

University of the Aegean

School of Engineering

Department of Financial and Management Engineering

CLASSIFICATION OF TRAFFIC SIGNS BASED ON OBJECT RECOGNITION

Kalliopi H. Vitlari

 Supervisor: Prof. Ioannis Minis

 Committee Members: Associate Prof. Nikolaos Ampazis

 Assistant Prof. Vasileios Koutras

Chios, September 2021

University of the Aegean Department of Financial and Management Engineering

[ii]

To my Family

University of the Aegean Department of Financial and Management Engineering

[iii]

Acknowledgments

First and foremost, I am extremely thankful to my supervisor Professor Ioannis Minis

who made this work possible and provided invaluable feedback on my analysis and

framing, at times responding to emails late at night and early in the morning. His

guidance and advice carried me through all the stage of writing my thesis.

Besides my advisor, I would like to express gratitude to Dr. Konstantinos Mamasis for

his treasured support which was really influential in shaping my experiment methods

and critiquing my results. Also, my gratitude to George Tepteris for the immense

patience that showed and the helpful advices/hardware that he gave me.

Additionally, I would like to thank all the members of DeOPSys Lab of Department of

Financial and Management Engineering and my colleague Cleo for the strong

relationship and cooperation we have developed through this project.

My appreciation also goes out to my family and friends, especially my brother for

always being there for me, for their encouragement and support of my decisions. I

know they will never stop supporting me.

University of the Aegean Department of Financial and Management Engineering

[iv]

University of the Aegean Department of Financial and Management Engineering

[v]

Abstract

Traffic lights recognition and classification play an important role in the realization of

autonomous vehicles. This automated process uses video (frames) to recognize and

classify traffic lights along the vehicle’s path in real time. In this thesis, we adapt a

proven deep learning model to recognize three classes (states) of traffic lights: green,

red and yellow. The model is YOLOv3, it includes Darknet-53 and combines object

detection and classification. The deep learning algorithms are implemented in Google

Colab (a cloud platform developed by Google). The resulting Convolutional Neural

Network (CNN) is trained using publicly available data sets that we modify to enhance

the available training data.

Firstly, the training and validation datasets are generated. Secondly, ground truth

bounding boxes -which define the class and the object in the images- are created and

uploaded to the Colab environment that runs the algorithm for object detection. The

algorithm preprocesses the images, creates bounding boxes that contain the object

and adjusts the weights of some model layers. To obtain the most appropriate

weights, we perform various training/validation experiments using combinations of

available datasets. The experiments indicate that the addition of very clear photos,

which contain only traffic lights in the training datasets, and in general photos in which

traffic lights are part of a general environment, significantly help the training process.

We use the best performing weights to conduct a large case study that uses as input

video footage taped from the streets of Thessaloniki, which contains numerous traffic

lights in all three states. We divide the predictions into 3 categories: True, False and

No predictions. Initially the study indicated a relatively low performance of the model

caused by a high percentage of No predictions. To address this issue, we used more

than one photographs of each traffic light-state combination and combined the

related predictions. As a result, the percent of No predictions was reduced

significantly, and the combined process yielded better results.

University of the Aegean Department of Financial and Management Engineering

[vi]

Περίληψη

Η αναγνώριση και η ταξινόμηση των σημάτων κυκλοφορίας παίζουν σημαντικό ρόλο

στην υλοποίηση των αυτόνομων οχημάτων. Αυτή η αυτοματοποιημένη διαδικασία

χρησιμοποιεί σαν είσοδό της βίντεο (συγκεκριμένα μοναδικές συνεχόμενες εικόνες

που παράχθηκαν από το βίντεο) για να αναγνωρίζει και να ταξινομεί την κατάσταση

των φωτεινών σηματοδοτών(φαναριών) κατά μήκος της διαδρομής σε πραγματικό

χρόνο. Σε αυτή την διπλωματική εργασία, προσαρμόζουμε ένα αποδεδειγμένο

μοντέλο βαθιάς μάθησης για να αναγνωρίσουμε τρεις κατηγορίες (καταστάσεις)

φαναριών: πράσινο, κόκκινο και κίτρινο. Το μοντέλο είναι το YOLOv3 και

περιλαμβάνει το δίκτυο Darknet-53. Συνδυάζει την αναγνώριση και την ταξινόμηση

των αντικειμένων. Οι μέθοδοι βαθιάς μάθησης εφαρμόζονται στο Google Colab (μια

πλατφόρμα που αναπτύχθηκε από την Google). To νευρωνικό δίκτυο Convolutional

Neural Network (CNN) εκπαιδεύεται χρησιμοποιώντας δημόσια διαθέσιμα σύνολα

δεδομένων (public datasets) που τροποποιούμε για να βελτιώσουμε τα διαθέσιμα

δεδομένα τα λεγόμενα training data.

Πρώτον, δημιουργούμε σύνολα δεδομένων εκπαίδευσης και επικύρωσης, γνωστά ως

training and validation data. Δεύτερον, δημιουργούμε χειροκίνητα ένα βασικό

πλαίσιο οριοθέτησης των αντικειμένων κάθε φωτογραφίας, γνωστό ως ground truth

bounding box, για να προσδιορίσουμε την κλάση (κατηγορία) και το αντικείμενο της

εικόνας και στη συνέχεια ανεβάζουμε τις εικόνες στον κώδικα (σε περιβάλλον Colab)

για να γίνει η διαδικασία αναγνώρισης. Ο αλγόριθμος προ-επεξεργάζεται τις εικόνες,

δημιουργώντας ειδικά πλαίσια οριοθέτησης (bounding boxes) που περιέχουν το

αντικείμενο και προσαρμόζει τα βάρη ορισμένων επιπέδων του μοντέλου, γνωστά ως

model layers. Για να αποκτήσουμε τα πιο κατάλληλα βάρη, εκτελούμε διάφορα

πειράματα εκπαίδευσης και επικύρωσης (training and validation) χρησιμοποιώντας

συνδυασμούς των διαθέσιμων συνόλων δεδομένων. Τα πειράματα δείχνουν ότι η

εισαγωγή πολύ καθαρών φωτογραφιών που περιέχουν μόνο σηματοδότες (και όχι

άλλα αντικείμενα) στα σύνολα δεδομένων της εκπαίδευσης με φωτογραφίες στις

οποίες τα φανάρια αποτελούν μέρος ενός γενικού περιβάλλοντος, βοηθά σημαντικά

τη διαδικασία εκπαίδευσης.

