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Abstract 
 

Traffic lights recognition and classification play an important role in the realization of 

autonomous vehicles. This automated process uses video (frames) to recognize and 

classify traffic lights along the vehicle’s path in real time. In this thesis, we adapt a 

proven deep learning model to recognize three classes (states) of traffic lights: green, 

red and yellow. The model is YOLOv3, it includes Darknet-53 and combines object 

detection and classification. The deep learning algorithms are implemented in Google 

Colab (a cloud platform developed by Google). The resulting Convolutional Neural 

Network (CNN) is trained using publicly available data sets that we modify to enhance 

the available training data. 

Firstly, the training and validation datasets are generated. Secondly, ground truth 

bounding boxes -which define the class and the object in the images- are created and 

uploaded to the Colab environment that runs the algorithm for object detection. The 

algorithm preprocesses the images, creates bounding boxes that contain the object 

and adjusts the weights of some model layers. To obtain the most appropriate 

weights, we perform various training/validation experiments using combinations of 

available datasets.  The experiments indicate that the addition of very clear photos, 

which contain only traffic lights in the training datasets, and in general photos in which 

traffic lights are part of a general environment, significantly help the training process.  

We use the best performing weights to conduct a large case study that uses as input 

video footage taped from the streets of Thessaloniki, which contains numerous traffic 

lights in all three states. We divide the predictions into 3 categories: True, False and 

No predictions. Initially the study indicated a relatively low performance of the model 

caused by a high percentage of No predictions.  To address this issue, we used more 

than one photographs of each traffic light-state combination and combined the 

related predictions.  As a result, the percent of No predictions was reduced 

significantly, and the combined process yielded better results. 
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Περίληψη 

Η αναγνώριση και η ταξινόμηση των σημάτων κυκλοφορίας παίζουν σημαντικό ρόλο 

στην υλοποίηση των αυτόνομων οχημάτων. Αυτή η αυτοματοποιημένη διαδικασία 

χρησιμοποιεί σαν είσοδό της βίντεο (συγκεκριμένα μοναδικές συνεχόμενες εικόνες 

που παράχθηκαν από το βίντεο) για να αναγνωρίζει και να ταξινομεί την κατάσταση 

των φωτεινών σηματοδοτών(φαναριών) κατά μήκος της διαδρομής σε πραγματικό 

χρόνο. Σε αυτή την διπλωματική εργασία, προσαρμόζουμε ένα αποδεδειγμένο 

μοντέλο βαθιάς μάθησης για να αναγνωρίσουμε τρεις κατηγορίες (καταστάσεις) 

φαναριών: πράσινο, κόκκινο και κίτρινο. Το μοντέλο είναι το YOLOv3 και 

περιλαμβάνει το δίκτυο Darknet-53.  Συνδυάζει την αναγνώριση και την ταξινόμηση 

των αντικειμένων. Οι μέθοδοι βαθιάς μάθησης εφαρμόζονται στο Google Colab (μια 

πλατφόρμα που αναπτύχθηκε από την Google). To νευρωνικό δίκτυο Convolutional 

Neural Network (CNN) εκπαιδεύεται χρησιμοποιώντας δημόσια διαθέσιμα σύνολα 

δεδομένων (public datasets) που τροποποιούμε για να βελτιώσουμε τα διαθέσιμα 

δεδομένα τα λεγόμενα training data. 

Πρώτον, δημιουργούμε σύνολα δεδομένων εκπαίδευσης και επικύρωσης, γνωστά ως 

training and validation data. Δεύτερον, δημιουργούμε χειροκίνητα ένα βασικό 

πλαίσιο οριοθέτησης των αντικειμένων κάθε φωτογραφίας, γνωστό ως ground truth 

bounding box, για να προσδιορίσουμε την κλάση (κατηγορία) και το αντικείμενο της 

εικόνας και στη συνέχεια ανεβάζουμε τις εικόνες στον κώδικα (σε περιβάλλον Colab) 

για να γίνει η διαδικασία αναγνώρισης. Ο αλγόριθμος προ-επεξεργάζεται τις εικόνες, 

δημιουργώντας ειδικά πλαίσια οριοθέτησης (bounding boxes) που περιέχουν το 

αντικείμενο και προσαρμόζει τα βάρη ορισμένων επιπέδων του μοντέλου, γνωστά ως 

model layers. Για να αποκτήσουμε τα πιο κατάλληλα βάρη, εκτελούμε διάφορα 

πειράματα εκπαίδευσης και επικύρωσης (training and validation) χρησιμοποιώντας 

συνδυασμούς των διαθέσιμων συνόλων δεδομένων. Τα πειράματα δείχνουν ότι η 

εισαγωγή πολύ καθαρών φωτογραφιών που περιέχουν μόνο σηματοδότες (και όχι 

άλλα αντικείμενα) στα σύνολα δεδομένων της εκπαίδευσης με φωτογραφίες στις 

οποίες τα φανάρια αποτελούν μέρος ενός γενικού περιβάλλοντος, βοηθά σημαντικά 

τη διαδικασία εκπαίδευσης. 
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Χρησιμοποιούμε τα βάρη με τις καλύτερες επιδόσεις για να υλοποιήσουνε μια 

εκτεταμένη μελέτη περίπτωσης, η οποία χρησιμοποιεί ως είσοδο βίντεο που έχουν 

μαγνητοσκοπηθεί από τους δρόμους της Θεσσαλονίκης. Τo βίντεο αυτό περιέχει 

μεγάλο πλήθος σηματοδοτών  και στις τρεις καταστάσεις τους. Χωρίζουμε τις 

προβλέψεις σε 3 κατηγορίες: Σωστή πρόβλεψη, Λάθος πρόβλεψη και Ουδεμία (μη)  

πρόβλεψη. Αρχικά, η μελέτη έδειξε μια σχετικά χαμηλή απόδοση του μοντέλου που 

προκλήθηκε από υψηλό ποσοστό της κατηγορίας των μη προβλέψεων (No 

prediction). Για την αντιμετώπιση αυτού του ζητήματος, χρησιμοποιήσαμε 

περισσότερες από μία φωτογραφίες κάθε συνδυασμού φωτεινού σηματοδότη και 

της κατάστασής του και συνδυάσαμε τις σχετικές προβλέψεις. Ως αποτέλεσμα, το 

ποσοστό των μη προβλέψεων μειώθηκε σημαντικά και η απόδοση της 

ολοκληρωμένης διαδικασίας βελτιώθηκε ανάλογα. 
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Chapter 1 Introduction 

 

 

 

Deep learning is used to accelerate the solution of certain types of complex 

computational problems, such as in the fields of computer vision and natural language 

processing (NLP).  In deep learning, the data scientist is not required to manually select 

the relevant features; instead, a deep learning model will learn the important 

features. In recent years, deep learning and Artificial Intelligence (AI) has been applied 

in various engineering fields including autonomous driving, for which it significantly 

accelerated research and eventually has moved it closer to reality.  

An autonomous vehicle with complete self-driving capability (i.e., without a human 

intervention) must accurately -and in real time- comprehend traffic signs and traffic 

lights, avoid conflicts with other vehicles, humans, or obstacles, while remaining on 

the road to ensure safe and correct operation. To achieve this, various sensors 

(cameras, sonar, Lidar etc.) are used to provide the raw data to AI models that control 

the vehicle. The detection and identification of objects is also assisted by using 

multiple camera sensors since this achieves a better overall level of object detection 

accuracy in standalone driving systems ( Choi, et al., 2019). 

An object detection algorithm for autonomous vehicles should satisfy both a high 

detection object accuracy and real time detection speed. There are many state-of-the-

art methods that  use deep learning for image classification such as the Convolutional 

Neural Networks (CNN), as well as the ResNet and the DenseNet networks to name a 

few.  In the past few years, many object detectors have been developed based on CNN 

( Wang, 2021). These detectors can be split into two categories:  two-stage and single-

stage. Two-stage methods (RCNN, Fast R-CNN, Faster R-CNN) are used to improve the 

detection speed. A region proposal1 is generated in the first stage followed by the 

second in which object classification and bounding box regression are performed. In a 

                                                
1 The way a Region Proposal Network (RPN) works is that an image (of any size) is imported and the 
output is several rectangular object proposals, each with a unique objectness score. 



University of the Aegean                          Department of Financial and Management Engineering 

 

 

[2] 

 

single-stage method (SSD, YOLO, YOLOv2, YOLOv3 etc.) object classification and 

bounding box regression are performed concurrently -without including a region 

proposal stage- using a comprehensive feature extractor mechanism. 

The scope of this thesis is to study, analyze, use and improve object detection methods 

that are appropriate for autonomous driving, focusing on the detection of traffic signal 

state (Red, Yellow and Green).  Based on our study, the most appropriate method and 

model are selected, the model parameters are tuned, the model is trained and is 

tested using an original dataset encompassing numerous traffic lights of Thessaloniki.  

Based on the test results, appropriate refinements are made to improve model 

performance. 

More specifically, the thesis 

 presents and describes relevant aspects of the background in deep learning 

 presents and describes the state-of-the-art in object classification and 

detection of traffic lights for autonomous vehicles 

 uses Darknet-53 and YOLOv3 to classify and detect traffic lights images. 

Appropriate training is performed by executing multiple experiments to select 

and use the most appropriate training dataset 

 presents and explains the new dataset that is created from the author for 

further testing 

 tests the model with this dataset to evaluate the detection and accuracy 

performance of the model 

 proposes a refinement stage to improve model performance. 

For the necessary theoretical background in the aforementioned research areas, the 

author followed relevant Coursera courses2 in: 

 Machine learning (Stanford University) 

 Computer vision basics (The State University of New York) 

 Neural Networks and deep learning (DeepLearning.AI3) 

                                                
2 https://www.coursera.org/ 
3 An education technology company called DeepLearning.AI, develops a global community of Artificial 
Intelligence talent. 

https://www.coursera.org/
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 Sequences, Time series and prediction (DeepLearning.AI) 

 Introduction to TensorFlow for Artificial Intelligence, Machine learning and 

Deep learning (DeepLearning.AI) 

The Google Colab tool was also utilized. This is an online environment which allows 

anyone to write and execute python code with zero configuration through a web 

browser to conduct relevant experiments (Li, 2020).  

The structure of the remainder of this thesis is as follows: Chapter 2 provides an 

introduction to Neural Networks (NN), Convolutional Neural Networks (CNNs), models 

used for image classification and object detection, and discusses the architecture of 

networks and state-of-the-art methods applied for object detection in real time. 

Chapter 3 introduces the model adopted for traffic light recognition and the model’s 

training process. It presents the datasets that are used and the steps of the process. 

Furthermore, it contains the results of the training experiments and the selection of 

the optimal dataset and network weights. In Chapter 4, the new dataset used for the 

test process is analyzed and the testing process and its results are presented.  A new 

post-processing approach is proposed to improve model performance. The conclusion 

of the work and proposals for further research are included in Chapter 5. 
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Chapter 2 Object detection methods and techniques  

 

 

 

In this Chapter we provide background information on the foundations of image 

classification, the Convolutional Neural Networks (CNN), and on a very effective model 

used in object detection, YOLOv3, which we used for the work of this thesis.  For 

completion, a useful tutorial on the theory of Neural Networks is provided in Appendix 

A.1. 

2.1 Image classification using Convolutional neural networks (CNNs)  

The two main types of layers in a CNN are the convolutional layers and the pooling 

layers. For example, VGG-16, which is a CNN for classification, receives a picture as 

input and processes it through a set of convolutional layers, then through a pooling 

layer and this process continues until the fully connected layers and the SoftMax 

output layer (see Fig. 2.1). 

 

Figure 2.1 VGG-16 Convolutional Neural Network (Smeda, 31/10/2019) 

 

2.1.1 Convolution filters and maxpooling operations 

Consider an RGB image that is provided as input to the neural network.  The image is 

an 𝑀 ×  𝑁 ×  3 array of pixels, where 3 corresponds to the three colors of the RGB 
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image (R=Red, G=Green, B=Blue). The width of the input picture is in the horizontal 

dimension, the height is its vertical dimension and the depth is the number of 

channels, that is three as stated above.  

Zero elements are added around the image, an operation called padding.  This 

operation results in a a single pixel border added to the image with a pixel value of 

zero. Also, to assist the kernel with processing the image, padding allows for more 

space for the kernel to cover the whole image and leads to a more accurate analysis 

of images.  

Convolution is the operation that modifies the above input when it is passed through 

a filter; in this case the filter is the convolution kernel. In CNN, multiple kernels are 

used to scan the input image. Each filter/kernel, slides from left to right across the 

image and continues this operation in each pixel row from top to bottom. The 

resulting output image is called feature map or activation map. 2D convolutions are 

usually used for black and white images, while 3D convolutions are used for colored 

images. 

 

 

Figure 2.2 Kernel moves over the input to generate the output (Coursera(2020c)) 

There are many sizes of kernels, which can used; for example of small (3 × 3) or larger 

kernel sizes (5 × 5). The most popular choice used by deep learning practitioners is 

(3 × 3).  
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The mathematical formula for the convolution operation in 2D is given by following 

equation. In this equation, the image is represented by matrix I, the kernel is K and 𝑖, 𝑗 

are the pixel indices on which the convolution is applied, also m and n are the width 

and the height of the kernel (Goodfellow, et al., 2016) 

(𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)𝐾(𝑚, 𝑛)

𝑛𝑚

 (2.1) 

 

An explanatory example regarding the implementation and functionality of filters is 

given in Fig. 2.3. 

 

  

Figure 2.3 Representing a RGB image and applying convolutional 𝑊0 Filter (Kernel) 

(Stanford Course) 

The first, second and third channels represent the red, green and blue colors 

respectively. In this case two kernels (filters) are applied, the first filter is the 𝑊0 and 

second filter is the 𝑊1 . The first green matrix contains the results of applying filter 𝑊0 
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and the three channels. The second green matrix contains the output results from the 

second filter 𝑊1Filter 𝑊0  contains 3 different matrices, one for each channel.  

Let’s start with the first channel (7 x 7) input image with zero padding and we use the 

first (3 x 3) convolution filter to get an output image.  The first step is to multiply the 

highlighted box in the input image with the first kernel. Each element is multiplied 

with an element in the corresponding location. Then, all the results are summed up, 

providing one value of the output. This is performed for each channel. The bias is 1 

and is applied to the sum of the results of the three operations. 

The first operation that involves the first channel and the corresponding kernel is: 

(0 × 0) + (0 × (−1)) +  (0 × 1) + (0 × 0) +  (2 × 1) + (2 × 0)

+ (0 × 1) +  (2 × (−1)) +  (0 × 1) =  2 − 2 = 0 

(2.2) 

The same process is applied to the second channel: 

(0 × 1) +  (0 × (−1)) +  (0 × 1) +  (0 × (−1)) +  (0 × (−1))

+  (2 × 1) +  (0 × 0) +  (1 × (−1)) +  (0 × (−1))

= 2 − 1 = 1 

(2.3) 

For the third channel the first operation with its kernel is as follows: 

(0 × (−1)) +  (0 × 0) +  (0 × (−1)) +  (0 × 1) +  (1 × 0)

+  (2 × (−1)) +  (0 × 1) +  (2 × 1) +  (1 × (−1))

= −2 + 2 − 1 =  −1 

(2.4) 

Adding the results of the three operations and the bias ( 1), the output result is 0 +

1 − 1 + 1 = 0 + 1 = 1 for the first output filter. This is shown as element (1,1) of the 

first green matrix in Fig. 2.7. This operation is repeated by moving the kernel to the 

right to get element (1,2) of the output.  The step size of the kernel sliding across the 

image is called a stride. Here, the stride is 2. A stride size greater than 1 will always 

downsize the image. So, in order to find the other results for the first output, the 

highlighted box moves by a stride of 2 pixels horizontally, vertically, and horizontally 

again, and so on (for each color).  In this case the output is a 3x3 matrix. 

The same procedure will be followed by the second filter (𝑊1) as shown in Fig. 2.4. 

The second green matrix contains the results from multiplying the matrices from filter 
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𝑊1 and the three channels. The first green matrix contains the outputs results of 

applying filter 𝑊0. Here, the bias is 0. 

 

Figure 2.4 Representing a RGB image and applying convolutional 𝑊1 Filter (Kernel) 

(Stanford Course). 

As we can see in Figure 2.5,  VGG -16 has 16 layers among quits multiple convolutional 

layers in particular are: 

1. Convolution using 64 filters 

2. Convolution using 64 filters + Max pooling 

3. Convolution using 128 filters 

4. Convolution using 128 filters + Max pooling 

5. Convolution using 256 filters 

6. Convolution using 256 filters 

7. Convolution using 256 filters + Max pooling 

8. Convolution using 512 filters 

9. Convolution using 512 filters 

10. Convolution using 512 filters+Max pooling 
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11. Convolution using 512 filters 

12. Convolution using 512 filters 

13. Convolution using 512 filters+Max pooling 

14. Fully connected with 4096 nodes 

15. Fully connected with 4096 nodes 

16. Output layer with Softmax activation with 1000 nodes. 

 each convolutional layer including a large number of kernels; e.g. 64 filters (3 × 3) are 

applied in the first convolutional layer, 128 filters in the second one etc. 

Convolutional networks may include pooling layers to streamline the underlying 

computation. Pooling layers reduce the dimensions of the data by combining the 

outputs of several neurons of one layer into a single neuron in the next layer. One of 

the possible aggregations we can make is to take the maximum value of the pixels in 

the group (this is known as Max Pooling). Another common aggregation is taking the 

average of the pixels in the group (Average Pooling). Max pooling is used to reduce 

the image size. In the case of Figure 2.9 if a 2 × 2 max filter is used and a stride of two, 

the output will be a 2 × 2 array. 

 

 

Figure 2.5 Max pooling (Coursera,2020c) 



University of the Aegean                          Department of Financial and Management Engineering 

 

 

[10] 

 

 

For every consecutive 2 × 2 window, only the maximum number is considered, as it 

can be seen in the middle part of the above Figure 2.9. Here, a filter of size 2x2 and a 

stride of 2 is applied. These are the hyperparameters for the pooling layer. In the first 

2 × 2 window of the image with values (0, 64, 48, 192), the maximum is 192. So, the 

first element of the output takes the value 192.  The same process continues for the 

next three outputs. 

Consider as an example the VGG -16 network that consists of 16 convolutional layers, 

5 pooling layers and 3 fully connected layers.  The input is a 224 × 224 × 3 array of 

an RGB image. The pre-processing layer takes this RGB image comprised of pixel values 

and subtracts the mean image value computed over the entire image.  

 The first two layers are convolutional layers with 64 filters each; each filter has 

a 3× 3 dimension (see Figure 2.5). The 3x3 filters have a stride of 1. In these 

layers, 64 filters are used that result in dimensions  224 × 224 × 64.  

 Next is the pooling layer with maxpool of 2× 2 size and stride 2, which reduces 

the image size from 224 × 224 × 64 to 112 × 112 × 64.  

 This is followed by two more convolutional layers, each with 128 filters, which 

results in the new dimension of 112 × 112 × 128.  

 Then maxpooling is used followed by 

 another three convolutional layers are added with 256 each filters, which 

changes the size to 56 × 56 × 256.  

 Then a max-pool layer reduces the size further, followed by 

 Three convolutional layers with 512 filters resulting in 28 × 28 × 512.  

 Finally, after max pooling and three last convolutional layers include 512 filters 

and result to a size of 14 × 14 × 152  

 This is succeeded by a max-pool layer with 7 × 7 × 512 volume 

 The 7x7x512 output is flattened into a Fully Connected (FC) layer, which is 

followed by a SoftMax operation. “The fully connected layers perform 

classification of the significant features contained in each bounding box of the 

image (for the bounding boxes see the sub-section on object recognition 
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below).  Finally, for the final detection the Softmax output layer is used which 

is a vector with a single score per class. The highest score usually defines the 

class of the contents of each bounding box”. (Tepteris , 2020) 

The underlying idea behind VGG-16 is simplicity.  The focus is on having convolutional 

layers with 3 X 3 kernels (and always using the same padding). The max pool layer is 

used after a group of  convolution layer with a filter size of 2 and a stride of 2.  

Generally, convolutional layers are strong feature extractors in which 

the convolutional filters are capable of finding or picking up characteristics of images. 

