	Node Sequence	Route Start Time	Route End Time	Number Of Collected Evacuess		
						Enabled	Totally Disabled	Partially Disabled
Routes Operated by Ambulances								
1	43	Collective Ambulance (PR)	Teruel-TramacastielVillel	0	97	1	1	2
Routes Operated by Fleet for Enable and Partially Disabled Evacuees								
1	74	Minibus (PR)	Teruel-TramacastielVillel	0	97	22	0	3
2	44	Collective Ambulance (PR)	Teruel-TramacastielVillel	0	73	1	0	1
3	53	Bus(PR)	Teruel-TramacastielVillel	0	65	13	0	0
Total Evacuation Time $=97 \mathrm{~min}$					Total Distance $=202.4 \mathrm{~km}$			

The routes for the solution of the proposed algorithm of Table 5.2 are given also on a map in Figure 5.2, which shows the vehicle starting locations in Teruel, along with the pickup location in Tramacastiel and the shelter in Villel.

Figure 5.2 Evacuation routes for PEHFP: Tramacastiel-Villel

5.2 Scenario B: PEHFP solution for multipoint-to point evacuation

Scenario B addressed the case when a simultaneous evacuation of all three small villages Tramacastiel, Rubiales and El Campillo is required. The evacuees are to be transported to a safe shelter at the city of Teruel. The plan can be applied during an emergency when the entire Province of Teruel is threatened by a physical disaster. Table 5.3 presents the necessary data in terms of the number of evacuees per village.

The results of this large scale evacuation scenario are given in Table 5.4. According to Table 5.4 , the algorithm uses 8 vehicles in total, each one operating just one route. The total evacuation time is 112 min , less than 2 hours, and the total distance is 511.6 km . Note that 11 vehicles were available for the evacuation operation.

Figure 5.3 Pick-up points Tramacastiel, Rubiales, El Campillo and shelter of Teruel
Table 5.3 List of evacuees of pick-up points

Table 5.3 List of evacuees of pick-up points				
Village	Village ID	Enabled Evacuees	Disabled Evacuees (with total disability)	Disabled Evacuees (with partial disability)
Tramacastiel	100	37	1	6
Rubiales	200	26	1	4
El Campillo	300	33	1	6
Teruel (Shelter)	1000			

Table 5.4 Emergency evacuation plan for Tramacastiel, Rubialles and El Campillo to Teruel

Route No	$\begin{gathered} \hline \text { Operating } \\ \text { Vehicle } \\ \text { ID } \end{gathered}$	Type of Vehicle	Node Sequence	$\begin{aligned} & \hline \text { Route } \\ & \text { Start } \\ & \text { Time } \end{aligned}$	$\begin{gathered} \hline \text { Route } \\ \text { End } \\ \text { Time } \end{gathered}$	Number Of Collected Evacuees		
						Enabled	Totally Disabled	Partially Disabled
Routes Operated by Ambulances								
1	43	Colective Ambulance(PR)	Teruel-El Campillo-Teruel	0	68	1	1	2
2	44	Colective Ambulance(PR)	Teruel -TramacastielTeruel	0	112	1	1	2
3	45	Colective Ambulance(PR)	Teruel -Rubialles-Teruel	0	90	1	1	2
Routes Operated by Fleet for Enabled and Partially Disabled Evacues								
1	74	Minibus(PR)	Teruel - Tramacastiel - Teruel	0	112	22	0	3
2	46	Colective Ambulance(PR)	Teruel - El Campillo Teruel	0	56	1	0	2
3	47	Colective Ambulance(PR)	Teruel - El Campillo Teruel	0	56	1	0	2
4	48	Colective	Teruel - Rubialles - Teruel	0	78	1	0	2

Route No	$\begin{gathered} \hline \text { Operating } \\ \text { Vehicle } \\ \text { ID } \end{gathered}$	Type of Vehicle	Node Sequence	Route Start Time	Route End Time	Number Of Collected Evacuees		
						Enabled	Totally Disabled	Partially Disabled
5	49	Ambulance(PR) Colective Ambulance(PR)	Teruel - Tramacastiel Teruel	0	88	1	0	1
6	53	Bus(PR)	Teruel - El Campillo Teruel	0	36	30	0	0
7	54	Bus(PR)	Teruel - Rubialles - Teruel	0	58	24	0	0
8	64	Bus(PR)	Teruel - Tramacastiel - Teruel	0	80	13	0	0
Total Evacuation Time $=112 \mathrm{~min}$					Total Distance $=511.6 \mathrm{~km}$			

In Figure 5.4, the routes of the vehicles are provided along with their starting locations in Teruel, the pick-up locations in Tramacastiel, Rubialles and El Campillo, as well as the shelter in Teruel.

Figure 5.4 Evacuation routes for PEHFP: Tramacastiel, Rubiales, ElCampillo-Teruel

5.3 Scenario C: PEHFP solution for multi-point-to point evacuation

Scenario C includes firstly the evacuation of Tramacastiel and the transportation of the evacuees to Teruel; thereafter, having available the entire fleet, Rubiales and El Campillo are evacuated, and the evacuees are transported to Teruel. In table 5.5 the population to be evacuated is shown.

The results provided by the proposed algorithm for the evacuation of Tramacastiel and transportation of the evacuees to Teruel are given in Table 5.6. The total evacuation time is 112 min , and the total distance is 262.4 km ; 4 vehicles were employed during evacuation.

Figure 5.5 Pick-up point Tramacastiel and shelter of Teruel

Table 5.5 List of evacuees of pick-up points

Village	Village ID	Enabled Evacuees	Disabled Evacuees (with total disability)	Disabled Evacuees (with partial disability)
Tramacastiel	100	37	1	6
Teruel (Shelter)	1000			

Table 5.6 Emergency evacuation plan for Pilot Test Event: Tramacastiel to Teruel

Route No	Operating Vehicle ID	Type of Vehicle	Node Sequence	Route Start Time	Route End Time	Number Of Collected Evacuees		
						Enabled	Totally Disabled	Partially Disabled
Routes Operated by Ambulances								
1	43	Colective Ambulance (PR)	Teruel-TramacastielTeruel	0	112	1	1	2
Routes Operated by Fleet for Enabled and Partially Disabled Evacuees								
1	74	Minibus (PR)	Teruel Tramacastiel Teruel	0	112	22	0	3
2	44	Colective Ambulance (PR)	Teruel - Tramacastiel Teruel	0	88	1	0	1
3	53	Bus (PR)	Teruel Tramacastiel Teruel	0	80	13	0	0
Total Evacuation Time $=112 \mathrm{~min}$					Total Distance $=262.4 \mathrm{~km}$			

${ }^{*}$ PR = Private Vehicle
The solution presented in Table 5.6 is given in Figure 5.6, which shows the vehicle routes, the starting locations in Teruel, the pick-up locations in Tramacastiel, as well as the shelter in Teruel.

Table 5.7 List of evacuees of Rubiales and El Campillo

Village	Village ID	Enabled Evacuees	Disabled Evacuees (with total disability)	Disabled Evacuees (with partial disability)
Rubiales	200	26	1	4
El Campillo	300	33	1	6
Teruel (Shelter)	1000			

Figure 5.6. Evacuation routes for PEHFP: Tramacastiel-Teruel
After Tramacastiel, according to the dynamic scenario, the villages of Rubialles and El Campillo are threatened by the evolving forest fire. Consequently, having available the entire fleet of vehicles, we need to plan a new evacuation schedule for the transportation of inhabitants of these two villages to Teruel. Table 5.7 presents the number of evacuees in Rubialles and El Campillo.

The results are shown in Table 5.8. The total evacuation time, after the evacuation of Tramacastiel, is 90 min , and the total distance is $249.2 \mathrm{~km} ; 7$ vehicles were employed during the evacuation operation.

Figure 5.7. Pick-up points Rubiales, El Campillo and shelter of Teruel
Table 5.8 Emergency evacuation plan for Pilot Test Event: Rubiales and El Campillo to Teruel

Route No	Operating Vehicle ID	Type of Vehicle	Node Sequence	Route Start Time	Route End Time	Number Of Collected Evacuees		
						Enabled	Totally Disabled	Partially Disabled
Routes Operated by Ambulances								
1	43	Colective Ambulance (PR)	Teruel -El Campillo-Teruel	0	68	1	1	2
2	44	Colective Ambulance (PR)	Teruel -Rubialles-Teruel	0	90	1	1	2
Routes Operated by Fleet for Enabled and Partially Disabled Evacuees								
1	74	Minibus (PR)	Teruel - El Campillo - Teruel	0	68	22	0	3

Route No	Operating Vehicle	Type of Vehicle	Node Sequence	Route Start	Route End		er Of Col Evacuees	$\overline{\text { ected }}$
	ID				Time	Enabled	Totally Disabled	Partially Disabled
2	45	Colective Ambulance (PR)	Teruel -Rubialles-Teruel	0	66	1	0	2
3	46	Colective Ambulance (PR)	Teruel - El Campillo - Teruel	0	44	1	0	1
4	53	Bus (PR)	Teruel -Rubialles- Teruel	0	58	24	0	0
5	54	Bus (PR)	$\begin{gathered} \text { Teruel - El } \\ \text { Campillo - Teruel } \\ \hline \end{gathered}$	0	36	9	0	0
Total Evacuation Time $=90 \mathrm{~min}$				Total Distance $=249.2 \mathrm{~km}$				

*PR = Private Vehicle
The routes for evacuating Rubialles and El Campillo, and transporting the evacuees to the shelter in Teruel are shown in Figure 5.8. The Figure shows the vehicle starting locations in Teruel, the pick-up locations in Rubialles and El Campillo and the shelter in Teruel.

Figure 5.8. Evacuation routes for PEHFP: Rubialles, El Campillo -Teruel

6. Conclusions

The last decades due to the increasing frequency of both natural and man-made disasters, evacuation planning of affected populations is of great importance. Evacuation planning is a complex process and its effectiveness depends on several factors, such as warning time, response time, etc. Many researchers have developed mathematical models, algorithms and simulation programs in order to develop effective evacuation plans, which can be applied to various disaster events such as floods, fires etc.

In this thesis the Population Evacuation using Heterogeneous Fleet Problem (PEHFP) is proposed. PEHFP deals with the evacuation of population that characterized by different types of evacuees as far as their mobility status concerns. In particular, we deal with three types of evacuees. The first types of evacuees, enabled evacuees, are those who do not need any special transportation treatment. The second type of evacuees concerns people with partial disability who use a wheel chair. The third type concerns citizens with more severe disability who need to be transported on stretchers. To describe PEHFP a mathematical programming model has been developed. The objective is to minimize the total time needed for evacuating the population from a set of pick-up points under all related constraints.