University of the Aegean Department of Financial and Management Engineering

[vii]

Χρησιμοποιούμε τα βάρη με τις καλύτερες επιδόσεις για να υλοποιήσουνε μια

εκτεταμένη μελέτη περίπτωσης, η οποία χρησιμοποιεί ως είσοδο βίντεο που έχουν

μαγνητοσκοπηθεί από τους δρόμους της Θεσσαλονίκης. Τo βίντεο αυτό περιέχει

μεγάλο πλήθος σηματοδοτών και στις τρεις καταστάσεις τους. Χωρίζουμε τις

προβλέψεις σε 3 κατηγορίες: Σωστή πρόβλεψη, Λάθος πρόβλεψη και Ουδεμία (μη)

πρόβλεψη. Αρχικά, η μελέτη έδειξε μια σχετικά χαμηλή απόδοση του μοντέλου που

προκλήθηκε από υψηλό ποσοστό της κατηγορίας των μη προβλέψεων (No

prediction). Για την αντιμετώπιση αυτού του ζητήματος, χρησιμοποιήσαμε

περισσότερες από μία φωτογραφίες κάθε συνδυασμού φωτεινού σηματοδότη και

της κατάστασής του και συνδυάσαμε τις σχετικές προβλέψεις. Ως αποτέλεσμα, το

ποσοστό των μη προβλέψεων μειώθηκε σημαντικά και η απόδοση της

ολοκληρωμένης διαδικασίας βελτιώθηκε ανάλογα.

University of the Aegean Department of Financial and Management Engineering

[viii]

Table of Contents

Chapter 1 Introduction ... 1

Chapter 2 Object detection methods and techniques .. 4

2.1 Image classification using Convolutional neural networks (CNNs) 4

2.2 Real Time Object Detection through the YOLOv3 algorithm 19

2.3 Current State-Of-The-Art ... 28

2.4 Contribution of this thesis .. 31

Chapter 3 Data preparation and training of the object detection model using the

YoloV3 algorithm ... 32

3.1 Data collection, generation and labeling .. 32

3.2 Training and validation through Transfer Learning 37

3.3 Darknet-53+YOLOv3 model training ... 41

Chapter 4 Traffic light state detection: A case study .. 62

4.1 Experimental set up ... 62

4.2 Data processing ... 64

4.3 Results of the Neural Network Model .. 65

4.4 Improving the Results of the Neural Network Model 67

4.5 Conclusion ... 69

Chapter 5 Conclusions .. 70

References……. 73

Appendix A. Learning in MLP networks .. 79

Appendix B. Implementing Convolution Neural Networks in TensorFlow............ 110

Appendix C. Annotating images with ground truth bounding boxes 114

University of the Aegean Department of Financial and Management Engineering

[ix]

Table of Figures

Figure 2.1 VGG-16 Convolutional Neural Network (Smeda, 31/10/2019) 4

Figure 2.2 Kernel moves over the input to generate the output (Coursera(2020c)) ... 5

Figure 2.3 Representing a RGB image and applying convolutional 𝑊0 Filter (Kernel)
(Stanford Course) .. 6

Figure 2.4 Representing a RGB image and applying convolutional 𝑊1 Filter (Kernel)
(Stanford Course). ... 8

Figure 2.5 Max pooling (Coursera,2020c) .. 9

Figure 2.6 Results of code for Convolutions and max-pooling (Coursera(2020c))..... 12

Figure 2.7 Results of code for input (Coursera(2020c)) .. 13

Figure 2.8 Rescaled image((Gandhi, 2021) .. 14

Figure 2.9 Rotated Image (Elisha, 2020) .. 15

Figure 2.10 Shifted image ((Sarin, 2019) ... 15

Figure 2.11 Human Image (Coursera(2020c)) .. 15

Figure 2.12 Human Image applied shear range (Coursera(2020c)) 16

Figure 2.13 Girl image with zoom (Coursera(2020c)) ... 17

Figure 2.14 Cat Image with Horizontal flip ((Balla, 2020)) 17

Figure 2.15 Data augmentation consists of on-the-fly image batch manipulations.
This is the most common form of data augmentation with Keras (Rosebrock, 2019) 18

Figure 2.16 Timeline of evolution of object detection algorithms (Zou, et al., 2019) 20

Figure 2.17 SSD architecture (Jiatu, 2018) ... 21

Figure 2.18 R-CNN model (Girshick, 2014) ... 22

Figure 2.19 Faster R-CNN (Ren, 2017).. 23

Figure 2.20 YOLOv3 architecture. (Vinh, 2020) (Jiatu, 2018) 24

Figure 2.21 Combination of the three techniques (Saxena, 2021) 27

Figure 2.22 Testing on Bosch Small Traffic Lights dataset (Kozel & Robert, 2020) ... 29

Figure 2.23 Testing of Trained model on random image from Google (Kozel &
Robert, 2020) .. 29

Figure 3.1 Traffic lights from Carla simulator ... 34

Figure 3.2 Traffic Lights of Bosch Small Traffic Lights Dataset 34

Figure 3.3 Images from SJTU Small Traffic Light Dataset .. 35

Figure 3.4 Images of Berkley DeepDrive Dataset ... 36

Figure 3.5 Series of convolutional layers model that are locked, and application of
Transfer Learning method in the last fully connected layers (Coursera(2020c)) 38

Figure 3.6 Transfer learning Steps (Leclerc, et al., 2018) .. 38

Figure 3.7 Detection Flow Diagram (Raza & Song, 2020) .. 39

Figure 3.8 Adding of new “trainable” layers (Almog, 2020) 41

Figure 3.9 Code for developing and training the traffic signal detection model 49

Figure 3.10 Results of Carla dataset (training loss and mAP).................................... 54

Figure 3.11 Results of training loss and mAP for Clear dataset 55

Figure 3.12 The training loss and mAP of Blurred dataset .. 56

Figure 3.13 Results of the combination of three datasets .. 57

Figure 3.14 Results of combination of CARLA and Clear datasets............................. 58

Figure 3.15 Results of combination of CARLA and Blurred datasets 59

Figure 3.16 Results of combination of Clear and Blurred datasets 60

Figure 4.1 State of 1st and 2nd from 180 traffic lights .. 63

University of the Aegean Department of Financial and Management Engineering

[x]

Figure 4.2 Test data processing ... 65

Figure 4.3 False prediction results ... 66

Figure 4.4 States of 10th Traffic light ... 68
Figure A. 1 Neural network model of the example .. 80