The VGG-16 architecture is in the top 5 in terms of  accuracy. It is sufficient to building 

powerful models with correct training and high validation accuracy.  

2.1.2  Coding a Convolutional Neural Network with Pooling in TensorFlow 

Let’s now see how we implement CNN in Tensorflow.   

First, we need to import all the libraries, 

 import keras_preprocessing 

The Keras dataset preprocessing utilities, located in tf.keras.preprocessing, help to go 

from raw data to a tf.data.Dataset object that can be used to train a model (Aakash, 

et al., 2021). The tf.data.Dataset represents a sequence of elements, in which each 

element is composed of one or more elements (Brain, 2021). 

Images present in the dataset are in a variety of shape and sizes. For a neural network 

to be trained on these images, they must be in a certain shape. For a greyscale image, 

color depth of 1 byte (pixel) is used . For the images in color, there is a color depth of 

3 bytes as they are in RGB. 

Subsequently we use tf.keras.models.Sequential. The term “sequential” means that 

model creation involves defining a Sequential class and adding layers to the model one 

by one in a linear manner, from input to output. The example below (Fig. 2.10) defines 

a Sequential model that accepts image inputs with size 150 × 150. 

Next, tf.keras.layers.Conv2D  is used, which takes as input the image of size 150 ×

150 × 3 (RGB). The number of filters depends on the type and complexity of the image 

https://www.tensorflow.org/api_docs/python/tf/keras/Sequential
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data. In general, the more features someone wants to capture in an image the higher 

the number of filters required in CNN. For 2D convolution we utilize the VGG-16 

architecture, which uses multiple 3 × 3 filters. Since the first column and row as well 

as the last column and row are populated by 0, the image size becomes 148 × 148 ×

3, when padding is removed. The image is processed through the filters using the 

method mentioned above. The related (weight) parameters are 1,792 = 3 × 3 × 3 ×

64 + 64. 

Then, max-pooling is applied on the output of the first tf.keras.layers.Conv2D  and the 

result of the Max-Pooling layer is 74 × 74 × 64. Having passed through all 

convolutional and max-pooling layers, the output of the last tf.keras.layers.Conv2D 

will be flattened, and then the flattened neurons will be connected with each and 

every neuron of the next layer of 512 neurons.  

 

Figure 2.6 Results of code for Convolutions and max-pooling (Coursera(2020c)) 

These latter operations are shown in Fig. 2.6.  Firstly, 6272 is the output shape 

resulting from the last max_pooling (see Fig 2.10), that is, 7 × 7 × 128 = 6272 . 

Dropout is a technique to prevent overfitting. Specifically, dropout refers to ignoring 

units (neurons) during the training phase which are chosen at random. The selected 

units are not considered during a forward or backward propagation. Dense inserts a 

neural network with 512 hidden units (neurons) to use in feedforward and 

backpropagation. The 3,211,776 parameters result from the Flatten Dimension 

multiplied by the number of Neurons and adding the bias; that is, (6272) ∗

Dense Dimension (512) + One bias per hidden neuron (512) = 3,211,776. The 
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output has three classes, and the number of parameters is Input Dimension (512) * 

Output Dimension (3) + One bias per output neuron (3) = 1539.  

 

Figure 2.7 Results of code for input (Coursera(2020c)) 

During training, a multi-class loss function will be used since this is a multi-class 

classification problem.  Furthermore, a a SoftMax activation function will be used, 

which has non-binary outputs (3 classes ). 

For training the NN, the RMSprop optimization algorithm is used that is similar to the 

gradient descent algorithm. The RMSprop automates the learning rate tuning by using 

a moving average of the squared gradient. The latter utilizes the magnitude of recent 

gradient descents in order to normalize the gradient (See Appendix B.2). 

2.1.3 Methods to avoid Overfitting 

The models discussed above are overly complex with too many parameters. If the 

training dataset is not rich enough, the model may be overfitted. A model that is 

overfitted is inaccurate. Overfitting of a model may be easily assessed by monitoring 

its performance on both the training dataset and on a holdout validation dataset.  

Specifically, in our case with a very large number of parameters, the model produces 

good results in training data but, if overfitted, it performs badly on the validation data 

set. The goal of a deep learning model is to generalize well from the training accuracy 

to validation accuracy. This is very important for the model to produce accurate 

predictions.  

2.1.4 Simplifying the model  

The first method dealing with overfitting is to simplify the model. We may reduce the 

complexity of a model by simply removing layers or reducing the number of filters. This 

technique may reduce overfitting and is similar to the Dropout technique.  

Unfortunately, there is no general rule on how much to remove or how limited our 
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neural network should be, and, thus, we should resort to tests until finding the correct 

number of filters and layers. 

2.1.5 Image augmentation 

Image augmentation is a strategy focused on generation of new images from already-

available ones. And more specifically, it’s a technique that helps us reproduce an 

image in another form or dimension. Image Augmentation is a very simple, but very 

powerful tool to help avoid overfitting. 

 To do so we may use an image generator, which gives the flexibility of generating 

more images by executing any of the following techniques (see Appendix B.3): 

 Scale 

The final image size can be larger or smaller than the original image. Some pixels from 

the original image may be trimmed like the image below. The image can be scaled 

outward or inward. While scaling outward, the final image size will be larger than the 

original. Most of the time a part of the image is cut, with size equal to the original 

image. Inward scaling reduces the image size. 

 

 

Figure 2.8 Rescaled image( (Gandhi, 2021) 

 Rotation 

Rotates an image randomly in the range of 0-180 degrees.  
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Figure 2.9 Rotated Image (Elisha, 2020) 

 Width shift range, Height shift range 

Shifting, moves the image around inside its frame. Many pictures have the subject 

centered. Training based on this kind of images might result in overfitting because they 

have a lot of features. The related parameters specify, as a proportion of the image 

size, how much the subject should randomly be moved around. For example, an image 

may be offset by 20 percent vertically or horizontally.  

 

Figure 2.10 Shifted image ( (Sarin, 2019) 

 Shear range 

Consider the following image of Fig. 2.15. 

 

Figure 2.11 Human Image (Coursera(2020c)) 
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In this example, in the training set (left image of 2.12), there are no images of a person 

lying down. In the left image of Fig. 2.12 the human is standing up.  In the right image 

(not part of the training data set) the person is lying down.  To generate a similar image 

using the existing training set, one may shear the former image along the x-axis, its 

pose may end up very similar to the pose in the image on the right (see Fig. 2.13).  

 

 

Figure 2.12 Human Image applied shear range (Coursera(2020c)) 

The shear parameter will shear the image by the specified amount. In the above 

example the shear is  0%.  

 

 Zoom range 

Zoom can also be very effective. For example, consider the following image on the 

right (not part of the training set). It is a woman facing to the right. If the training 

image (left image) is zoomed, it could end up with a very similar image to the one on 

the right. 
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Figure 2.13 Girl image with zoom (Coursera(2020c)) 

Ιn this case, the zoom range  will be a random value  up to 20 percent of the size of the 

image. Depending on the size of the image we calculate the zoom values. 

 

 Horizontal flip 

Another useful tool is horizontal flipping. An image flip means reversing the rows or 

columns of pixels in the case of a vertical or horizontal flip respectively. To turn on 

random horizontal flipping, just write horizontal flip equals true in code and the images 

will be flipped at random. The following image shows a cat. In the left image, the right 

leg of the cat is lower than the other leg while the right image shows the opposite and 

thus horizontal flip is shown. 

 

Figure 2.14 Cat Image with Horizontal flip ( (Balla, 2020)) 
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 Fill mode 

 

This fills in any pixels that might have been lost by previous operations. If the fill mode 

equals ‘nearest’ in the code, the pixel is filled using the value of its nearest neighbors 

to try and keep uniformity. Specifically, the closest pixel value is chosen and repeated 

for all empty values (see Appendix B.3). 

For the implementation in TensorFlow, as always we need to import all libraries first. 

 from tensorflow.keras.preprocessing.image import ImageDataGenerator 

 

Figure 2.15 Data augmentation consists of on-the-fly image batch manipulations. 

This is the most common form of data augmentation with Keras (Rosebrock, 2019) 

In order to make the most of our few training examples, we will "augment" them via 

a number of random transformations, so that our model would never see twice the 

exact same picture. This helps prevent overfitting and helps the model generalize 

better. 

In Keras this can be done via the keras.preprocessing.image.ImageDataGenerator 

class. This class allows us to: 

 apply random transformations and normalization operations to our image data 

during training 
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 instantiate generators of augmented image batches (and their labels) 

via .flow(data, labels) or .flow_from_directory(directory). These generators 

can then be used with the Keras model methods that accept data generators 

as inputs, fit_generator, evaluate_generator and predict_generator. 

2.2 Real Time Object Detection through the YOLOv3 algorithm 

In the previous section, the state-of-the-art methods for image recognition were 

presented. The current section deals with object detection, a subset of computer 

vision that detects and classifies the position of an object inside the image. Object 

detection algorithms have been extensively developed in recent years and the most 

widely used include Single Shot Detection (SSD), You Only Look Once (YOLO), Regional 

CNN (R-CNN) and the Faster R-CNN algorithms (Mantripragada, 2020). These 

algorithms classify the objects inside an image and specify the coordinates of 

bounding boxes around these objects, thus providing the exact location of the objects 

in respect to the bounds of the image.  

Object detection methods: The state-of-the-art 

Object detection and image classification are core computer vision (CV) problems with 

a distinct difference: Image classification aims to classify the image according to a set 

of pre-defined classes. Object detection, on the other hand, is more complicated: the 

aim is to classify the image into a class and also to detect the position of the object 

inside the image, using a bounding box (Ganesh, 2019).  

In recent years, the use of faster hardware made deep learning implementations 

possible and gave rise to new methods (Figure 2.20) that solve the problem of object 

detection (Zou, et al., 2019). 
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Figure 2.16 Timeline of evolution of object detection algorithms (Zou, et al., 2019) 

2.2.1 Single Shot Detection 

The Single Shot Detection (SSD) model (Wei Liu, 2016) was developed by Google and 

is based on a feed-forward Convolutional Neural Network (CNN) that extracts the 

features of the image into a “feature map”. The feature extraction is based on a small 

convolution kernel of size 3 × 3 that is applied to a series of convolutional layers. SSD 

predicts bounding boxes after multiple convolutional layers, with each layer focusing 

on different object size (small, medium, large) (see Fig. 2.17) (Liu, et al., 2015). Thus, 

in each layer, semantic meaning is extracted from the image by lowering the 

resolution of it. At the end of the convolutional steps, a classification probability is 

produced for each detected object and the coordinates of the bounding boxes around 

these objects are found. Finally, the SSD method applies a non-max suppression step 

(this technique keeps the one bounding box that fits the object perfectly) to produce 

the final detection results (Hosang, et al., 2017). 

SSD simultaneously predicts the object bounding box and the object class as it 

processes the image. The basic steps are the following: 

 The input image passes through a series of convolutional layers. The results 

are several sets of extracted feature maps at different sizes (Figure 2.17). SSD 

uses the Visual Geometry Group-16 (VGG-16) method to extract feature maps.  
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 A 3 × 3 kernel size convolutional layer is applied to each of these feature maps, 

to evaluate a small set of default bounding boxes. There are 4 types bounding 

boxes, each bounding box will have (Number_of_Classes+4) outputs. Thus, 

Conv4_3 output has the size of 38 𝑥 38 𝑥 (𝑁𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝐶𝑙𝑎𝑠𝑠𝑒𝑠 + 4), where 

38x38 represents the size of the grid over the image, and 4 stands for the fact  

that for each grid cell there are 4 bounding boxes. If for example, there were 3 

object classes, the output would be of size 38 𝑥 38 𝑥 (3 + 4). In terms of 

number of bounding boxes, there are 38 𝑥 38 𝑥 4 = 5,776 bounding boxes 

 SSD predicts both the bounding boxes and the class probability simultaneously 

 During training, the ground truth bounding box (a human drawn box that 

specifies the position of the object in the image and these predicted bounding 

boxes are matched, based on the Intersection over Union (IoU) method (see 

Section 2.3.4 “Intersection over Union”). The best predicted bounding box is 

the box that has an IoU -with the truth bounding box- larger than 0.5. 

 

 

Figure 2.17 SSD architecture (Jiatu, 2018) 

In addition to the Conv4_3 layer, which contains 5,776 bounding boxes and was 

discussed above, he number of the bounding boxes for the other convolution layers, 

after the Conv4_3 one, are listed below (Tsang, 2018): 

 𝐶𝑜𝑛𝑣7 𝑖𝑠 19 𝑥 19 𝑥 6 =  2.166 bounding boxes (6 boxes for 𝐶𝑜𝑛𝑣7) 

 𝐶𝑜𝑛𝑣8_2 𝑖𝑠 10 𝑥 10 𝑥 6 =  600 bounding boxes (6 boxes for 𝐶𝑜𝑛𝑣8_2) 

 𝐶𝑜𝑛𝑣9_2 𝑖𝑠 5 𝑥 5 𝑥 6 =  150 bounding boxes (6 boxes for 𝐶𝑜𝑛𝑣9_2) 
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 𝐶𝑜𝑛𝑣10_2 𝑖𝑠 3 𝑥 3 𝑥 4 =  36 bounding boxes (4 boxes for 𝐶𝑜𝑛𝑣10_2) 

 𝐶𝑜𝑛𝑣11_2 𝑖𝑠 1 𝑥 1 𝑥 4 =  4 bounding boxes (4 boxes for 𝐶𝑜𝑛𝑣11_2) 

The total bounding boxes are 5.776 + 2.166 + 600 + 150 + 36 + 4 =  8.732 

2.2.2 R-CNN and Faster R-CNN 

R-CNN (Figure 2.18) is an object recognition model (Girshick, 2014), which initially 

calculates the possible position of an object inside an image and then classifies the 

objects in the image. To find the position of an object inside an image, a selective 

search algorithm is used. The selective search algorithm, outputs approximately 2000 

region proposals which are then fed to the CNN model to extract image features. The 

feature extraction method produces a 4.096-dimentional vector of image features and 

a Support Vector Machine (SVM) algorithm decides for the presence of an image class 

inside each region. 

 

Figure 2.18 R-CNN model (Girshick, 2014) 

The R-CNN model which is responsible for object recognition is inherently very slow. 

The 2.000 region proposals have a significant impact on the algorithm resolution time 

because the feature extractor must perform the same task for each one of these 

regions. Another problem is that, during the selective search, the network does not 

learn anything related with the patterns inside the image (Ren, 2017). 

For these reasons, an improved model was developed (Ren, 2017) to address the 

inefficiencies of the R-CNN model. This improved model is called Faster R-CNN and 

does not use the Selective Search method for the region proposals; the model itself is 
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trained to predict region proposals using a CNN (Figure 2.19). These region proposals 

are then fed to a separate CNNs to decide if there is an object of interest inside this 

region. The output of the Faster R-CNN is both the class that the object belongs to and 

also its position inside the image. 

 

Figure 2.19 Faster R-CNN (Ren, 2017) 

2.2.3 You Only Look Once (YOLO) 

Overview 

Most object recognition algorithms (such as the SSD approach discussed above) 

approach object detection as a classification problem. The YOLO architecture 

(Redmon, 2016) approaches the recognition part of the problem as a regression 

problem. A single Neural Network predicts the object’s class and finds its location 

inside the image with just one “look”. The YOLO’s detection speed is about 10 times 

faster than other state of the art methods (Boesch , 2021). 
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The YOLO algorithm follows a simple approach: at first the image is resized into 

448x448pixels. Then, the YOLO model divides the image into an S x S grid and assumes 

an object is centered in each grid cell. For each grid cell a bounding box and the 

probability of each class is predicted. The output is the class probabilities and the 

(𝑡𝑥 , 𝑡𝑦, 𝑡ℎ , 𝑡𝑤) coordinates of the object, which are provided if the class confidence is 

over a specific pre-set threshold.  

The YOLOv3 model (Figure 2.20) contains 24 convolutional layers followed by two fully 

connected layers. These convolutional layers of the model are pre-trained on the 

ImageNet dataset; this makes the model easier to train in a transfer learning matter 

(Mwiti, 2021). The model uses the weights taken from the darknet-53 model 

(Redmon, 2016). 

 

 

Figure 2.20 YOLOv3 architecture. (Vinh, 2020) (Jiatu, 2018) 

Figure 2.24 shows the YOLOv3 network. YOLOv3 accepts 448px×448px or 

608px×608px sized images, since this allows the processing of the images in batches 

which in turn speeds up the training of the network (Vignesh, 2020). For this reason, 

input images are resized to one of these fixed square dimensions. To extract the 

features such as color, shape and other aspects of the objects, multiple convolutions 

are applied to the image as it propagates through the network. The output layer is a 



University of the Aegean                          Department of Financial and Management Engineering 

 

 

[25] 

 

3D feature map and each depth channel represents a feature of the image or object 

(Vignesh, 2020). 

The network characteristics are outlined below: 

 The network has 24 convolutional layers for feature extraction and 2 fully 

connected layers for the output class scores and location coordinates (Fig. 

2.24) 

 The first 20 convolutional layers are followed by an average pooling layer and 

a fully connected layer is pre-trained on ImageNet 

 The layers comprise 3×3 convolutional layers and 1x1 reduction layers. 

 There are 64 filters that have a size of 7×7 

 The output is a 7×7×30 vector which predicts the class probability and 

bounding boxes (Redmon, 2016). 

 

Input and output of the YOLOv3 model 

The input fed to the YOLOv3 model is a digital image (typically RGB) that includes an 

unknown number of objects. 

The output of the model is an 𝑆 𝑥 𝑆 𝑥 ( 𝐵 𝑥 (5 +  𝐶) ) tensor, where 

- 𝑆 × 𝑆 is the size of the grid imposed by the model over the input image 

- 𝐵 is the number of bounding boxes for each cell. These boxes are positioned 

at the center of each object and have a different size and aspect ratio. Each 

bounding box is associated with five parameters: The box center coordinates 

(𝑥, 𝑦), the box height ℎ, the box width 𝑤, and the probability 𝑃 that the box 

contains an object 

- 𝐶 is the number of object classes. For each class, the output contains a 

conditional class probability value 𝑃(𝐶𝑙𝑎𝑠𝑠𝑖|𝑂𝑏𝑗𝑒𝑐𝑡) which depend on the cell 

containing an object.  

Thus, the output is a list of bounding boxes along with their coordinates, and the 

detected object class for each box. The 6 numbers (𝑃𝑥, 𝑏𝑥, 𝑏𝑦 , 𝑏ℎ, 𝑏𝑤, 𝐶) associated 

with each bounding box are the following: 
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 𝑏𝑥 ,  𝑏𝑦  are the box’s center coordinates 

 𝑏𝑤 is the width of bounding box and 𝑏ℎ is the height of the bounding box 

 𝑃x is the objectness score which represents the probability that an object falls 

within a bounding box 

 𝐶 is the class that the object belongs to. 

Initially, the image is divided into 𝑆 × 𝑆 grid cells with each grid cell containing 3 

bounding boxes. These boxes are called “anchor boxes” and are used to predict the 

object present at the center of each grid cell (these boxes have different size and 

aspect ratio). Each cell can only predict one object for each box size (small, medium, 

large). This is done because many images can contain many objects of different sizes. 

In Fig. 2.21 there are three techniques of object detection.  The first shows the grid 

cells on the input image. The second technique of the same Figure consists of the 

number of bounding boxes and the confidence score which explain the process of 

anchor boxes. The class probability map is derived simultaneously with bounding 

boxes + confidence, this process defines each object in a different color to identify the 

object and the class that it belongs. 

The final step contains the outputs which include the object’s position and the object’s 

class. This technique is named non max suppression and is used to remove all 

bounding boxes, except the bounding box that fits the object perfectly (Hosang, et al., 

2017).  
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Figure 2.21 Combination of the three techniques (Saxena, 2021) 

In Figure 2.21 there are lots of box predictions but only the best ones are kept in the 

final output. To select the best prediction box for each grid cell a non-max suppression 

method is applied to avoid selecting overlapping boxes. First, all boxes with a 

confidence score below a certain threshold are removed, then, the box with the 

highest probability is used to compute the IoU against all other boxes. If the resulting 

IoU is greater than another threshold (usually 0.6), the compared box is discarded 

(Sharma, 2018). 

