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Abstract  

We investigate a dynamic routing problem that seeks to assign, in the most efficient way, dynamic 

pickup requests that arrive in real-time while a predefined distribution plan is being executed. We 

refer to this problem as the Vehicle Routing Problem with Dynamic Pickups (VRPDP).  In this 

paper, we address the VRPDP through iterative replanning. In addition to defining the replanning 

model, we drill-down to significant aspects concerning the replanning process; i.e. i) how to 

replan, ii) when to replan, and iii) what part of the new plan to communicate to the drivers. On 

some of these aspects, we establish basic theoretical insights. To solve the replanning problem, we 

propose a Branch-and-Price (B&P) approach. Furthermore, for cases of high complexity (e.g. 

without time windows), we propose a novel insertion heuristic based on column generation that 

provides near optimal solutions in an efficient manner. We use extensive experimentation to test 

the proposed methods and analyze the related replanning policies. Based on the results obtained 

we propose replanning guidelines under various operational settings. 
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Problem description and related literature 

Increasing competitive pressures and expectations for high-quality service have led urban logistics 

operators to enhance their offering by responding to requests that arrive in a dynamic fashion. For 

example, in a typical courier setting, a set of delivery vehicles originating from a local distribution 

hub (depot), is tasked to deliver (or pickup) orders known prior to the start of operations (offline 

requests). As the work plan unfolds, however, customer orders are received through a call center, 

for on-site pickup within the current period of operations. These pickup orders, referred to as 

dynamic pickups, have to be collected and returned to the hub for further processing. In this work 

we focus on such situations and seek to allocate in real time dynamically arriving orders to the 

most appropriate vehicles, either to those en-route or to extra vehicles stationed at the depot. We 

refer to the related problem as the Vehicle Routing Problem with Dynamic Pickups (VRPDP). 

Beyond the courier case, such problems arise naturally in money transfer logistics and repair-

maintenance services. Service vehicles are called to serve requests for money or faulty equipment 

pickups, respectively, which arrive to a dispatch center in a dynamic fashion. Another example 

may be found in coach transfers. In that case, vehicles that execute planned routes originating 

from major locations (e.g. airport) and serving predefined drop-off areas (e.g. accommodation 

sites), are requested to collect passengers from additional locations while en-route. 

In these applications, incorporating dynamic requests in the a-priori plan may reduce the plan’s 

quality or, even worse, it may lead to infeasibilities. Real-time decision-making appears to be 

essential for addressing such dynamic situations effectively. That is, an a-priori plan may be 

modified and updated based on the real-time state of the logistics system (once or repeatedly). In 

this context, we define as replanning the problem that seeks to assign these new service requests 

to the available vehicles, while achieving efficient routing costs and respecting all service 

constraints. We also investigate key related decisions and actions; that is, i) how to replan, ii) 

when to replan, and iii) what part of the new plan to communicate to the drivers.   

The VRPDP is a dynamic version of the one-to-many-to-one pickup and delivery problems (1-M-

1-PDPs, Berbeglia et al., 2007; Berbeglia et al., 2010). In the latter, vehicles deliver commodities 

to customers, while other commodities are picked up from the customers and are transported back 

to the depot. The VRPDP forms a special case and considers that a) each customer requires only 

pickup or delivery, and b) pickup and delivery customers may be served in an arbitrary order. 

Note that the static version of the VRPDP is referred in the literature as the Vehicle Routing 

Problem with Mixed Linehauls and Backhauls (VRPMB, Parragh et al., 2008), or the Mixed 
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Vehicle Routing Problem with Backhauls (MVRPB) (Salhi and Nagy, 1999; Ropke and Pisinger, 

2006), or Vehicle Routing Problem with Backhauls with Mixed load (VRPBM) (Dethloff, 2002).  

Limited work has been conducted on the dynamic counterpart of the PDPs and, to the best of our 

knowledge, no study has investigated the dynamic version of 1-M-1-PDPs. The majority of the 

work has focused on dynamic one-to-one PDPs, in which each request has certain origin and 

destination. Related problems to the one-to-one-PDPs (1-1 PDPs) mostly deal with the 

transportation of passengers in urban areas, as in the dial-a-ride problem (DARP), or in the same-

day transportation of letters/parcels, as in the Dynamic PDP (DPDP). Since this paper doesn’t 

focus on 1-1 PDPs, we refer the reader to the survey of Berbeglia et al. (2010) for solution 

approaches and related references for this class of problems.  

The aforementioned dynamic PDPs can be also seen as a subclass of the general category of 

dynamic vehicle routing problems (DVRPs – Psaraftis, 1988), which have attracted an increasing 

body of research over the last two decades. Two major classes of solution approaches may be 

discerned based on the way to deal with dynamism: i) local approaches, which consider no 

information regarding the future, and ii) look-ahead approaches, that incorporate probabilistic 

information of future events at each replanning event. For the latter ones, the reader may refer to 

Powel (1996), Bent and Van Hentenryck (2004), Larsen et al. (2004) and Ichoua et al (2006).  We 

review here work related to local approaches that are relevant to both our problem setting and 

approach. Results on this class of problems may be found in, among others, Gendreau et al. 

(1999; 2006), Ichoua et al. (2000), Larsen et al. (2002), Yang et al. (2004) and Chen and Xu 

(2006). Typical solution approaches reported in those papers can be classified in i) local-search or 

rule-based algorithms, ii) sophisticated optimization-based algorithms, or iii) hybrid approaches of 

(i) and (ii).  

In order to cope with the characteristics of dynamic environments, fast response times are 

required. For this reason, the majority of the studies have proposed local-search or rule-based 

algorithms. For example, Shieh and May (1998) studied the DVRP with time windows and 

propose an insertion-based heuristic, improved by a local search. Gendreau et al (1999) and 

Ichoua et al (2000) proposed a tabu search heuristic in order to address a similar problem in which 

time windows may be violated at some cost. Larsen et al (2002) compared various rule-based 

heuristics with various degrees of dynamism for a dynamic travelling repairman problem in which 

requests need to be served at a minimum total cost. Their study showed that the route length 

increases linearly w.r.t. the degree of dynamism. Chen and Xu (2006) proposed a column-

generation-based approach for solving a DVRP with hard time windows, in which all requests 
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need to be serviced; the algorithm uses fast heuristics to modify existing columns generated at an 

earlier stage in order to incorporate the up-to-date information. Those columns are then included 

and solved within a set-partitioning formulation in an iterative manner. Their approach 

outperforms an insertion-based heuristic that was used for comparison, but it provides inferior 

results compared to a similar approach that allows unlimited amount of computational time for 

solving the underlying static problems.  