Trying to obtain an optimal solution based on this mathematical problem in reasonable time is not feasible for problems of practical size. Thus, two heuristic algorithms were developed to solve this problem. The heuristic algorithms obtain near optimal solutions in reasonable time and they are applied initially to instances of the evacuation problem, in which all evacuees are able and do not face and mobility challenges. The proposed heuristics have been compared in terms of total evacuation time and it proved that H 1 minimizes the evacuation time in contrast to H 2 . H 1 utilizes more vehicles for meeting the demand and therefore, H1 manages to complete the evacuation process earlier. Consequently, H 1 is chosen to be applied to the more complex case, in which some of the evacuees are characterized by one of two forms of physical disability (which need particular treatment).

Finally, the proposed algorithm was applied to a case study which deals with the evacuation of three small villages when a forest fire occurs. The results obtained provide a route schedule for each vehicle that is needed for the evacuation. The route schedule includes the starting location of each vehicle, the pick-up points visited, the number of evacuees that are collected per type of evacuee and the exact time needed for each vehicle to collect the evacuees and transport them to a safe shelter. The case study illustrates the practicality of the proposed algorithm to provide efficient solutions to practical PEHF problems.

Comparing with the existing literature in the area of evacuation planning, the proposed PEHFP takes into account heterogeneous fleet, multiple trips, multiple visits at each pick-up location, and, importantly, treats different types of evacuees. We have observed that evacuees with mobility disabilities have a great impact on the total evacuation time and that using more vehicles adapted for disabled evacuees can lead to significant reduction of total evacuation time.

It should be noted that both the proposed mathematical model and heuristic algorithms can be used for any type of disaster, provided that the appropriate inputs are available.

Further research may be done in planning the evacuation process. Uncertainties concerning the availability of road links may be included in the model. For instance,

- Uncontrolled fires are able to damage road links, making some parts or roads inaccessible. In such cases, alternative routes must be provided
- Future work may also include the development of more advanced heuristics, or metaheuristics, to deal with PEHFP
- Ways of overcoming difficulties of incapacitated vehicles may also be investigated.

References

[1].Alexander, D. E. (2002). Principles of emergency planning and management. Oxford University Press on Demand.
[2].Stepanov, A., \& Smith, J. M. (2009). Multi-objective evacuation routing in transportation networks. European Journal of Operational Research, 198(2), 435446.
[3].Pel, A. J., Bliemer, M. C., \& Hoogendoorn, S. P. (2012). A review on travel behaviour modelling in dynamic traffic simulation models for evacuations. Transportation, 39(1), 97-123.
[4].Liu, Y., \& Yu, J. (2011). Emergency Evacuation Planning for Highly Populated Urban Zones: A Transit-Based Solution and Optimal Operational Strategies. Edited by Burak Eksioglu, 59.
[5]. unisdr.org, (2000). The United Nations Office for Disaster Risk Reduction. Available at: https://www.unisdr.org/we/inform/disaster-statistics [Accessed 2 March 2017].
[6].Bish, D. R. (2011). Planning for a bus-based evacuation. OR spectrum, 33(3), 629654.
[7].Goerigk, M., \& Grün, B. (2012). The robust bus evacuation problem. University of Kaiserslautern, preprint, KLUEDO.
[8].Perkins, J.A., Dabipi, I.K. and Han, L.D., (2001). Modeling Transit Issues Unique to Hurricane Evacuations: North Carolina's Small Urban and Rural Areas (No. Final Report).
[9].Margulis, L., Charosky, P., Fernandez, J. and Centeno, M.A., (2006) June. Hurricane evacuation decision-support model for bus dispatch. In Fourth LACCEI International Latin American and Caribbean Conference for Engineering and Technology (LACCET '2006), "Breaking Frontiers and Barriers in Engineering: Education, Research, and Practice (pp. 21-23).
[10].Goerigk, M., Grün, B. and Heßler, P., 2013. Branch and bound algorithms for the bus evacuation problem. Computers \& Operations Research, 40(12), pp.3010-3020.
[11].Sayyady, F., \& Eksioglu, S. D. (2010). Optimizing the use of public transit system during no-notice evacuation of urban areas. Computers \& Industrial Engineering, 59(4), 488-495.
[12].Dikas, G. and Minis, I., 2016. Solving the bus evacuation problem and its variants. Computers \& Operations Research, 70, pp.75-86.
[13].Zheng, H., 2014. Optimization of bus routing strategies for evacuation. Journal of advanced transportation, 48(7), pp.734-749.
[14].Hamacher, H.W. and Tjandra, S.A., 2001. Mathematical modelling of evacuation problems: A state of art. Fraunhofer-Institut für Techno-und Wirtschaftsmathematik, Fraunhofer (ITWM).
[15].Altay, N., \& Green, W. G. (2006). OR/MS research in disaster operations management. European journal of operational research, 175(1), 475-493.
[16].Bretschneider, S. (2012). Mathematical models for evacuation planning in urban areas (Vol. 659). Springer Science \& Business Media.
[17].Murray-Tuite, P., \& Wolshon, B. (2013). Evacuation transportation modeling: An overview of research, development, and practice. Transportation Research Part C: Emerging Technologies, 27, 25-45.
[18].Goerigk, M., Grün, B., \& Heßler, P. (2014). Combining bus evacuation with location decisions: A branch-and-price approach. Transportation Research Procedia, 2, 783-791.
[19].Bard, J. F., Huang, L., Dror, M., \& Jaillet, P. (1998). A branch and cut algorithm for the VRP with satellite facilities. IIE transactions, 30(9), 821-834.
[20]. Taillard, É. D., Laporte, G., \& Gendreau, M. (1996). Vehicle routing with multiple use of vehicles. Journal of the Operational research society, 47(8), 1065-1070.
[21].Brandao, J. C. S., \& Mercer, A. (1998). The multi-trip vehicle routing problem. Journal of the Operational research society, 49(8), 799-805.
[22].Petch, R. J., \& Salhi, S. (2003). A multi-phase constructive heuristic for the vehicle routing problem with multiple trips. Discrete Applied Mathematics, 133(1), 69-92.
[23].Salhi, S., \& Petch, R. J. (2007). A GA based heuristic for the vehicle routing problem with multiple trips. Journal of Mathematical Modelling and Algorithms, 6(4), 591-613.
[24].Crevier, B., Cordeau, J. F., \& Laporte, G. (2007). The multi-depot vehicle routing problem with inter-depot routes. European Journal of Operational Research, 176(2), 756-773.
[25].Tarantilis, C. D., Zachariadis, E. E., \& Kiranoudis, C. T. (2008). A hybrid guided local search for the vehicle-routing problem with intermediate replenishment facilities. INFORMS Journal on Computing, 20(1), 154-168.
[26].Nagy, G., \& Salhi, S. (2007). Location-routing: Issues, models and methods. European Journal of Operational Research, 177(2), 649-672.
[27].Belenguer, J. M., Benavent, E., Prins, C., Prodhon, C., \& Calvo, R. W. (2011). A branch-and-cut method for the capacitated location-routing problem. Computers \& Operations Research, 38(6), 931-941.
[28].Escobar, J. W., Linfati, R., \& Toth, P. (2013). A two-phase hybrid heuristic algorithm for the capacitated location-routing problem. Computers \& Operations Research, 40(1), 70-79.
[29].Prins, C., Prodhon, C., \& Calvo, R. W. (2006). Solving the capacitated locationrouting problem by a GRASP complemented by a learning process and a path relinking. 4OR: A Quarterly Journal of Operations Research, 4(3), 221-238.
[30].He, S., Zhang, L., Song, R., Wen, Y., \& Wu, D. (2009). Optimal transit routing problem for emergency evacuations. In Transportation Research Board 88th Annual Meeting (No. 09-0931).

Appendix A. PEHFP: Algorithm and Pseudo code for H1

A. 1 Notation

$G(N, A)$ is a directed graph where N is the set of all nodes related to the problem, and A is the set of arcs that connect the nodes.

Nodes and vehicles

- Let $\{t\} \subset N$ be the shelter
- Let $C \subset N$ be the set of all nodes representing the evacuee locations, called pick-up locations. In particular: $C=\{1,2, \ldots, m\}$.
- Let $K=\{1,2, \ldots, v\}$ be the set of available vehicles
- Let $S^{k} \subset N, k \in K$ be the originating location of vehicle k. In particular: $S^{k}=$ $\left\{\mathrm{s}^{1}, \mathrm{~s}^{2}, \ldots, \mathrm{~s}^{v}\right\}$
- Let $E^{k} \subset N, k \in K$ be the ending location of vehicle k. In particular: $E^{k}=\left\{e^{1}, e^{2}, \ldots, e^{v}\right\}$

Arcs (travel times)

- Let $l_{i j}$ be the traveling time from node i to node $j, i, j \in N, i \neq j$. In particular:

$$
\mathbf{L}=\left\{\begin{array}{cc}
\left(\begin{array}{ccc}
l_{s^{1} 1} & \cdots & l_{s^{1} m} \\
\vdots & \ddots & \vdots \\
l_{s^{v} 1} & \cdots & l_{s^{v} m}
\end{array}\right), & i \in S^{k}, j \in C \\
\left(l_{t s^{1}}\right. & \cdots \\
\left.l_{t s^{v}}\right), & \\
\left(\begin{array}{cccc}
0 & l_{12} & \cdots & l_{1 m} \\
\left(\begin{array}{cccc}
l_{21} & 0 & \cdots & l_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
l_{m 1} & l_{m 2} & \cdots & 0
\end{array}\right), & i \in\{t\}, j \in S^{k}
\end{array}\right)
\end{array}\right.
$$

Arcs (distances)

- Let $p_{i j}$ be the travel distance from node i to node $j, i, j \in N, i \neq j$. In particular:

$$
\mathbf{P}=\left\{\begin{array}{cc}
\left(\begin{array}{ccc}
p_{s^{1} 1} & \cdots & p_{s^{1} m} \\
\vdots & \ddots & \vdots \\
p_{s^{v_{1}}} & \cdots & p_{s^{v} m}
\end{array}\right), & i \in S^{k}, j \in C \\
\left(p_{t s^{1}}\right. & \cdots \\
\left.t_{t s^{v}}\right), & \\
\left(\begin{array}{cccc}
0 & p_{12} & \cdots & p_{1 m} \\
p_{21} & 0 & \cdots & p_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
p_{m 1} & p_{m 2} & \cdots & 0
\end{array}\right), & i, j \in\{t\}, j \in S^{k} \\
\end{array}\right.
$$