Figure A. 2 Cost function (convex&non-convex) .. 82

Figure A. 3 The convex shape of a simple instance of the cost function 83

Figure A. 4 Convex between ℎ𝜃(𝑥) and Cost(J) if y=1. ... 84
Figure B. 1 CNN with one Dense .. 111

Figure B. 2 A model used for multiple classification. .. 112

Figure B. 3 Data augmentation technique. ... 113
Figure C. 1 Open Directory .. 115

Figure C. 2 The location of files .. 115

Figure C. 3 The save format (Pascal/VOC) .. 116

Figure C. 4 The save format (YOLO) ... 116

Figure C. 5 Create\nRectBox button for drawing the ground truth bounding box .. 117

University of the Aegean Department of Financial and Management Engineering

[xi]

List of Tables

Table 2.1 Object detection algorithms comparison ... 28

Table 3.1 Colab and Colab Pro tools (Buomsoo, 2020) ... 42

Table 3.2 Parameter modifications for training ... 44

Table 3.3 Upgrade names of datasets.. 53

Table 3.4 The combination of three datasets .. 56

Table 3.5 Combination of CARLA and Clear datasets ... 57

Table 3.6 Combination of CARLA and Blurred datasets .. 58

Table 3.7 Combination of Clear and Blurred Datasets.. 59

Table 3.8 Synopsis of the experiments .. 60

Table 4.1 Datasets used to obtain alternative weights .. 64

Table 4.2 Results of predictions ... 65

Table 4.3 Improvement method results .. 69

University of the Aegean Department of Financial and Management Engineering

[1]

Chapter 1 Introduction

Deep learning is used to accelerate the solution of certain types of complex

computational problems, such as in the fields of computer vision and natural language

processing (NLP). In deep learning, the data scientist is not required to manually select

the relevant features; instead, a deep learning model will learn the important

features. In recent years, deep learning and Artificial Intelligence (AI) has been applied

in various engineering fields including autonomous driving, for which it significantly

accelerated research and eventually has moved it closer to reality.

An autonomous vehicle with complete self-driving capability (i.e., without a human

intervention) must accurately -and in real time- comprehend traffic signs and traffic

lights, avoid conflicts with other vehicles, humans, or obstacles, while remaining on

the road to ensure safe and correct operation. To achieve this, various sensors

(cameras, sonar, Lidar etc.) are used to provide the raw data to AI models that control

the vehicle. The detection and identification of objects is also assisted by using

multiple camera sensors since this achieves a better overall level of object detection

accuracy in standalone driving systems (Choi, et al., 2019).

An object detection algorithm for autonomous vehicles should satisfy both a high

detection object accuracy and real time detection speed. There are many state-of-the-

art methods that use deep learning for image classification such as the Convolutional

Neural Networks (CNN), as well as the ResNet and the DenseNet networks to name a

few. In the past few years, many object detectors have been developed based on CNN

(Wang, 2021). These detectors can be split into two categories: two-stage and single-

stage. Two-stage methods (RCNN, Fast R-CNN, Faster R-CNN) are used to improve the

detection speed. A region proposal1 is generated in the first stage followed by the

second in which object classification and bounding box regression are performed. In a

1 The way a Region Proposal Network (RPN) works is that an image (of any size) is imported and the
output is several rectangular object proposals, each with a unique objectness score.

University of the Aegean Department of Financial and Management Engineering

[2]

single-stage method (SSD, YOLO, YOLOv2, YOLOv3 etc.) object classification and

bounding box regression are performed concurrently -without including a region

proposal stage- using a comprehensive feature extractor mechanism.

The scope of this thesis is to study, analyze, use and improve object detection methods

that are appropriate for autonomous driving, focusing on the detection of traffic signal

state (Red, Yellow and Green). Based on our study, the most appropriate method and

model are selected, the model parameters are tuned, the model is trained and is

tested using an original dataset encompassing numerous traffic lights of Thessaloniki.

Based on the test results, appropriate refinements are made to improve model

performance.

More specifically, the thesis

 presents and describes relevant aspects of the background in deep learning

 presents and describes the state-of-the-art in object classification and

detection of traffic lights for autonomous vehicles

 uses Darknet-53 and YOLOv3 to classify and detect traffic lights images.

Appropriate training is performed by executing multiple experiments to select

and use the most appropriate training dataset

 presents and explains the new dataset that is created from the author for

further testing

 tests the model with this dataset to evaluate the detection and accuracy

performance of the model

 proposes a refinement stage to improve model performance.

For the necessary theoretical background in the aforementioned research areas, the

author followed relevant Coursera courses2 in:

 Machine learning (Stanford University)

 Computer vision basics (The State University of New York)

 Neural Networks and deep learning (DeepLearning.AI3)

2 https://www.coursera.org/
3 An education technology company called DeepLearning.AI, develops a global community of Artificial
Intelligence talent.

https://www.coursera.org/

University of the Aegean Department of Financial and Management Engineering

[3]

 Sequences, Time series and prediction (DeepLearning.AI)

 Introduction to TensorFlow for Artificial Intelligence, Machine learning and

Deep learning (DeepLearning.AI)

The Google Colab tool was also utilized. This is an online environment which allows

anyone to write and execute python code with zero configuration through a web

browser to conduct relevant experiments (Li, 2020).

The structure of the remainder of this thesis is as follows: Chapter 2 provides an

introduction to Neural Networks (NN), Convolutional Neural Networks (CNNs), models

used for image classification and object detection, and discusses the architecture of

networks and state-of-the-art methods applied for object detection in real time.

Chapter 3 introduces the model adopted for traffic light recognition and the model’s

training process. It presents the datasets that are used and the steps of the process.

Furthermore, it contains the results of the training experiments and the selection of

the optimal dataset and network weights. In Chapter 4, the new dataset used for the

test process is analyzed and the testing process and its results are presented. A new

post-processing approach is proposed to improve model performance. The conclusion

of the work and proposals for further research are included in Chapter 5.

University of the Aegean Department of Financial and Management Engineering

[4]

Chapter 2 Object detection methods and techniques

In this Chapter we provide background information on the foundations of image

classification, the Convolutional Neural Networks (CNN), and on a very effective model

used in object detection, YOLOv3, which we used for the work of this thesis. For

completion, a useful tutorial on the theory of Neural Networks is provided in Appendix

A.1.