In addition to the problem definition and the solution approach, a critical problem element is when 

to reoptimize in such a dynamic environment. Very limited research focused on replanning 

policies and their impact on the overall solution. The majority of studies (e.g. Gendreau et al, 

1999; Ichoua et al, 2000) reoptimize at every event, i.e. upon the arrival of a vehicle at a customer 

or the introduction (or cancellation) of a customer order. Other studies deal with replanning at 

certain fixed periods. For example, Larsen (2001) studied the DVRP with time windows 

introducing the so-called batching strategies and analyzed the effect of reoptimization on simple 

predefined fixed events (e.g. upon the arrival of three customers and every 10
 
minutes). Chen and 

Xu (2006) replan at fixed cycles. More recently, Angelelli (2009) applied replanning on 

predefined time-events (e.g. 1, 2.5 and 5 hours) for a dynamic multi-period vehicle problem.  

In this paper, we address the VRPDP through replanning. We define the replanning model, and 

propose a Branch-and-Price (B&P) approach to solve it. For cases of high complexity (e.g. 

without time windows), we propose a novel Column Generation-based insertion heuristic that 

provides near optimal solutions in an efficient manner. Regarding the implementation of 

replanning, we discuss and analyze related policies and propose guidelines under various 

operational settings. 

The remainder of this paper is structured as follows: Section 2 formalizes the replanning problem 

within the VRPDP setting. Section 3 presents a Branch-and-Price (B&P) approach to solve the 

replanning problem, using both an exact algorithm and the proposed heuristic. Section 4 provides 

insights regarding the question ―when to replan‖; we propose and analyze several replanning 

strategies. Section 5 presents our testing environment and analyzes and compares the results 

obtained by various replanning scenarios. Finally, Section 6 summarizes our key findings. 
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Replanning in VRPDP 

Problem overview 

Consider a transportation network in a Euclidean plane. A sufficient number of dedicated 

homogeneous vehicles   with limited capacity  ̅ are located at a single depot prior to the start of 

operations. At time  , reflecting the beginning of the planning horizon         , a set of vehicles 

    commence the execution of their planned routes to serve a set of offline requests known in 

advance, while        is the set of vehicles available at the depot. A vehicle, once 

dispatched, is required to return to the depot until       . During the execution of the 

distribution plan, new customers call-in requesting (pickup) services. These arriving requests will 

be referred to as Dynamic Requests (   ). Only DRs that arrive during a pre-defined admissible 

period            must be served. Offline requests originally assigned to vehicles   cannot be 

re-allocated to other vehicles, while DRs may be served by any vehicle        as needed.  

The problem’s scope is to serve all offline requests and allocate all DRs to the vehicles of set   in 

order to minimize the overall routing costs. Note that we assume sufficient vehicles available in 

order to serve all requests. In our setting, the allocation of DRs in the available fleet is dealt 

through iterative replanning as described below.   

Solution framework 

We assume that in the overall planning horizon         ,  there will be   replanning cycles, each 

corresponding to an appropriate ―static‖ problem           , with replanning occurring at time 

instances               where                    . Replanning cycles 

(             ) may not be necessarily of equal duration. The ―static‖ problem solved at each 

replanning time   , considers all information known up to this point in time. It is assumed that this 

problem (  ) is solved instantaneously. The structure of the replanning framework is illustrated in 

Figure 1.  



7 

 

 

Figure 1. Overview of the replanning framework 

A replanning problem              takes into account two sets of orders not yet served: i) the 

committed orders, that include all orders assigned to a vehicle originally or during previous 

replanning cycle, that have not been served and cannot be re-allocated to other vehicles, and ii) 

the flexible orders, that correspond to newly arrived DRs, or previously arrived DRs not yet 

served that can be re-assigned to any vehicle       . Typically, flexible orders correspond to 

all DRs that have not been served at time   . However, there are some practical cases in which 

this may not be applicable, and DRs assigned to vehicles during a prior replanning cycle and not 

yet served, may be considered as committed orders. This limitation may be caused by financial 

transactions, communication with the customer, etc.  

For the reason above, depending on the policy, two scenarios are relevant: a) committed orders 

correspond only to offline requests and flexible orders are all DRs not yet served, and b) 

committed orders are all orders assigned to vehicles during any previous cycle and not yet served; 

flexible orders correspond only to newly arrived DRs. Those two cases will be analyzed 

subsequently in Section 4. 

The solution    of the static problem of replanning cycle   considers the entire remaining time 

horizon          . Part of this solution is then implemented until the next replanning time     . 

The following assumptions concerning the operational scenario are also considered: 

 The current status of the logistics operations is assumed to be known at any time  

 Waiting (when needed for a time window opening) is performed at the location of the 

previously served customer 

 The route is updated only at customer locations, i.e. we do not allow diversion (as e.g. in 

Ichoua et al., 2000).  
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The replanning problem 

In describing the replanning problem we omit index    since the problem has the same form in any 

replanning cycle. Let       denote the set of orders which have not been served, where   

and   denote the sets of known committed and flexible orders, respectively. Furthermore, 

  ⋃      , where    represent the set of committed orders assigned to each vehicle   that is 

en-route. Note that this latter set may include delivery but also pickup orders that are assigned to 

vehicle     during previous replanning cycles and cannot be re-distributed to other vehicles. 

Let set   ⋃      , where    represents the current location of vehicle      and node   

represent the origin and destination depot. We consider a complete directed graph in a Euclidean 

plane         , where             and   the set of arcs connecting all nodes 

                      . The cost of traversing arc                   is denoted 

by    , while     denotes the travel time between these two nodes. 

Each order       is characterized by the following elements: 

   is the demand/supply of the order at client  . Delivery orders are 

associated with a negative value of    and pickup orders with a 

positive one;      

   is the service time of order   at the client site; also       

   is the arrival time of new order  .             for all DRs. 

        is the time window of customer  . For orders known prior to time   , 

             and for DRs,              . Additionally, 

     and        . 