Other

- Let D_{i} be the demand of each pick up location $i \in C$
- Let Q_{k} be the capacity of vehicle $k \in K$
- Let $I C V=\left\{Q_{k}, k \in K\right\}$ be the set of initial vehicles' capacities
- Let List be the list of all the available vehicles $k \in K$ arranged in descending order with respect to capacity.
- Let Time_List be the list of the traveling times of the vehicles. Note that initially all the elements of Time_List are zero.
- Let Capacity_List be a list of vehicles with the same traveling time arranged in descending order with respect to their capacity.
- Let Vehicles_List be a set of vehicles $k \in K$ which have not returned to the shelter while the entire demand has been met
- Let $T_{\text {evac }}$ be the time that the last evacuee is dropped off at shelter $\{t\}$
- Let Demand_List be a list with the demand of nodes arranged in descending order of demand.
- Let Furthest_List be a list of nodes of equal demand, arranged in descending order with respect to their distance from the starting location of current vehicle (or from the shelter).
- Let Nearest_List be a list with nodes of equal demand, arranged in ascending order with respect to their distance from the starting location of current vehicle (or from the shelter).
- Let Total_Distance be the list with the traveling distances of each vehicle. Note that initially all the elements in Total_Distance are equal to zero
- Let $s t=2$ minutes be the loading/unloading time of each vehicle
- Let Distance be the total traveling distance of all vehicles:

Distance $=\sum_{k \in K}$ Total_Distance (k)

- Let node be the last node that vehicle $k \in K$ visits during its last route

A. 2 H1 and the corresponding pseudocode

Heuristic algorithm 1 comprises the following steps:
Step 1. Sort the vehicles in descending order with respect to their initial capacity (List).
Step 2. Sort the demand of nodes in descending order (Demand_List).
Step 3. Set the first vehicle k in List as current vehicle (CV), delete it from List and route it considering the following cases:

- Case 1: In case there are more than one nodes with the same highest demand in Demand_List
- Subcase 1: If CV's capacity is higher than the first element in Demand_List
- Route $C V$ to the furthest of the nodes with the same highest demand. Set this node as $C N$
- Subcase 2: If CV's capacity is less or equal to the first element in Demand_List
- Route $C V$ to the nearest of the nodes with the same highest demand. Set this node as $C N$
- Case 2: In case the first element in Demand_List is unique, route vehicle $C V$ to the first node in Demand_List and set this node as current node (CN).

Step 4. Record the travel time of CV (Time_List) and its travel distance (Total_Distance)
Step 5. Update the capacity of current vehicle (CV) and the demand of current node (CN) as follows:

- Case 1: In case that $C N$'s demand is greater than $C V$'s capacity
- $C V$ picks up Q_{k} evacuees and returns to the shelter
- update the travel time of $C V$:

$$
\text { Time_List }(C V)=\text { Time_List }(C V)+L_{C N\{t\}}+2 \cdot s t
$$

- update the demand of $C N: D_{C N}=D_{C N}-Q_{C V}$,
- update the capacity of $C V: \mathrm{Q}_{\mathrm{CV}}=0$
- update the traveling distance of $C V$:

$$
\text { Total_Distance }(C V)=\text { Total_Distance }(C V)+P_{C N\{t\}}
$$

- Case 2: In case that $C N$'s demand is lower than $C V$'s capacity
- $\quad C V$ picks up $D_{C N}$ evacuees
- update the travel time of CV: Time_List $(C V)=$ Time_List $(C V)+$ st
- update the capacity of $C V: Q_{C V}=Q_{C V}-D_{C N}$,
- update the demand of $\mathrm{CN}: D_{C N}=0$.

Step 6.

- Case 1: If List is not exhausted and demand is not met go to Step 2
- Case 2 If demand is met
- route all vehicles (those which are not at the shelter) to the shelter
- update their traveling time and their travel distance
- set $T_{\text {evac }}=$ maximum element in Time_List
- set Distance $=$ sum(Total_Distance)
- End
- Case 3: If List is exhausted and demand is not met, sort Time_List in ascending order
- Subcase 1: In case there are more than one vehicles with the same minimum traveling time in Time_List
- Select among the vehicles with the same minimum travel time, the one that has the highest capacity and set it as current vehicle(CV)
- Subcase 2: In case the first element in Time_List is unique, set the corresponding vehicle as $C V$.
- \quad Subcase 2.1: In case that $C V$ is at the shelter
- restore its capacity
- repeat Step 2
- repeat Case $\mathbf{1}$ or Case 2 of Step 3 (depends on CV's capacity)
- repeat Steps 4-6.
- \quad Subcase 2.2: In case that $C V$ is not at the shelter
- find its current node and route it to its nearest node ($n n$) with nonzero demand
- update its travel time and its travel distance: Time_List $(C V)=$ Time_List $(C V)+L_{C N\{n n\}}$ Total_Distance $(C V)=$ Total_Distance $(C V)+P_{C N\{n n\}}$
- Set the nearest node as $C N$ and go to Step 5 .

The proposed heuristic algorithm 1 for PEHFP is implemented using Matlab R2010b on a PC equipped with a 1.8 GHz Intel Core i5 and 4 GB of RAM. The pseudo code of the algorithm is given in the following:

Step 1. Set $T_{\text {evac }}=0$, Time_List $=0$, Total_Distance $=0$
Step 2. While $\sum_{c \in C} D_{c}>0$
Step 3. While List is not empty

- Set the first vehicle $k \in K$ in List with capacity Q_{k} as current vehicle ($C V=k$)
- Delete vehicle k from the List
- Sort nodes in descending order with respect to their demand (Demand_List)

Step 3.1 If Demand_List $(1) \neq$ Demand_List $(2) \neq \cdots . . \neq \operatorname{Demand}$ _List $(z), z>1$

- Set node i with demand $D_{i}=$ Demand_List(1) as current node (CN) Elseif Demand List(1) $=$ Demand_List(2) $=\cdots=\operatorname{Demand_ List(z),~z>1}$

AND $Q_{C V}>$ Demand_List(1)

- Find nodes $i=1,2, \ldots, z$ with demand $D_{i}=$ Demand_List(1) and sort them in descending order with respect to their distance from the starting location of CV (Furthest_List)
- Set $C N=$ Furthest_List (1)

Elseif Demand_List(1) $=$ Demand_List $(2)=\cdots=\operatorname{Demand}$ List $(z), z>1$
AND $Q_{C V} \leq$ Demand_List(1)

- Find nodes $i=1,2, \ldots, z$ with demand $D_{i}=$ Demand_List(1) and sort them in ascending order with respect to their distance from the starting location of CV (Nearest_List).
- Set $C N=$ Nearest_List (1)

End

- Route $C V$ to $C N$
- Set Time_List $(C V)=$ Time_List $(C V)+L_{S}{ }^{C V}{ }_{C N}$
- Set Total_Distance (CV) $=$ Total_Distance (CV) $+P_{S}{ }^{C V}{ }_{C N}$

Step 3.2 If $\boldsymbol{D}_{C N}<\boldsymbol{Q}_{C V}$

- load vehicle $C V$ with $D_{C N}$ evacuees
- update the capacity of vehicle $C V: Q_{C V} \leftarrow Q_{C V}-D_{C N}$
- update the demand of node $C N: D_{C N}=0$
- Set Time_List $(C V)=$ Time_List $(C V)+s t$

Elseif $\boldsymbol{D}_{C N} \geq \boldsymbol{Q}_{C V}$

- load vehicle $C V$ with $Q_{C V}$ evacuees
- update the capacity of vehicle $C V: Q_{C V}=0$
- update the demand of node $C N: D_{C N} \leftarrow D_{C N}-Q_{C V}$
- route vehicle $C V$ to shelter $\{t\}$ to drop off the evacuees
- Set Time_List $(C V)=$ Time_List $(C V)+L_{C N\{t\}}+2 \cdot s t$
- Set Total_Distance (CV) $=$ Total_Distance (CV) $+P_{C N}\{t\}$
- Vehicle $C V$ becomes available and its capacity is restored from ICV

End
End
Step 4. Sort Time_List in ascending order
Step 5. If Time_List(1) $=$ Time_List $(2)=\cdots=\operatorname{Time}_{-} \operatorname{List}(z), z>1$

- Sort vehicles in descending order with respect to their capacity (Capacity_List).

Step 5.1 While Capacity_List is not empty

- Set the first vehicle $k \in K$ in Capacity_List with capacity Q_{k} as $C V$
- Delete vehicle k from the Capacity_List

Step 5.2 If $C V$ is at the shelter $($ node $=\{t\})$

- Sort the nodes in descending order with respect to their demand (Demand_List)
Step 5.3 If Demand_List $(1) \neq$ Demand_List $(2) \neq \cdots . . \neq$ Demand_List $(z), z>1$
- Set the node i with demand $D_{i}=$ Demand_List(1) as current node $C N$

Elseif Demand List $(1)=\operatorname{Demand_ List}(2)=\cdots=\operatorname{Demand_ List}(z), z>1$
AND $Q_{C V}>$ Demand_List(1)

- Find the nodes $i=1,2, \ldots, z$ with demand $D_{i}=$ Demand_List(1) and sort them in descending order with respect to their distance from the shelter (Furthest_List)
- Set $C N=$ Furthest_List (1)

Elseif Demand_List(1) $=$ Demand_List(2) $=\cdots=\operatorname{Demand}$ List $(z), z>1$
AND $Q_{C V} \leq$ Demand_List(1)

- Find the nodes $i=1,2, \ldots, z$ with demand $D_{i}=$ Demand_List(1) and sort them in ascending order with respect to their distance from the shelter (Nearest_List).
- $\operatorname{Set} C N=$ Nearest_List (1)

End

- Route $C V$ to $C N$
- Set Time_List $(C V)=$ Time_List $(C V)+L_{\{t\} C N}$
- Set Total_Distance $(C V)=$ Total_Distance $(\mathrm{CV})+P_{\{t\} C N}$

Elseif $C V$ is not at the shelter (node $\neq\{t\}$)

- Route vehicle $C V$ from its $C N$ to node l with $\min \left\{L_{C N l}, l \in C \backslash\{C N\}\right\}$ and demand $D_{l} \neq 0$.
- Set Time_List $(C V)=$ Time_List $(C V)+L_{C N l}$
- Set Total_Distance (CV) $=$ Total_Distance (CV) $+P_{C N l}$
- $\operatorname{Set} C N=l$