2.1 Image classification using Convolutional neural networks (CNNs)

The two main types of layers in a CNN are the convolutional layers and the pooling

layers. For example, VGG-16, which is a CNN for classification, receives a picture as

input and processes it through a set of convolutional layers, then through a pooling

layer and this process continues until the fully connected layers and the SoftMax

output layer (see Fig. 2.1).

Figure 2.1 VGG-16 Convolutional Neural Network (Smeda, 31/10/2019)

2.1.1 Convolution filters and maxpooling operations

Consider an RGB image that is provided as input to the neural network. The image is

an 𝑀 × 𝑁 × 3 array of pixels, where 3 corresponds to the three colors of the RGB

University of the Aegean Department of Financial and Management Engineering

[5]

image (R=Red, G=Green, B=Blue). The width of the input picture is in the horizontal

dimension, the height is its vertical dimension and the depth is the number of

channels, that is three as stated above.

Zero elements are added around the image, an operation called padding. This

operation results in a a single pixel border added to the image with a pixel value of

zero. Also, to assist the kernel with processing the image, padding allows for more

space for the kernel to cover the whole image and leads to a more accurate analysis

of images.

Convolution is the operation that modifies the above input when it is passed through

a filter; in this case the filter is the convolution kernel. In CNN, multiple kernels are

used to scan the input image. Each filter/kernel, slides from left to right across the

image and continues this operation in each pixel row from top to bottom. The

resulting output image is called feature map or activation map. 2D convolutions are

usually used for black and white images, while 3D convolutions are used for colored

images.

Figure 2.2 Kernel moves over the input to generate the output (Coursera(2020c))

There are many sizes of kernels, which can used; for example of small (3 × 3) or larger

kernel sizes (5 × 5). The most popular choice used by deep learning practitioners is

(3 × 3).

University of the Aegean Department of Financial and Management Engineering

[6]

The mathematical formula for the convolution operation in 2D is given by following

equation. In this equation, the image is represented by matrix I, the kernel is K and 𝑖, 𝑗

are the pixel indices on which the convolution is applied, also m and n are the width

and the height of the kernel (Goodfellow, et al., 2016)

(𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)𝐾(𝑚, 𝑛)

𝑛𝑚

 (2.1)

An explanatory example regarding the implementation and functionality of filters is

given in Fig. 2.3.

Figure 2.3 Representing a RGB image and applying convolutional 𝑊0 Filter (Kernel)

(Stanford Course)

The first, second and third channels represent the red, green and blue colors

respectively. In this case two kernels (filters) are applied, the first filter is the 𝑊0 and

second filter is the 𝑊1 . The first green matrix contains the results of applying filter 𝑊0

University of the Aegean Department of Financial and Management Engineering

[7]

and the three channels. The second green matrix contains the output results from the

second filter 𝑊1Filter 𝑊0 contains 3 different matrices, one for each channel.

Let’s start with the first channel (7 x 7) input image with zero padding and we use the

first (3 x 3) convolution filter to get an output image. The first step is to multiply the

highlighted box in the input image with the first kernel. Each element is multiplied

with an element in the corresponding location. Then, all the results are summed up,

providing one value of the output. This is performed for each channel. The bias is 1

and is applied to the sum of the results of the three operations.

The first operation that involves the first channel and the corresponding kernel is:

(0 × 0) + (0 × (−1)) + (0 × 1) + (0 × 0) + (2 × 1) + (2 × 0)

+ (0 × 1) + (2 × (−1)) + (0 × 1) = 2 − 2 = 0

(2.2)

The same process is applied to the second channel:

(0 × 1) + (0 × (−1)) + (0 × 1) + (0 × (−1)) + (0 × (−1))

+ (2 × 1) + (0 × 0) + (1 × (−1)) + (0 × (−1))

= 2 − 1 = 1

(2.3)

For the third channel the first operation with its kernel is as follows:

(0 × (−1)) + (0 × 0) + (0 × (−1)) + (0 × 1) + (1 × 0)

+ (2 × (−1)) + (0 × 1) + (2 × 1) + (1 × (−1))

= −2 + 2 − 1 = −1

(2.4)

Adding the results of the three operations and the bias (1), the output result is 0 +

1 − 1 + 1 = 0 + 1 = 1 for the first output filter. This is shown as element (1,1) of the

first green matrix in Fig. 2.7. This operation is repeated by moving the kernel to the

right to get element (1,2) of the output. The step size of the kernel sliding across the

image is called a stride. Here, the stride is 2. A stride size greater than 1 will always

downsize the image. So, in order to find the other results for the first output, the

highlighted box moves by a stride of 2 pixels horizontally, vertically, and horizontally

again, and so on (for each color). In this case the output is a 3x3 matrix.

The same procedure will be followed by the second filter (𝑊1) as shown in Fig. 2.4.

The second green matrix contains the results from multiplying the matrices from filter

University of the Aegean Department of Financial and Management Engineering

[8]

𝑊1 and the three channels. The first green matrix contains the outputs results of

applying filter 𝑊0. Here, the bias is 0.

Figure 2.4 Representing a RGB image and applying convolutional 𝑊1 Filter (Kernel)

(Stanford Course).

As we can see in Figure 2.5, VGG -16 has 16 layers among quits multiple convolutional

layers in particular are:

1. Convolution using 64 filters

2. Convolution using 64 filters + Max pooling

3. Convolution using 128 filters

4. Convolution using 128 filters + Max pooling

5. Convolution using 256 filters

6. Convolution using 256 filters

7. Convolution using 256 filters + Max pooling

8. Convolution using 512 filters

9. Convolution using 512 filters

10. Convolution using 512 filters+Max pooling

University of the Aegean Department of Financial and Management Engineering

[9]

11. Convolution using 512 filters

12. Convolution using 512 filters

13. Convolution using 512 filters+Max pooling

14. Fully connected with 4096 nodes

15. Fully connected with 4096 nodes

16. Output layer with Softmax activation with 1000 nodes.

 each convolutional layer including a large number of kernels; e.g. 64 filters (3 × 3) are

applied in the first convolutional layer, 128 filters in the second one etc.

Convolutional networks may include pooling layers to streamline the underlying

computation. Pooling layers reduce the dimensions of the data by combining the

outputs of several neurons of one layer into a single neuron in the next layer. One of

the possible aggregations we can make is to take the maximum value of the pixels in

the group (this is known as Max Pooling). Another common aggregation is taking the

average of the pixels in the group (Average Pooling). Max pooling is used to reduce

the image size. In the case of Figure 2.9 if a 2 × 2 max filter is used and a stride of two,

the output will be a 2 × 2 array.