Three sets of variables are defined: i)      is equal to   if arc         is used by vehicle     

and zero otherwise, ii)     represents the start of service for customer     by vehicle    , 

where for the depot      , and iii)     is the load of vehicle     immediately after serving 

customer    . Note that initial load of the vehicle          at each replanning cycle is equal 

to the total amount to be delivered (and/or picked up) by vehicle  .  

The replanning problem for the VRPDP is similar to the formulation proposed by Parragh et al. 

(2008) for the multi-vehicle pickup and delivery problem, which was, in turn, adapted from the 

model proposed by Cordeau et al. (2002) for the VRPTW. 
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The objective is to minimize the total cumulative routing cost over the planning horizon           

and is given by: 

       ∑ ∑         

          

  (1)  

Constraints: 

∑     

          

       ,              (2)  

∑ ∑     

      

        (3)  

∑     

           

        (4)  

∑    

   

         (5)  

∑    

   

 ∑    

   

       (6)  

∑     

   

 ∑     

   

       ,      (7)  

                   )               (8)  

                     ̅  ̅                (9)  

                       )               (10)  

         ∑     

   

       ∑     

   

           (11)  

               (12)  

                         (13)  

Constraint     specifies that each vehicle   en-route must serve all committed orders originally 

assigned to it. Constraint     ensures that all flexible customers will be served, either by a vehicle 

en-route or by a vehicle available at the depot. Constraints     force active vehicles (i.e. those not 

at the depot) to eventually return to the depot. According to Constraint     new vehicles 

dispatched from the depot in this replanning cycle can only serve flexible customers. Constraint 
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    forces these new vehicles to return to the depot. Constraint     ensures flow conservation. 

Constraints     and     ensure that the vehicle’s capacity limit is respected at all vertices, where 

  is a large positive constant. Constraints            ensure that a route is time feasible; 

constraint      updates the start time (of service) along the route, while      ensures that the 

service start time is within the time window of the node. Constraints      force the new vehicles 

   to begin at the replanning time and return at the depot within the available planning horizon. 

Finally, Constraints      force the flow variables to assume binary values      .  

A Branch-and-Price scheme 

To solve the replanning problem of the VRPDP at each replanning cycle, we employ branch-and-

price (B&P) (Barnhart et al., 1998; Desaulniers et al., 1998; Desrosiers and Lübbecke, 2005). Our 

B&P approach has been inspired by related work for a) the VRPTW (Desrochers et al., 1992; 

Feillet et al., 2004; Feillet et al., 2005; Chabrier, 2006), and b) the PDPTW (Desaulniers et al., 

2002; Cordeau et al., 2007; Ropke et al., 2007). Below we describe the enhancements made to the 

typical B&P approach in order to address the VRPDP. Accordingly we provide an exact and a 

new heuristic approach.  

An exact B&P approach 

The Restricted Master Problem (RMP) 

The Master Problem (MP) for the VRPDP is usually formulated as a set partitioning problem, in 

which each column corresponds to a feasible route and each constraint corresponds to a customer 

been served. Hence, we introduce binary coefficient     that equals to 1 if order     is included 

in route     and zero otherwise, as well as a coefficient    which equals to 1 if route     is 

used in the solution and zero otherwise.  If    denotes the cost of route    , then the objective 

function of the Master Problem is of the following form: 

               ∑     

   

  (14)  

 
            ∑      

   

        (15)  

     = {0, 1}      (16)  
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Consequently, MP involves only constraints imposing single visit at any order (i.e. Constraints (2) 

and (3) of the original formulation); the remaining constraints of the original problem are handled 

by the subproblems. Assuming that   is the set of all feasible routes (columns), in our formulation 

this set comprises two subsets, i.e.    ⋃          , where: 

 Columns    correspond to vehicles   already en-route; these routes originate from the current 

vehicle locations    and end at the depot, and include all committed (  ) orders and (perhaps) 

flexible ( ) orders.   

 Columns    correspond to vehicles    located at the depot. These routes originate and end at 

the depot, including only   orders.  

We denote as    a subset of   that contains known and feasible routes. In order to construct this 

set, we exploit the information from solution      obtained during the replanning cycle      , 

for the interval            . Eliminating all orders that have been served up to   , yields a 

feasible solution       of routes that comprise two types of columns corresponding to vehicles en-

route:  

 Those dispatched at time       which should serve remaining committed orders, and  

 Those dispatched from the depot at time    , where           which serve DRs arrived 

during previous replanning cycles  

A note here about committed orders:  In addition to the offline requests assigned to the vehicles 

prior to the start of operations, committed orders may include DRs depending on the policy 

followed (see Section 2.2).  If the policy is to allow re-assignments of all unserved DRs, then the 

latter are incorporated  into the set of  flexible orders set along with the newly arrived DRs. 

Obviously, in this case, columns of the second type above, will become of the form      

      ,      .   

The feasible set of routes (  ) that cover all committed orders may be used as an initial solution 

in the set    of the corresponding RMP. For the flexible orders (  set), we generate single-visit 

trips that originate and finish at the depot, i.e.                      to be added to the 

initial set of columns    (   columns). 

The Pricing Subproblem(s) 

Having solved the RMP (by known linear programming techniques), a pricing subproblem (  ) is 

solved to identify variables (columns) in the set      that have a negative reduced cost w.r.t. the 

dual solution of the RMP (Desaulniers et al., 2005).  
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In order to address the requirement that committed orders cannot be re-distributed among other 

vehicles, we formulate and solve several independent SPs, one for each   vehicle en-route. 

Denote these independent problems by   ,     . The set of orders considered for each    

consists of the remaining committed orders of vehicle   (   set) plus all   orders, i.e.       

 . This   set is common in each   . The solution of each    will generate feasible trips 

(columns) that originate from current vehicle location    and cover all remaining    orders and 

some orders from the   set. The subset of columns generated by each    will comprise set 

      .  

In order to consider also the assignment of   orders to vehicles located at the depot, we solve an 

additional independent subproblem, denoted as     , that includes only the   set, i.e.       . 

The solution of this problem generates feasible trips (subject to all constraints) that originate from 

the depot, serve one or more   orders and return to the depot. The columns generated from      

comprise set   . Figure 2 illustrates the proposed decomposition approach.  