End
Step 5.4 If $D_{C N}<Q_{C V}$

- load vehicle $C V$ with $D_{C N}$ evacuees
- update the capacity of vehicle $C V: Q_{C V} \leftarrow Q_{C V}-D_{C N}$
- update the demand of node $C N: D_{C N}=0$
- Set Time_List(CV) $=$ Time_List(CV) + st

Elseif $D_{C N} \geq Q_{C V}$

- load vehicle $C V$ with $Q_{C V}$ evacuees
- update the capacity of vehicle $C V: Q_{C V}=0$
- update the demand of node $C N: D_{C N} \leftarrow D_{C N}-Q_{C V}$
- route vehicle $C V$ to the shelter $\{t\}$ to drop off the evacuees onboard
- Set Time_List $(C V)=$ Time_List $(C V)+L_{C N}\{t\}+2 \cdot s t$
- Set Total_Distance (CV) $=$ Total_Distance (CV) $+P_{C N\{t\}}$
- Vehicle $C V$ becomes available and its capacity is restored from ICV

End
End
Else

- Set the first vehicle (k, with capacity Q_{k}) in the Time_List as $C V$

Repeat Step 5.2-Step 5.4

End

End
Step 6. Find the vehicles which are not at the shelter
Step 6.1 While Vehicles_List is not empty

- Set the first vehicle $k \in K$ in Vehicles_List as $C V$
- Delete vehicle k from the Vehicles_List
- Route vehicle $C V$ from its current node to the shelter
- Set Time_List $(C V)=$ Time_List $(C V)+L_{C N\{t\}}+s t$
- Set Total_Distance $(C V)=$ Total_Distance $(\mathrm{CV})+P_{C N\{t\}}$

End

Step 7. Find maxelement $\{$ Time_List\}

- $T_{\text {evac }}=\operatorname{maxelement}\{$ Time_List $\}$
- Distance $=\sum_{k \in K}$ Total_Distance (k)

Step 8. Stop

Appendix.B PEHFP: Algorithm and Pseudocode for Heuristic Algorithm 2

B. 1 Notation

The notation for the second heuristic algorithm is exactly the same as of the previous algorithm apart from the Arrival_List, which is a list with vehicle arrival times at the shelter. Note that initially all the elements of Arrival_List are zero. Moreover, note that the last node that vehicle $\mathrm{k} \in \mathrm{K}$ visits during its last route, previously denoted as node, is not used in the second algorithm.

B. 2 Heuristic algorithm 2 and the corresponding pseudocode

Heuristic algorithm 2 comprises the following steps:
Step 1. Sort the vehicles in descending order with respect to their initial capacity (List).

Step 2.

- Case 1: If List is not empty and demand is not met
- Set the first vehicle k in List as current vehicle (CV) and delete it from List
- Case 2: If List is empty and demand is not satisfied
- Sort Time_List in ascending order
- Subcase 2.1: In case there are more than one vehicles with the same minimum traveling time in Time_List
- Select among the vehicles with the same minimum travel time the one that has the highest capacity and set it as current vehicle($C V$)
- Subcase 2.2: In case that the first element in Time_List is unique, set the corresponding vehicle as $C V$.

Step 3. Sort the demand of nodes in descending order (Demand_List).

- Case 1: In case there are more than one nodes with the same highest demand in Demand_List:
- Subcase 1.1: If CV's capacity is higher than the first element in Demand_List
- Route $C V$ to the furthest of the nodes with the same highest demand and set this node as $C N$
- Subcase 1.2: If CV's capacity is less or equal to the first element in Demand_List
- Route $C V$ to the nearest of the nodes with the same highest demand and set this node as $C N$
- Case 2: In case the first element in Demand_List is unique, route vehicle $C V$ to the corresponding node (with the highest demand) and set this node as current node (CN)
Step 4. Record CV's traveling time (Time_List) and its travel distance (Total_Distance)
Step 5. Update the capacity of $C V$ and the demand of $C N$ as follows:
- Case 1: In case $C N$'s demand is higher than $C V$'s capacity
- $C V$ picks up $Q_{C V}$ evacuees and returns to the shelter
- update the demand of $C N: D_{C N}=D_{C N}-Q_{C V}$
- update the capacity of $C V: Q_{C V}=0$
- $C V$ returns to the shelter
- update the travel distance of $C V$:

$$
\text { Total_Distance }(C V)=\text { Total_Distance }(C V)+P_{C N\{t\}}
$$

- update the travel time of CV :

$$
\text { Time_List }(C V)=\text { Time_List }(C V)+L_{C N\{t\}}+2 \cdot s t
$$

- Case 2: In case $C N$'s demand is lower than $C V$'s capacity
- $\quad C V$ picks up $D_{C N}$ evacuees
- update the capacity of $C V: Q_{C V}=Q_{C V}-D_{C N}$
- update the demand of $C N: D_{C N}=0$
- update the traveling time of $C V$:

$$
\text { Time_List }(C V)=\text { Time_List }(C V)+s t .
$$

- the last visited node is $C N$

Step 6.

- Case 1: If demand is not met
- Subcase 1.1: If the remaining capacity of $C V$ is higher than zero:
- route $C V$ from its $C N$ to the nearest node ($n n$) with nonzero demand
- update travel distance of $C V$:

Total_Distance $(C V)=$ Total_Distance $(C V)+P_{C N\{n n\}}$

- update traveling time of $C V$:

Time_List $(C V)=$ Time_List $(C V)+L_{C N\{n n\}}$

- Repeat Steps 5-6
- Subcase 1.2: If the remaining capacity of $C V$ is equal to zero
- Repeat Steps 2-6
- Case 2: If demand is met
- route all the vehicles to the shelter
- update their traveling time and their travel distance
- set $T_{\text {evac }}=$ maximum element in Time_List
- set Distance $=\operatorname{sum}($ Total_Distance $)$
- End

The proposed heuristic algorithm 1 for PEHFP is implemented using Matlab R2010b on a PC equipped with a 1.8 GHz Intel Core i5 and 4 GB of RAM. The pseudo code of the algorithm is given in the following:

Step 1. Set $T_{\text {evac }}=0$, Time_List $=0$, Arrival_List $=0$, Total_Distance $=0$
Step 2. While $\sum_{c \in C} D_{c}>0$

Step 3.

Step 3.1 If List is not empty

- Set the first vehicle $k \in K$ in List with capacity Q_{k} as current vehicle ($C V=k$)
- Delete vehicle k from the List
- Sort the demand of nodes in descending order (Demand_List)

Step 3.1.1 If Demand List $(1) \neq \operatorname{Demand}$ _List $(2) \neq \cdots \neq \operatorname{Demand} \operatorname{List}(z), z>1$
Set node i with demand $D_{i}=$ Demand_List(1) as current node (CN) Elseif Demand_List(1) $=$ Demand_List(2) $=\cdots=$ Demand_List $(z), z>1$

AND $Q_{C V}>$ Demand_List(1)

- Find nodes $i=1,2, \ldots, z$ with demand $D_{i}=$ Demand_List(1) and sort them in descending order with respect to their distance from the starting location of CV (Futhest_List)
- \quad Set $C N=$ Furthest_List (1)

Elseif Demand_List $(1)=$ Demand_List $(2)=\cdots=$ Demand_List $(z), z>1$
AND $Q_{C V} \leq$ Demand_List(1)

- Find nodes $i=1,2, \ldots, z$ with demand $D_{i}=$ Demand_List(1) and sort them in ascending order with respect to their distance from the startinglocation of CV(Nearest_List).
- \quad Set $C N=$ Nearest_List (1)

End

- Route CV to CN
- Set Time_List(CV) $=$ Time_List(CV) $+\mathrm{L}_{\mathrm{S}} \mathrm{Cv}_{\mathrm{CN}}$
- Set Total_Distance(CV) $=$ Total_Distance(CV) $+\mathrm{P}_{\mathrm{S}^{\mathrm{cv}}{ }_{\mathrm{CN}}}$

Step 3.2 Elseif List is empty
Sort the Arrival_List in ascending order
Step 3.2.1 If Arrival_List(1) $=$ Arrival_List(2) $=\cdots=\operatorname{Arrival_ List(z),z>1}$

- Set vehicle k with capacity $Q_{k}=\max \left\{Q_{\text {Arrival_List }(j),}, j=1,2, \ldots, z\right\}$ as current vehicle ($C V=k$)
- $C V$ becomes available and its capacity is restored from ICV
- Delete vehicle k from the Arrival_List

Else

- Set the first vehicle k with capacity Q_{k}) in Arrival_List as current vehicle ($C V=k$)
- Vehicle $C V$ becomes available and its capacity is restored from ICV
- Delete vehicle k from the Arrival_List

End

- Sort nodes in descending order with respect to their demand (Demand_List)
Step 3.3 If Demand_List $(1) \neq 1$ Demand_List $(2) \neq \cdots \neq \operatorname{Demand}$ List $(z), z>1$
- Set node i with demand $D_{i}=$ Demand_List(1) as current node (CN)

Elseif Demand_List(1) $=$ Demand_List(2) $=\cdots=\operatorname{Demand}$ List $(z), z>1$
AND $Q_{C V}>d_{(\text {Demand_List(1)) }}$

- Find nodes $i=1,2, \ldots, z$ with demand $D_{i}=$ Demand_List(1) and sort
- them in descending order with respect to their distance from the shelter
- (Furthest_List)
- \quad Set $C N=$ Furthest_List (1)

Elseif Demand_List(1) $=$ Demand_List(2) $=\cdots=$ Demand_List(z), $z>1$
AND $Q_{C V} \leq d_{(\text {Demand_List(1)) }}$

- Find nodes $i=1,2, \ldots, z$ with demand $D_{i}=$ Demand_List(1)and sort
- them in ascending order with respect to their distance from the shelter
- (Nearest_List).
- \quad Set $C N=$ Nearest_List (1)

End

- Route vehicle $C V$ to $C N$
- Set Time_List $(C V)=$ Time_List $(C V)+L_{\{t\} C N}$
- Set Total_Distance $(C V)=$ Total_Distance $(C V)+P_{\{t\} C N}$

End
Step 4.
Step 4.1 If $D_{C N}<Q_{C V}$

- load vehicle $C V$ with $D_{C N}$ evacuees
- update the capacity of vehicle $C V: Q_{C V} \leftarrow Q_{C V}-D_{C N}$
- update the demand of node $C N: D_{C N}=0$
- Set Time_List $(C V)=$ Time_List $(C V)+s t$

Elseif $D_{C N} \geq Q_{C V}$

- load vehicle $C V$ with $Q_{C V}$ evacuees
- update the demand of node $C N: D_{C N} \leftarrow D_{C N}-Q_{C V}$
- route vehicle $C V$ to the shelter t to drop off the evacuees
- Set Arrival_List $(C V)=$ Time_List $(C V)+L_{C N\{t\}}+2 \cdot s t$
- Set Time_List(CV) = Arrival_List(CV)

End
Step 4.2 While $Q_{C V}>0$

- Route vehicle $C V$ from $C N$ to node l with $\min \left\{L_{C N}, l \in C \backslash\{C N\}\right\}$ and demand $D_{l} \neq 0$
- Set Time_List $(C V)=$ Time_List $(C V)+L_{C N l}$
- Set Total_Distance $(C V)=$ Total_Distance $(C V)+P_{C N l}$
- Set $C N=l$

Repeat Steps 4.1-4.2

End

End
Step 5. Find max element \{Time_List $\}$

- $T_{\text {evac }}=$ maxelement $\{$ Time_List $\}$
- Distance $=\sum_{k \in K}$ Total_Distance (k)

Step 6. Stop

Appendix C. PEHFP: Pseudo code of Heuristic for enabled and disabled population evacuation

Notation

Since most of the notation has been already defined in Section 2.3.2, we present only the additional notation.