Training is based on the creation of the ground truth bounding boxes are created. 

These are hand labeled boxes that help to train the model in order to specify the 

position of the object in the image (Mohana, 2019). The ground truth bounding boxes 

are created using an annotation tool, described in more detail see Section 3.1. The IoU 

relates to the comparison between ground truth bounding box and predicted box. 

2.2.4 Comparison between SSD, YOLO, R-CNN, and Faster R-CNN 

According to Table 2.1 (Hui, 2018), YOLO achieves the best result in the best 

computational time (78.6% accuracy in only 91 Frames Per Second). Second is SSD, 

followed by Faster R-CNN and R-CNN. These results are expected since YOLO can 

detect and classify an object in one step. For this reason, real-time applications 

significantly favor the YOLO model (Hui, 2018). In this work we will use YOLO. 
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Table 2.1 Object detection algorithms comparison 

Method Mean Average Precision 

(mAP) 

Frames Per Second (FPS) 

SSD 74.3% 46 

YOLO 78.6% 91 

R-CNN 66% 2 

Faster R-CNN 73.2% 7 

 

2.3 Current State-Of-The-Art  

Initially, the YOLO algorithm was slow (Redmon & Farhadi, 2018). Some necessary 

upgrades were made (changing of parameters for the choice of the better network 

will be used) and its successor, YOLOv3, became a fast detector of objects in 

photographs. YOLOv3 uses a pre-trained model called Darknet network and has higher 

accuracy than comparable models. In addition, the network structure utilizes the GPU 

more effectively, making it more efficient (Redmon & Farhadi, 2018). 

Even though many object detection algorithms exist, public data sets of labelled 

pictures are often limited. Particularly for the problem in question, there are no 

datasets that contain labels of traffic lights. Two research papers that study traffic light 

detection and recognition are highlighted below. 

2.3.1 Research Paper 1: Real-Time Traffic Lights Identification using YOLOv3 

Algorithm for Autonomous Vehicles ( Kozel & Robert, 2020). 

Traffic lights and traffic sign detectors play a major role in autonomous vehicle safety. 

Although there are many methods that utilize a combination of a) image processing 

and b) training a neural network model, those methods are not fully accurate in 

detecting traffic light states. The root cause is the practical nature of the problem: a 

traffic light occupies just few image pixels in photographs taken from long distances 

and also, sunlight obstructs traffic light detection. 

Kozel and Robert (2020)proposed to identify traffic lights and their three states in both 

urban and suburban areas with the development of a deep learning model which uses 

YOLOv3. The Bosch Small Traffic Lights benchmark was used for training. The Bosch 
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Small Traffic Lights dataset includes 5,093 pictures that contain thirteen classes 

organized in annotated files (see Fig. 2.22). 

 

Figure 2.22 Testing on Bosch Small Traffic Lights dataset ( Kozel & Robert, 2020) 

The Mask Region-Based Convolutional Neural Network (Mask RCNN) method and the 

pre-trained weights from the COCO dataset were used. The training process lasted for 

3 hours and for testing the trained network, generic traffic light images were 

downloaded from the internet (see Fig.2.27). Nevertheless, with the Mask RCNN 

model, the results were impossible and slow as prediction accuracy couldn't exceed 

90% mainly because the vehicle lights were being detected as traffic lights. 

 

Figure 2.23 Testing of Trained model on random image from Google ( Kozel & 
Robert, 2020) 

To improve the performance, YOLOv3 pre-trained weights from the Darknet network 

were used. Furthermore, the model was trained over 100 epochs.  The trained model 

was able to detect traffic lights at a satisfactory detection rate even when vehicle lights 

were present in the picture ( Kozel & Robert, 2020). 
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2.3.2 Paper: YOLOv3 Algorithm with additional convolutional neural network 

trained for traffic sign recognition (Novak, et al., 2020). 

The most important ability of autonomous vehicles and most Advanced Driving 

Assistance Systems (ADAS) is the capacity to perceive all the static and dynamic 

objects around the vehicle (Novak, et al., 2020). Convolutional Neural Network (CNN) 

helps deliver safe ADAS in modern vehicles.  

Based on the work by (Novak, et al., 2020) the YOLOv3 model has been pre-trained 

for the detection and classification of only five traffic sign objects.  The YOLO algorithm 

is used to locate and detect objects in real time and then, an additional CNN is used 

to classify more specific subclasses of traffic signs. The CNN was trained in the code of 

YOLOv3 with excellent results on the test images. The dataset that was used for 

training is the Berkley Deep Drive Dataset, which contains limited examples of traffic 

signs for a total of 75 classes. For this reason, the additional CNNs that were used were 

trained on a different dataset which contains only traffic signs. 

Two CNNs were created. The first treats traffic signs classes, while the second treats 

traffic signal classes. The difference between the two CNNs was only in the last Fully 

Connected layer. The training dataset contained 121,098 images, 95,020 of those 

were used for training, 23,773 for validation and 2,305 for testing. The first CNN -

responsible for traffic sign type recognition- was trained for 20 epochs and the second 

CNN -responsible for traffic signal class recognition- was trained for 50 epochs. In 

conclusion, the accuracy of the algorithm was very high (close to 95%) for both 

categories. However, expanding The Berkley Deep Drive Dataset with new pictures 

took significant amount of time and effort even though it improved the predicted 

outcome (Novak, et al., 2020). 

The results from the above 2 papers show that the YOLOv3 model has greater accuracy 

in object detection than other models. In addition, if some modifications are made to 

the CNN of the algorithm (for example the change of the epoch number) and if large 

datasets are used, then, the accuracy can reach 95%. 
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2.4 Contribution of this thesis 

The objective of the thesis is to study and develop state-of-the-art techniques for 

traffic signal recognition, specifically traffic lights.  This application is critical in driver-

assistant systems and in autonomous vehicles.  In order to accomplish these objectives 

we will perform the following steps: 

1. Select the appropriate object recognition mode.  As discussed above, there are 

several object recognition models, including SSD, R-CNN, Faster R-CNN, etc.). 

YOLOv3 is the preferred choice for our work for the reasons already discussed 

in Section 2.3. 

2. Train the l, YOLOv3 Model, using appropriate, available datasets. Training 

involves a sequence of  experiments in order to select the most effective 

datasets ant training parameters 

3. Acquire (develop) a new all inclusive data set of images, involving traffic lights 

under various conditions; i.e.  

a. Traffic light state: red, yellow, green  

b. Distances between the traffic light and the location from which the 

photo/video was taken.  

c. Time and weather: day, night, rain, fog, sunshine. 

4. Apply the trained model to the above original dataset.  Improve its fidelity 

through new techniques 

5. Draw conclusions and develop guidelines for training and implementation 

processes for this very important application.  
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Chapter 3 Data preparation and training of the object detection 

model using the YoloV3 algorithm  

 

Prior to training the dataset to be used should be prepared carefully. The dataset 

should be in a special form, e.g. .xml or .txt. The .txt format is used in YOLOv3. Each 

image should be annotated with bounding boxes and hand labelled. To do so, an 

annotation tool is necessary. As a result, in the .txt file the information about the 

bounding box coordinates and the object classes are saved. There are multiple 

techniques used for this process in order to eliminate overfitting, normalize the data, 

augment (enrich) the dataset etc. This is discussed in Section 3.1. 

The Section 3.2 explains in detail the steps that were followed to make the training 

process and the pre-trained weights that downloaded from the Darknet-534 network. 

This technique is called transfer learning. Additionally, the YOLOv3 model is used and 

analyzed in detail in Section 3.3. Furthermore, the results of the custom training 

process, for training and validation datasets, were analyzed with Figures of the 

average loss and the mean average precision for object detection. 

3.1 Data collection, generation and labeling 

There are many publicly available open labelled datasets, including  ImageNet (Yang, 

et al., 2021), Common Objects in Context (COCO) (Tsung-Yi, et al., 2015), Google’s 

Open Images (Duerig & Krasin , 2016) etc. Each is a set of digital photographs with 

different states (Malevé, 2019) that developers use to train and validate the 

performance of their algorithms. The algorithms are said to learn from the examples 

contained in the dataset. 

In this Thesis, four datasets have been used. The datasets contain (not exclusively) 

three classes, each for one state of a traffic light:  Red, yellow, green The Four datasets 

are: 

                                                
4 ImageNet Classification (pjreddie.com) 

https://pjreddie.com/darknet/imagenet/#darknet53
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Table 3. 1 The datasets that are used for training 

Dataset  Source Number of images 

included on the 

datasets 

Number of 

images used 

Large Dataset (Srivastana, 

2017) 

3,299 1,000 

Bosch Small Traffic 

Lights Dataset 

(Kaggle, 2020) 13,427 582 

SJTU Small Traffic 

Light Dataset 

(Xue, 2020) 5,786 1,217 

Berkley DeepDrive 

Dataset 

(Yu, 2021) 100,000 2,873 

 

The “Large Dataset” (see Fig. 3.1) is downloaded from GitHub5. This dataset contains 

3,299 images classified in 3 useful folders. The first contains 971 images with red traffic 

lights; the second contains 255 images with yellow traffic lights (see Fig. 3.1) and the 

third folder contains 145 images with green traffic lights. The size of each image is 

224 × 224 (in pixels).  All images are derived from the Carla autonomous car simulator 

program. “CARLA is an open source simulator for autonomous driving and has been 

produced by a team from the Computer Vision Centre at the Autonomous University of 

Barcelona, Intel and the Toyota Research Institute using the Unreal computer game 

engine. “  (Tepteris , 2020). In these images the traffic lights are very close to the 

camera. Furthermore, the image contains only traffic lights and no other objects (such 

as road, signs, pedestrians, cars etc.) except general background. In our case we used 

only 1,000 images in model training, in order to maintain an appropriate balance with 

real photographs (that is, 369 from the folder with red traffic lights are not used).  

                                                
5 https://github.com/level5-engineers/system-integration/wiki/Traffic-Lights-Detection-and-
Classification 
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Figure 3.1 Traffic lights from Carla simulator 

The second dataset is “Bosch Small Traffic Lights Dataset” from the Kaggle6 platform. 

Kaggle is an online platform that allows users to identify free datasets, explore and 

build models in a web-based data-science environment. This platform hosts data 

scientists, machine learning engineers and holds designs competitions to solve data 

science challenges (Lardinois, et al., 2017). The dataset contains 13,427 camera 

images. The dimension size of each image is 1280 × 720 pixels. All camera images are 

RGB (red, green, blue)and, in addition to traffic lights, include cars, road and multiple 

other objects. See examples in  Fig. 3.2.  Only 582 images are used to train the model; 

i.e. the ones that contain traffic lights at an appropriate environment 

  
 

 

  

Figure 3.2 Traffic Lights of Bosch Small Traffic Lights Dataset 

                                                
6 https://www.kaggle.com/ 
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The third dataset, “SJTU Small Traffic Light Dataset” is downloaded from GitHub. It 

contains 5,786 images which are separated into two categories or “resolutions” a) of 

1080 × 1920 pixels and b) 720 × 1280 pixels. It also contains 5 categories of traffic 

lights (red, yellow, green, off and wait on). Only the 3 categories were used (red, 

yellow and green) containing 1217 images, which are very clear. Figure 3.3 shows 

some sample images from this dataset.  

  

  

 

Figure 3.3 Images from SJTU Small Traffic Light Dataset 

The fourth dataset, “Berkley DeepDrive” (BDD100K) is downloaded from the 

Kaggle7site. The package consists more than 100,000 HD videos recorded at various 

times of the day, seasons and weather. The data were collected from 4 locations (San 

Francisco, Berkeley, Bay Area and New York). The dimension of each image is 1280 ×

720 pixels. From the classes of traffic lights 2,873 images are used for training the 

model (see Fig.3.4). From these images, 2,005 are the original ones and the other (868) 

have been created by data augmentation. The data augmentation techniques (see 

section 2.2) applied are the following: 

a) Horizontal flip 

                                                
7 https://www.kaggle.com/solesensei/solesensei_bdd100k 
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b) Vertical flip 

c) Shear range by ±15° horizontal and ±15° vertical  

 

  

  

Figure 3.4 Images of Berkley DeepDrive Dataset 

For training our network, the images in the above datasets were divided to three new 

sets. In each sets the images were allocated (randomly) into validation and training 

subsets.  

 The first set contained the images taken from the Carla simulator (Large 

Dataset). There are 1000 images which are split into 700 images for training 

and 300 for validation (usually all images of datasets are divides into 70% for 

training and 30% for validation).  

 The second set contained 1,217 images from the “SJTU Small Traffic Light 

Dataset”, 852 for training and 365 for validation. The images in this dataset are 
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clear (day or night) photos of actual scenes that contain multiple objects in 

addition to traffic lights. 

 The third set contained images from the Berkley DeepDrive and Bosch Small 

Traffic Lights datasets. In total it contained 3,455 images, from which 2,419 

were used for training and 1,036 for validation. The images in this dataset are 

not clear (blurred) photos of actual scenes, again containing multiple objects, 

in addition to traffic lights.  These photos are also taken during the day or night.  

All images in the above datasets do not include ground truth bounding boxes. 

However, these are necessary to perform the training of our Yolo3 network.  Thus, in 

order to train our custom model, we inserted the ground truth bounding boxes in the 

traffic lights which are represented in all images.  Do to so, we used the LabelImg8 

graphical image annotation tool which is open source. The annotation tool and the 

manual process is described in Appendix C. 

3.2 Training and validation through Transfer Learning 

The concept of overfitting and its challenges were presented In Section 2.2.3. As 

already discussed, overfitting occurs when a NN with many parameters is trained using 

a limited dataset; this results in poor overall performance. To address this issue, very 

large data sets could be used to train the NN model. However, obtaining such datasets 

is a very hard and expensive process. Small datasets that are easier to obtain may be 

somehow enhanced with the methods presented in Section 2.3 but, although these 

methods help, oftentimes are not sufficient to address the overfitting problem. 

This Section describes Transfer Learning which refers to the practice of using the 

weight parameters of a NN -that has been pre-trained on a large dataset- to classify 

real world images.  Such a large dataset is ImageNet (Deng, et al., 2009), which is a 

150GB dataset containing more than 1.2 million real-world labelled images organized 

in 1000 categories and it is one of the most widely used datasets in modern computer 

vision (CV) research.  

Transfer learning capitalizes on the features that the model has already learned. 

Especially where only a small training dataset is available for a new NN model, the 

                                                
8 Github repository of darrenl tzutalin: https://github.com/tzutalin/labelImg 
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weights of the pre-trained NN model help initialize the weights of the new NN model. 

In such cases, only the weights of the last few layers of the new NN model are adjusted 

through training. In this way, training addresses the overfitting issue. 

 

Figure 3.5 Series of convolutional layers model that are locked, and application of 
Transfer Learning method in the last fully connected layers (Coursera(2020c)) 

Figure 3.5 shows the concept of Transfer Learning: The pre-trained convolutional 

layers (shown in red in the figure) are locked and cannot be retrained using additional 

data obtained from a new dataset. These locked layers have already extracted the 

features from an existing image dataset 

Transfer Learning process 

 

Figure 3.6 Transfer learning Steps (Leclerc, et al., 2018) 

As shown in Figure 3.6, the Transfer Learning steps are: 

1. Selecting a pre-trained model  
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There are several open-source models that have been trained on the ImageNet 

dataset and out of these, one that looks more suitable for the problem in 

question is selected (Krizhevsky, et al., 2012). Τhe model choice depends on 

the image classes to be detected and whether these classes are part of the 

model’s output layer. In this Thesis, Darknet-53 is a convolutional network and 

it is pre-trained on the ImageNet dataset.  Darknet-53 is used as the foundation 

for object detection problems and YOLO workflows. This dataset can classify 

images into 1000 classes which makes it a very powerful tool. One of the 

classes is the traffic signal (but without the R, G, Y states) and Darknet-53 has 

been trained in this class. 

2. Creating a base model  

The architecture of Darknet-53 contains 53 convolutional layers with pre-

trained weights. For creating the base model, the final output layer is removed 

and replaced by an output layer that is compatible with the problem in 

question. Figure 3.7 shows the Detection Flow Diagram. 

 

Figure 3.7 Detection Flow Diagram ( Raza & Song, 2020) 

Initially, each image of the new dataset is imported and passed through the 

already trained convolutional layers of Darknet-53 and its features extracted 

are stored. These features are inputs to the last trainable layer. The initial 

layers reflect general features, while the later trainable ones focus more on 

specific characteristics (see Fig. 3.7). 

3. Locking layers so they don’t change during training 

This step is needed because the weights in these layers shouldn’t be altered by 

training. The main idea is to keep the convolutional base in its original form 
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and then use its outputs to feed the classifier. The pre-trained model is used 

as a feature extraction mechanism that can be useful if either the computation 

power is low, the dataset is small or the pre-trained model solves a problem 

that is very similar to the problem in question. 

4. Adding new “trainable” layers  

This step adds new trainable layers that will turn extracted features into 

predictions for the new dataset.   

5. Integrating with YOLOv3.  Darknet53 is integrated with YoloV3.  The objective 

of this integration is for YOLOv3 to localize the identified objects in the image 

(in this case the traffic signal) by placining the appropriate bounding boxes 

around these objects 

This process is summarized in Fig. 3.8, where the integration of Darknet-53 

with YOLOv3 is displayed ( Benslimane, et al., 2019).  The concept is the 

following:  The layers of Darknet-53 are used with locked weights.  The final 

(dense) layer of the network is modified to include in this case three classes 

(traffic light R, Y, G) instead of 1000.  This part identifies the three states of the 

traffic light.  Furthermore, YOLOv3 is integrated (at various layers) with 

Darknet-53 in order to locate the traffic lights in the photograph by fitting the 

appropriate bounding boxes.  

It is noted that the integrated system of Figure 3.8 is adopted (downloaded), 

but its parameters are modified in order to fit the problem in question. 



University of the Aegean                          Department of Financial and Management Engineering 

 

 

[41] 

 

 

Figure 3.8 Adding of new “trainable” layers (Almog, 2020) 

6. Training the trainable layers (last one of Darknet-53 and YoloV3) using the new 

dataset 

In this step, the additional layers of the model are trained. 

 

The training process of the new model is analyzed in the Section 3.3.  

3.3 Darknet-53+YOLOv3 model training 

The training process of the model is described in the current Section. The training set 

up and the steps of the related algorithm are presented, and the model training results 

are analyzed. The final part of the Section includes the conclusions from the training 

exercise. 

3.3.1 Setting up the model training environment 

Section 3.2 described the transfer learning process and how the feature extraction 

mechanism of the pre-trained model can effectively help the new model produce 

better overall image classification results. Once all data of the dataset used for the 

training have been labelled, the actual training process of the trainable part of the 

model can begin. An adequate dataset size with correctly labelled objects plays an 

important role in the accuracy of the training process which -in the case of the work 

done as part of this Thesis- was based on the YOLOv3 Darknet model from AlekseyAB 

and was developed in the Google Collaboratory tool. 
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Google Colab is a product developed by Google Research. This online tool, which is 

accessible via a web-browser, helps data scientists and Artificial Intelligence 

researchers import existing software libraries and develop high level software code 

blocks which can then be shared online. Google Colab is especially well suited to 

machine learning, data science and analysis, and education. The environment allows 

anyone to write and execute python code with zero configuration through a web 

browser. Free access to computing resources including GPUs is also provided (Li, 

2020). 

Google Research also features Colab Pro, which provides faster Graphics Processing 

Units (GPUs), longer runtime limits and more memory allocation. Colab Pro also 

provides better connectivity options with the online server. The latter is useful in 

cases, in which large amounts of data are involved in the training process. Some of 

advantages and disadvantages between Collab and Collab Pro are shown in Table 3.2. 

Note that the GPU is the core processing unit that implements the matrix 

multiplication operations involved in a Neural Network (NN). The higher the number 

of GPUs, the faster the NN data processing becomes and thus, state-of-the-art fast 

GPU processors make real-time CV algorithms possible ( Abri, et al., 2020). 