 

Figure 2. The decomposition approach for the pricing sub-problem 

Each one of those SP is modeled as an Elementary Shortest Path Problem with Resource 

Constraints (ESPPRC), based on the work of Irnich and Desaulniers (2005). In addition to the 

typical resource constraints that impose restrictions on customer and shift time windows, vehicle 

capacity and path elementarity, we also employ a new ―resource‖ to ensure that all    orders are 

included in the path (since they cannot be re-allocated to other vehicles). The window of this 
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resource should not exceed the number of    orders assigned to each vehicle, i.e.    |  | . This 

resource is increased by   when using arc       to reach vertex      ; otherwise it remains 

unaffected. Based on this, only feasible paths that have consumed |  | units of this resource will 

be kept, as described later.  

Solution Procedure for the Pricing Sub-Problem 

To solve the pricing subproblems we use a label correcting algorithm similar to the one proposed 

by Feillet et al. (2004; 2005). This relies on the creation of multi-dimensional labels by processing 

nodes in a repetitive manner. Each ―label‖ is a vector that corresponds to a partial path   from 

source   to vertex    , and comprises several components that describe the state of  , typically 

the accumulated reduced cost  ̃   as well as the values of the resources at vertex  . Beyond these 

typical label components, we have introduced    ̿ , the equilibrium cost, which represents an upper 

bound (worst case) of the total modified cost required to serve all committed orders not yet 

included in partial path  . Note that we drop index   in the remainder of this section, since only 

committed orders assigned to each vehicle   are considered by each SP. Let         , denote 

the set of committed orders included in partial path   ending at vertex   and               

denote the remaining set of all orders       not yet served by partial path  . Then, the 

equilibrium cost can be defined as: 

  ̿  ∑ (    
            

    
      

             
    

  )

         

 
(17)  

where    
  is the modified cost associated with arc        . This label component is used to 

capture the requirement for providing service to the committed customers from the very first step 

of the solution process. Thus, label     of partial path   indicates whether or not the path includes 

all the required committed orders. This information is used in the dominance criteria described 

below.  

The procedure commences at the source point   with initial label    and at time      
 . For the 

     subproblems,   
    ; for   , however, a vehicle may be on its way to the next destination 

or already serving a customer at replanning time   . Therefore, assuming customer     as the 

source point  ,   
  is set to              .  

From source point  , each label     is extended along all arcs         to create new labels     . 

A label      is discarded if it is not feasible, i.e. if at least one of its resource components exceeds 

the resource upper bound. Finally, when a partial path is extended to the ending node  , then a full 
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feasible path has been generated. This path is a potential solution to the minimization problem. 

For our case, all labels created for ending node   are directly stored if and only if they satisfy the 

following conditions: i) the criterion of negative reduced cost, i.e,  ̃    , and ii) all   orders (for 

cases where    ) are included in the solution.  

In order to avoid enumerating all feasible paths, dominance rules are applied to eliminate (discard) 

labels that are not Pareto-optimal, while maintaining optimality (Chabrier, 2006). To do so, given 

two labels      and       representing two different partial paths    and     ending at the same 

vertex  , we allow      to dominate       (i.e. the latter is discarded), if            (component-

wise) and the inequality is strict for at least one component. Note that the resource constraint 

ensuring that all   orders are included in the path does not participate; instead, component   ̿  

ensures optimality by including all   orders on a path, when needed.  

Finally, in order to speed up the solution process, we use several acceleration techniques from the 

literature (see Table 1). The proposed framework provides solutions in a rather efficient time 

frame (for cases where TWs are present) as compared to a typical VRPTW. This is due to the 

existence of committed orders that should be served only by the vehicles to which they have been 

assigned originally, which enables the decomposition of the pricing problem to multiple 

independent SPs. Furthermore, this requirement strengthens the dominance criteria, which discard 

a large amount of columns because of the label component   ̿ .  

Table 1. Acceleration techniques used 

 

Obtaining integer solutions (B&P) 

If no integer solutions are obtained by the CG algorithm, a branch-and-bound       search 

scheme is used. The CG algorithm is used to compute lower bounds at each node of the B&B 

search tree, and we branch on the most fractional binary arc flow variable            ; i.e. 

    ∑           , where      denotes a binary variable equal to 1 if and only if route   traverses 

arc       (see Savelsbergh and Sol, 1998; Desrochers et al., 1992 and Desaulniers et al., 1998).  

Acceleration Technique Reference 

Unreachable nodes Feillet et al. (2004; 2005), Chabrier (2006) 

Limited Discrepancy Search (LDS) Feillet et al. (2005), Athanasopoulos (2011) 

Buckets / Storing Processed Labels Larsen (2001), Chabrier (2006), Athanasopoulos (2011) 

Early Termination Criterion Larsen (2001), Chabrier (2006) 

Parallel Implementation of subproblems  
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In practice, given that we seek efficient solutions in limited time, one may allow B&B to explore 

unsolved nodes within an acceptable time limit (e.g. one minute); if an integer solution has not 

been obtained by that time, the B&B problem may be solved, using only the columns (routes) 

present in the current RMP. The latter can be calculated using the default integer programming 

methods of the CPLEX environment.  

A heuristic B&P approach 

Given the requirements for time efficiency of the solution process, and that the latter should be 

able to address practical cases with extended solution space (e.g. without time windows), we 

propose a heuristic procedure to generate negative cost columns to enter the      instead of 

solving the ESPPRC to optimality.  

Generating columns for vehicles en-route 

To generate new columns with negative reduced costs, we use a local search procedure to modify 

certain columns in the initial basis (   columns).  We modify columns with zero reduced cost in 

order to drive this cost to negative values. The modification is performed using a cheapest 

insertion algorithm, which tries to incorporate in a least-cost fashion each order in   to each 

column in the initial basis (the latter correspond to vehicles en-route assigned to serve   orders). 

For this insertion we use the flexible order-column combination that results in the minimum 

reduced cost, as computed from the difference between the reduced costs prior and after the order 

insertion. Let    be the cost (distance) of a column          prior to the insertion of flexible 

order  ,and    
 the post-insertion cost.  Also let     and     

 the respective reduced costs. 