Nodes and vehicles

- We consider three categories of evacuees (enabled, partially disabled and totally disabled evacuees). Let $P=\{1,2,3\}$ be the set of evacuees category and let $p \in P$. Let $p=1$ denote enabled evacuees, $p=2$ denote partially disabled evacuees and $p=3$ denote totally disabled evacuees.
- Let D_{i}^{p} be the demand of evacuee type $p \in P$ at pick up point $i \in C$
- Let Q_{k}^{p} be the capacity of vehicle $k \in K$ for evacuee type $p \in P$
- Let $I C V=\left\{Q_{0, k}^{p}, k \in K, p \in P\right\}$ be an array of initial vehicle capacity ($Q_{0, k}^{p}$ is the initial capacity of vehicle $k \in K$ for evacuees type of $p \in P$). ICV is an $3 \times|K|$ array, the rows of which correspond to evacuee type and the columns to vehicles. Note that a vehicle that can transport partially disabled evacuees ($p=2$) can also transport enabled evacuees $(p=1)$, while a vehicle that can transfer enabled evacuees $(p=1)$ cannot necessarily transfer partially disabled evacuees $(p=2)$ or totally disabled evacuees ($p=3$). In addition, a vehicle $k \in K$ that can transfer totally disabled evacuees ($p=3$) may transfer partially disabled evacuees $(p=2)$. Finally, we assume that an ambulance can transfer only one totally disabled evacuee ($p=3$) per ride.
- Consider the following indicators:

$$
\begin{aligned}
& r_{k}=\left\{\begin{array}{l}
1, \text { if } Q_{0, k}^{2}>0 \text { AND } Q_{0, k}^{3}>0 \\
0, \text { if } Q_{0, k}^{2}=0 \text { AND } Q_{0, k}^{3}>0
\end{array}, k \in K\right. \\
& :_{k}=\left\{\begin{array}{c}
1, \text { if } Q_{0, k}^{2}>0 \\
0, \text { if } Q_{0, k}^{2}=0
\end{array},\right. \text {,k }
\end{aligned}
$$

- Let Dis_veh $=\sum_{k \in K} x_{\mathrm{k}}+\sum_{k \in K} \operatorname{str}_{k}$, be the number of vehicles that can transport partially disabled evacuees.
- Let Initial_Dis_Dem $=\sum_{c \in C} D_{c}^{2}$, be the total initial demand for partially disabled evacuees at all the pick-up locations.
- Let r_{k} be an indicator with

$$
r_{k}=\left\{\begin{array}{l}
1, \text { if vehicle } k \in K, \text { is at } s^{k} \\
0, \text { otherwise }
\end{array}\right.
$$

- Let $a=3$ be a coefficient of capacity conversion.
- Let w_{k} be an indicator with $\quad w_{k}= \begin{cases}1, & \text { if } Q_{0, k}^{2}, k \in K, \text { has been converted to } Q_{0, k}^{1} \\ 0, & \text { otherwise }\end{cases}$

Let Demand_List ${ }^{p}$ be the list with demand of nodes D_{i}^{p} arranged in descending order, $p \in P$

- Let $s t^{p}$ be the service time of evacuees. In particular:

$$
s t^{p}=\left\{\begin{aligned}
2, & p=1 \\
6, & p \in\{2,3\}
\end{aligned}\right.
$$

- Let $\sum_{i \in C}$ Dis_evac $_{i}^{2}$ be the number of partially disabled evacuees that vehicle $k \in K$ collected at its last route
- Let $\sum_{i \in C}$ Dis_evac ${ }_{i}^{3}$ be the number of totally disabled evacuees that vehicle $k \in K$ collected at its last route
- Let n_{k} be an indicator with

$$
n_{k}= \begin{cases}1, & \text { if vehicle } k \in K \text { executes its first route } \\ 0, & \text { otherwise }\end{cases}
$$

- Let Dis_evac ${ }_{i}$ be the number of partially disabled evacuees that vehicle $k \in K$ collects from node $i \in C$
- Let Nodes_Array be an array with all nodes $i \in C$ for which $D_{i}^{1}>0$ and at the time when $\sum_{c \in C} D_{c}^{2}=0$, a vehicle $k \in K$ with $Q_{k}^{2}>0$ is about to collect evacuees from node i
- Let Vehicles_Array be an array with all vehicles $k \in K$ of type $x_{k}=1$ with remaining capacity $Q_{k}^{2}>0$ which is converted to Q_{k}^{1} and they serve node $i \in C$ with $D_{i \in C}^{1}>0$
- Let Convertion_Array be an array of vehicles $k \in K$ with $w_{k}=0$

The proposed heuristic algorithm for this version of PEHFP is implemented using Matlab R2010b on a PC equipped with a 1.8 GHz Intel Core i5 and 4 GB of RAM. The pseudo code of the algorithm is given in the following:

Pseudocode

Step 1. Set $T_{\text {evac }}=0$, Time_List $=0$, Total_Distance $=0$, List $=\emptyset$

Step 2.

Step 2.1 If $\sum_{\mathrm{k} \in \mathrm{K}} \operatorname{str}_{\mathrm{k}}>0$ AND $\sum_{\mathrm{c} \in \mathrm{C}} \mathrm{D}_{\mathrm{c}}^{3}>0$
Step 2.1.1 - Sort, first, all vehicles $k \in K$ with str $_{k}=1$ in ascending order with respect to their initial capacity for partially disabled
Step 2.1.2 - Sort vehicles with $\operatorname{str}_{k}=0$ in ascending order with respect to their initial capacity for enabled
Elseif $\sum_{k \in K} s t r_{k}=0$ AND $\sum_{c \in C} D_{c}^{3}>0$

- Sort vehicles with $s t r_{k}=0$ in ascending order with respect to their initial capacity for enabled

End

- Insert the sorted vehicles into List

Step 3.

Step 3.1 While $\sum_{c \in C} D_{c}^{3}>0$
Step 3.2 If List is not empty

- Set the first vehicle $k \in K$ in List with capacity Q_{k}^{p} as current vehicle $(C V=k)$
- Remove vehicle k from the List

Else

- Execute Step 5

End
Step 3.2.1
If $\mathrm{r}_{\mathrm{CV}}^{\mathrm{p}}=1 \mathbf{O R}$ node $=\{\mathrm{t}\}$
Step 3.2.2 - Sort the demand of nodes for totally disabled in ascending order(Demand_List ${ }^{3}$)
Step 3.2.3 If Demand_List $^{3}(1) \neq$ Demand_List $^{3}(2) \neq \cdots \neq$ Demand_List $^{3}(z), z>1$

- Set as current node (CN) the node i with demand $D_{i}=$ Demand_List $^{3}(1)$

Demand_List $^{3}(1)=$ Demand_List $^{3}(2)=\cdots=\operatorname{Demand}_{\text {List }}{ }^{3}(z), z>1$
If $\sum_{i=1}^{z} D_{i}^{2}>0$ AND $Q_{C V}^{2}>0$

- Sort the demand of nodes for enabled in ascending order (Demand_List ${ }^{2}$)

If Demand_List $^{2}(1) \neq$ Demand_List $^{2}(2) \neq \cdots \neq \operatorname{Demand}_{\text {List }}{ }^{2}(z), z>1$

- Set as current node (CN) the node i with demand $D_{i}=$ Demand_List $^{2}(1)$ Elseif Demand_List ${ }^{2}(1)=$ Demand_List $^{2}(2)=\cdots=$ Demand_List $^{2}(z), z>1$
- Find the nodes $i=1,2, ., z$ with demand $D_{i}^{2}=$ Demand_List $^{2}(1)$ and sort them in ascending order with respect to their distance from the starting location of $C V$ (or from the shelter if $C V$ is at the shelter) (Nearest_List)
- Set $C N=$ Nearest_List(1)

End
Else

- Find the nodes $i=1,2, ., z$ with demand $D_{i}^{3}=$ Demand_List $^{3}(1)$ and sort them in ascending order with respect to their distance from the starting location of $C V$ (or from the shelter if CV is at the shelter) (Nearest_List)
- Set $C N=$ Nearest_List(1)

End
End
If $n_{C V}=1$
Set Time_List $(C V)=$ Time_List $(C V)+L_{S}{ }^{C V}{ }_{C N}$
Set Total_Distance $(C V)=$ Total_Distance $(C V)+P_{S^{C V}}^{C N}$
Else
Set Time_List $(C V)=$ Time_List $(C V)+L_{\{t\} C N}$
Set Total_Distance $(C V)=$ Total_Distance $(C V)+P_{\{t\} C N}$
End
Elseif node $\neq\{t\}$

- Route vehicle $C V$ to node l with $\min \left\{L_{\text {nodel }}, l \in C \backslash\{C N\}\right\}$ and demand $D_{l}^{2} \neq 0$.

$$
\begin{aligned}
& \text { - Set Time_List }(C V)=\text { Time_List }(C V)+L_{\text {node }} \\
& \\
& \text { - Set Total_Distance }(C V)=\text { Total_Distance }(C V)+P_{\text {nodel }} \\
& \text { - Set } C N=l
\end{aligned}
$$

Step 4.