Table 3.1 Colab and Colab Pro tools (Buomsoo, 2020) 

 Price GPU Runtime Limits 

Colab Free tool K80: access a simple 

GPU card 

A user can have up to 12 

hours of run time 

Colab 

Pro 

Costs 10€/month as of 

June 2021 

T4 & P100: access to 

high-end GPUs 

A user can have up to 24 

hours of runtime 

 

For the purpose of the work done as part of this Thesis, the Google Colab Pro was 

chosen because of its higher processing power and memory limits. The software code 

taken from the GitHub software repository of AlexeyAB9 was used to train the NN 

model in the Colab Pro environment. 

                                                
9 https://github.com/AlexeyAB 
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The algorithm comprises of the following steps as shown in Fig. 3.9: 

Step 1: This first step activates the NVIDIA GPU controllers. CUDA is a parallel 

processing platform developed by NVidia that takes full advantage of the available 

GPU resources and is used in machine learning, gaming and deep learning 

applications. The CUDA platform is the Nvidia’s language/API for programming the 

graphics card and is engineered to boost throughput in real-world applications 

(Rosebrock, 2020).  

Step 2: This step accesses the custom dataset that includes the images to be used in 

the training and validation process. The dataset is stored online in the Google Drive 

service that is provided as part of the 10 (Google Workspace, 2012). 

Step 3: This step utilizes the Darknet open-source neural network framework. Darknet 

is a network which can work together with the YOLO model as YOLO uses Darknet’s 

pre-trained weights. For this process the network must first be compiled. Darknet 

requires that both the GPU and OpenCV11 (see below) options be enabled. The CUDNN 

is a high level software library used by deep learning neural networks models and is 

built on the CUDA platform. 

Step 4: This step creates a copy of the configuration file “yolov3.cfg” and names it 

“yolov3_training.cfg”. The various configuration options that will be chosen for the 

custom model will be saved in the copy and not the original file. A backup of the 

original .cfg file is also kept for reference. 

                                                
10 Google Drive is a cloud-based storage solution that allows you to save files online and access them 
anywhere from any smartphone, tablet, or computer. 
11 “OpenCV (Open Source Computer Vision Library) is an open source computer vision 

and machine learning software library. OpenCV was built to provide a common 

infrastructure for computer vision applications and to accelerate the use of machine 

perception in the commercial products. Being a BSD-licensed product, OpenCV makes 

it easy for businesses to utilize and modify the code” (OpenCV team , 2021). 
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Step 5: This step adds the necessary configuration options in the “yolov3_training.cfg” 

to define the number of classes of the objects to be classified.  The parameters and 

their values are shown in Table 3.3 and are discussed below. 

Table 3.2 Parameter modifications for training 

Option name Default 

value 

Updated 

value 

The relevant equation/comments 

Batches (Batch 

size) 

1 64 number of samples (e.g. images) 

which will be processed in one batch 

Subdivision 1 16 Subdivision represents how the batch 

is again divided into blocks of images 

Max batches 500200 6000  This equation (𝑀𝑎𝑥_𝑏𝑎𝑡𝑐ℎ𝑒𝑠 =

2000 × 𝑛) is used for 3 classes 

Classes 80 3 3 classes are used for training (traffic 

light green, red and yellow) 

Filters 255 24 The equation (Number of filters = (𝑛 + 

5) × 3 ) is used to calculate the filters 

used in the images 

Learning rate  0.0001-0.1 0.0001-0.1 A learning rate parameter is a number 

between 0.0001 and 0.1 and controls 

how fast the values of weights 

change. 

Steps 400000, 

450000 

4800, 5400 The learning rate is decreased after 

4,800 and it is decreased much more 

after 5,400 iterations. 

Scale   The scale parameter specifies how 

much the learning rate will decrease; 

thus, it multiplies the learning rate. 

 

Batches 

The batch size is changed from 1 (default) to 64 and refers to the number of photos 

that will be processed in one batch (the model loads 64 images that will be processed 

in each iteration). 
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Subdivision 

Subdivision represents a further division of the batch into the blocks of images and it 

is changed from 1 (default) to 16. Starting with subdivisions = 1 there was an out of 

memory error. When we increased this parameter to 2, 4, 8, 16 etc. the training 

process started successfully. The GPU processes its images through batch and 

subdivision. 

Max batches 

The “Max Batches” configuration option defines the maximum number of batches, 

which training will run for. The number of “max batches” is reduced from 500,200 

(default) to 6,000 because the classes are three instead of 80. The equation for “max 

batches” is the following: 

𝑀𝑎𝑥_𝑏𝑎𝑡𝑐ℎ𝑒𝑠 = 2000 × 𝑛 (3.1) 

where, 

 n is the number of classes, 

 200012 is a standard value from YOLOv3 ( B.Sargunam & N.Kirthika, 2020) 

Classes 

There are three traffic lights classes (red, yellow and green). For this purpose, the 80 

classes of the original file are changed to 3. Also, the number of filters is reduced from 

255 (default value in the original file) to 24 that is: 

Number of filters = (𝑛 + 5) × 3 (3.2) 

where, 

 n is the number of classes 

 3 represents the number of the bounding boxes used by YOLOv3 

 5 represents the 4 bounding box attributes plus one object confidence score. 

Learning rate, steps and scale 

The learning rate parameter is defined as a number between 0.0001 and 0.1 and 

controls how fast the values of weights change. At the beginning of the training 

                                                
12 https://github.com/AlexeyAB/darknet#how-to-train-to-detect-your-custom-objects 

https://github.com/AlexeyAB/darknet#how-to-train-to-detect-your-custom-objects
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process, the learning rate should be high. The learning rate decreases over time 

because as the network processes more data and converges towards the minimum of 

the loss function, the weights should change less aggressively. The step parameter is 

applied, which indicates that the learning rate will remain constant for many iterations 

and then will be decreased. This parameter must be 80% and 90% of the maximum 

batch value, which means that after 0.8 * maximum batch iteration (in our case 0.8 ×

6,000 = 4,800), the learning rate will decrease and after a total of 0.9 * maximum 

batch iterations (0.9 × 6,000 = 5,400), it will decrease further. The scale parameter 

specifies how much the learning rate will decrease. 

Step 6: This step creates the obj.name and .obj.data files inside the darknet/data/obj 

directory. These files contain metadata information such as class names and number 

of classes required for the training process. The photos of the custom dataset are 

uploaded in two folders. The first folder is named “train” and contains the images for 

training while the second folder is named “valid” and contains the pictures for 

validation. 

Step 7: The yolov3_training.cfg and the files which contain the class names of objects 

(obj.names) are copied to Google Drive. 

Step 8: This step uploads the custom dataset in Google Drive in zip form and then 

“unzips” the photos file stored in Google Drive to the darknet/data/obj directory. 

There are two folders for unzipping. As mentioned above, the “valid” folder contains 

the photos for the validation process, the “train” folder contains the photos used in 

the training process.  

Step 9: This step creates two files in .txt form, named train and valid, respectively. The 

folders contain the location with the last part containing the names of all images (e.g. 

/content/gdrive/MyDrive/yolov3/darknet/data/obj/train/out00000.png). The images 

will be fetched from the location specified in this file during training. 

Step 10: In this step the pre-trained weights of Darknet-53 are downloaded for the 

convolutional layers. In Section 3.2, Transfer Learning is discusses as well as how 

Darknet-53 interacts with YOLOv3.  
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Step 11: In this step, the pre-trained weights are loaded into the YOLOv3 model and 

the training process begins. The model takes about 8-10 hours to train for 3 classes. 

The time required for the training of a custom model depends on the dataset size and 

the number of classes.  We used one  GPU resource (Nvidia Tesla P100-PCIE-16GB), 

from Google Colab Pro with a speed of 32 GB/sec. In case the training process stops 

(due to network or power failure or non-availability of GPU resource allocation), it can 

start again and continue from the last saved weights. 

The steps and the high-level software code are presented in Fig. 3.9 below: 

Step 1: Check if NVIDIA GPU is enabled 

!nvidia-smi 

 

Step 2: Mount your Google Drive on Google Colab. 

 

from google.colab import drive 

drive.mount('/content/gdrive') 

!ln -s /content/gdrive/ 

!ls /content/gdrive/MyDrive/yolov3 

 

Step 3: Configure and compile Darknet. 

 

Configure 

%cd /content/gdrive/MyDrive/yolov3/darknet 

#!sed -i 's/OPENCV=0/OPENCV=1/' Makefile 

!sed -i 's/GPU=0/GPU=1/' Makefile 

!sed -i 's/CUDNN=0/CUDNN=1/' Makefile 

 

Compile 

!make 

 

Step 4: Make a copy of yolov3.cfg 

!cp cfg/yolov3.cfg cfg/yolov3_training.cfg 
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Step 5: Change lines in yolov3.cfg file 

!sed -i 's/batch=1/batch=64/' cfg/yolov3_training.cfg 

!sed -i 's/subdivisions=1/subdivisions=16/' cfg/yolov3_training.cfg 

!sed -i 's/max_batches = 500200/max_batches = 6000/' cfg/yolov3_training.cfg 

!sed -i '610 s@classes=80@classes=3@' cfg/yolov3_training.cfg 

!sed -i '696 s@classes=80@classes=3@' cfg/yolov3_training.cfg 

!sed -i '783 s@classes=80@classes=3@' cfg/yolov3_training.cfg 

!sed -i '603 s@filters=255@filters=24@' cfg/yolov3_training.cfg 

!sed -i '689 s@filters=255@filters=24@' cfg/yolov3_training.cfg 

!sed -i '776 s@filters=255@filters=24@' cfg/yolov3_training.cfg 

!sed -i '22 s@steps=400000,450000@steps=4800,5400@' cfg/yolov3_training.cfg 

 

Step 6: Create .names and .data files. 

!echo -e 'traffic light green\ntraffic light red\ntraffic light yellow' > data/obj.names 

!echo -e 'classes= 3\ntrain = data/train.txt\nvalid 

= data/test.txt\nnames = data/obj.names\nbackup = /content/gdrive/MyDrive/yolov3' > d

ata/obj.data 

 

Step 7: Save yolov3_training.cfg and obj.names files in Google Drive. 

!cp cfg/yolov3_training.cfg /content/gdrive/MyDrive/yolov3/yolov3_testing.cfg 

!cp data/obj.names /content/gdrive/MyDrive/yolov3/classes.txt 

 

Step 8: Unzip the images dataset. 

!mkdir data/obj 

!unzip /content/gdrive/MyDrive/yolov3/train.zip -d data/obj/train 

 

!mkdir data/obj/test 

!unzip /content/gdrive/MyDrive/yolov3/valid.zip -d data/obj/valid 

 

Step 9: Create train.txt file. 

import glob 

images_list = glob.glob("/content/gdrive/MyDrive/yolov3/darknet/data/obj/train/*.jpg") 

with open("data/train.txt", "w") as f: 

  f.write("\n".join(images_list)) 
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images_list = glob.glob("/content/gdrive/MyDrive/yolov3/darknet/data/obj/valid/*.jpg") 

with open("data/test.txt", "w") as f: 

  f.write("\n".join(images_list)) 

 

Step 10: Download pre-trained weights for the convolutional layers file. 

!wget https://pjreddie.com/media/files/darknet53.conv.74 

 

 

 Step 11: Start training. 

!./darknet detector train data/obj.data cfg/yolov3_training.cfg darknet53.conv.74 -

dont_show -map | tee output.log 

 

Figure 3.9 Code for developing and training the traffic signal detection model 

3.3.2 Basic of model training aspects  

There are two important metrics used in training and validation. The training loss is 

used to measure the error between predicted and true values related to the bounding 

box and ground truth bounding box respectively. In addition ,the training loss is used 

to assess the training process. The mean average precision is an accuracy metric that 

shows how accurate the model is. It is particularly useful in validation.  

In the graphs used to present the results of the experiments below two lines are 

shown. The blue line represents the training loss (related to the training dataset) and 

the red line represents mAP which is related to the validation dataset. 

3.3.3 Training Loss 

The loss function in YOLOv3 consists of three parts: 

1. Localization loss (error between the predicted bounding box and ground truth 

bounding box) 

2. Confidence loss 

3. Classification loss 

These three parts are related to the following errors. 



University of the Aegean                          Department of Financial and Management Engineering 

 

 

[50] 

 

That is ( Wu & Xu, 2020). 

𝐿𝑜𝑠𝑠 = 𝐸𝑟𝑟𝑜𝑟𝑐𝑜𝑜𝑟𝑑 + 𝐸𝑟𝑟𝑜𝑟𝑖𝑜𝑢 + 𝐸𝑟𝑟𝑜𝑟𝑐𝑙𝑠 (3.3) 

 

where, 

1. 𝐸𝑟𝑟𝑜𝑟𝑐𝑜𝑜𝑟𝑑: refers to the coordinate prediction error (localization loss).  

2. 𝐸𝑟𝑟𝑜𝑟𝑖𝑜𝑢: refers to an Intersection Over Union(IoU) error (confidence loss) 

3. 𝐸𝑟𝑟𝑜𝑟𝑐𝑙𝑠: refers to the classification error or loss  

Localization Loss (coordinate prediction error) 

Localization loss assesses the errors between bounding box center coordinates and 

ground truth box center coordinates. 

𝐸𝑟𝑟𝑜𝑟𝑐𝑜𝑜𝑟𝑑 = 𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗[(𝑥𝑖 − 𝑥𝑖)2 + (𝑦𝑖 − �̂�𝑖)2]

𝐵

𝑗=0

𝑆2

𝑖=0

 

+𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗 [(√𝑤𝑖 − √�̂�𝑖)

2
+ (√ℎ𝑖 − √ℎ̂𝑖)

2

]

𝐵

𝑗=0

𝑆2

𝑖=0

 

 

(3.4) 

where, 

 𝜆𝑐𝑜𝑜𝑟𝑑: is a weight parameter 

 𝑆2: refers to the number of the grids (𝑆 ×  𝑆). For example, in 13 × 13 grid 

the 𝑆 can take values from 𝑖 = 0,1,2, … ,12.  

 1𝑖𝑗
𝑜𝑏𝑗

: is 1 if an object has been detected in the 𝑗 𝑡ℎ bounding box in cell 𝑖, 

otherwise it is 0. This parameter refers to whether there is an object that falls 

in the 𝑗 𝑡ℎ bounding box of the 𝑖 𝑡ℎ grid cell 

 (�̂�𝑖, �̂�𝑖 , �̂�𝑖, ℎ̂𝑖) refer to the predicted bounding box parameters (center 

coordinates, width and height) 

 (𝑥𝑖, 𝑦𝑖 , 𝑤𝑖 , ℎ𝑖) refer to the center coordinates, width and height of the ground 

truth box 

 ∑ :𝐵
𝑗=0  this sum is calculated for each anchor box (5 in total), where B=5-1=4 

(because the index starts from 0)  

 B: refers to the number of bounding boxes per grid cell. 
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As one can see in the Equation, the square root of the bounding box width and height 

is used in the calculation of the localization loss. This means that small prediction 

deviations from the actual box matter less in large boxes than in small boxes. 

Confidence Loss (IoU error) 

The error associated with the IoU score is calculated by: 

𝐸𝑟𝑟𝑜𝑟𝑖𝑜𝑢 = ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗 (𝑐𝑖 − �̂�𝑖)2

𝐵

𝑗=0

𝑆2

𝑖=0

 

+𝜆𝑛𝑜𝑜𝑏𝑗 ∑ ∑ 1𝑖𝑗
𝑛𝑜𝑜𝑏𝑗 (𝑐𝑖 − �̂�𝑖)2

𝐵

𝑗=0

𝑆2

𝑖=0

 

(3.5) 

where, 

 𝑐𝑖: represents the confidence score. This is a metric that indicates the 

probability that the bounding box predicted by the model actually contains the 

object 

 𝑐�̂̂�: represents the intersection over union of the predicted bounding box with 

the ground truth bounding box. 

 1𝑖𝑗
𝑜𝑏𝑗

: is 1 when an object is detected in the 𝑗 𝑡ℎ bounding box of cell 𝑖, 

otherwise it is 0.  

 1𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

 When there is an object present in the cell the value is 0. When there is 

no object in the cell the value is 1. 

 𝜆𝑛𝑜𝑜𝑏𝑗: equals to 5  

Classification Loss 

𝐸𝑟𝑟𝑜𝑟𝑐𝑙𝑠 = ∑ 1𝑖
𝑜𝑏𝑗 ∑ (𝑝𝑖(𝑐) − �̂�𝑖(𝑐))2

𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑆2

𝑖=𝑜

 (3.6) 

where, 

 1𝑖
𝑜𝑏𝑗

: takes the value of 1 if an object is precent in cell 𝑖, otherwise it is 0 

 �̂�𝑖(𝑐): represents the probability of the object detected in cell 𝑖 to actually 

belong to class 𝑐 

 𝑆2 refers to the number of the grids (𝑆 ×  𝑆) 
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 𝑝𝑖(𝑐): should be 1 if the object in cell i belongs to class c and 0 otherwise. 

The total Loss value of the NN is the sum of classification loss, localization loss and 

confidence loss (see eq.3.3) (Ahmad, et al., 2020) (Gai, et al., 2021). 

𝐿𝑜𝑠𝑠 = 𝐸𝑟𝑟𝑜𝑟𝑐𝑜𝑜𝑟𝑑 + 𝐸𝑟𝑟𝑜𝑟𝑖𝑜𝑢 + 𝐸𝑟𝑟𝑜𝑟𝑐𝑙𝑠

= 𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗 [(𝑥𝑖 − 𝑥𝑖)2 + (𝑦𝑖 − �̂�𝑖)2]

𝐵

𝑗=0

𝑆2

𝑖=0

+ 𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗 [(√𝑤𝑖 − √�̂�𝑖)

2
+ (√ℎ𝑖 − √ℎ̂𝑖)

2

]

𝐵

𝑗=0

𝑆2

𝑖=0

+ ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗 (𝑐𝑖 − �̂�𝑖)2

𝐵

𝑗=0

𝑆2

𝑖=0

+ 𝜆𝑛𝑜𝑜𝑏𝑗 ∑ ∑ 1𝑖𝑗
𝑛𝑜𝑜𝑏𝑗(𝑐𝑖 − �̂�𝑖)2

𝐵

𝑗=0

𝑆2

𝑖=0

+ ∑ 1𝑖
𝑜𝑏𝑗 ∑ (𝑝𝑖(𝑐) − �̂�𝑖(𝑐))2

𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑆2

𝑖=𝑜

 

 

(3.7) 

3.3.4 Mean Average Precision (mAP) 

As mentioned above, this metric is used to evaluate the performance of object 

detection models such as YoloV3, R-CNN and SSD Average Precision (AP).   

Two equations are used in computing AP. One is the precision equation (3.8) and the 

other is the Recall equation (3.9). Precision is a percentual metric to assess how 

accurate the predictions are. Recall is a percentual metric of the number of positive 

predictions made (Gai, et al., 2021). 

Precision= 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3.8) 

 

Recall= 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3.9) 

where, 

 TP represents the true positive (Predicted as positive and was correct) 

 FP represents the false positive (Predicted as positive but was incorrect) 

 FN Represents the false negative (Failed to predict an object that was there) 

3.3.5 Results of training 
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The model described in Section 2.3 was trained using the data described in Section 

3.1. Several training runs were performed using combinations of the datasets of 

Section 3.1. The objective is to optimize training by selecting those parameters that 

result to the best possible validation. 

Thus, image datasets were separated into two subsets: The first contained the images 

used for training and the second the images used for validation. The training subset is 

used to build the model. The validation data are used to evaluate the model using the 

accuracy metric of mean average precision. To assist in distinguishing the datasets 

easily we renamed them as in the following Table. 

Table 3.3 Upgrade names of datasets  

Original names  Upgrade 

names 

Large Dataset CARLA Dataset 

SJTU Small Traffic Light Dataset Clear Dataset 

Combination of Bosch Small Traffic Lights Dataset and Berkley 

DeepDrive Dataset 

Blurred 

Dataset 

 

1st Training exercise 

This exercise uses images from Carla’s simulator (as already discussed in Section 3.1). 

From 1,000 total photos 700 were used for training and 300 for validation. 
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Figure 3.10 shows the results of the training process of the model. The training loss 

refers to the training process that uses the training dataset and mAP  to the validation 

process that uses the validation dataset.  