Hence, the insertion criterion is provided by the following equation, 

           
      (   

   ∑   
    

)  (     ∑   
   

)   

 (   
   ∑      

   
)  (     ∑   

   
)     

       

(18)  

where                      denote the set of    columns in the optimal basis corresponding 

only to the columns for vehicles en-route at replanning cycle   ,    and    correspond to the dual 

prices of each order     and      respectively. Using this criterion, each order in   is tested 

for insertion in all possible positions of each column of the initial basis. Columns with negative 

reduced cost that are generated during the iterations of this process are maintained as candidates in 
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a pool of columns to be added to the RMP. This operation is terminated when no negative cost 

columns can be found, or when all orders in    have been tested for insertion.  

The pseudocode of the algorithm is given in Figure 3.  

 

Figure 3. Pseudo-code of heuristic approach for generating columns for vehicles en-route 

Generating columns for vehicles located at the depot 

The solution of the      subproblem for generating columns for vehicles located at depot is 

possible within the framework described in Section 3.1, since the resources (available remaining 

Algorithm 1: Heuristic for generating columns for vehicles en-route 

1 𝛺′′ =  ∅; // New set of columns generated by the procedure 

2 𝐺 = ∅;  // Matrix that stores insertion costs of order 𝑓 to each column 𝑠 

3 𝑅𝐶 = ∅  // Matrix that stores the reduced cost of order 𝑓 to each column 𝑠  

4 While 𝐹 ≠ ∅    

5    For each column 𝑠 𝑘 ∈ 𝑆, 𝑘 ∈ 𝐾 do 

6        𝑐𝑠(𝑘)  Cost of column 𝑠(𝑘) 

7  For each order 𝑓 ∈ 𝐹 do 

8     𝑐 𝑓
 𝑠(𝑘)

=  𝐼𝑛𝑓 // Best cost of including order 𝑓 in column 𝑠(𝑘)  

9     For every feasible arc 𝑛 in path 𝑠 for inserting order 𝑓 ∈ 𝐹 do 

10        Apply insertion of order 𝑓 in path 𝑠 

11        [path(n)] = Apply 2-opt improvement on this temporary path 

12        𝑠𝑘
𝑓𝑛
 = path(n)  // column 𝑠 with order 𝑓 on arc 𝑛 after 2-opt 

13        𝑐𝑘
𝑓𝑛 = Cost of path(n) 

14        Compute reduced cost 𝑟𝑘
𝑓𝑛 =  𝑐𝑘

𝑓𝑛 −  𝜋𝛼𝛼∈𝑠(𝜅)  

15        If 𝑟𝑘
𝑓𝑛 < 0 then 

16           𝛺′′ = 𝛺′′ ∪ {𝑠𝑓
𝑛  } 

17        End 

18       If 𝑐𝑘
𝑓𝑛 < 𝑐 𝑓

 𝑠(𝑘)
 then   

19                 𝐺(𝑠, 𝑓)  =  (𝑐𝑘
𝑓𝑛 − 𝑐𝑠(𝑘))  −  𝜋𝑓  

20           𝑅𝐶(𝑠, 𝑓) =  𝑟𝑠𝑓
𝑛 

21           𝑐 𝑓
 𝑠(𝑘)

 = 𝑐𝑘
𝑓𝑛 

22        End 

23     End 

24  End 

25    End 

26    If 𝑎𝑛𝑦 𝑅𝐶 ≥ 0 

27       terminate procedure and return 𝜴′′ 

28    Else  

29       Find 𝑠(𝑘’) and 𝑝′ ∈ 𝑁 such that 𝑔𝑠𝑝′
= min 𝐺 𝑠  𝑛  | ∀ 𝑠 ∈ 𝑆, ∀ 𝑛 ∈ 𝐹  

30       Update column  𝑠(𝑘′) =  𝑠(𝑘′ ) ∪ {𝑝′}  // in the best feasible place 

31       Update matrices 𝐺 and 𝑅𝐶 

32       Update set of 𝐹 orders  𝐹 = 𝐹\{𝑝′} 

33    End 

34 End 

 



17 

 

time horizon, capacity, etc.) are relatively limited at each replanning cycle. This, of course, holds 

when the number of orders in the   set is relatively limited. Thus, if the number of   orders is less 

than or equal to a reasonably small number, e.g. | |   , we use the label correcting algorithm as 

described in Section 3.1.3. For | |   , we apply the same algorithm but we exclude path 

elementarity from the dominance criteria; i.e. a label can be eliminated by another label even if 

the dominator is not a subtour of the dominated one. This may speed up the solution process, since 

it eliminates a significant number of columns, but cannot ensure that all feasible    will be 

generated, and the optimum will be reached.   

Replanning strategies for the VRPDP 

We introduce the concept of ―replanning strategy‖ that comprises the combination of i) the length 

of a replanning cycle (i.e. when to replan, referred to as replanning policy) and, ii) the part of the 

plan that is released for implementation (referred to as implementation tactic).  

Defining the length of replanning cycle(s) is a significant decision; long replanning cycles may 

limit the dispatcher’s options (since a larger portion of the route has been completed during 

previous replanning cycles and fewer options are available for incorporating the newly arrived 

requests), while short replanning cycles may not take advantage of combinations of newly arrived 

orders. We explore various replanning policies depending on number of DRs that has arrived 

between two successive replanning instances; that is 

 Single-request replanning (SRR): Replan upon the arrival of each DR 

 N-request replanning (NRR): Replan after the arrival of a predefined number (N>1) of DRs 

Another type of policy may prescribe replanning at multiples of a fixed period (Fixed-Time 

Replanning – FTR policies). In case DRs arrive uniformly, FTR policies are equivalent to NRR. 

For cases for which DRs arrive in a non-uniform fashion, our experiments have indicated that 

FTR policies exhibit inferior behavior compared to their NRR-counterparts. For this reason, we 

don’t deal with such policies in the remainder of this paper. 

In addition to the above, we explore two tactics to implement the new plan: 

 Full-Release tactic (FR): All replanned DRs are released to the fleet immediately for 

implementation and they cannot be reassigned at later replanning cycles (see the discussion of 

Section 2.2 on relevant practical cases, in which this tactic is applicable). 



18 

 

 Partial-Release tactic (PR): Only the DRs scheduled for implementation prior to the next 

replanning cycle are released. The remaining DRs are re-considered in the next replanning 

cycle.  