Step 4.1

Step 4.1.1

Step 4.2

End

$$
\text { If } \begin{aligned}
\sum_{c \in C} D_{c}^{2}= & 0 \text { AND } \sum_{k \in K} s t r_{k}>0 \\
& - \text { Route all vehicles } k \in K \text { with } \text { str }_{k}=1 \text { AND Time_List }(k) \neq 0 \text { AND node } \neq\{t\} \text { to the shelter } \\
& - \text { Set Time_List }(k)=\operatorname{Time}_{-} L i s t(k)+\left(\sum_{i \in C} \operatorname{Dis_ evac} i_{i}^{3} \cdot s t^{3}\right)+\left(\sum_{i \in C} \text { Dis_evac }_{i}^{2} \cdot s t^{2}\right)+L_{\text {node }\{t\}} \\
& - \text { Set Total_Distance }(k)=\text { Total_Distance }(k)+P_{\text {node }\{t\}}
\end{aligned}
$$

End

Step 5.

If List is empty

- Insert to a new array the travel times of vehicles that can transfer totally disabled evacuees (Time _List_Array)
- Sort Time_List_Array in ascending order

If Time _List_Array (1) $=$ Time _List_Array $(2)=\ldots=$ Time_List_Array $_{\text {(}}$),$z>1$
If $\sum_{\mathrm{j}=1}^{\mathrm{Z}} \mathrm{Q}_{\text {Time_List_Array }(\mathrm{j})}^{2}>0$ AND $\sum_{c \in C} D_{c}^{2}>0$

- Set as current vehicle $C V$, the vehicle k with capacity $\mathrm{Q}_{\mathrm{k}}^{2}=\max \left\{Q_{\text {Time_List }(j)}^{2}, j=1,2, \ldots, z\right\}$.

Else

$$
\text { - Set as current vehicle } C V \text {, the vehicle } k \text { with capacity } \mathrm{Q}_{\mathrm{k}}^{1}=\max \left\{Q_{\text {Time }_{-} \operatorname{List}(j)}^{1}, j=1,2, \ldots, z\right\} .
$$

End

$$
\text { Elseif Time _List_Array }(1) \neq \text { Time _List_Array }(2) \neq \ldots \neq \text { Time _List_Array }(z), z>1
$$

- Set the first vehicle (k, with capacity $\mathrm{Q}_{\mathrm{k}}^{1}$) as current vehicle $C V$
- Go to Step 3.2.1

Else

- Go to Step 3.2

End
End

Step 6.

Step 6.1 If Dis_veh $\neq 0$ AND $\sum_{c \in C} D_{c}^{2}>0$
Step 6.1.1 - Sort, first, vehicles $k \in K$ with Time_List $(k)=0$ AND $x_{k}=1$ in ascending order with respect to their capacity for partially disabled. In case that any of the vehicles for partially disabled have the same capacity for disabled, sort them in ascending order with respect to their initial capacity for enabled.
Step 6.1.2 - Sort the vehicles for enabled in descending order with respect to their initial capacity.
Step 6.1.3 - Insert the sorted vehicles to List
Step 6.2 Elseif Dis_veh $\neq 0$ AND $\sum_{c \in C} D_{c}^{2}=0$
Step 6.2.1 - Convert the initial capacity of vehicles with $x_{\mathrm{k}}=1$ into capacity for enabled: $I C V_{k}^{1} \leftarrow I C V_{k}^{1}+\left(I C V_{k}^{2} * a\right)$
Step 6.2.2 \quad - Set $I C V_{k}^{2}=0$
Step 6.2.3 - Sort all vehicles in descending order with respect to their initial capacity.
Step 6.2.4 - Insert the sorted vehicles to List
Step 6.3 Elseif Dis_veh $=0$

- Sort all the vehicles in descending order with respect to their initial capacity.
- Insert the sorted vehicles to List

End

Step 7. While $\sum_{p=1}^{2} \sum_{c \in C} D_{c}^{p}>0$

Step 8. If List is not empty

Step 9. If Dis_veh $\neq 0$ AND $\sum_{c \in C} D_{c}^{2}>0$

$$
\text { If } \sum_{c \in C} D_{c}^{2}=0 \text { AND } \sum_{c \in C} D_{c}^{1}>0 \text { AND } \sum_{k \in K} r_{k}^{2}=0
$$

- Set the first vehicle $k \in K$ in List with capacity Q_{k}^{1} as current vehicle ($C V=k$)
- Delete vehicle k from the List

Elseif $\sum_{c \in C} D_{c}^{2}=0 \mathbf{A N D} \sum_{c \in C} D_{c}^{1}>0$ AND $\sum_{k \in K} r_{k}^{2}>0$

- Find the vehicles $k \in K$ with $r_{k}^{2}=1$
- Repeat Steps 6.2.1-6.2.4
- Set the first vehicle $k \in K$ in List with capacity Q_{k}^{p} as current vehicle ($C V=k$)
- Delete vehicle k from the List

End
Elseif Dis_veh $=0$ OR $\left(\right.$ Dis_veh $\neq 0$ AND $\left.\sum_{c \in C} D_{c}^{2}=0\right)$

- Set the first vehicle $k \in K$ in List with capacity Q_{k}^{1} as current vehicle ($C V=k$)
- Delete vehicle k from the List

Elseif $\left(\sum_{c \in C} D_{c}^{2}=0\right.$ AND $\left.\sum_{c \in C} D_{c}^{1}=0\right)$ OR $\left(\sum_{c \in C} D_{c}^{2}>0\right.$ AND $\sum_{c \in C} D_{c}^{1}=0$ AND $\left.\sum_{k \in K} r_{k}^{2}=0\right)$

- Set List $=\varnothing$

End
Elseif List is empty

- Go to Step 13

End
Step 10.

$$
\begin{aligned}
& \text { If } r_{C V}^{p}=1 \text { OR node }=\{t\} \\
& \qquad \text { If } \text { Dis_veh } \neq 0 \text { AND } x_{c v}=1 \mathbf{A N D} \sum_{c \in C} D_{c}^{2}>0
\end{aligned}
$$

- Sort nodes' demand for disabled in descending order(Demand_List $\left.{ }^{2}\right)$

```
    If Demand_List \(^{2}(1) \neq\) Demand_List \(^{2}(2) \neq \cdots \neq\) Demand_List \(^{2}(z), z>1\)
            - Set node \(i\) with demand \(D_{i}=\) Demand_List \({ }^{2}(1)\) as current node (CN)
    Elseif Demand_List \(^{2}(1)=\) Demand_List \(^{2}(2)=\cdots=\) Demand_List \(^{2}(z), z>1\)
        If \(\sum_{c \in C} D_{c}^{1}>0\)
            - Sort the demand of nodes for enabled in descending order (Demand_List \({ }^{1}\) )
            - Set node \(i\) with demand \(D_{i}=\) Demand_List \({ }^{1}(1)\) as current node (CN)
        Else
            - Find the nodes \(i=1,2, ., z\) with demand \(D_{i}^{2}=\) Demand_List \(^{2}(1)\) and sort them in
            ascending order with respect to their distance from the starting location of \(C V\) (or from the
            shelter if \(C V\) is at the shelter) (Nearest_List)
            - Set CN = Nearest_List(1)
            End
End
Elseif (Dis_veh \(\neq 0\) AND \(x_{c v}=0\) ) OR Dis_veh \(=0\) OR (Dis_veh \(\neq 0\) AND \(\sum_{c \in C} D_{c}^{2}=0\) )
- Sort the demand of nodes for enabled in descending order(Demand_List \(\left.{ }^{1}\right)\) )
If Demand_List \(^{1}(1) \neq \operatorname{Demand}_{\text {List }}{ }^{1}(2) \neq \cdots \neq \operatorname{Demand\_ List}^{1}(z), z>1\)
- Set node \(i\) with demand \(D_{i}=\) Demand_List \(^{1}(1)\) as current node (CN)
Elseif Demand_List \(^{1}(1)=\) Demand_List \(^{1}(2)=\cdots=\) Demand_List \(^{1}(z), z>1\)
If \(Q_{c v}^{1}>\) Demand_List \(^{1}(1)\)
- Find the nodes \(i=1,2, ., z\) with demand \(D_{i}^{1}=\) Demand_List \(^{1}(1)\) and sort them in ascending order with respect to their distance from the starting location of \(C V\) (or from the shelter if CV is at the shelter)(Furthest_List)
- Set CN = Furthest_List (1)
Elseif \(Q_{c v}^{1} \leq\) Demand_List \({ }^{1}\) (1)
- Find the nodes \(i=1,2, ., z\) with demand \(D_{i}^{1}=\operatorname{Demand}_{\text {List }}{ }^{1}(1)\) and sort them in ascending order with respect to their distance from the starting location of \(C V\) (or from the shelter if \(C V\) is at the shelter) (Nearest_List)
- Set \(C N=\) Nearest_List(1)
End
End
End
If \(n_{C V}=1\)
- Set Time_List \((C V)=\) Time_List \((C V)+L_{S}{ }^{C V}{ }_{C N}\)
- Set Total_Distance \((C V)=\) Total_Distance \((C V)+P_{S^{C V}}^{C N}\)
Else
- Set Time_List \((C V)=\) Time_List \((C V)+L_{\{t\} C N}\)
- Set Total_Distance \((C V)=\) Total_Distance \((C V)+P_{\{t\} C N}\)
End
Elseif node \(\neq\{t\}\)
Set \(C N=\) node
If \(x_{c v}=1\) AND \(\sum_{c \in C} D_{c}^{2}>0\) AND \(Q_{C V}^{2}>0\)
- Route vehicle \(C V\) to node \(l\) with \(\min \left\{L_{C N l}, l \in C \backslash\{C N\}\right\}\) and demand \(\mathrm{D}_{l}^{2} \neq 0\).
- Set Time_List \((C V)=\) Time_List \((C V)+L_{C N l}\)
- Set Total_Distance \((C V)=\) Total_Distance \((C V)+P_{C N l}\)
- Set \(C N=l\)
Elseif \(x_{c v}=0 \mathbf{O R}\left(x_{c v}=1 \mathbf{A N D}\left(\sum_{c \in c} D_{c}^{2}=0 \mathbf{O R} Q_{C V}^{2}=0\right)\right.\) )
- Route vehicle \(C V\) to node \(l\) with \(\min \left\{L_{C N l}, l \in C \backslash\{C N\}\right\}\) and demand \(\mathrm{D}_{l}^{1} \neq 0\).
- Set Time_List \((C V)=\) Time_List \((C V)+L_{C N l}\)
- Set Total_Distance \((C V)=\) Total_Distance \((C V)+P_{C N l}\)
- Set \(C N=l\)
End
```

Step 11.