  

Figure 3.10 Results of Carla dataset (training loss and mAP) 

In the initial iterations, both the training loss (blue line in Fig. 3.10) and the learning 

rate (slope of blue line) are high as expected, since the “trainable” layers of the model 

contain just the initialization weights.  Subsequently, the training loss falls as iterations 

increase. Between 1800 and 6000 iterations, the training loss falls close to zero and 

the mAP increases to 99.5%. This is expected because the photos used in the training 

process contained clear images of traffic lights taken from a close range. The high mAP 

is attributed to the clarity of the images used in the custom dataset. The right image 

follows the left one and shows the training process from 4,000 to 6,000 iterations.  

2nd Training exercise 

The second dataset contained 1,217 clear traffic light images within a generic 

environment that contains also other objects (road elements, signs, vehicles, etc.) 

from the “SJTU Small Traffic Light” dataset. Out of the 1,217 images, 852 images were 

used for training and 365 images were used for validation. 

The mean average precision for this dataset is shown in Fig. 3.11 and came out to be 

38.5%. The mAP value is very low because the number of photos (dataset) is limited.  
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Figure 3.11 Results of training loss and mAP for Clear dataset 

3rd Training exercise 

The third experiment contains 3,455 images out of which 2,419 images are used for 

training and 1,036 images are used for validation. As already discussed in Section 3.1, 

this dataset contains images under various conditions such as day or night etc. and 

many blurred ones.  

The results of this dataset are shown in Figure 3.12. The mAP is 41.7%. The fluctuation 

in mAP may be explained by the fact that some batches contain more blurred pictures 

than the others.  



University of the Aegean                          Department of Financial and Management Engineering 

 

 

[56] 

 

 

Figure 3.12 The training loss and mAP of Blurred dataset 

4th Training exercise 

The fourth experiment contains all the three datasets. In this experiment, the total 

number of images is 5,672 as presented in Table 3.5 : 

Table 3.4 The combination of three datasets 

Datasets All (First+Second+Third) CARLA Clear  Blurred 

Training set (70%) 3971 700 852 2419 

Validation set (30%) 1701 300 365 1036 

Total 5672 1000 1217 3455 

 

The results are shown in Fig. 3.13. The mAP is 70,7%. The drop near the 4000th 

iteration possibly occurs when the code reads batches that contain the blurred 

photographs. This has a negative effect on the final prediction. In this case as well mAP 

fluctuates depending on the images contained in each batch. 
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Figure 3.13 Results of the combination of three datasets 

5th Training exercise 

In this case, the Carla and Clear datasets are used, that is in total, 2,217 images of 

which 1,552 are used for training (700 from the CARLA dataset and 852 the Clear 

dataset). 665 images are used for the validation process (300 from CARLA and 365 

from Clear). 

Table 3.5 Combination of CARLA and Clear datasets 

Datasets First and second CARLA Clear 

Training set (70%) 1552 700 852 

Validation set (30%) 665 300 365 

Sum 2217 1000 1217 
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The results are shown in Fig. 3.14. The mAP is 76.8%. The dataset includes a large 

number of photos and many clear ones. 

 

Figure 3.14 Results of combination of CARLA and Clear datasets 

6th Training exercise 

The sixth experiment contains two datasets: CARLA + Blurred. In this experiment, the 

total number of images is 4,455 as presented in Table 3.7 : 

Table 3.6 Combination of CARLA and Blurred datasets 

Datasets First and 

third 

CARLA Blurred 

Training 

set (70%) 

3119 700 2419 

Validation 

set (30%) 

1336 300 1036 

Sum 4455 100 3455 
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The results of this dataset are shown in Figure 3.15. The mAP is 79,1%. The mAP 

fluctuates, possibly due to the blurred images. 

 

Figure 3.15 Results of combination of CARLA and Blurred datasets 

7th Training exercise 

The final experiment contains two datasets: Clear and Blurred. In this experiment, the 

total number of images is 4,672 as presented in Table 3.8: 

Table 3.7 Combination of Clear and Blurred Datasets 

Datasets Second and third Clear Blurred 

Training set (70%) 3271 852 2419 

Validation set (30%) 1401 365 1036 

Sum 4672 1217 3455 

 

The mean average precision for this dataset is shown in Fig. 3.16 and came out to be 

48,7%. The mAP is very low. 
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Figure 3.16 Results of combination of Clear and Blurred datasets 

Concluding Remarks 

Table 3.9 presents a synopsis of the above experiments. 

Table 3.8 Synopsis of the experiments 

Experiments  Datasets Mean Average Precision (mAP) Average loss 

1 CARLA 99.5% 0.13 

2 Clear 38.5% 0.15 

3 Blurred 41.7%  0.23 

4 CARLA + Clear+ Blurred 70.7%  0.25 

5 CARLA + Clear 76.8% 0.17 

6 CARLA + Blurred 79,1% 0.23 

7 Clear and Blurred 48,7% 0.24 

 

The results in Table 3.9 show that the highest mAP results always include the CARLA 

dataset and thus, the CARLA dataset helps the training process significantly. This is 

because the photographs of the CARLA dataset display traffic lights very clearly. The 

Blurred dataset also helps the training process due to the increased number of images 
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in the dataset. The combination of CARLA and Blurred datasets gives a strong result in 

the training process. 
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Chapter 4 Traffic light state detection: A case study 

 

 

In the previous Chapter we described the NN model and how it has been trained. The 

current Chapter deals with the performance of the trained model and its refinement 

on real-life traffic light photos taken in a general urban environment under various 

conditions.  These photos were frames extracted from videos and contain multiple 

background objects in addition to the traffic lights.  The latter assumed all three states 

(red, green, yellow).  

4.1 Experimental set up 

The images that were used for testing were created from a compilation of small videos 

with a total duration of 77 minutes. These videos were taken by an iPhone camera 

from inside a moving car while driving along a route that contained a high number of 

traffic lights. The images contain scenes with traffic lights, roads and cars and were 

taken in different times of the day. A total of 165 small duration videos were taken as 

part of the experiment and contain the identity and the state of each traffic light. The 

videos were then converted to 2,817 still images which were used as input to the 

model. The total number of traffic lights contained in all videos were 182 (a video may 

contain more than one traffic light in some cases). Of these, 97 videos contain all three 

states of the traffic light (green, red, yellow), whereas 85 videos contain only one 

state, green. This is because it was practically difficult to wait for the traffic light to 

change state due to traffic.  
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Figure 4.1 State of 1st and 2nd from 180 traffic lights 

In Fig. 4.1 the first 3 images show the first traffic light (out of the 180 contained in the 

dataset) in all 3 states and the bottom image shows the second traffic light only in its 

red state, the only one existing in the dataset. This Figure illustrates that some traffic 

lights have been photographed in only one state and some have been photographed 

in all 3.  In total, 305 traffic light and traffic light state combinations were created. 
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4.2 Data processing  

The network architecture of the model used in processing the above photographs is 

the one described in Section 3.3. Concerning the weights, we Table 4.1 shows the 

training sessions used to obtain the alternative weights values used in the case study. 

Table 4.1 Datasets used to obtain alternative weights 

Training session  Dataset used 

1 Carla and clear 

2 Carla and blurred 

3 Carla 

4 Clear and blurred 

 

For tuning the model parameters and processing the test images / photos, we used 

the four steps described below and presented in the code of Fig. 4.2: 

Step 1: The images of the custom dataset are uploaded to a cloud storage space 

(Google Drive) in compressed (.zip) form. This step also uncompresses the images 

from the cloud storage and places them to the darknet/data/obj folder directory. 

Step 2: The physical folder and file location of the images is saved and this step creates 

one text file (txt form), named “test”, which contains the location of all images. 

Step 3: Since it was necessary to adapt the code to our own set of data, some changes 

were made to the .cfg file. As mentioned in Section 3.3, the number of subdivisions 

and the number of batches affect the outcome. In this case the number of batches 

was changed from 64 to 1 and the number of subdivisions from 16 to 1. The reason 

for changing these parameters is to test 2,817 images one by one. The output of the 

model contains the results of the test process (i.e. the recognition of the traffic lights) 

for each image separately.  

Step 4: This step tests the weights from the initial training datasets on the custom data 

and the results are checked for accuracy. The model has been set up for testing and 

the testing process takes around 6-7 minutes for each weight case in each batch. The 

time required for testing the custom model depends on the dataset size and the 
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number of classes (3 in this case). This last step outputs the photos used in the test 

process together with the traffic light recognition results. 

Step 1: 

!mkdir data/obj/test 

!unzip /content/gdrive/MyDrive/yolov3/test.zip -d data/obj/test 

 
Step 2: 

import glob  

images_list = glob.glob("/content/gdrive/MyDrive/yolov3/darknet/

data/obj/test/*.jpg") 

with open("data/test.txt", "w") as f: 

    f.write("\n".join(images_list)) 

Step 3:  

%cd cfg 

!sed -i 's/batch=64/batch=1/' yolov3_training.cfg 

!sed -i 's/subdivisions=16/subdivisions=1/' yolov3_training.cfg 

%cd .. 

 

Step 4:  

!./darknet detector test data/obj.data cfg/yolov3_training.cfg /

content/gdrive/MyDrive/yolov3/weights/Carla_and_blurred_images/y

olov3_training_final.weights -

dont_show < /content/gdrive/MyDrive/yolov3/darknet/data/valid.tx

t > result.txt 

 

Figure 4.2 Test data processing 

4.3 Results of the Neural Network Model  

The results of processing the photographs of the Thessaloniki dataset by the model 

were classified into three categories (True predictions, False predictions, No 

predictions). 

Table 4.2 shows the predictions made by each of the four models. 

Table 4.2 Results of predictions 

weights True Prediction False Prediction No prediction 

Carla and clear (pictures) 1,261 203 1,353 

percentage 45% 7% 48% 

Carla and blurred (pictures) 1,706 135 976 

percentage 61% 5% 34% 

Carla (pictures) 952 84 1,781 
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percentage 34% 3% 63% 

Clear and blurred (pictures) 1,712 78 1,027 

percentage 61% 3% 36% 
 

max 61% 7% 64% 

 

As shown in the Table above, not all weights performed well. Many of the False or No 

predictions were encountered in the sets containing the photographs taken in low 

light conditions (evening/night). In these cases, the model confuses the traffic lights 

with the stop lights of the vehicles in the photo. An example of this is shown in Figure 

4.3. In the photo on the left there are traffic lights which were not identified and in 

the photo on the right, no traffic lights were identified.  In both cases the model is 

confused by the car rear lights. 

  

Figure 4.3 False prediction results 

The highest percentage (61%) in True Predictions correspond to the weights of “Carla 

and Blurred” and “Clear and Blurred” datasets. Τhis is because the weights were 

determined using a large number of photographs. In the case of “Carla and Blurred” 

the Carla images were from simulated traffic lights.  This may be the reason why the 
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percentage of False Predictions (5%) is higher. On the other hand, the “Clear and 

Blurred” dataset contains multiple real-life photographs in various conditions taken 

from various distances and the False Predictions are lower.  Furthermore, the photos 

also contained other objects such as cars, road, etc. In this respect, the “Clear and 

Blurred” dataset fits well to the Thessaloniki dataset and that's why its weights are 

able to make the best predictions and object detection in the test photographs.  

In general, however, the results have a low percentage of True Predictions.  This is 

attributed mostly to the low number of images in the datasets used to train the model. 

4.4 Improving the Results of the Neural Network Model 

We used a simple idea in order to improve the results of the model: 

- Consider a combination of a traffic light and its state for which we had multiple 

photos.  For each photo the model recognized one of the three possible states, 

or did not recognize any state 

- The state attributed to this combination of traffic light - state results from the 

majority between the above recognitions, ignoring the No Predictions. 

That is, if we had 6 photos for such a combination, in 4 of which a red signal was 

recognized, in 1 photo a green signal was recognized, and in 1 no signal/state was 

recognized, then the state attributed to the combination was red.  Consider another 

example with 5 photos: 2 green, 1, yellow, 3 No recognition.  The state attributed was 

green.  In the event of a tie, the state was labelled as inconclusive. 
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Figure 4.4 States of 10th Traffic light 

 

Consider the traffic light of Figure 4.4, which is contained in multiple video frames (33 

video frames). Out of all these video frames 4 frames were taken in the green state, 

28 were taken in the red state and was taken in the yellow state. 

- Out of the 4 photos of the green state, the 2 photos were indeed detected by 

the model as green (True Prediction) but the other 2 were detected as red 

(False Prediction). So, this traffic light-state prediction was classified as 

Inconclusive. 

- Out of the 28 red state photos, 7 photos were not detected by the model (No 

Prediction) and these were excluded from the majority calculation. 

Consequently, the traffic light was categorized based on the majority of the 

remaining photos. 21 the remaining photos with recognized as red. Thus, the 

prediction for this traffic light was classified under the True Predictions 

category. 

Table 4.3 shows the percentage of predictions of traffic light-state combinations of 

the two best models. 
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Table 4.3 Improvement method results 

trained weights  True Prediction  False Prediction  No prediction  Inconclusive 

Carla and blurred 239 13 52 1 

 (%) 78% 4% 17% 0% 

Clear and blurred 237 13 50 5 

 (%) 78% 4% 16% 2% 

 

As shown in Table 4.3, the models with weights from the Carla and blurred dataset 

predict the correct outcome with 78% accuracy (True prediction), predict an incorrect 

state in 4% of the cases and cannot predict a state in 17% of the cases. On the other 

hand, the weights from the “Clear and Blurred” dataset predict the correct outcome 

with 78% accuracy (True prediction), predict incorrectly a state in 4% of the cases and 

cannot predict a state in 16% of the cases. These results demonstrate that  

- The refinement method improves the True Prediction percentages significantly 

from 61% to 78%.  This is due to the fact that the majority rule reduces 

significantly the No Prediction percentage 

- Both models perform equally well in the case of traffic light-state predictions. 

4.5 Conclusion  

A high-accuracy and real-time object detection algorithm is part of the safety and real-

time control systems  of autonomous vehicles. Various studies focus on safety of 

autonomous driving and describe models which provide satisfactory -but not perfect- 

predictions This is due to the trade-off between accuracy and the model’s operational 

speed. For this reason, this study proposes an object detection algorithm (Darknet-

53+YOLOv3) that achieves a reasonable trade-off between accuracy and operational 

speed when trained in specific datasets. A high rate (78%) of traffic light states were 

correctly predicted and only 5% of the states were predicted incorrectly. To this effect, 

the Datknet-53+YOLOv3 algorithm combined with the majority rule may significantly 

improve detection and accuracy.  
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Chapter 5 Conclusions  

 

 

We propose an accurate and effective model that can detect traffic lights and their 

states in real-time. Such a model can be practically used in systems that control 

autonomous vehicles. The implementation is based on the Darknet-53+YOLOv3 

model. Two main processes are analyzed: the training process which “trains” the 

model to detect the traffic lights using existing image datasets, and the testing process 

which tests the effectiveness of the model in detecting traffic light states in images 

collected from numerous traffic lights of Thessaloniki. 

For the training process we used three image datasets and combinations of them. 

During this process, we conducted experiments for each dataset and each 

combination and compared the detection accuracy of the model and its resulting 

weights. The image dataset which proved to be the best for training the model was a 

combination that contains a) clear photographs of traffic lights taken from a close 

distance, b) clear photographs of traffic lights within a general environment, and c) 

blurred photographs of traffic lights taken from a distance under various light 

conditions, in the presence of objects that resemble (but are not) traffic lights. In 

addition, as expected, the volume of the images in the dataset and the light condition 

in which the photographs were captured , influence the results of the process. The 

results of the training process show that the highest mAP results always include the 

CARLA dataset and thus, the CARLA dataset helps the training process significantly. 

For the test process we used a custom image dataset that was created by the author 

and contains photographs of multiple traffic lights (under various states) taken from 

Thessaloniki streets. Τhe test was performed using the most appropriate Neural 

Network weights that were obtained during the training process of the model.  

The testing results indicated a 61% percentage of true predictions, with 3% false 

predictions and 36% no predictions.  Using a simple post-processing step that is based 

on the majority of predictions among multiple photographs of a certain traffic light 
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and state, the no prediction percentage fell significantly to 16%, while the true 

prediction accuracy was improved to 78%. 

As a result, the proposed approach can significantly improve the camera-based object 

detection system in autonomous vehicles. This technique of traffic lights detection can 

serve as a prototype for future development.   

Recommendations for future work include the following: 

 Utilize different networks (except Darknet-53) to be used in conjunction with 

YOLOv3 for object detection (for example, Darknet19, Resnet 101, etc.)  

 Use different models (except YOLOv3) for object localization (e.g. R-CNN, 

Faster R-CNN, SSD, etc.) 

 Increase the number of images in the training process 

 Experiment with different parameters of the model (through the configuration 

file) 

 Apply other pre-trained weights from other datasets include different pictures 
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Appendix A. Learning in MLP networks 
A.1.1 Preamble 

This appendix presents every simple example of the about analysis. Its purpose is a 

perception of understanding the networks. This is a short but substantial tutorial that 

illustrates how backpropagation works in Multilayer Perception (MLP) Neural Network 

training. The material is taken from several scientific articles (see also references at 

the end of this document). We also use a practical example from the Coursera 

machine learning course/week 5 to explain the logic behind NN training. 

Furthermore, in order to get hands-on validation of all the relationships that support 

NN training (and are derived below), Appendix A.2 presents and derives these 

relationships for a much simpler (theoretical) example. 

The tutorial is structured as follows: 

1. Outline of the NN structure 

2. The feedforward operation during training 

3. Cost function for NN training 

4. Gradients of the cost function 

5. Backpropagation 

6. The training algorithm 

A.1.2 The MLP architecture 

Figure A.1 represents the NN structure in the above practical  of Coursera (Machine 

Learning, Week 5 programming exercise).  In this example, the input is a picture 

(image) of a handwritten digit (0 to 9) of size 20x20 pixels and the output is the number 

represented in the picture. The Figure A.1 presents a shallow network, however used 

to better understand this analysis of neural networks.  
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Figure A. 1 Neural network model of the example 

The neural network has 3 layers: 

 Input_layer_size  = 400 (20x20 input pixel values of digit image) - We increase 

the input layer by one element 𝑎0
(1)

 in order for the matrix multiplication that 

provides the output of the first layer to contain the addition of the bias.  Thus, 

the input layer size becomes 401. 

 Hidden_layer_size = 25 (hidden units) 

 Output layer size = 10 (output units) – The output vector contains the value of 

1 in the appropriate vector element (that corresponds to the digit value) and 

the value  0 in all other vector elements 

 Number of labels K = 10 ( labels from 1 to 10) 

Dimensions of the 𝛩 matrices (weighting matrices) 𝑧 and 𝑎  (for the  image above) : 

 Θ(1) is of size (25, 401), (the first column contains the bias elements) 

 a(1) is of size  (1,401)  

 z(2) is of size (1,25) 

 a(2) is of size (1,26) (be adding the bias) 

 Θ(2) is of size (10, 26) (the first column contains the bias elements) 

Input Layer Hidden Layer Output Layer 

a(1) = x 

(add a0
(1)

) 

z(2) = α(1)Θ(1)T 

a(2) = σ(z(2)) 

(add a0
(2)

) 

z(3) = α(2)Θ(2)T 

a(3) = σ(z(3)) = hθ(x) 
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 z(3) is of size (1,10) 

 a(3) is of size (1,10) 

 hθ(x)= a(3) of size (1,10) agai 

A.1.3 The feedforward operation during training 

Consider the following training set: 

 5000 training samples (training set of 5000 images of handwritten digits, each 

comprising 20x20 pixels) 

 The 20 by 20 grid of pixels is “unrolled” into a 400-dimensional row vector 

 𝑥 is a matrix of 5000 number images of dimension (5000, 400) each image 

occupies a row of the matrix 

 𝑦 is a matrix, each row of which represents the actual value of the 

corresponding sample digit.  The dimension is (5000, 10) and the elements of 

a row are all 0 except of the element corresponding to the actual value, which 

is equal to 1. 

 

The training data will be loaded into the variables 𝑥 and 𝑦 (by the ex4.m script in our 

example). 