Figure 2.5 Max pooling (Coursera,2020c)

University of the Aegean Department of Financial and Management Engineering

[10]

For every consecutive 2 × 2 window, only the maximum number is considered, as it

can be seen in the middle part of the above Figure 2.9. Here, a filter of size 2x2 and a

stride of 2 is applied. These are the hyperparameters for the pooling layer. In the first

2 × 2 window of the image with values (0, 64, 48, 192), the maximum is 192. So, the

first element of the output takes the value 192. The same process continues for the

next three outputs.

Consider as an example the VGG -16 network that consists of 16 convolutional layers,

5 pooling layers and 3 fully connected layers. The input is a 224 × 224 × 3 array of

an RGB image. The pre-processing layer takes this RGB image comprised of pixel values

and subtracts the mean image value computed over the entire image.

 The first two layers are convolutional layers with 64 filters each; each filter has

a 3× 3 dimension (see Figure 2.5). The 3x3 filters have a stride of 1. In these

layers, 64 filters are used that result in dimensions 224 × 224 × 64.

 Next is the pooling layer with maxpool of 2× 2 size and stride 2, which reduces

the image size from 224 × 224 × 64 to 112 × 112 × 64.

 This is followed by two more convolutional layers, each with 128 filters, which

results in the new dimension of 112 × 112 × 128.

 Then maxpooling is used followed by

 another three convolutional layers are added with 256 each filters, which

changes the size to 56 × 56 × 256.

 Then a max-pool layer reduces the size further, followed by

 Three convolutional layers with 512 filters resulting in 28 × 28 × 512.

 Finally, after max pooling and three last convolutional layers include 512 filters

and result to a size of 14 × 14 × 152

 This is succeeded by a max-pool layer with 7 × 7 × 512 volume

 The 7x7x512 output is flattened into a Fully Connected (FC) layer, which is

followed by a SoftMax operation. “The fully connected layers perform

classification of the significant features contained in each bounding box of the

image (for the bounding boxes see the sub-section on object recognition

University of the Aegean Department of Financial and Management Engineering

[11]

below). Finally, for the final detection the Softmax output layer is used which

is a vector with a single score per class. The highest score usually defines the

class of the contents of each bounding box”. (Tepteris , 2020)

The underlying idea behind VGG-16 is simplicity. The focus is on having convolutional

layers with 3 X 3 kernels (and always using the same padding). The max pool layer is

used after a group of convolution layer with a filter size of 2 and a stride of 2.

Generally, convolutional layers are strong feature extractors in which

the convolutional filters are capable of finding or picking up characteristics of images.

The VGG-16 architecture is in the top 5 in terms of accuracy. It is sufficient to building

powerful models with correct training and high validation accuracy.

2.1.2 Coding a Convolutional Neural Network with Pooling in TensorFlow

Let’s now see how we implement CNN in Tensorflow.

First, we need to import all the libraries,

 import keras_preprocessing

The Keras dataset preprocessing utilities, located in tf.keras.preprocessing, help to go

from raw data to a tf.data.Dataset object that can be used to train a model (Aakash,

et al., 2021). The tf.data.Dataset represents a sequence of elements, in which each

element is composed of one or more elements (Brain, 2021).

Images present in the dataset are in a variety of shape and sizes. For a neural network

to be trained on these images, they must be in a certain shape. For a greyscale image,

color depth of 1 byte (pixel) is used . For the images in color, there is a color depth of

3 bytes as they are in RGB.

Subsequently we use tf.keras.models.Sequential. The term “sequential” means that

model creation involves defining a Sequential class and adding layers to the model one

by one in a linear manner, from input to output. The example below (Fig. 2.10) defines

a Sequential model that accepts image inputs with size 150 × 150.

Next, tf.keras.layers.Conv2D is used, which takes as input the image of size 150 ×

150 × 3 (RGB). The number of filters depends on the type and complexity of the image

https://www.tensorflow.org/api_docs/python/tf/keras/Sequential

University of the Aegean Department of Financial and Management Engineering

[12]

data. In general, the more features someone wants to capture in an image the higher

the number of filters required in CNN. For 2D convolution we utilize the VGG-16

architecture, which uses multiple 3 × 3 filters. Since the first column and row as well

as the last column and row are populated by 0, the image size becomes 148 × 148 ×

3, when padding is removed. The image is processed through the filters using the

method mentioned above. The related (weight) parameters are 1,792 = 3 × 3 × 3 ×

64 + 64.

Then, max-pooling is applied on the output of the first tf.keras.layers.Conv2D and the

result of the Max-Pooling layer is 74 × 74 × 64. Having passed through all

convolutional and max-pooling layers, the output of the last tf.keras.layers.Conv2D

will be flattened, and then the flattened neurons will be connected with each and

every neuron of the next layer of 512 neurons.

Figure 2.6 Results of code for Convolutions and max-pooling (Coursera(2020c))

These latter operations are shown in Fig. 2.6. Firstly, 6272 is the output shape

resulting from the last max_pooling (see Fig 2.10), that is, 7 × 7 × 128 = 6272 .

Dropout is a technique to prevent overfitting. Specifically, dropout refers to ignoring

units (neurons) during the training phase which are chosen at random. The selected

units are not considered during a forward or backward propagation. Dense inserts a

neural network with 512 hidden units (neurons) to use in feedforward and

backpropagation. The 3,211,776 parameters result from the Flatten Dimension

multiplied by the number of Neurons and adding the bias; that is, (6272) ∗

Dense Dimension (512) + One bias per hidden neuron (512) = 3,211,776. The

University of the Aegean Department of Financial and Management Engineering

[13]

output has three classes, and the number of parameters is Input Dimension (512) *

Output Dimension (3) + One bias per output neuron (3) = 1539.

Figure 2.7 Results of code for input (Coursera(2020c))

During training, a multi-class loss function will be used since this is a multi-class

classification problem. Furthermore, a a SoftMax activation function will be used,

which has non-binary outputs (3 classes).

For training the NN, the RMSprop optimization algorithm is used that is similar to the

gradient descent algorithm. The RMSprop automates the learning rate tuning by using

a moving average of the squared gradient. The latter utilizes the magnitude of recent

gradient descents in order to normalize the gradient (See Appendix B.2).