$$
\begin{array}{ll}
\text { Step 11.1 } \begin{array}{l}
\text { If } D i s_{-} v e h
\end{array}=0 \text { AND } Q_{C V}^{2}>0 \text { AND } \sum_{p=1}^{2} \sum_{c \in C} D_{c}^{p}>0 \\
\text { Step 11.1.1 If } D_{C N}^{2} \geq Q_{C V}^{2} \text { AND } D_{C N}^{1} \geq Q_{C V}^{1} \\
& - \text { load vehicle } C V \text { with } Q_{C V}^{1}+Q_{C V}^{2} \text { evacuees } \\
& \text { - update the demand of CN for enabled : } D_{C N}^{1} \leftarrow D_{C N}^{1}-Q_{C V}^{1} \\
& \text { - update the demand of CN for disabled : } D_{C N}^{2} \leftarrow D_{C N}^{2}-Q_{C V}^{2} \\
& \text { - route vehicle } C V \text { to the shelter } t \text { to drop off the evacuees } \\
& \text { - Set Total_Distance }(C V)=\text { Total_Distance }(C V)+P_{C N\{t\}} \\
& \text { - Set }
\end{array}
$$

Time_List $(C V)=$ Time_List $(C V)+L_{C N\{t\}}+Q_{C V}^{2} \cdot 2 s t^{2}+\sum_{i \in C}$ Dis $_{\text {evac }}^{i}{ }_{i}^{3} \cdot s t^{3}+\left(\sum_{i \in C}\right.$ Dis $\left._{\text {evac }}^{i}{ }^{2}-Q_{C V}^{2}\right) \cdot s t^{2}$ Elseif $D_{C N}^{2}<Q_{C V}^{2}$ AND $D_{C N}^{1}<Q_{C V}^{1}$

- load vehicle $C V$ with $\sum_{p \in\{1,2\}} D_{C N}^{p}$
- update the capacity of vehicle $C V: Q_{C V}^{p} \leftarrow Q_{C V}^{p}-\sum_{p \in\{1,2\}} D_{C N}^{p}$
- Set Time_List $(C V)=$ Time_List $(C V)+D_{C N}^{2} * s t^{2}$
- update the demand of node $C N: \sum_{p \in\{1,2\}} D_{C N}^{p}=0$

Elseif $D_{C N}^{2} \geq Q_{C V}^{2}$ AND $D_{C N}^{1}<Q_{C V}^{1}$

- load vehicle $C V$ with $Q_{C V}^{2}$ evacuees and with $D_{C N}^{1}$ evacuees
- update the capacity of vehicle $C V$ for enabled: $Q_{C V}^{1} \leftarrow Q_{C V}^{1}-D_{C N}^{1}$
- update the demand of $C N$ for enabled: $D_{C N}^{1}=0$
- update the demand of $C N$ for disabled: $D_{C N}^{2} \leftarrow D_{C N}^{2}-Q_{C V}^{2}$
- Set Time_List $(C V)=$ Time_List $(C V)+Q_{C V}^{2} * s t^{2}$
- update the capacity of vehicle $C V$ for disabled: $Q_{C V}^{2}=0$

Elseif $D_{C N}^{2}<Q_{C V}^{2}$ AND $D_{C N}^{1} \geq Q_{C V}^{1}$

- load vehicle $C V$ with $D_{C N}^{2}$ evacuees and with $Q_{C V}^{1}$ evacuees
- update the demand of $C N$ for enabled: $D_{C N}^{1} \leftarrow D_{C N}^{1}-Q_{C V}^{1}$
- update the capacity of $C V$ for enabled: $Q_{C V}^{1}=0$
- update the capacity of $C V$ for disabled: $Q_{C V}^{2} \leftarrow Q_{C V}^{2}-D_{C N}^{2}$
- Set Time_List $(C V)=$ Time_List $(C V)+D_{C N}^{2} * S t^{2}$
- update the demand of $C N$ for partially disabled: $D_{C N}^{2}=0$

End
$\sum_{c \in C} D_{c}^{2}=0$
Step 11.1.2

- Find all the vehicles $k=1,2, \ldots, u$ with $x_{k}=1$ and $w_{k}=0$ and convert their capacity for partially disabled to capacity for enabled (Convertion_Array).
While Convertion_Array is not empty
- Set CV=Convertion_Array (1)
- Set Convertion_Array(1)= \varnothing
- Find the last node(node) that $C V$ visited during its last route

$$
\text { If node } \neq\{t\}
$$

- Update $C V^{\prime} s$ initial capacity for disabled: $I C V_{C V}^{2}=I C V_{C V}^{2}-Q_{C V}^{2}$
- Update $C V^{\prime} s$ initial capacity for enabled: $I C V_{C V}^{1}=I C V_{C V}^{1}+\left(Q_{C V}^{2} * a\right)$
- Convert $C V^{\prime} s$ capacity for disabled to capacity for enabled and update $C V^{\prime} s$ capacity for enabled: $Q_{C V}^{1}=Q_{C V}^{1}+\left(Q_{C V}^{2} * a\right)$
- Set $Q_{C V}^{2}=0$

If $D_{\text {node }}^{1}>0$

- Insert node to Nodes_Array
- Insert CV to Vehicles_Array

End
Elseif node $=\{t\}$

- Update $C V^{\prime} s$ initial capacity for enabled: $I C V_{C V}^{1}=I C V_{C V}^{1}+\left(Q_{C V}^{2} * a\right)$
- Set $I C V_{C V}^{2}=0$
- Set $Q_{C V}^{p}=I C V_{C V}^{p} p \in\{1,2\}$

End
End

Step 11.1.3

Elseif $x_{\mathrm{cv}}=0$ OR $\left(x_{\mathrm{cv}}=1\right.$ AND $\left.Q_{C V}^{2}=0\right)$
While Nodes_Array is not empty

$$
\text { - Set } C N=\text { Nodes_Array (1) }
$$

- Delete CN from Nodes_Array
- Set $C V=$ Vehicles_Array(1) If $D_{C N}^{1} \geq Q_{C V}^{1}$

Else

End
Elseif $D_{C N}^{1}<Q_{C V}^{1}$
$-\operatorname{Set} D_{C N}^{1}=0$
If Dis_evac $_{C N}=0$

Else

End
End
End

Step 11.2

Step 11.3
Step 11.3.1

- Delete CV from Vehicles_Array
- load $C V$ with $Q_{C V}^{1}$ evacuees
- update the demand of $C N: D_{C N}^{1}=D_{C N}^{1}-Q_{C V}^{1}$
- route vehicle $C V$ to the shelter t to drop off the evacuees
- Set Total_Distance $(C V)=$ Total_Distance $(C V)+P_{C N\{t\}}$

If $\sum_{i \in C}$ Dis__evac $_{i}=0$

- Set Time_List $(C V)=$ Time_List $(C V)+s t^{1}+L_{C N\{t\}}$
- Set Time_List $(C V)=\operatorname{Time}_{-} \operatorname{List}(C V)+\left(\sum_{i \in C} D i s_{\text {evac }_{i}}{ }^{2} s t^{2}\right)+L_{C N\{t\}}$
- load $C V$ with $D_{C N}^{1}$ evacuees
- update the capacity of $C V: Q_{C V}^{1} \leftarrow Q_{C V}^{1}-D_{C N}^{1}$
- Set Time_List $(C V)=$ Time_List $(C V)+s t^{1}$
- Set Time_List($C V$) = Time_List(CV)

Go back to Step 10.1.4
Elseif $\left(s t r_{C V}=1\right.$ OR $\left.x_{c v}=1\right)$ AND $\sum_{c \in C} D_{c}^{2}>0$ AND $\sum_{c \in C} D_{c}^{1}=0$
If $D_{C N}^{2} \geq Q_{C V}^{2}$

- Load $C V$ with $Q_{C V}^{2}$ evacuees
- update the demand of $C N: D_{C N}^{2}=D_{C N}^{2}-Q_{C V}^{2}$
- route vehicle $C V$ to the shelter t to drop off the evacuees
$-\operatorname{Set}$ Time_List $(C V)=$ Time_List $(C V)+\left(Q_{C V}^{2} * s t^{2} * 2\right)+L_{C N\{t\}}+\sum_{i \in C} \operatorname{Dis}_{\text {evac }}^{i}{ }_{i} \cdot s t^{3}$
Elseif $D_{C N}^{2}<Q_{C V}^{2}$
- load $C V$ with $D_{C N}^{2}$ evacuees
- update the capacity of $C V: Q_{C V}^{2} \leftarrow Q_{C V}^{2}-D_{C N}^{2}$
- Set Time_List $(C V)=$ Time_List $(C V)+\left(D_{C N}^{2} * S t^{2}\right)$
- Set $D_{C N}^{2}=0$

End
End
Step 12.
If $\sum_{c \in C} D_{c}^{2}>0$ AND $\sum_{c \in C} D_{c}^{1}=0$

- Route all the vehicles $k \in K$ for enabled to the shelter
- Set Time_List $(k)=$ Time_List $(k)+s t^{1}+L_{n o d e ~}\{t\}$
- Route all the vehicles $k \in K$ for disabled with capacity $Q_{C V}^{2}=0$ to the shelter

If $\sum_{i \in C}$ Dis_evac ${ }_{i}^{3}>0$

$$
-\operatorname{Set} \text { Time_List }(k)=\operatorname{Time}_{-} \operatorname{List}(k)+\left(\sum_{i \in C} \operatorname{Dis}_{\text {evac }}^{i}{ }_{i}^{2} * s t^{2}\right)+\left(\sum_{i \in C} \operatorname{Dis}_{\text {evac }}^{i}{ }_{i}^{3} * s t^{3}\right)+L_{\text {node }\{t\}}
$$

Else

$$
\text { - Set Time_List }(k)=\text { Time_List }(k)+\left(\sum_{i \in C} \operatorname{Dis}_{\text {evac }}^{i}{ }_{i}^{2} * s t^{2}\right)+L_{\text {node }}\{t\}
$$

End

$$
\text { - Set Total_Distance }(\boldsymbol{k})=\text { Total_Distance }(\boldsymbol{k})+P_{\text {node }\{t\}}
$$

Step 13.

$$
\begin{aligned}
& \text { If } \text { List }=\emptyset \\
& \qquad \text { If } \sum_{c \in C} D_{c}^{2}=0
\end{aligned}
$$

Repeat Steps 11.1.2-11.1.4

- Sort the Time_List in ascending order
- Insert to a new array the travel times of vehicles with $x_{k}=1$ (Time _List_Array)
- Sort Time _List_Array in ascending order

If Time_List_Array (1) $=$ Time_List_Array $(2)=\ldots=$ Time_List_Array $(z), z>1$

- Set as current vehicle $C V$, the vehicle k with capacity $\mathrm{Q}_{\mathrm{k}}^{1}=\max \left\{Q_{\text {Time_List_Array }(j)}^{1}, j=1,2, \ldots, z\right\}$.