In this case (for the entire training set): 

 

 a(1) = x, of size (5000, 400+1) 

 z(2) = α(1)Θ(1)T, of size (5000, 25)  

 a(2) = σ(z(2)), of size (5000, 25+1) 

 z(3) = α(2)Θ(2)T, of size (5000,10)  

Note:  *We exclude the first row from  𝛩(2)𝑇  and 𝛩(1)𝑇,  and the bias units are not 

included when the exercise run in Octave for reduction reasons. So 𝑎(2) is a (5000,25) 

matrix and 𝛩(2)𝑇 is a (25,10) matrix and we can multiply them to find 𝑧(3). We are 

using  the same mathematics to compute  𝑎(1) 𝑎𝑛𝑑  𝛩(1)𝑇. 

a(3) = σ(z(3)) = hθ(x), of size (5000, 10) 

Note: ** 𝜎 is the Sigmoid function with a range values between (0,1). 
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A.1.4 The cost function for NN training 

Let us start with the case of a NN with a single output  

In this case, the single output NN classifies whether the input 𝑥 belongs to a single 

class (value = 1) or not (value = 0). 

In this case, let the output for the i-th training sample be ℎ𝜃(𝑥(𝑖)) and the true answer 

for that sample be 𝑦(𝑖). Then the cost function will represent the sum of the errors, 

that is, the difference between the predicted value and the real (labeled) value. 

J(θ) =
1

m
∑ Cost(

m

i=1

hθ(x(i)), y(i)) (A.1) 

Where e.g. 𝑚 = 5000 is the number of training samples. 

Our goal is to minimize the cost function by finding min J(θ). Note that the Sigmoid 

function is a “non-convex” function which means that there are multiple local 

minimums. So it’s not guaranteed to converge  (find) the global minimum. What we 

need is a “convex” function in order for the gradient descent algorithm to find the 

global minimum (minimize J(θ)). In order to do that we use the following log function. 

 

Figure A. 2 Cost function (convex&non-convex) 

 

Cost(hθ(x), y) = {
−ylog(hθ(x))      if y = 1

−(1 − y)log(1 − hθ(x))  if y = 0
 

 

 

 

(A.2) 

Note that 

 if y = hθ(x) = 1, then the cost is zero, since log(1) = 0 

 if y = 1 and hθ(x) = 0, then the cost is ∞, since log(0) = −∞ 
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Similarly 

 if y = hθ(x) = 0, then the cost is zero, since log(1) = 0 

 if y = 0 and hθ(x) = 1, then the cost is ∞, since log(0) = −∞ 

Since y (labeled value) is either 0 or 1 we can write the cost function in one equation. 

Cost(hθ(x), y) = −ylog(hθ(x)) − (1 − y)log(1 − hθ(x)) (A.3) 

For the m training samples, the cost function for this single output NN becomes 

J(θ) =
1

m
∑ −y(i)log (hθ(x(i))) − (1 − y(i))log(1 − hθ(x(i)))

m

i=1

 
 

(A.4) 

 

To illustrate that the cost function is a convex function we plot a simple example using 

python.  Consider that the input y(i) = 1. Then 

J(θ) =
1

m
∑ −y(i)log (hθ(x(i)))m

i=1  (A.5) 

 

As we already know  a(3) = σ(z(3)) = hθ(x).   Let hθ(x(i)) ∈ [0,1] increasing from zero 

to 1 by 0.1 in every iteration of the numerical example.  Then, J(θ) has the convex 

form of Fig. A.2, which is hardly surprising given its logarithmic nature. This applies 

only to logistic regression i.e. a neural network with no hidden layers.  

 

Figure A. 3 The convex shape of a simple instance of the cost function 
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This is the same result presented on the machine learning lectures (week 5, Coursera) 

– see below.    

 

Figure A. 4 Convex between ℎ𝜃(𝑥) and Cost(J) if y=1. 

The cost function of Eq. (A.4) does not include regularization.  Note that in our 

example, the number of elements of the 𝛩 matrices is over 10,000 and the number of 

training samples is just 5,000, which means that theoretically we have more than 

adequate parameters to obtain a value of 0 for J(θ) (consider a system with 10,000 

unknowns, the elements of 𝛩 and 5,000 equations) that may result to overfitting. In 

order to address this overfitting risk, we reduce the magnitude/values of θ (making 

many of them to be 0) by introducing a penalty term as below. 

J(θ) = −
1

m
∑[y(i)log(hθ(x(i))) + (1 − y(i))log(1 − hθ(x(i)))] +

λ

2m
∑ θj

2

n

j=1

m

i=1

 
 

(A.6) 

Equation (A.6) represents the regularized cost function. 

Let’s move now to our example that has multiple outputs 

If we generalize the above for multiple NN output nodes (multiclass classification) 

what we get is: 

 

 

 

 

 

 

 

      0                                                   1 

 
If y=1 
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J(θ) =
1

m
∑ ∑ [−yk

(i)
log(hθ(x(i))k) – (1 − yk

(i)
)log(1 − hθ(x(i))k)]

K=10

k=1

m=5000

i=1

+
λ

2m
[∑ ∑(θj,n

(1)
)2

400

n=1

+ ∑ ∑(θj,n
(2)

)2

25

n=1

10

j=1

25

j=1

] 

 

 

(A.7) 

 

where in our example 𝐾 = 10 is the number of outputs/labels and m= 5000 is the 

number of training samples, λ is the regularization factor,  hθ(x) ∈ RK and (hθ(x(i))k 

is the value of the k-th output for the i-th training sample. 

A.1.5 Gradient of the cost function (without regularization) 

Gradient descent is an optimization algorithm used to minimize our cost function. In 

general, it is used to find the values of the parameters that optimize a non-linear 

objective function. 

In machine learning, specifically, we use gradient descent to determine 

the parameters of our NN model during training. Note that the non-linear 

optimization problem we deal with is relatively straightforward, since it does not 

involve any constraints (just the objective function). We can think of the gradient as 

the slope of the function. The higher the gradient, the steeper the slope and the faster 

a model can learn (determine the appropriate values for its parameters). If the slope 

is zero, the model stops learning. 

Given a training set, the cost function 𝐽(𝜃) depends strictly on the values of ΝΝ 

parameters,  the weights  𝛩(1)and 𝛩(2). Thus, in our example training of the NN is the 

process of determining the values of 𝜃 that drive the value of the cost function of 

Section A.1.4 to its minimum.  We should start the process by setting initial values of 

the parameters, and gradient descent will iteratively adjust these values to minimize 

the cost-function based on the following relationship:  

θj+1 =  θj − a∇J(θj) (A.8) 

where:  θj+1 is the value of the next iteration 

                θj  is the value of the current iteration 

                α  is the step along the gradient  

https://ml-cheatsheet.readthedocs.io/en/latest/glossary.html#glossary-parameters
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                ∇J(θj )  is the gradient, i.e., the vector of partial derivatives of J with respect 

to each parameter of 𝜃 at point θj.   It is simply the direction of the steepest slope of 

the function at this point. 

Concerning step α (or learning rate), it must be set to an appropriate value, which is 

neither too low nor too high. This is important because if the steps are excessively 

long, the algorithm may overshoot the minimum. If the learning rate is too low, the 

process may take excessive time to reach the local minimum, or it may never reach it 

due to excessively slow convergence. 

The values of θ that correspond to the minimum are the final values of the NN 

parameters to be used thereafter and the NN has been trained. Thus, in order to 

determine the minimum of the cost function and the values of θ that correspond to 

this minimum, the most computationally intensive task is to determine ∇J(θj) at each 

iteration j.  

This is achieved by backpropagation, which uses the output of NN (h), compares it to 

the real value (y) and derives the error (δ). The errors for each layer can be used to 

calculate the partial derivatives. In our example, starting from the final layer L = 3, 

backpropagation attempts to define the error value δk
(L)

 where k is the node and L is 

the layer.  

In order to define the gradient of the cost function with respect to the parameters θ, 

we will start from the single output NN and we will generalize to the K output NN.  In 

both cases we will start from the last layer. 

A.1.5.1  Single output NN 

 

Consider the following network 
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Dimensions of the Θ matrices (weighting matrices) z and a  (for the image above): 

 Θ(1) is of size (25, 401), (the first column contains the bias elements). 

 a(1) is of size  (1,401)  

 z(2) is of size (1,25) 

 a(2) is of size (1,26)(be adding bias) 

 Θ(2) is of size (1, 26) (the first column contains the bias elements) 

 z(3) is of size (1,1) 

 a(3) is of size (1,1) 

 hθ(x)= a(3)is of size (1,1) 

 

In this case (for the entire training set): 

 a(1) = x, of size (5000, 400+1) 

 z(2) = α(1)Θ(1)T, of size (5000, 25)  

 a(2) = σ(z(2)), of size (5000, 25+1) 

 z(3) = α(2)Θ(2)T, of size (5000,1)  

Note:  The first row of the 𝛩(2)𝑇  and 𝛩(1)𝑇 matrices contain the bias elements. We can 

exclude this row without affecting our results. Additionally, this will reduce the data 

and make them easier to compute. As a result, 𝑎(2) is a (5000,25) matrix, 𝛩(2)𝑇 is a 

a(1) = x 

(add a0
(1)

) 

z(2) = α(1)Θ(1)T 

a(2) = σ(z(2)) 

(add a0
(2)

) 

z(3) = α(2)Θ(2)T 

a(3) = σ(z(3)) = hθ(x) 
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(25,1) matrix and are multiplied to compute 𝑧(3). We are using the similar operations 

to compute  𝑧(2) from 𝑎(1) and  𝛩(1)𝑇. 

 

As we have already mentioned and analyzed above, the cost function for a single 

output NN is:   

J(θ) = −
1

m
∑[y(i)log(hθ(x(i))) + (1 − y(i))log(1 − hθ(x(i)))]

m

i=1

 

 We can compute the gradient ∇𝐽(𝜃) from the chain rule 

∇J(θ) =
∂J(θ)

∂θ
=

∂J

∂α

∂α

∂z

∂z

∂θ
 

We will now focus on the third layer to determine the partial derivatives with 

respect to elements 𝛩𝑗
(2)

 of Θ(2), 𝑗 = 1, … ,25 

∂J(θ)

∂𝛩𝑗
(2)

= −
1

𝑚
∑

∂[y(i)log (hθ(x(i))) + (1 − y(i))log (1 − hθ(x(i)))]

∂𝛩𝑗
(2)

𝑚

𝑖=1

 

 

=
1

𝑚
∑

d[−y(i) log (hθ(x(i))) − (1 − y(i))log (1 − hθ(x(i)))]

da(3)(i)

da(3)(i)

dz(3)(𝑖)

∂z(3)(𝑖)

∂𝛩𝑗
(2)

𝑚

𝑖=1

 

=
1

𝑚
∑

d𝐽𝑖

da(3)((i)

da(3)(i)

dz(3)(𝑖)

∂z(3)(𝑖)

∂𝛩
𝑗

(2)

𝑚

𝑖=1

 

where the notation 
d𝐽𝑖

da(3)((i) represents the derivative 
d𝐽

da(3) evaluated using the values 

of the (i)-th training instance.  The same notation is used for 
da(3)(i)

dz(3)(𝑖), and 
∂z(3)(𝑖)

∂𝛩𝑗
(2) . 
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d�̂�

da(3)
=

d�̂�

dhθ(x)
=

d

dhθ(x)
[(−ylog(hθ(x)) − (1 − y)log(1 − hθ(x))]

= −
y

hθ(x)
+

1 − y

1 − hθ(x)
= −

y

a(3)
+

1 − y

1 − a(3)
 

Thus 

d�̂�𝑖

da(3)(i)
= −

y(i)

a(3)(i)
+

1 − y(i)

1 − a(3)(i)
 

 

 

 

 

 

(A.9) 

da(3)

dz(3)
=

d

dz(3)

1

1 + e−z(3) =
d

dz(3)
(1 + e−z(3) )

−1

= − (1 + e−z(3)
)

−2

(−e−z(3)
) 

=
e−z(3) 

(1 + e−z(3)
)

−2 =  
1

1 + e−z(3) (1 −
1

1 + e−z(3)) = σ(z(3)) (1 − σ(z(3)))

= a(3)(1 − a(3)) 

𝑆𝑜 ,    
da(3)(𝑖)

dz(3)(𝑖)
= a(3)(𝑖)(1 − a(3)(𝑖)) 

 

 

 

(A.10) 

∂z(3)

∂𝛩𝑗
(2)

=
∂

∂𝛩𝑗
(2)

(a(2)Θ(2)Τ) = a𝑗
(2)

→
∂z(3)(i)

∂𝛩𝑗
(2)

= a𝑗
(2)(𝑖)

 

 

 

 

(A.11) 

Combining the above for the output layer: 

∂J(θ)

∂𝛩𝑗
(2)

=
1

m
∑ (−

y(i)

a(3)(i)
+

1 − y(i)

1 − a(3)(i)
)

m

i=1

a(3)(i)(1 − a(3)(i))a𝑗
(2)(𝑖)

 

=  
1

m
∑(a(3)(i) − y(i))

m

i=1

a𝑗
(2)(𝑖) 

∂J(θ)

∂𝛩𝑗
(2)

=
1

m
∑ δ(3)(i)

m

i=1

a𝑗
(2)(i)

 

 

 

 

 

(A.12) 

where δ(3)(i) = a(3)(i) − y(i) = hθ(x(i)) − y(i) is a (1,1) vector of the error for training 

instance 𝑖. Moreover, we can combine the results of Eq. (12) for all  𝑗 = 1, … ,25 to 

obtain  
∂J(θ)

Θ(2) , an (1,25) vector. 

A.1.5.2  Multiple output NN 
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We will now generalize to the K output NN.  Again, from the chain rule 

∂J(θ)

∂θ
=

∂J

∂α

∂α

∂z

∂z

∂θ
 

Let’s focus on the third layer as before 

∂J(θ)

∂𝛩𝑘𝑗
(2)

=
1

𝑚
∑

∂[−𝑦𝑘
(𝑖)

log(hθ(x(i))k) − (1 − 𝑦𝑘
(𝑖)

)log (1 − hθ(x(i))k)]

∂𝛩𝑘𝑗
(2)

𝑚

𝑖=1

 

=
1

𝑚
∑

d[− 𝑦𝑘
(𝑖)

log(hθ(x(i))k) − (1 − y(i))log (1 − hθ(x(i))k))]

da𝑘
(3)(𝑖)

da𝑘
(3)(𝑖)

dz𝑘
(3)(𝑖)

∂z𝑘
(3)(𝑖)

∂𝛩𝑘𝑗
(2)

𝑚

𝑖=1

 

=
1

𝑚
∑

d𝐽𝑘𝑖

da𝑘
(3)(𝑖)

da𝑘
(3)(𝑖)

dz𝑘
(3)(𝑖)

∂z𝑘
(3)(𝑖)

∂𝛩𝑘𝑗
(2)

𝑚

𝑖=1

 

(A.13) 

  

where again the notation 
d𝐽𝑘𝑖

da
𝑘
(3)(𝑖) represents the derivative 

d𝐽𝑘

da
𝑘
(3) evaluated using the 

values of the (i)-th training instance.  The same notation is used for 
da𝑘

(3)(𝑖)

dz
𝑘
(3)(𝑖), and 

∂z𝑘
(3)(𝑖)

∂𝛩𝑘𝑗
(2)  

In the first row of Eq. (A.13) the summation  ∑  𝐾
𝑘=1  of the cost function J(θ) does not 

appear, since 
∂[−𝑦𝑛

(𝑖)
log(hθ(x(i))n)−(1−𝑦𝑛

(𝑖)
)log (1−hθ(x(i))n)]

∂𝛩𝑘𝑗
(2)   is zero if 𝑛 ≠ 𝑘.  

d�̂�𝑘

da𝑘

(3)
=

d�̂�𝑘

dhθ(x)
k

=
d

dhθ(x)
k

[−𝑦
𝑘

log(hθ(x)k) − (1 − 𝑦
𝑘
)log (1 − hθ(x)k)]

= −
𝑦

𝑘

hθ(x)k

+
1 − 𝑦

𝑘

1 − hθ(x)k

= −
𝑦

𝑘

a𝑘

(3)
+

1 − 𝑦
𝑘

1 − a𝑘

(3)
 

Thus 

d�̂�𝑘𝑖

da𝑘

(3)(𝑖)
= −

𝑦
𝑘

(𝑖)

a𝑘

(3)(𝑖)
+

1 − 𝑦
𝑘

(𝑖)

1 − a𝑘

(3)(𝑖)
 

 

 

 

 

 

 

 

 

(A.14) 

From Eq. (A.10) 

da𝑘
(3)(𝑖)

dz𝑘

(3)(𝑖)
= a𝑘

(3)(𝑖)
(1 − a𝑘

(3)(𝑖)
) 

 

 

(A.15) 
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Furthermore 

∂z𝑘
(3)

∂𝛩𝑘𝑗
(2)

=
∂

∂𝛩𝑘𝑗
(2)

(a(2)Θ(2)Τ) = a𝑘𝑗
(2)

→
∂z𝑘

(3)(𝑖)

∂𝛩𝑘𝑗
(2)

= a𝑗
(2)(𝑖)

 

 

 

 

(A.16) 

Combining the above for the output layer: 

∂J(θ)

∂𝛩𝑘𝑗
(2)

=
1

𝑚
∑ (−

𝑦𝑘
(𝑖)

a𝑘
(3)(𝑖)

+
1 − 𝑦𝑘

(𝑖)

1 − a𝑘
(3)(𝑖)

) a𝑘
(3)(𝑖)

(1 − a𝑘
(3)(𝑖)

)a𝑗
(2)(𝑖)

𝑚

𝑖=1

=
1

𝑚
∑(a𝑘

(3)(𝑖)
− 𝑦𝑘

(𝑖)
)a𝑗

(2)(𝑖)

𝑚

𝑖=1

 

 

 

∂J(θ)

∂𝛩𝑘𝑗
(2)

=
1

𝑚
∑ 𝛿𝑘

(3)(𝑖)
a𝑗

(2)(𝑖)

𝑚

𝑖=1

 

 

 

 

 

(A.17) 

with  𝛿𝑘
(3)(𝑖)

= a𝑘
(3)(𝑖)

− 𝑦𝑘
(𝑖)

= hθ(x(i))k − 𝑦𝑘
(𝑖)

 is the error of output 𝑘 = 1, … ,10 for 

training instance 𝑖. Moreover, we can combine the results of Eq. (A.17) for all 𝑘 =

1, … ,10 ,  𝑗 = 1, … ,25 to obtain  
∂J(θ)

Θ(2) , an (1,250) vector. 

A.1.5.3  Gradient for all NN layers 

Following the same process as in Sections A.5.1 and A.5.2, one can obtain 

For the single output NN and for the output layer L 

∂J(θ)

∂𝛩𝑗
(𝐿−1)

=
1

m
∑ δ(𝐿)(i)

m

i=1

a𝑗
(𝐿−1)(i)

 
(A.18) 

 

For all the other layers (𝑙) of the single output NN and for all layers (𝑙 = 1, … 𝐿) of the 

multiple output NN 
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∂J(θ)

∂𝛩𝑘𝑗
(𝑙)

=
1

𝑚
∑ 𝛿𝑘

(𝑙+1)(𝑖)
a𝑗

(𝑙)(𝑖)

𝑚

𝑖=1

 
(A.19) 

 

Depending on the case, using Eq. (A.18) or (A.19) we may compute the entire gradient 

vector ∇𝐽(𝜃) from the outputs of the NN a𝑗
(𝑙)(𝑖)

 (from forward propagation) provided 

we know the errors 𝛿𝑘
(𝑙+1)(𝑖)

.  The errors are known only for the last layer 𝑙 = 𝐿, i.e. 

𝛿𝑘
(𝐿)(𝑖)

= ak
(3)(i)

− yk
(𝑖), again from forward propagation. For 𝑙 < 𝐿, the errors 𝛿𝑘

(𝑙)(𝑖)
 

are obtained from back propagation as discussed below.  

A.1.6 Backpropagation 

Let’s now compute the errors δ involved in Eq. (A.18) or (A.19) that provide the 

gradients of the cost function for label 𝑘 and layer 𝑙.  For simplicity, we will again use 

our example with the three layers. 