2.1.3 Methods to avoid Overfitting

The models discussed above are overly complex with too many parameters. If the

training dataset is not rich enough, the model may be overfitted. A model that is

overfitted is inaccurate. Overfitting of a model may be easily assessed by monitoring

its performance on both the training dataset and on a holdout validation dataset.

Specifically, in our case with a very large number of parameters, the model produces

good results in training data but, if overfitted, it performs badly on the validation data

set. The goal of a deep learning model is to generalize well from the training accuracy

to validation accuracy. This is very important for the model to produce accurate

predictions.

2.1.4 Simplifying the model

The first method dealing with overfitting is to simplify the model. We may reduce the

complexity of a model by simply removing layers or reducing the number of filters. This

technique may reduce overfitting and is similar to the Dropout technique.

Unfortunately, there is no general rule on how much to remove or how limited our

University of the Aegean Department of Financial and Management Engineering

[14]

neural network should be, and, thus, we should resort to tests until finding the correct

number of filters and layers.

2.1.5 Image augmentation

Image augmentation is a strategy focused on generation of new images from already-

available ones. And more specifically, it’s a technique that helps us reproduce an

image in another form or dimension. Image Augmentation is a very simple, but very

powerful tool to help avoid overfitting.

 To do so we may use an image generator, which gives the flexibility of generating

more images by executing any of the following techniques (see Appendix B.3):

 Scale

The final image size can be larger or smaller than the original image. Some pixels from

the original image may be trimmed like the image below. The image can be scaled

outward or inward. While scaling outward, the final image size will be larger than the

original. Most of the time a part of the image is cut, with size equal to the original

image. Inward scaling reduces the image size.

Figure 2.8 Rescaled image((Gandhi, 2021)

 Rotation

Rotates an image randomly in the range of 0-180 degrees.

University of the Aegean Department of Financial and Management Engineering

[15]

Figure 2.9 Rotated Image (Elisha, 2020)

 Width shift range, Height shift range

Shifting, moves the image around inside its frame. Many pictures have the subject

centered. Training based on this kind of images might result in overfitting because they

have a lot of features. The related parameters specify, as a proportion of the image

size, how much the subject should randomly be moved around. For example, an image

may be offset by 20 percent vertically or horizontally.

Figure 2.10 Shifted image ((Sarin, 2019)

 Shear range

Consider the following image of Fig. 2.15.

Figure 2.11 Human Image (Coursera(2020c))

University of the Aegean Department of Financial and Management Engineering

[16]

In this example, in the training set (left image of 2.12), there are no images of a person

lying down. In the left image of Fig. 2.12 the human is standing up. In the right image

(not part of the training data set) the person is lying down. To generate a similar image

using the existing training set, one may shear the former image along the x-axis, its

pose may end up very similar to the pose in the image on the right (see Fig. 2.13).

Figure 2.12 Human Image applied shear range (Coursera(2020c))

The shear parameter will shear the image by the specified amount. In the above

example the shear is 0%.

 Zoom range

Zoom can also be very effective. For example, consider the following image on the

right (not part of the training set). It is a woman facing to the right. If the training

image (left image) is zoomed, it could end up with a very similar image to the one on

the right.

University of the Aegean Department of Financial and Management Engineering

[17]

Figure 2.13 Girl image with zoom (Coursera(2020c))

Ιn this case, the zoom range will be a random value up to 20 percent of the size of the

image. Depending on the size of the image we calculate the zoom values.

 Horizontal flip

Another useful tool is horizontal flipping. An image flip means reversing the rows or

columns of pixels in the case of a vertical or horizontal flip respectively. To turn on

random horizontal flipping, just write horizontal flip equals true in code and the images

will be flipped at random. The following image shows a cat. In the left image, the right

leg of the cat is lower than the other leg while the right image shows the opposite and

thus horizontal flip is shown.

Figure 2.14 Cat Image with Horizontal flip ((Balla, 2020))

University of the Aegean Department of Financial and Management Engineering

[18]

 Fill mode

This fills in any pixels that might have been lost by previous operations. If the fill mode

equals ‘nearest’ in the code, the pixel is filled using the value of its nearest neighbors

to try and keep uniformity. Specifically, the closest pixel value is chosen and repeated

for all empty values (see Appendix B.3).

For the implementation in TensorFlow, as always we need to import all libraries first.

 from tensorflow.keras.preprocessing.image import ImageDataGenerator

Figure 2.15 Data augmentation consists of on-the-fly image batch manipulations.

This is the most common form of data augmentation with Keras (Rosebrock, 2019)

In order to make the most of our few training examples, we will "augment" them via

a number of random transformations, so that our model would never see twice the

exact same picture. This helps prevent overfitting and helps the model generalize

better.

In Keras this can be done via the keras.preprocessing.image.ImageDataGenerator

class. This class allows us to:

 apply random transformations and normalization operations to our image data

during training

University of the Aegean Department of Financial and Management Engineering

[19]

 instantiate generators of augmented image batches (and their labels)

via .flow(data, labels) or .flow_from_directory(directory). These generators

can then be used with the Keras model methods that accept data generators

as inputs, fit_generator, evaluate_generator and predict_generator.

2.2 Real Time Object Detection through the YOLOv3 algorithm

In the previous section, the state-of-the-art methods for image recognition were

presented. The current section deals with object detection, a subset of computer

vision that detects and classifies the position of an object inside the image. Object

detection algorithms have been extensively developed in recent years and the most

widely used include Single Shot Detection (SSD), You Only Look Once (YOLO), Regional

CNN (R-CNN) and the Faster R-CNN algorithms (Mantripragada, 2020). These

algorithms classify the objects inside an image and specify the coordinates of

bounding boxes around these objects, thus providing the exact location of the objects

in respect to the bounds of the image.

Object detection methods: The state-of-the-art

Object detection and image classification are core computer vision (CV) problems with

a distinct difference: Image classification aims to classify the image according to a set

of pre-defined classes. Object detection, on the other hand, is more complicated: the

aim is to classify the image into a class and also to detect the position of the object

inside the image, using a bounding box (Ganesh, 2019).

In recent years, the use of faster hardware made deep learning implementations

possible and gave rise to new methods (Figure 2.20) that solve the problem of object

detection (Zou, et al., 2019).