Theoretical insights for replanning strategies 

It is reasonable to expect that the PR tactic is superior to FR. Below we examine in which cases 

this holds assuming the following conditions:  

 All orders are served in the final solution 

 Vehicles located at the depot are eligible to be dispatched at any     

 Both release tactics are compared under the same number of replanning cycles 

 An optimal method is used for replanning. 

We should initially note that in the trivial case of a single-vehicle, both release tactics lead to 

identical results. This is due to the fact that although FR commits flexible orders for the next 

replanning cycles, the sequence of customer service within the route of each vehicle (the only one 

in this trivial case) is not committed; thus, the replanning state is the same for both tactics, which 

generate identical optimal solutions.  

Claim 1: It is guaranteed that the cost of the overall solution (for          ) obtained under the 

PR tactic is always lower than or equal to the cost of the solution obtained under the FR tactic, 

for     .  

Consider a simple example with     replanning cycles,   vehicles scheduled to be dispatched 

at time    and   available vehicles at the eligible to be dispatched at any    . Let    denote the 

vehicles en-route considered at every   (which comprise the remaining   vehicles en-route and 

the ones dispatched during previous replanning cycles, which have not completed their 

assignments). Let         denote the replanning problem for each implementation tactic 

          with corresponding routing overall cost       . Note that                

       , where         denotes the cost of the already completed portion of the routes up to   , 

and         the cost of the solution for          .  

The feasible space of each        ,     may be formed by considering (a) all feasible 

combinations of assigning the flexible orders among the vehicles en-route (   subproblems) and 

the vehicles located at depot (     subproblem), and (b) for each subproblem, all feasible 

customer sequences of the corresponding set.  



19 

 

The problem solution at each   is affected by the replanning state which is comprised of i) the set 

of committed orders                          , ii) the set of flexible orders       , and 

iii) the current location of the vehicle(s). Note that there are no committed orders for the      

subproblem, i.e.             . 

During     both tactics consider the same replanning state and                  ; 

therefore, the related re-planning problems (for PR and FR) are identical with identical solutions, 

and                . 

During     (at time   ), it holds that the current locations of the vehicles en-route at    are 

identical for both tactics and                  . For each tactic, the related problems 

consider the sets of orders                                         ; more 

explicitly: 

 FR-tactic:                              
       

           , where   
     

denotes the set of unserved offline requests and   
     the subset of DRs arrived during 

        and assigned to vehicle   but not yet served.      , denotes new orders that arrived 

during        . Note that                  . 

 PR-tactic:                             
                  , where       

denotes all orders arrived during         and not yet served. Also,                   

     . 

Since       ⋃   
       , it is clear that                                     . 

Thus, the feasible subspace corresponding to the PR tactic is a superset of that of the FR tactic, 

and,                  ; consequently,                 .  

Based on the above, up to    , the PR tactic will always provide superior or equivalent results. 

For    , however, such a comparison between the two tactics is not possible, since i) the state 

of the system at each replanning event is not the same and, ii) the cost         up to that event is, 

in general, different for each tactic.  

Claim 2: For any    , and if more  than one vehicles are involved (either dispatched at     

or during any    ), it is not guaranteed that the overall routing cost under the PR tactic is 

lower or equal than the one obtained by the FR tactic.  

We will show this claim through a counter-example as illustrated in Figure 4. At    , two 

vehicles are planned to execute four (4) deliveries (customers 1, 2, 3, 4).  During the course of 

implementing this plan, three (3) DRs arrive and should be incorporated in the plan (customers 5, 
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6, 7). Replanning happens upon arrival of each DR. Table 2 provides the coordinates of all 

customers; the depot (denoted by node 0) is located at point (0,0).  

Table 2. Customers’ coordinates for counter-example of Claim 2 

 

Figure 4 illustrates two states per implementation tactic for    ; the state prior to replanning 

(―Before‖) and the state after replanning (―After‖).  

At    , both implementation tactics provide the same routing plans, as expected. At    , 

order ( ) has arrived. The   set for FR comprises only the new order   while for    the   set 

includes all DRs not yet served (     ). PR generates a superior solution, since the flexible order 

set is a superset of the one considered by FR. However, for    , the (initial) replanning states of 

the two implementation tactics are different. Thus, the two generated plans are different, and, in 

this case, the overall solution of the FR tactic is superior to that of the PR tactic. Table 3 presents 

the final routing costs after each replanning cycle for both implementation period (         ) and 

the entire planning horizon (         ). 

Table 3. Planned and actual routes under both tactics for three replanning cycles (solid line is the planned 

route, dotted line the executed route) 

 

Customer ID Coordinates (X,Y) 

1 (5,2.5) 
2 (10,5) 
3 (10, −5) 
4 (5, −2.5) 
5 (10,0) 
6 (10,10) 
7 (5,0) 

 

 𝑭𝑹 − 𝒕𝒂𝒄𝒕𝒊𝒄 𝑷𝑹 − 𝒕𝒂𝒄𝒕𝒊𝒄 

 
𝑪𝒐𝒔𝒕  [𝑻𝓵, 𝑻𝒎𝒂𝒙] 𝑪𝒐𝒔𝒕  [𝑻𝟎, 𝑻𝒎𝒂𝒙] 𝑪𝒐𝒔𝒕  [𝑻𝓵, 𝑻𝒎𝒂𝒙] 𝑪𝒐𝒔𝒕  [𝑻𝟎, 𝑻𝒎𝒂𝒙] 

𝓵 = 𝟎 44.72 44.72 44.72 44.72 

𝓵 = 𝟏 31.77 48.54 31.77 48.54 

𝓵 = 𝟐 36.18 58.54 35.32 57.68 

𝓵 = 𝟑 25.59 58.54 27.23 59.59 
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Figure 4. Counter example for Claim 2 
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Computational experiments 

We study below the performance of the proposed replanning strategies (policies and tactics) 

through extensive experiments.  

Experimental setup 

We have used the well-known benchmark instances of Solomon (1987). For each instance, we 

employed the entire 100-customer dataset. Specifically, we have focused our investigation on the 

impact of the following parameters on the effectiveness of the various operating strategies: 

 Customer geographical distribution. We used the coordinate patterns of Solomon’s datasets 

R1 and C1 (uniformly distributed customers and clustered customers, respectively). 