Else

- Set the first vehicle (k, with capacity $\mathrm{Q}_{\mathrm{k}}^{1}$) as current vehicle $C V$

End
Elseif $\sum_{c \in C} D_{c}^{1}=0$

- Insert to a new array the travel times of vehicles with $w c_{k}=1$ (Time _List_Array)
- Sort Time _List_Array in ascending order

If Time _List_Array (1) $=$ Time_List_Array (2) $=\ldots=$ Time_List_Array $(z), z>1$

- Set as current vehicle $C V$, the vehicle k with capacity:
$-\mathrm{Q}_{\mathrm{k}}^{2}=\max \left\{Q_{\text {Time_List_Array }(j)}^{2}, j=1,2, \ldots, z\right\}$.
Else
- Set the first vehicle (k, with capacity $\mathrm{Q}_{\mathrm{k}}^{2}$) as current vehicle $C V$

End
Elseif $\sum_{c \in C} D_{c}^{2}>0$ AND $\sum_{c \in C} D_{c}^{1}>0$

- Sort the Time_List in ascending order

If Time _List(1) $=$ Time _List $(2)=\ldots=$ Time _List $(z), z>1$
If $\sum_{j=1}^{z} w c_{j}>0$

- Set as current vehicle $\boldsymbol{C V}$, the vehicle k with capacity:
$-\mathrm{Q}_{\mathrm{k}}^{2}=\max \left\{Q_{\text {Time }}^{2} \operatorname{List}(j), j=1,2, \ldots, z\right\}$.
Else
- Set as current vehicle $C V$, the vehicle k with capacity:
$-\mathrm{Q}_{\mathrm{k}}^{1}=\max \left\{Q_{\text {Time }}^{1} \operatorname{List}(j), j=1,2, \ldots, z\right\}$.
End
Else
- Set the first vehicle (k, with capacity $\mathrm{Q}_{\mathrm{k}}^{\mathrm{p}}$) as current vehicle $C V$

End

End

- Go to step 10

Elseif List $\neq \varnothing$

- Go to step 8

End
End
Step 14.

- Find all the vehicles $k \in K$ of which node $\neq\{t\}$ and route them to the shelter

If $\sum_{i \in C} D i s_{\text {evac }}{ }_{i}^{2}=0$ AND $\sum_{i \in C} D i s_{e v a c_{i}}^{3}=0$
$-\operatorname{Set} \operatorname{Time_ List}(k)=\operatorname{Time_ List}(k)+L_{\text {node }\{t\}}+s t^{1}$
Else

$$
-\operatorname{Set} \operatorname{Time} _\operatorname{List}(k)=\operatorname{Time_ List}(k)+L_{\text {node }\{t\}}+\left(\sum_{i \in C} D i s_{e_{\text {evac }}^{i}}^{2} * s t^{2}\right)+\left(\sum_{i \in C} D i s_{\text {evac }}^{i} 3{ }^{3} * s t^{3}\right)
$$

End

$$
\text { - Set Total_Distance }(k)=\text { Total_Distance }(k)+P_{\text {node }\{t\}}
$$

Step 15.

- Find maxelement\{Evac_time\}
- Set $T_{\text {evac }}=$ maxelement $\{$ Evac_time $\}$
- Set Distance $=\sum_{k \in K}$ Total_Distance (k)

Appendix D: Input data for the case study

The following tables present the necessary data in terms of a) the number of evacuees per village, b) the transportation network that links the villages with the shelter, the transportation network between villages, the transportation network that links each vehicle's starting point with the villages, c) the public and private fleet of vehicles available for the evacuation, for the PEHFP.

D. 1 Evacuees

Table D1, presents the population of each village that need to be evacuated. The evacuees are categorized as follows: a) enabled evacuees that will be transported via buses, 4×4 vehicles, and vans, b) disabled evacuees with total disability that will be transported via ambulances and emergency mobile units and, c) disabled evacuees with partial disability that will be transported via vans or ambulances (if needed).

Village	Village ID	Enabled Dvacuees	Disabled Evacuees (with total disability)	Disabled Evacuees (with partial disability)
Tramacastiel	100	37	1	6
Rubiales	200	26	1	4
El Campillo	300	33	6	
Teruel (Shelter)	1000			
Villel (Shelter)	2000		6	

D. 2 Road Network

Table D2, presents the road network that connects the villages with the shelter, the villages themselves and each vehicle's starting point with each village. In case study of Teruel the starting point of each vehicle is the same with the shelter (each vehicle starts its trip from city of Teruel and returns to it to drop off the evacuees). The routes presented in Table A2 are the best, based on the available road network of the area. Figure D1, depicts the best routes using Google maps.

Table D2. Transport Network (best routes) between villages and shelter

	To	Distances (in Km) \& travel times of best Routes (in min)									
		Shelter (Teruel)		Tramacastiel		Rubiales		El Campillo		Villel	
From		Min	km								
	Shelter (Teruel)			38	32.8	27	21.4	16	15.1		
	Tramacastiel	38	32.8	-		62	52.8	51	46.3	23	17.8
	Rubiales	27	21.4	62	52.8	-		15	6.9	-	
	El Campillo	16	15.1	51	46.3	15	6.9	-			
	Villel	-		23	17.8	-		-		-	

Figure D1. Road network between evacuation problems nodes

D. 3 Public Vehicles

Table D3, presents the fleet of public vehicles that will be that will be available during the evacuation process. As it can be obtained, there are various types of vehicles available (e.g. cars, vans, etc.) that can be used only for enabled citizens. Furthermore, the table presents the number of each type of vehicle that is available and its capacity (seats). Last but not least, the starting point (depot) of each vehicle is given.

Table D3. List of public vehicles available

Type Of Vehicle	Number of Each Type Of Vehicle	Vehicle ID	Capacity Per Vehicle(seats)	Adapted for Disabled People	Address	arting Point Number	City	Company Name
Car 4x4	1	5	4	No	Temprado	4	Teruel	Agrupación de Voluntarios de Protección Civil Comarca Comunidad de Teruel
Van	1	6	7	No	Calle Temprado	3	Teruel	Comarca Comunidad de Teruel
Van	1	7	8	No	Polígono La Paz, Calle Berlín	s / n	Teruel	Diputación de Teruel Parque Maquinaria
Van	1	8	8	No	Polígono La Paz, Calle Berlín	s / n	Teruel	Diputación de Teruel Parque Maquinaria
Van	1	9	8	No	Polígono La Paz, Calle Berlín	s / n	Teruel	Diputación de Teruel Parque Maquinaria
Patrol Car	1	10	4	No	Plaza la Catedral	1	Teruel	Ayuntamiento de Teruel
Patrol Car	1	11	4	No	Plaza la Catedral	1	Teruel	Ayuntamiento de Teruel
Patrol Car	1	12	4	No	Plaza la Catedral	1	Teruel	Ayuntamiento de Teruel
Patrol Car 4x4	1	13	4	No	Plaza la Catedral	1	Teruel	Ayuntamiento de Teruel
Patrol Car 4x 4	1	14	4	No	Plaza la Catedral	1	Teruel	Ayuntamiento de Teruel

D. 4 Private Vehicles

Table D4, presents the fleet of private vehicles that will be available during the evacuation process. Note that there are various type of vehicles available (e.g. common ambulance, emergency mobile unit, bus, etc.) that can be used for both enabled and partially disabled citizens, vehicles that can be used for enabled citizens and ambulances that can be used for both totally and partially disabled citizens. Furthermore, the table presents the number of each type of vehicle that is available, the capacity per vehicle as well as whether a vehicle is adapted for disabled people and its capacity for this category of people. Finally, the starting point (depot) of each vehicle is given.

Type Of Vehicle	Number of Each Type Of Vehicle	Vehicle's ID	Capacity of Each Vehicle			Starting Point			Company Name
			Enabled	Partially Disabled	Totally Disabled	Address	Number	City	
Common Ambulance	1	15	2	0	1	Polígono Los Hostales	Nave 1	Teruel	Transportes Sanitarios de Teruel S.L.
Common Ambulance	18	16-33	2	0	1	Polígono La Paz, Irún, Parcela 166	-	Teruel	Ambuiberica S.L.
Common Ambulance	3	34-36	2	0	1	Polígono Los Hostales	Nave 1	Teruel	Transportes Sanitarios de Teruel S.L.
Basic Life Support	1	37	1	0	1	Polígono Los Hostales	Nave 1	Teruel	Transportes Sanitarios de Teruel S.L.
Ambulance	2	38-39	1	0	1	San Miguel	3	Teruel	Cruz Roja Española
Emergency Mobile Unit	1	40	1	0	1	Polígono La Paz, Irún, Parcela 166	-	Teruel	Ambuiberica S.L.
Emergency Mobile Unit	2	41-42	1	0	1	Polígono La Paz, Irún, Parcela 166	-	Teruel	Ambuiberica S.L.
Colective Ambulance	8	43-50	1	2	1	Polígono La Paz, Estocolmo	13 B	Teruel	Nuevos Transportes Sanitarios de Aragón

Type Of Vehicle	Number of Each Type Of Vehicle	Vehicle's ID	Capacity of Each Vehicle			Starting Point			Company Name
			Enabled	Partially Disabled	Totally Disabled	Address	Number	City	
Colective Ambulance 4 x 4	2	51-52	1	1	1	Polígono La Paz, Estocolmo	13 B	Teruel	Nuevos Transportes Sanitarios de Aragón
Bus	2	53-54	55	0	0	Croacia	4	Teruel	Autocares Nolasco
Bus	1	55	22	0	0	Croacia	4	Teruel	Autocares Nolasco
Bus	8	56-63	50	0	0	Polígono Los Hostales, Nave 1-4	-	Teruel	Autobuses Teruel-Zaragoza, S.A.
Bus	2	64-65	55	0	0	Polígono Los Hostales, Nave 1-4	-	Teruel	Autobuses Teruel-Zaragoza, S.A.
Bus	2	65-67	22	0	0	Carretera Cubla	3	Teruel	Auto Transportes Teruel S.L.
Bus	4	68-71	55	0	0	Carretera Cubla	3	Teruel	Auto Transportes Teruel S.L.
Small Truck	1	72	9	1	0	San Miguel	3	Teruel	Cruz Roja Española
Small Truck 4X4	1	73	9	1	0	San Miguel	3	Teruel	Cruz Roja Española
Minibus	1	74	22	3	0	San Miguel	3	Teruel	Cruz Roja Española