University of the Aegean Department of Financial and Management Engineering

[20]

Figure 2.16 Timeline of evolution of object detection algorithms (Zou, et al., 2019)

2.2.1 Single Shot Detection

The Single Shot Detection (SSD) model (Wei Liu, 2016) was developed by Google and

is based on a feed-forward Convolutional Neural Network (CNN) that extracts the

features of the image into a “feature map”. The feature extraction is based on a small

convolution kernel of size 3 × 3 that is applied to a series of convolutional layers. SSD

predicts bounding boxes after multiple convolutional layers, with each layer focusing

on different object size (small, medium, large) (see Fig. 2.17) (Liu, et al., 2015). Thus,

in each layer, semantic meaning is extracted from the image by lowering the

resolution of it. At the end of the convolutional steps, a classification probability is

produced for each detected object and the coordinates of the bounding boxes around

these objects are found. Finally, the SSD method applies a non-max suppression step

(this technique keeps the one bounding box that fits the object perfectly) to produce

the final detection results (Hosang, et al., 2017).

SSD simultaneously predicts the object bounding box and the object class as it

processes the image. The basic steps are the following:

 The input image passes through a series of convolutional layers. The results

are several sets of extracted feature maps at different sizes (Figure 2.17). SSD

uses the Visual Geometry Group-16 (VGG-16) method to extract feature maps.

University of the Aegean Department of Financial and Management Engineering

[21]

 A 3 × 3 kernel size convolutional layer is applied to each of these feature maps,

to evaluate a small set of default bounding boxes. There are 4 types bounding

boxes, each bounding box will have (Number_of_Classes+4) outputs. Thus,

Conv4_3 output has the size of 38 𝑥 38 𝑥 (𝑁𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝐶𝑙𝑎𝑠𝑠𝑒𝑠 + 4), where

38x38 represents the size of the grid over the image, and 4 stands for the fact

that for each grid cell there are 4 bounding boxes. If for example, there were 3

object classes, the output would be of size 38 𝑥 38 𝑥 (3 + 4). In terms of

number of bounding boxes, there are 38 𝑥 38 𝑥 4 = 5,776 bounding boxes

 SSD predicts both the bounding boxes and the class probability simultaneously

 During training, the ground truth bounding box (a human drawn box that

specifies the position of the object in the image and these predicted bounding

boxes are matched, based on the Intersection over Union (IoU) method (see

Section 2.3.4 “Intersection over Union”). The best predicted bounding box is

the box that has an IoU -with the truth bounding box- larger than 0.5.

Figure 2.17 SSD architecture (Jiatu, 2018)

In addition to the Conv4_3 layer, which contains 5,776 bounding boxes and was

discussed above, he number of the bounding boxes for the other convolution layers,

after the Conv4_3 one, are listed below (Tsang, 2018):

 𝐶𝑜𝑛𝑣7 𝑖𝑠 19 𝑥 19 𝑥 6 = 2.166 bounding boxes (6 boxes for 𝐶𝑜𝑛𝑣7)

 𝐶𝑜𝑛𝑣8_2 𝑖𝑠 10 𝑥 10 𝑥 6 = 600 bounding boxes (6 boxes for 𝐶𝑜𝑛𝑣8_2)

 𝐶𝑜𝑛𝑣9_2 𝑖𝑠 5 𝑥 5 𝑥 6 = 150 bounding boxes (6 boxes for 𝐶𝑜𝑛𝑣9_2)

University of the Aegean Department of Financial and Management Engineering

[22]

 𝐶𝑜𝑛𝑣10_2 𝑖𝑠 3 𝑥 3 𝑥 4 = 36 bounding boxes (4 boxes for 𝐶𝑜𝑛𝑣10_2)

 𝐶𝑜𝑛𝑣11_2 𝑖𝑠 1 𝑥 1 𝑥 4 = 4 bounding boxes (4 boxes for 𝐶𝑜𝑛𝑣11_2)

The total bounding boxes are 5.776 + 2.166 + 600 + 150 + 36 + 4 = 8.732

2.2.2 R-CNN and Faster R-CNN

R-CNN (Figure 2.18) is an object recognition model (Girshick, 2014), which initially

calculates the possible position of an object inside an image and then classifies the

objects in the image. To find the position of an object inside an image, a selective

search algorithm is used. The selective search algorithm, outputs approximately 2000

region proposals which are then fed to the CNN model to extract image features. The

feature extraction method produces a 4.096-dimentional vector of image features and

a Support Vector Machine (SVM) algorithm decides for the presence of an image class

inside each region.

Figure 2.18 R-CNN model (Girshick, 2014)

The R-CNN model which is responsible for object recognition is inherently very slow.

The 2.000 region proposals have a significant impact on the algorithm resolution time

because the feature extractor must perform the same task for each one of these

regions. Another problem is that, during the selective search, the network does not

learn anything related with the patterns inside the image (Ren, 2017).

For these reasons, an improved model was developed (Ren, 2017) to address the

inefficiencies of the R-CNN model. This improved model is called Faster R-CNN and

does not use the Selective Search method for the region proposals; the model itself is

University of the Aegean Department of Financial and Management Engineering

[23]

trained to predict region proposals using a CNN (Figure 2.19). These region proposals

are then fed to a separate CNNs to decide if there is an object of interest inside this

region. The output of the Faster R-CNN is both the class that the object belongs to and

also its position inside the image.

Figure 2.19 Faster R-CNN (Ren, 2017)

2.2.3 You Only Look Once (YOLO)

Overview

Most object recognition algorithms (such as the SSD approach discussed above)

approach object detection as a classification problem. The YOLO architecture

(Redmon, 2016) approaches the recognition part of the problem as a regression

problem. A single Neural Network predicts the object’s class and finds its location

inside the image with just one “look”. The YOLO’s detection speed is about 10 times

faster than other state of the art methods (Boesch , 2021).

University of the Aegean Department of Financial and Management Engineering

[24]

The YOLO algorithm follows a simple approach: at first the image is resized into

448x448pixels. Then, the YOLO model divides the image into an S x S grid and assumes

an object is centered in each grid cell. For each grid cell a bounding box and the

probability of each class is predicted. The output is the class probabilities and the

(𝑡𝑥 , 𝑡𝑦, 𝑡ℎ , 𝑡𝑤) coordinates of the object, which are provided if the class confidence is

over a specific pre-set threshold.

The YOLOv3 model (Figure 2.20) contains 24 convolutional layers followed by two fully

connected layers. These convolutional layers of the model are pre-trained on the

ImageNet dataset; this makes the model easier to train in a transfer learning matter

(Mwiti, 2021). The model uses the weights taken from the darknet-53 model

(Redmon, 2016).