 Customer time-windows (TW). Tight TW cases may limit the impact of the replanning 

strategies, since the solution space is significantly limited. For our experiments, the TW range 

from 5% to 50% of the total planning horizon (    ). Table 4 shows the Solomon instances 

employed, along with relevant TW information for each instance. Note that the ―very wide‖ 

TW case was considered only for the uniform distribution instances ( ), since the Solomon C1 

datasets do not include such a case. In addition, we included datasets        and         of 

Christofides et al. (1979) that have no TW for the uniform and clustered cases, respectively, 

but use the same customer coordinates as the Solomon datasets. For notation purposes, those 

datasets will be referred to as R100 and C100, respectively. 

Table 4. Time-window cases employed 

 

 The degree of dynamism (   ) (Larsen, 2002), which is defined as the percentage of the 

number of DRs over the total number of orders in a given dataset. For each instance described 

previously, we assumed cases of          (25% DRs),              (50% DRs) and 

           (75% DRs).  

Offline requests were randomly selected from the entire 100-customer dataset and the remaining 

customers form the set of DRs. Note that only for the instances that involve TW, we skewed the 

selection of offline orders towards those with early TW opening.  

Instance R101 R105 R109 R112 C101 C105 C109 

TW length 10 30 
Avrg: 59 
Min: 37 
Max: 83 

Avrg: 118 
Min: 73 

Max: 166 

Avrg: 61 
Min: 37 
Max: 89 

Avrg: 122 
Min: 75 

Max: 177 
360 

TW length 
(% of Tmax) 

4% 14% ~26% ~51% 5% 10% 29% 
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Based on the above, we constructed 27 different cases as shown in Table 5. For each of the 27 

cases, we generated 10 different instances (different selection of offline requests), resulting in a 

total of 270 test instances.  

Table 5 summarizes the notation that characterizes each test case; R101-25% refers to an instance 

with uniform customer geographic distribution, tight time-windows, and 25% dod. 

Table 5. Test scenarios 

 

       *used only for uniform geographical distribution (R) 

The initial solutions were obtained as follows: 

 For all problems up to wide TWs by the B&P algorithm described in Section 3.1 

 For the remaining problems (R112, R100, C100), by a Clark & Wright savings heuristic 

(Clark and Wright, 1964) followed by a Reactive Tabu Search metaheuristic (Osman and 

Wassan, 2002) as a post-optimization process.  

Table 6 presents the algorithm employed per test case for the solution of the replanning problem. 

 

 

Table 6. Algorithm employed for solution of each test instance (B&P = Branch-and-Price, Heur = 

heuristic) 

 

Prior to presenting and discussing the results of the experimental investigation, we discuss the 

performance of the two algorithms of Table 6. Figure 5 compares the exact and the heuristic 

Parameter Description  Notation # of levels 

Geographical distribution 
Uniform R 

2 
Clustered C 

Time Windows 

Tight 101 

5 
Medium 105 
Wide 109 
Very wide* 112 
No TW 100 

Degree of Dynamism (dod) 
Weak 25% 

3 Moderate 50% 
Strong 75% 

 

Instance 
DoD 

R101 R105 R109 R112 R100 C101 C105 C109 C100 

25% B&P B&P B&P HEUR HEUR B&P B&P HEUR HEUR 

50% B&P B&P B&P HEUR HEUR B&P B&P HEUR HEUR 

75% B&P B&P B&P B&P HEUR B&P B&P B&P HEUR 
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methods in terms of solution quality and computational effort. The set-up for this investigation 

involved        datasets, where                        . We applied three (3) 

replanning cycles (i.e. replanned after 18 DRs have been received), and we tested these cases 

under the PR tactic (because PR considers more flexible orders during each replanning cycle and, 

thus, it is more time-consuming than FR). Figure 5 presents the average results for 10 replicates 

per problem w.r.t.: i) the average computational effort per replanning cycle, and ii) the average 

cost difference of the heuristic method over the exact method.  

The B&P algorithm seems to be very efficient in narrow to medium TW-cases compared to 

HEUR; this fact reverses when TWs are wider or absent. In these latter cases, HEUR seems to be 

much faster. In terms of solution quality, HEUR has an average deviation of 1.4% w.r.t. exact 

solution in terms of total routing cost (for all cycles). Note that HEUR may, in some cases, 

provide better solutions in the overall dynamic problem despite the fact that the solutions at each 

replanning cycle are slightly inferior (see also Claim 2).  

 

Figure 5. Performance of exact (B&P) and heuristic (HEUR) method 

Experimental investigation 

We assessed the proposed replanning strategies in two steps: i) Initially we studied their overall 

performance; ii) subsequently, we drilled down on how key parameters affect the performance of 

these strategies. All experiments were conducted using a Quad-Core Intel i7 processor of 2.8GHz 

and 4GB of RAM.  
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For    , we used         ̂     ̂      ̂ (where  ̂ is the total number of DRs) to yield the 

NRR-1, NRR-2 and NRR-3 cases. Each policy was tested under the FR and PR release tactics, 

resulting to a total of eight (8) strategies for each test instance.  

Performance of replanning strategies (tactic-policy combination) 

Figure 6 presents the average performance of FR and PR under all policies for the various 

geographical distributions and TW cases.  Performance is assessed in terms of excess routing cost 

per DR, i.e. the final routing cost minus the initial routing cost at time    divided by the number 

of DRs involved in each dataset. (Note that since the final solution includes all DRs, the 

comparison of the total excess cost is equivalent to the comparison of the unit cost.)  The Figure 

also shows the cost difference in %    |             |, where     and     denote the excess 

routing costs per DR of tactics FR and PR respectively.  

As expected, the PR tactic outperforms FR in all cases, leading to an overall average improvement 

of about 15%. This improvement increases with the width of TW.  

 

Figure 6. Overall performance of implementation tactics (average of all tactics per data set) 

Figure 7 presents the performance of each replanning strategy (policy-tactic combinations) in 

terms of routing cost per DR. The average is taken over all datasets and the various degrees of 

dynamism. From this figure, it is clear that the combination SRR-PR has the best overall 

performance in terms of routing cost per DR. Additionally, the Figure shows that the performance 

of each tactic is related to the frequency of replanning; the solution for the FR tactic seems to be 

less efficient when replanning is applied either very frequently (SRR) or infrequently (NRR-3). A 

possible cause of this may be that frequent replanning (i.e. at every request) does not take 

advantage of combinations of newly arrived DRs. In the case of infrequently replanning, a larger 
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portion of the route has been completed and fewer options are available for incorporating the 

newly arrived DRs. 