A.1.6.1  Errors of layer 𝑳 = 𝟑 

As we have discussed above, the error for the final layer (in our example layer 3) for 

output 𝑘 = 1, … , 𝐾 = 10 is determined using forward propagation by 

 

δk
(3)

= ak
(3)

− y
k
  

or for each training instance i 

δk
(3)(i)

= ak

(3)(i)
− y

k

(i)
 (A.20) 

and may be obtained directly from forward propagation by subtracting the actual 

value yk
(i)

 of output k of instance i from the NN output ak

(3)(i)
 of label k of instance i. 

A.1.6.2  Errors of layer l = 𝟐 

Consider the single output NN. We use the following notation: 

J(θ) =
1

𝑚
∑[−y(i) log (hθ(x(i))) − (1 − y(i)) log (1 − hθ(x(i))) =

1

𝑚
∑ 𝐽𝑖

𝑚

𝑖=1

𝑚

𝑖=1

 

Without proof the following holds: 
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δj
(2)(i)

=
∂�̂�(𝜃)

𝑖

∂z𝑗

(2)(𝑖)
 

(A.21) 

Where 
∂𝐽(𝜃)𝑖

∂z
𝑗
(2)(𝑖) is the value of the derivative of 

∂𝐽(𝜃)

∂z𝑗
(2)  for training instance i.  We will 

evaluate this derivative for instance i. 

 

∂�̂�(𝜃)
𝑖

∂z𝑗

(2)(𝑖)
=

∂[−y
(i) log (hθ(x(i))) − (1 − y(i))log (1 − hθ(x(i)))]

∂𝑧𝑗

(2)(𝑖)
 

=
d[−y(i) log (hθ(x(i))) − (1 − y(i))log (1 − hθ(x(i)))]

da(3)

da(3)(i)

dz(3)(𝑖)

∂z(3)(𝑖)

∂a𝑗

(2)(𝑖)

da𝑗
(2)(𝑖)

dz𝑗

(2)(𝑖)
 

(A.22) 

 From Eq. (A.9) 

d[−y(i) log (hθ(x(i))) − (1 − y(i))log (1 − hθ(x(i)))]

da(3)(i)
= −

y(i)

a(3)(i)
+

1 − y(i)

1 − a(3)(i)
 

From Eq. (A.10) 

da(3)(i)

dz(3)(𝑖)
= a(3)(𝑖)(1 − a(3)(𝑖)) 

∂z(3)(𝑖)

∂a𝑗

(2)(𝑖)
=

∂[α(2)(i)Θ(2)Τ]

∂a𝑗

(2)(𝑖)
= 𝛩𝑗

(2)
 

with Θj
(2)

the j − th element of Θ(2).  In the single output NN, Θ(2) is a row vector, 

e.g. (1,25). 

Finally 

da𝑗
(2)(𝑖)

dz
𝑗

(2)(𝑖)
= a𝑗

(2)(𝑖)
(1 − a𝑗

(2)(𝑖)
) 

Combining the above we obtain  

∂�̂�(𝜃)
𝑖

∂z𝑗

(2)(𝑖)
= (−

y(i)

a(3)(i)
+

1 − y(i)

1 − a(3)(i)
) a(3)(𝑖)(1 − a(3)(𝑖))𝛩𝑗

(2)
a𝑗

(2)(𝑖)(1 − a𝑗
(2)(𝑖))

= 𝛿
(3)(𝑖)

𝛩𝑗
(2)

[a
𝑗

(2)(𝑖)
(1 − a𝑗

(2)(𝑖)
)] 
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That is, 

∂�̂�(𝜃)
𝑖

∂z𝑗

(2)(𝑖)
= 𝛿 

(3)(𝑖)𝛩𝑗
(2)

a𝑗
(2)(𝑖)

(1 − a𝑗
(2)(𝑖)

) = δj
(2)(i)

 
(A.23) 

The last equality coming from Eq. (A.21).  Now if we consider 

∂𝐽(𝜃)𝑖

∂z(2)(𝑖)
= (

∂𝐽(𝜃)𝑖

∂𝑧1

(2)(𝑖)
, … ,

∂𝐽(𝜃)𝑖

∂𝑧𝑗

(2)(𝑖)
, … ) 

then 

∂�̂�(𝜃)
𝑖

∂z(2)(𝑖)
= (δ(3)(𝑖)Θ(2)).∗ (a(2)(𝑖).∗ (1 − α(2)(𝑖))) 

(A.24) 

 

where the symbol (.*) represents the element-wise multiplication  of two matrices 

(vectors in this particular case). 

Then from Eq. (A.21) 

δ(2)(𝑖) =
∂�̂�(𝜃)

𝑖

∂z𝑗

(2)(𝑖)
= (δ(3)(𝑖)Θ(2)).∗ (a(2)(𝑖).∗ (1 − α(2)(𝑖))) 

(A.25) 

 

Now consider the multiple output NN 

With similar arguments we obtain the following equation:  

δ(2)(𝑖) = (δ(3)(𝑖)Θ(2)).∗ (a(2)(𝑖).∗ (1 − α(2)(𝑖))) (A.26) 

 

A.1.6.3  Errors of layer 𝒍 

Now let us generalize to error 𝛿(𝑙)  for layer 𝑙 < 𝐿  in terms of the error 𝛿(𝑙+1)  of layer 

𝑙 + 1  

                                 

𝛿(𝑙)(𝑖) = (δ(𝑙+1)(𝑖)Θ(𝑙)).∗ (𝛼(𝑙)(𝑖).∗ (1 − 𝛼(𝑙)(𝑖))) 
(A.27) 

or 

                                 (A.28) 
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𝛿(𝑙) = (δ(𝑙+1)Θ(𝑙)).∗ (𝛼(𝑙).∗ (1 − 𝛼(𝑙))) 

 

This last equation may be considered equivalent to Eq. (A.27) if 𝛿(𝑙) =
1

𝑚
∑ 𝛿(𝑙)(𝑖)𝑚

𝑖=1 . 

Equation (A.28) moves the error backwards through the activation function of layer 𝑙, 

giving us the error 𝛿(𝑙) as the weighted sum of error 𝛿(𝑙+1)of layer 𝑙 + 1. The initial 

error of the last layer is, of course, obtained directly by subtracting the actual value of 

the output from the estimated value of the output (NN output). 

From Eq. (A.27) we may get the δ terms of each layer.  Then, we use them in Eq. (A.19) 

to obtain the partial derivative of the error function J with respect 

to individual parameters of the NN and thus compute the gradient ∇J of Eq. (A. 8), 

which is used in the related step of the gradient descent.  This process is repeated for 

each step, since the θ values are updated and so are the terms a𝑗
(𝑙)(𝑖)

 of forward 

propagation (evaluated with the new θ) and 𝛿𝑘
(𝑙+1)(𝑖)

 of backpropagation.  The process 

minimizes J with respect to the NN parameters θ and trains the NN by obtaining the 

optimal values of θ. 

A.1.7 A theoretical validation example 

In order to obtain a hands-on understanding of the forward and backpropagation 

relationships used in NN training, as well as their proofs, Appendix A.2 presents and 

proves these relationships for a very simple (but theoretical) example. 

A.1.8 The training algorithm 

In order to put together the mathematical concepts of Sections A.1.5 (forward 

propagation) and A.1.6 (backpropagation), we present the following algorithm for the 

original example of Section 1. 

Training is based on a set [(𝑥(1), 𝑦(1)), … , (𝑥(𝑚), 𝑦(𝑚))], where 𝑚 = 5,000, that is 

considered as input to the algorithm. 

Step 1  
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Start training by initializing the values of 𝛩1 and 𝛩2 with small random numbers equal 

to zero or near it. Then, gradient descent will update the 𝛩1 and 𝛩2 values in an 

attempt to minimize the error. 

Step 2  

Perform forward propagation to compute α(l)(𝑖) for layers (l =  2,3) for the training 

sample i (𝑖 =  1, … ,5000).  Forward propagation uses the following equations: 

 Input to hidden layer :  a(1)(i) = 𝑥(𝑖) , of size (1,400+1)                 

                                              z(2)(i) = α(1)(i)Θ(1)(i)T, of size (1,25)      

Hidden to output layer :  a(2)(i) = σ(z(2)(𝑖)) , of size (1,25+1)   

                                              z(3)(i) = α(2)(i)Θ(2)(i)T, 𝑜𝑓 𝑠𝑖𝑧𝑒 (1,10) 

                                              a(3)(i) = σ(z(3)(𝑖)) = hθ(x), of size (1,10) 

Forward propagation provides 𝑎𝑘
3(𝑖)

, 𝑘 = 1, … ,10 𝑖 = 1, … , 5000 to be used in Eq. 

(A.19) and (A.20), as well as 𝑎𝑗
2(𝑖)

, 𝑗 = 1, … , 25 to be used in Eq. (A.27) 

Step 3                                                             

 Compute:  

δk
(3)(i)

= ak

(3)(i)
− yk

(i), 𝑘 = 1, … ,10, 𝑖 = 1, … , 5000 

𝛿2(𝑖) = (δ(2)(𝑖)Θ(2)).∗ (𝛼(2)(𝑖).∗ (1 − 𝛼(2)(𝑖))), 𝑖 = 1, … , 5000) 

with 𝛿2(𝑖) = (𝛿1
(2)(𝑖), … , 𝛿𝑗

(2)(𝑖), … , 𝛿25
(2)(𝑖)), an (1, 25) vector 

Step 4 

Using the results of Steps 2 and 3, compute 

∂J(θ)

∂𝛩𝑘𝑗
(2)

=
1

𝑚
∑ 𝛿𝑘

(3)(𝑖)
a𝑗

(2)(𝑖)

𝑚

𝑖=1

, 𝑘 = 1, … ,10, 𝑗 = 1, … . ,25 

and  
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∂J(θ)

∂𝛩𝑘𝑗
(1)

=
1

𝑚
∑ 𝛿𝑘

(2)(𝑖)
a𝑗

(1)(𝑖)

𝑚

𝑖=1

, 𝑘 = 1, … ,25, 𝑗 = 1, … . ,400 

This is without regularization.  We can easily add regularization. 

Step 5 

Having obtained ∇J(θj) =
∂J(θ)

∂𝜃
|𝜃 = 𝜃𝑗  an (1, 10250) vector, then update 𝜃 using 

θj+1 =  θj − a∇J(θj) 

With a the chosen step. 

Step 6 

Repeat steps 1-5 till ‖∇J(θj)‖ < 휀.  Set 𝜃 equal to the values of the parameters of the 

last iteration.  The NN has been trained. 

A.2 Feedforward and backpropagation equations 

 

Consider a very simple neural network that has 2 input nodes, 3 hidden nodes, and 2 

output nodes (see Fig. A.1). The vectors and the Θ matrices (weighting matrices) 

involved are the following: 

α(1) = [ x1 x2] = [α1
(1)

 α2
(1)

] 

 

 

θ(1) = [

θ11
(1)

θ12
(1)

θ21
(1)

θ22
(1)

θ31
(1)

θ32
(1)

] 

 

 

z(2) = [z1
(2)

z2
(2)

z3
(2)]  

 

α(2) = [α1
(2)

α2
(2)

α3
(2)] 

 

θ(2) = [
θ11

(2)
θ12

(2)
θ13

(2)

θ21
(2)

θ22
(2)

θ23
(2)

] 
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z(3) = [z1
(3)

z2
(3)]  

 

 

α(3) = [α1
(3)

α2
(3)] 

 

 

A.2.1 Forward propagation 

The forward propagation relationships are as follows: 

Layer 2 

z(2) = α(1)θ(1)Τ → z(2) = [α1
(1)

 α2
(1)

] [
θ11

(1)
θ21

(1)
θ31

(1)

θ12
(1)

θ22
(1)

θ32
(1)

] 

or 

z1
(2)

= α1
(1)

θ11
(1)

+ α2
(1)

θ12
(1)

 

z2
(2)

= α1
(1)

θ21
(1)

+ α2
(1)

θ22
(1)

 

z3
(2)

= α1
(1)

θ31
(1)

+ α2
(1)

θ32
(1)

 

(A.29) 

 

Then 

a(2) = σ(z(2)) 

or 

α1
(2)

= σ(z1
(2)

) =
1

1 + e−z1
(2) 

α2
(2)

= σ(z2
(2)

) =
1

1 + e−z2
(2) 

α3
(2)

= σ(z3
(2)

) =
1

1 + e−z3
(2) 

(A.30) 
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Layer 3 

z(3) = α(2)θ(2)Τ =>→ z(3) = [α1
(2)

α2
(2)

α3
(2)] [

θ11
(2)

θ21
(2)

θ12
(2)

θ22
(2)

θ13
(2)

θ23
(2)

] 

or 

z1
(3)

= α1
(2)

θ11
(2)

+ α2
(2)

θ12
(2)

+ α2
(2)

θ13
(2)

 

z2
(3)

= α1
(2)

θ21
(2)

+ α2
(2)

θ22
(2)

+α2
(2)

θ23
(2)

 

(A.31) 

 

Then 

a(3) = σ(z(3)) = hθ(x) 

 

α1
(3)

= σ(z1
(3)

) =
1

1 + e−z1
(3) 

α2
(3)

= σ(z2
(3)

) =
1

1 + e−z2
(3) 

 

(A.32) 

 

Note that the vector of the NN parameters is 𝜃 and contains 6+6=12 parameters 𝜃𝑘𝑗
(𝑙)

 

θ(1) = [

θ11
(1)

θ12
(1)

θ21
(1)

θ22
(1)

θ31
(1)

θ32
(1)

]   θ(2) = [
θ11

(2)
θ12

(2)
θ13

(2)

θ21
(2)

θ22
(2)

θ23
(2)

] 

 

A.2.2 The cost function  

Consider now that the training set consists of two training samples (𝑖 = 1,2), which of 

course is unrealistic, but it is simple enough for the theoretical example.  Thus the 

training set is {(𝑥1
(1)

, 𝑥2
(1)

), (𝑦1
(1)

, 𝑦2
(1)

); (𝑥1
(2)

, 𝑥2
(2)

), (𝑦1
(2)

, 𝑦2
(2)

) 
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If we fully write our cost function with the summation we would get: 

J(θ) =
1

2
∑{[−y1

(i)
log(α1

(3)(i)
) − (1 − y1

(i)
)log(1 − α1

(3)(i)
)] + [−y2

(i)
log(α2

(3)(i)
)

2

i=1

− (1 − y2
(i)

)log(1 − α2
(3)(i)

)]} 

 

(A.33) 

 

A.2.3 Partial derivatives of J(θ) with respect to the weights θ11
(2)

, . . . , θ23
(2)

 (6 

parameters) 

Consider 

∂J(θ)

∂θkj
(2)

=
1

2
∑

∂ {
[−y1

(i)log(α1
(3)(i)) − (1 − y1

(i))log (1 − α1
(3)(i))] + [−y2

(i)log(α2
(3)(i))

−(1 − y2
(i))log(1 − α2

(3)(i))]
}

∂θkj
(2)

2

i=1

 

=
1

2
∑

𝑑 {
[−y1

(i)log(α1
(3)(i)) − (1 − y1

(i))log (1 − α1
(3)(i))] + [−y2

(i)log(α2
(3)(i))

−(1 − y2
(i))log(1 − α2

(3)(i))]
}

𝑑αk
(3)(i)

2

i=1

 

×
dαk

(3)(i)

dz
k

(3)(i)

∂zk
(3)(i)

∂θkj
(2)

 

 

 

 

 

(A.34) 

 

Let k=1 and j=2 

d{−y1
(i)log(α1

(3)(i)) − (1 − y1
(i))log(1 − α1

(3)(i))}

dα1
(3)(i)

=  
−y1

(i)

α1
(3)(i)

+
(1 − y1

(i))

1 − α1
(3)(i)

 

 

And the derivative of the second term of the numerator in the first equation of 

Eq. (A.34) with respect to dα1
(3)(i) is zero.  Furthermore,  

(A.35) 
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dα1
(3)(i)

dz1
(3)(i)

=
−1

(1 + e−z1
(3)(i)

)
2 (−e−z1

(3)(i)

) =
e−z1

(3)(i)

[1 + e−z1
(3)(i)

]
2 

=
1

1 + e−z1
(3)(i)

[1 −
1

1 + e−z1
(3)(i)

] = α1
(3)(i)(1 − α1

(3)(i)) 

 

(A.36) 

∂z1
(3)(i)

∂θ12
(2)

= α2
(2)(i)

 

from equation for z1
(3)

 in Eq. (A.31) 

(A.37) 

 

Thus, substituting Eqs. (A-6) to (A-8) into (A-5) for k=1 and j=2, we obtain 

∂J(θ)

∂θ12
(2)

=
1

2
∑ (

−y1
(i)

α1
(3)(i)

+
(1 − y1

(i))

1 − α1
(3)(i)

) [α1
(3)(i)(1 − α1

(3)(i))]α2
(2)(i) =

2

i=1

 

=
1

2
∑ α2

(2)(i){

2

i=1

− y1
(i)(1 − α1

(3)(i)) + (1 − y1
(i))α1

(3)(i)}

=
1

2
∑ α2

(2)(i){

2

i=1

− y1
(i) + y1

(i)α1
(3)(i) + α1

(3)(i) − y1
(i)α1

(3)(i)} 

∂J(θ)

∂θ12
(2)

= α1
(3)(i) − y1

(i) = δ1
(3)(i)

 

 

 

 

 

 

(A.38) 

 

 

Similarly 

∂J(θ)

∂θ12
(2)

=
1

2
∑ α2

(2)(i)

2

i=1

δ1
(3)(i)

 →  
∂J(θ)

∂θkj
(2)

=
1

2
∑ αj

(2)(i)

2

i=1

δk
(3)(i)

 

 

 (A.39) 
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with 

δ1
(3)(i) = α1

(3)(i) − y1
(i)

 

 

We have now computed six partial derivatives of the cost function 𝐽(θ) 

∂J(θ)

∂θkj
(2)

=
1

2
∑ αj

(2)(i)

2

i=1

δk
(3)(i)

, k = 1,2 and j = 1,2,3 

 

(A.40) 

since we know αj
(2)(i) from forward propagation Eqs. (A.29), (A.30) and δk

(3)(i)
=

α1
(3)(i) − y1

(i) with  α1
(3)(i) from forward propagation Eq. (A.31), (A.32). 

A.2.4 Partial derivatives of previous layers  

Similarly with the Section above, the following holds (same proof as above) 

∂J(θ)

∂θkj
(1)

=
1

2
∑ αj

(1)(i)

m

i=1

δk
(2)(i), k = 1,2,3 and j = 1,2 

(A.41) 

We will appose the proof from the derivative above. 