PR seems to be more efficient for shorter replanning cycles; that is because i) short route portions 

have been completed when replanning is applied, allowing for more options, and, ii) DRs that are 

not planned to be served until the next replanning timestamp are not committed, providing higher 

possibilities for DR combinations. The cost difference between the two tactics is decreasing as the 

number of elapsed DRs per replanning cycle, as expected. 

 

Figure 7. Average Performance of all strategies over all test instances 

Parametric study of strategies 

We investigated the effects of the following factors (parameters) on performance: i) the time-

window pattern, and ii) the degree of dynamism.  

Factor Analysis I: Performance of replanning strategies w.r.t. time-windows 

Figures 8 and 9 show the overall performance of all policies under various TW patterns for the FR 

and PR tactic, respectively. The y-axis provides the percentage difference over the best reported 

value of a policy-tactic combination (i.e. over all strategies). For the FR case, SRR and NRR-3 

have a strong correlation with the length of the TW: the performance of SRR deteriorates when 

TW lengths increase, while the performance of NRR-3 improves significantly. That is because 

wide TWs allow for more combinations when batch replanning takes place. However, in non-TW 

cases, very infrequent replanning deteriorates solution quality. Medium-interval replanning cycles 

(NRR-1 and NRR-2) display almost similar behavior for all TW patterns.  
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Figure 8. Performance of all policies under the    tactic for various TW patterns 

 

Figure 9. Performance of all policies under the    tactic for various TW patterns 

For the PR tactic, all policies follow similar behavior; that is, more frequent replanning (SRR and 

NRR-1) always yield better results. This is possibly due to a similar argument to Claim 1; that is, 

frequent replanning allows re-allocation of orders in a more flexible manner, and, this enhances 

the feasible space.  This of course is true for each replanning cycle, but may not hold for the entire 

problem, if this involves several replanning cycles.   

Factor Analysis II: Performance of replanning strategies w.r.t. the degree of dynamism 

Figures 10 and 11 present the performance of each policy w.r.t. the degree of dynamism (dod) for 

the FR and PR tactics, respectively. Note that this is the average performance over all parameter 

values (except, of course, dod) and is provided as the percentage difference over the best reported 

value of policy-tactic combination. For FR, medium-interval replanning cycles favor solution 

quality for all dod; very frequent or infrequent replanning display inferior performance, which is 

pronounced in cases of strong-dod.  
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For the PR tactic (Figure 11), SRR and NRR-1 outperform all other policies for all cases of dod. 

Overall, the performance of policies with wider replanning intervals seems to deteriorate with the 

increase of degree of dynamism. This may be attributed to the fact that in strong dynamic 

environments (limited number of offline customers) many vehicles are dispatched from the depot 

during replanning due to the high number of new DRs, causing additional cost because of the 

empty mileage (travel from and to depot). Infrequent replanning in such cases causes vehicles en-

route to return to depot at an early stage (because of the limited number of committed orders) and 

new vehicles to be frequently dispatched in order to cover the high demand.  

For the reason mentioned above, in environments with strong dynamics, SRR under PR might 

perform worse than a moderately frequent replanning frequency. This is indeed validated by 

Figure 12, in which we analyze the performance of policies under the PR tactic for the R112 case 

(very wide TW). Figure 12 shows that moderately frequent polices (NRR-1, NRR-2) can perform 

slightly better (on average) than SRR for environments with moderate to strong dynamics (note 

that SRR was found to be the best policy only in 4 out of 10 replicates on this dataset).  

 

Figure 10. Performance of policies under FR tactic for various degrees of dynamism 

 

Figure 11. Performance of policies under PR tactic for various degrees of dynamism 
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Figure 12. Performance of policies under PR tactic for R112 and various degrees of dynamism 

Conclusions  

We have described a dynamic one-to-many-to-one pickup and delivery problem, referred to as the 

Vehicle Problem with Dynamic Pickups (VRPDP) that seeks to assign in the most efficient way 

dynamic pickup requests that arrive in real-time fashion while a predefined distribution plan is 

being executed. We addressed the VRPDP through iterative replanning. In addition to defining the 

replanning model, we drilled-down to significant aspects concerning the replanning process, i.e. i) 

how to replan, ii) when to replan, and iii) what part of the new plan to communicate to the drivers.  

Regarding ―how to replan‖, we propose a Branch-and-Price (B&P) approach. For cases of high 

complexity (e.g. without time-windows), we propose a novel insertion heuristic that is employed 

within a column generation framework. The latter provides efficient solutions with a limited 

deviation from the optimal solution (1.4% on the average).  

Regarding the ―when‖ and ―how‖ to replan, we presented and analyzed typical replanning policies 

found in practice, i.e.: i) replanning upon the arrival of each DR, ii) replanning after a certain 

number of DRs have been received. In addition, we investigated the effect of two implementation 

tactics: i) immediate release of all DRs for implementation (FR) and, ii) release of only those DRs 

that are scheduled for implementation prior to the next replanning cycle (PR). We provided 

theoretical insights regarding the expected behavior of those tactics and we showed through 

extensive experimentation that replanning upon the arrival of each DR under the PR tactic 

provides superior results on the average. However, this policy seems to be the least favorite, when 

the FR tactic is employed.  
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Furthermore, our experimentation under various operating scenarios has shown the following: i) 

When the business case allows it, one should always replan under PR tactic in as short replanning 

intervals as possible. ii) When FR tactic is unavoidable due to the characteristics of the practical 

environment, one should prefer replanning over short to medium intervals for cases with tight to 

medium TW, and medium to large intervals for wider TW cases. iii) When replanning in 

environments with strong dynamism, medium interval policies (regardless of tactic) seem to 

provide the safest option; iv) finally, one should always prefer size-driven policies (instead of 

time-driven ones), in order to avoid the negative effect of those policies in environments where 

DRs may arrive in a non-uniform fashion.   
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