Backpropagation starts in the last layer 𝐿 and successively moves back one layer at a 

time. For each visited layer it computes the so called error: 

∂𝐽(𝜃)𝑖

∂z𝑗

(2)(𝑖)
 

Using the chain rule : 
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∂J(θ)

∂θ11
(1)

= (
∂𝐽(𝜃)𝑖

∂α1
(3)(𝑖)

∂α1
(3)(𝑖)

∂z1
(3)(𝑖)

∂z1
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ11
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α2
(3)(𝑖)

∂α2
(3)(𝑖)

∂z2
(3)(𝑖)

∂z2
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ11
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α3
(3)(𝑖)

∂α3
(3)(𝑖)

∂z3
(3)(𝑖)

∂z3
(3)(𝑖)

∂α2
(2)(𝑖)

∂α2
(2)(𝑖)

∂z2
(2)(𝑖)

∂z2
(2)(𝑖)

∂θ11
(1)

) 

∂J(θ)

∂θ12
(1)

= (
∂𝐽(𝜃)𝑖

∂α1
(3)(𝑖)

∂α1
(3)(𝑖)

∂z1
(3)(𝑖)

∂z1
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ12
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α2
(3)(𝑖)

∂α2
(3)(𝑖)

∂z2
(3)(𝑖)

∂z2
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ12
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α3
(3)(𝑖)

∂α3
(3)(𝑖)

∂z3
(3)(𝑖)

∂z3
(3)(𝑖)

∂α2
(2)(𝑖)

∂α2
(2)(𝑖)

∂z2
(2)(𝑖)

∂z2
(2)(𝑖)

∂θ12
(1)

) 

∂J(θ)

∂θ21
(1)

= (
∂𝐽(𝜃)𝑖

∂α1
(3)(𝑖)

∂α1
(3)(𝑖)

∂z1
(3)(𝑖)

∂z1
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ21
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α2
(3)(𝑖)

∂α2
(3)(𝑖)

∂z2
(3)(𝑖)

∂z2
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ21
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α3
(3)(𝑖)

∂α3
(3)(𝑖)

∂z3
(3)(𝑖)

∂z3
(3)(𝑖)

∂α2
(2)(𝑖)

∂α2
(2)(𝑖)

∂z2
(2)(𝑖)

∂z2
(2)(𝑖)

∂θ21
(1)

) 

∂J(θ)

∂θ22
(1)

= (
∂𝐽(𝜃)𝑖

∂α1
(3)(𝑖)

∂α1
(3)(𝑖)

∂z1
(3)(𝑖)

∂z1
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ22
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α2
(3)(𝑖)

∂α2
(3)(𝑖)

∂z2
(3)(𝑖)

∂z2
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ22
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α3
(3)(𝑖)

∂α3
(3)(𝑖)

∂z3
(3)(𝑖)

∂z3
(3)(𝑖)

∂α2
(2)(𝑖)

∂α2
(2)(𝑖)

∂z2
(2)(𝑖)

∂z2
(2)(𝑖)

∂θ22
(1)

) 
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∂J(θ)

∂θ31
(1)

= (
∂𝐽(𝜃)𝑖

∂α1
(3)(𝑖)

∂α1
(3)(𝑖)

∂z1
(3)(𝑖)

∂z1
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ31
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α2
(3)(𝑖)

∂α2
(3)(𝑖)

∂z2
(3)(𝑖)

∂z2
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ31
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α3
(3)(𝑖)

∂α3
(3)(𝑖)

∂z3
(3)(𝑖)

∂z3
(3)(𝑖)

∂α2
(2)(𝑖)

∂α2
(2)(𝑖)

∂z2
(2)(𝑖)

∂z2
(2)(𝑖)

∂θ31
(1)

) 

∂J(θ)

∂θ32
(1)

= (
∂𝐽(𝜃)𝑖

∂α1
(3)(𝑖)

∂α1
(3)(𝑖)

∂z1
(3)(𝑖)

∂z1
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ32
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α2
(3)(𝑖)

∂α2
(3)(𝑖)

∂z2
(3)(𝑖)

∂z2
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ32
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α3
(3)(𝑖)

∂α3
(3)(𝑖)

∂z3
(3)(𝑖)

∂z3
(3)(𝑖)

∂α2
(2)(𝑖)

∂α2
(2)(𝑖)

∂z2
(2)(𝑖)

∂z2
(2)(𝑖)

∂θ32
(1)

) 

 

Let's take a closer look at one of the terms, 
∂J(θ)

∂θ11
(1). 

∂J(θ)

∂θ11
(1)

= (δ1
(3)(i) ∂z1

(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ11
(1)

) + (δ2
(3)(i) ∂z2

(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ11
(1)

)

+ (δ3
(3)(i) ∂z3

(3)(𝑖)

∂α2
(2)(𝑖)

∂α2
(2)(𝑖)

∂z2
(2)(𝑖)

∂z2
(2)(𝑖)

∂θ11
(1)

) 

We will also calculate the above derivatives for 
∂J(θ)

∂θ12
(1) ,

∂J(θ)

∂θ21
(1) ,

∂J(θ)

∂θ22
(1) ,

∂J(θ)

∂θ31
(1) ,

∂J(θ)

∂θ32
(1)  

Also we have already mention that the partial derivatives are the activation 

functions. So it will be: 

∂J(θ)

∂θ11
(1)

= (δ1
(3)(i)

θ11
(2)

α1
(2)(i)(1 − α1

(2)(i))
∂z1

(2)(𝑖)

∂θ11
(1)

)

+ (δ2
(3)(i)

θ21
(2)

α2
(2)(i)(1 − α2

(2)(i))
∂z1

(2)(𝑖)

∂θ11
(1)

)

+ (δ3
(3)(i)

θ31
(2)

α3
(2)(i)(1 − α3

(2)(i))
∂z2

(2)(𝑖)

∂θ11
(1)

) 
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We should also calculate 
∂J(θ)

∂θ12
(1) ,

∂J(θ)

∂θ21
(1) ,

∂J(θ)

∂θ22
(1) ,

∂J(θ)

∂θ31
(1) ,

∂J(θ)

∂θ32
(1) as the partial derivative above, 

like 
∂J(θ)

∂θ11
(1). 

Factoring out the 
∂z1

(2)(𝑖)

∂θ11
(1)  term, it will be: 

∂J(θ)

∂θ11
(1)

=
∂z1

(2)(𝑖)

∂θ11
(1)

(δ1
(3)(i)

θ11
(2)

α1
(2)(i)(1 − α1

(2)(i))) + (δ2
(3)(i)

θ21
(2)

α2
(2)(i)(1 − α2

(2)(i)))

+ (δ3
(3)(i)

θ31
(2)

α3
(2)(i)(1 − α3

(2)(i))) 

The 
∂z1

(2)(𝑖)

∂θ11
(1)  partial derivative will be replaced each time with an input, in our case 

x1, x2. 

So, 

∂J(θ)

∂θ11
(1)

=
∂z1

(2)(𝑖)

∂θ11
(1)

(δ1
(2)(i)

) 

We should also calculate 
∂J(θ)

∂θ12
(1) ,

∂J(θ)

∂θ21
(1) ,

∂J(θ)

∂θ22
(1) ,

∂J(θ)

∂θ31
(1) ,

∂J(θ)

∂θ32
(1) as the partial derivative above, 

like 
∂J(θ)

∂θ11
(1). 

 

We know αj
(1)(i) from the input values, but we do not know δ𝑘

(2)(𝑖)
 k=1,2,3. Let’s 

compute it.  

We know that:  
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δj
(2)(i)

=
𝜕J(θ)𝑖

𝜕zj
(2)(𝐢)

 

 

δj
(2)(i) =

∂ {
[−y1

(i)log(α1
(3)(i)) − (1 − y1

(i))log (1 − α1
(3)(i))] − y2

(i)log(α2
(3)(i))

−(1 − y2
(i))log (1 − α2

(3)(i))]
}

∂zj
(2)(i)

=

∂ {
[−y1

(i)log(α1
(3)(i)) − (1 − y1

(i))log (1 − α1
(3)(i))] − y2

(i)log(α2
(3)(i))

−(1 − y2
(i))log (1 − α2

(3)(i))]
}

∂α1
(3)(i)

× 

×
dα1

(3)(i)

dz1
(3)(i)

∂z1
(3)(i)

∂αj
(2)(i)

dαj
(2)(i)

dz𝑗
(2)(i)

 

+
∂{[−y1

(i)log(α1
(3)(i)) − (1 − y1

(i))log (1 − α1
(3)(i))] − y2

(i)log(α2
(3)(i)) − (1 − y2

(i))log (1 − α2
(3)(i))]}

∂α2
(3)(i)

× 

×
dα2

(3)(i)

dz2
(3)(i)

∂z2
(3)(i)

∂αj
(2)(i)

dαj
(2)(i)

dzj

(2)(i)
 

 

 

 

 

 

 

 

 

 

 

(A.42) 

since considering a function 𝐹(𝑥, 𝑦) where 𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡) 

𝑑𝐹

𝑑𝑧
=

𝜕𝐹

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝐹

𝜕𝑦

𝑑𝑦

𝑑𝑡
 

Then, 

∂ {
[−y1

(i)
log(α1

(3)(i)
) − (1 − y1

(i)
)log (1 − α1

(3)(i)
)] − y2

(i)
log(α2

(3)(i)
)

−(1 − y2
(i))log (1 − α2

(3)(i))]
}

∂α1
(3)(i)

 

= [−
y1

(i)

α1
(3)(i)

+
(1 − y1

(i))

1 − α1
(3)(i)

] 

 

 

 

 

(A.43) 
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Similarly 

 

∂ {
−y1

(i)log(α1
(3)(i)) − (1 − y1

(i))log (1 − α1
(3)(i))] − y2

(i)log(α2
(3)(i))

−(1 − y2
(i))log (1 − α2

(3)(i))
}

∂α2
(3)(i)

 

= [−
y2

(i)

α2
(3)(i)

+
(1 − y2

(i))

1 − α2
(3)(i)

] 

 

Furthermore from Eq. (A.35) 

 

dα1
(3)(i)

dz1
(3)(i)

= α1
(3)(i)(1 − α1

(3)(i)) 

and 

dα2
(3)(i)

dz2

(3)(𝑖)
= α2

(3)(i)(1 − α2
(3)(i)) 

Finally, from Eq. (A.31) 

 

(A.44) 

∂z1
(3)(i)

∂αj
(2)(i)

= θ1j
(2)

 

∂z2
(3)(i)

∂αj
(2)(i)

= θ2j
(2)

 

(A.45) 

and, 

dαj
(2)(𝐢)

dzj

(2)(i)
= αj

(2)(i)(1 − αj
(2)(i)) 

 

(A.46) 
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Substituting Eqs. (A.42) – (A.45) into Eq. (A.41) we obtain 

δj
(2)(i) = 

=
∂J(θ)i

∂zj
(2)(i)

= [−
y1

(i)

α1
(3)(i)

+
(1 − y1

(i))

1 − α1
(3)(i)

] α1
(3)(i)(1 − α1

(3)(i))θ1j
(2)

αj
(2)(i)(1 − αj

(2)(i)) 

+ [−
y2

(i)

α2
(3)(i)

+
(1 − y2

(i))

1 − α2
(3)(i)

] α2
(3)(i)(1 − α2

(3)(i))θ2j
(2)

αj
(2)(i)(1 − αj

(2)(i)) 

 

 

(A.47) 

Performing the multiplications (similarly to Eq. (A-9)) we obtain 

δj
(2)(i) = δ1

(3)(i)θ1j
(2)

αj
(2)(i)(1 − αj

(2)(i)) + δ2
(3)(i)θ2j

(2)
αj

(2)(i)(1 − αj
(2)(i)) 

 

 

⇒ δj
(2)(i) = [δ1

(3)(i) δ2
(3)(i)] [

θ1j
(2)

θ2j
(2)

] αj
(2)(i)(1 − αj

(2)(i)) 

 

 

⇒ [δ1
(2)(i) δ2

(2)(i) δ3
(2)(i)]

= [δ1
(3)(i) δ2

(3)(i)] [
θ11

(2)
θ12

(2)
θ13

(2)

θ21
(2)

θ22
(2)

θ23
(2)

] .∗ [α
(2)(i).∗ (1 − α

(2)(i))] 

 

 

 

⇒ δ(2)(i) = [δ(3)(i)θ(2)].∗ [α(2)(i).∗ (1 − α(2)(i))] 

 

 

(A.48) 

Taking the average of the two training samples 𝑖 = 1,2 

δ(2) = δ(3)θ(2).∗ ( α(2).∗ (1 − α(2))) 

Now we can compute the other six partial derivatives of the gradient vector 
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∂J(θ)

∂θkj
(1)

=
1

2
∑ αj

(1)(i)

m

i=1

δk
(2)(i)

, 𝑘 = 1,2,3 and 𝑗 = 1,2 
(A.49) 

with 

δk
(2)(i) = [δ1

(3)(i) δ2
(3)(i)] [

θ1k
(2)

θ2k
(2)

] αk
(2)(i)(1 − αk

(2)(i)) 

all known from forward propagation 

 

(A.50) 

Thus, for any iteration we can compute the gradient ∇ J(θ) from the values of 𝜃 of 

the previous iteration and the results of the forward propagation. 

∇ J(θ) = [
∂J

∂θ11
(1)

, … ,
∂J

∂θ32
(1)

|
∂J

∂θ11
(2)

, … ,
∂J

∂θ23
(2)

] 

Using Eqs. (A.39), (A.49), (A.50) 

The new values of 𝜃 are [θ11
(1)

, . . . , θ32
(1)

|θ11
(2)

, . . . , θ23
(2)

]new

= [θ11
(1)

, . . . , θ32
(1)

|θ11
(2)

, . . . , θ23
(2)

]old −a∇J 
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Appendix B. Implementing Convolution Neural Networks in 

TensorFlow 
 

In this Appendix contains techniques about image classification through Convolution 

Neural Network. Firstly, a model for binary classification with less convolutional layers 

is presented. Secondly, a model for multiple classifications is discussed which contain 

a lot of convolutional networks. Finally, a model for data augmentation shows 

techniques for image processing.  

B.1  A model for binary classification 

Below in Fig. A.1 we illustrate the implementation of a Neural Network model for 

binary classification in code. The NN has 3 layers, one layer is the input the second layer 

is the hidden one and the third layer is the output. The hidden layer has 1,024 hidden 

units and we use Relu activation as we have mentioned in the text above. The output 

layer has 1 unit. The loss function is binary crossentropy and the optimizer is RMSprop. 

import tensorflow as tf 

from tensorflow import keras 

from tensorflow.keras import layers 

from tensorflow.keras.optimizers import RMSprop 

 

# Flatten the output layer to 1 dimension 

x = layers.Flatten()(last_output) 

# Add a fully connected layer with 1,024 hidden units and ReLU activation 

x = layers.Dense(1024, activation='relu')(x) 

# Add a final sigmoid layer for classification 

x = layers.Dense  (1, activation='sigmoid')(x)            

 

model = Model( pre_trained_model.input, x)  

 

model.compile(optimizer = RMSprop(lr=0.0001),  

              loss = 'binary_crossentropy',  

              metrics = ['accuracy']) 
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history = model.fit( 

            train_generator, 

            validation_data = validation_generator, 

            epochs = 20) 

 

 

Figure B. 1 CNN with one Dense 

B.2  A model for multiple classification 

The coded model below is utilized for 3 class classification. The model has 4 

convolutional and maxpooling layers. 64 filters are utilized, of size 3 × 3. Then, filters 

are increased to 128. The maxpooling layer size is 2 × 2. The activation function for 

convolutional layers is Relu. The Neural Network has 3 layers. First layer is the input, 

second layer is the hidden one and third layer is the output. The input layer has images 

with 150 × 150 size and 3 byte color (Red, Green, Blue). The input images are first 

Flattened and then the Dropout technique is used (see text in Section 2.2) for 

definitions). The hidden layer has 512 units and Relu activation is used. The output layer 

has 3 units, since there are 3 classes. The output activation function is SoftMax, which 

is more suitable for multiclass classification than Relu. The loss function is categorical 

crossentropy and the optimizer is RMSprop. 

 

import tensorflow as tf 

import keras_preprocessing 

 

 

model = tf.keras.models.Sequential([ 

    # Note the input shape is the desired size of the image 150x150 with 3 bytes color 

    # This is the first convolution 

    tf.keras.layers.Conv2D(64, (3,3), activation='relu', input_shape=(150, 150, 3)), 

    tf.keras.layers.MaxPooling2D(2, 2), 

    # The second convolution 

    tf.keras.layers.Conv2D(64, (3,3), activation='relu'), 

    tf.keras.layers.MaxPooling2D(2,2), 
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    # The third convolution 

    tf.keras.layers.Conv2D(128, (3,3), activation='relu'), 

    tf.keras.layers.MaxPooling2D(2,2), 

    # The fourth convolution 

    tf.keras.layers.Conv2D(128, (3,3), activation='relu'), 

    tf.keras.layers.MaxPooling2D(2,2), 

    # Flatten the results to feed into a DNN 

    tf.keras.layers.Flatten(), 

    tf.keras.layers.Dropout(0.5), 

    # 512 neuron hidden units 

    tf.keras.layers.Dense(512, activation='relu'), 

    tf.keras.layers.Dense(3, activation='softmax') 

]) 

 

model.summary() 

 

model.compile(loss = 'categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'

]) 

 

Figure B. 2 A model used for multiple classification. 

B.3  A model for data augmentation   

The code below is used to apply the data augmentation technique. Firstly, we prepare 

the training and validation data before they are used in the neural network process. 

Some of the training images are used to rescale, rotate 40%, width shift range 20%, 

height shift range 20%, shear range 20%, zoom 20%, horizontal flip and fill mode. After 

data augmentation, the training images have 150 × 150 size, the class mode is 

categorical, since there are 3 classes, and the batch size of images is 126. The validation 

data has 3 × 3 size, the class mode and the batch size are the same as the training data. 

 

import tensorflow as tf 

import keras_preprocessing 

from keras_preprocessing import image 
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from keras_preprocessing.image import ImageDataGenerator 

 

TRAINING_DIR = "/tmp/rps/" 

training_datagen = ImageDataGenerator( 

      rescale = 1./255, 

      rotation_range=40, 

      width_shift_range=0.2, 

      height_shift_range=0.2, 

      shear_range=0.2, 

      zoom_range=0.2, 

      horizontal_flip=True, 

      fill_mode='nearest') 

 

VALIDATION_DIR = "/tmp/rps-test-set/" 

validation_datagen = ImageDataGenerator(rescale = 1./255) 

 

train_generator = training_datagen.flow_from_directory( 

  TRAINING_DIR, 

  target_size=(150,150), 

  class_mode='categorical', 

  batch_size=126 

) 

 

validation_generator = validation_datagen.flow_from_directory( 

  VALIDATION_DIR, 

  target_size=(150,150), 

  class_mode='categorical', 

  batch_size=126 

) 

 

Figure B. 3 Data augmentation technique. 
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Appendix C. Annotating images with ground truth bounding boxes 

 

Image annotation is defined as the task of annotating an image with labels for 

supervised machine learning. Labels are chosen to provide the network with 

information about what is shown in the image. In this thesis the annotated traffic 

lights classes, such as green, red and yellow, are used for training and validation.  

The majority of computer vision models are created using image annotation tools. The 

latter usually involve manual work from users, sometimes with computer-assisted 

help. Users define the labels, known as “classes”, and provide the image-specific 

information to the computer vision model. After the model is trained, it will predict 

and detect those features in new images that have not been annotated yet (Boesch, 

2021). 

There are many free tools for image annotation tasks. Some of them are (Morgunov, 

2021): 

 VGG Image Annotator (VIA) 

 CVAT – Computer Vision Annotation Tool 

 LabelImg 

 Visual Object Tagging Tool (VoTT) 

LabelImg13 is a graphical image annotation tool which is open source. This tool is 

selected for creating label ground truth bounding boxes in the image dataset, 

especially in cases of datasets over 10,000 images.  

To install the tool, one needs to go to the LabelImg 1.8.514 website, which describes in 

detail the installation steps. After installation, the LabelImg interface (see Fig B.1) is 

displayed on the screen. For uploading the images from the dataset, the photos are 

selected by selecting the “Open Dir” command.   Next, the user selects the correct 

folder (see Fig B.2).  

                                                
13 Github repository of darrenl tzutalin: https://github.com/tzutalin/labelImg 
14 https://pypi.org/project/labelImg/ 
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Figure C. 1 Open Directory 

Subsequently, the location to save the annotation file is selected. This is done by the 

command Change Save Dir. 

 

 

Figure C. 2 The location of files 
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After that, the annotation images will be saved in a format recognized by the YOLO 

algorithm. The save format should be changed from the Pascal VOC to YOLO.  

 

Figure C. 3 The save format (Pascal/VOC) 

 

Figure C. 4 The save format (YOLO) 
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In the final step, the label ground truth bounding boxes are created on the custom 

images. The ground truth bounding boxes are drawn by the Create\nRectBox button. 

Now, the ground truth bounding boxes can be drawn over the image.  

 

Figure C. 5 Create\nRectBox button for drawing the ground truth bounding box 

 

Each time drawing the box is completed, a new LabelImg window pop up shows up. 

The object name in the text field of Fig, B.5  is defined by the user. Once labeling 

objects in the image is completed, the Save button on the left menu or command ctrl+ 

s (of keyboard) should be clicked to save the annotation images in the folder.  

 

The final custom dataset is ready for object detection. The annotation tool extracts 

the information that it needs (txt files15) that contain the coordinates of ground truth 

bounding boxes (scaled from 0 to 1) and the classes of the objects, which are included 

in the image. In our case, these objects are traffic lights. 

 

 

 

                                                
15 The txt file should be saved in the same directory, and the same name as the image. 
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