Figure 2.20 YOLOv3 architecture. (Vinh, 2020) (Jiatu, 2018)

Figure 2.24 shows the YOLOv3 network. YOLOv3 accepts 448px×448px or

608px×608px sized images, since this allows the processing of the images in batches

which in turn speeds up the training of the network (Vignesh, 2020). For this reason,

input images are resized to one of these fixed square dimensions. To extract the

features such as color, shape and other aspects of the objects, multiple convolutions

are applied to the image as it propagates through the network. The output layer is a

University of the Aegean Department of Financial and Management Engineering

[25]

3D feature map and each depth channel represents a feature of the image or object

(Vignesh, 2020).

The network characteristics are outlined below:

 The network has 24 convolutional layers for feature extraction and 2 fully

connected layers for the output class scores and location coordinates (Fig.

2.24)

 The first 20 convolutional layers are followed by an average pooling layer and

a fully connected layer is pre-trained on ImageNet

 The layers comprise 3×3 convolutional layers and 1x1 reduction layers.

 There are 64 filters that have a size of 7×7

 The output is a 7×7×30 vector which predicts the class probability and

bounding boxes (Redmon, 2016).

Input and output of the YOLOv3 model

The input fed to the YOLOv3 model is a digital image (typically RGB) that includes an

unknown number of objects.

The output of the model is an 𝑆 𝑥 𝑆 𝑥 (𝐵 𝑥 (5 + 𝐶)) tensor, where

- 𝑆 × 𝑆 is the size of the grid imposed by the model over the input image

- 𝐵 is the number of bounding boxes for each cell. These boxes are positioned

at the center of each object and have a different size and aspect ratio. Each

bounding box is associated with five parameters: The box center coordinates

(𝑥, 𝑦), the box height ℎ, the box width 𝑤, and the probability 𝑃 that the box

contains an object

- 𝐶 is the number of object classes. For each class, the output contains a

conditional class probability value 𝑃(𝐶𝑙𝑎𝑠𝑠𝑖|𝑂𝑏𝑗𝑒𝑐𝑡) which depend on the cell

containing an object.

Thus, the output is a list of bounding boxes along with their coordinates, and the

detected object class for each box. The 6 numbers (𝑃𝑥, 𝑏𝑥, 𝑏𝑦 , 𝑏ℎ, 𝑏𝑤, 𝐶) associated

with each bounding box are the following:

University of the Aegean Department of Financial and Management Engineering

[26]

 𝑏𝑥 , 𝑏𝑦 are the box’s center coordinates

 𝑏𝑤 is the width of bounding box and 𝑏ℎ is the height of the bounding box

 𝑃x is the objectness score which represents the probability that an object falls

within a bounding box

 𝐶 is the class that the object belongs to.

Initially, the image is divided into 𝑆 × 𝑆 grid cells with each grid cell containing 3

bounding boxes. These boxes are called “anchor boxes” and are used to predict the

object present at the center of each grid cell (these boxes have different size and

aspect ratio). Each cell can only predict one object for each box size (small, medium,

large). This is done because many images can contain many objects of different sizes.

In Fig. 2.21 there are three techniques of object detection. The first shows the grid

cells on the input image. The second technique of the same Figure consists of the

number of bounding boxes and the confidence score which explain the process of

anchor boxes. The class probability map is derived simultaneously with bounding

boxes + confidence, this process defines each object in a different color to identify the

object and the class that it belongs.

The final step contains the outputs which include the object’s position and the object’s

class. This technique is named non max suppression and is used to remove all

bounding boxes, except the bounding box that fits the object perfectly (Hosang, et al.,

2017).

University of the Aegean Department of Financial and Management Engineering

[27]

Figure 2.21 Combination of the three techniques (Saxena, 2021)

In Figure 2.21 there are lots of box predictions but only the best ones are kept in the

final output. To select the best prediction box for each grid cell a non-max suppression

method is applied to avoid selecting overlapping boxes. First, all boxes with a

confidence score below a certain threshold are removed, then, the box with the

highest probability is used to compute the IoU against all other boxes. If the resulting

IoU is greater than another threshold (usually 0.6), the compared box is discarded

(Sharma, 2018).

Training is based on the creation of the ground truth bounding boxes are created.

These are hand labeled boxes that help to train the model in order to specify the

position of the object in the image (Mohana, 2019). The ground truth bounding boxes

are created using an annotation tool, described in more detail see Section 3.1. The IoU

relates to the comparison between ground truth bounding box and predicted box.

2.2.4 Comparison between SSD, YOLO, R-CNN, and Faster R-CNN

According to Table 2.1 (Hui, 2018), YOLO achieves the best result in the best

computational time (78.6% accuracy in only 91 Frames Per Second). Second is SSD,

followed by Faster R-CNN and R-CNN. These results are expected since YOLO can

detect and classify an object in one step. For this reason, real-time applications

significantly favor the YOLO model (Hui, 2018). In this work we will use YOLO.

University of the Aegean Department of Financial and Management Engineering

[28]

Table 2.1 Object detection algorithms comparison

Method Mean Average Precision

(mAP)

Frames Per Second (FPS)

SSD 74.3% 46

YOLO 78.6% 91

R-CNN 66% 2

Faster R-CNN 73.2% 7

2.3 Current State-Of-The-Art

Initially, the YOLO algorithm was slow (Redmon & Farhadi, 2018). Some necessary

upgrades were made (changing of parameters for the choice of the better network

will be used) and its successor, YOLOv3, became a fast detector of objects in

photographs. YOLOv3 uses a pre-trained model called Darknet network and has higher

accuracy than comparable models. In addition, the network structure utilizes the GPU

more effectively, making it more efficient (Redmon & Farhadi, 2018).

Even though many object detection algorithms exist, public data sets of labelled

pictures are often limited. Particularly for the problem in question, there are no

datasets that contain labels of traffic lights. Two research papers that study traffic light

detection and recognition are highlighted below.

2.3.1 Research Paper 1: Real-Time Traffic Lights Identification using YOLOv3

Algorithm for Autonomous Vehicles (Kozel & Robert, 2020).

Traffic lights and traffic sign detectors play a major role in autonomous vehicle safety.

Although there are many methods that utilize a combination of a) image processing

and b) training a neural network model, those methods are not fully accurate in

detecting traffic light states. The root cause is the practical nature of the problem: a

traffic light occupies just few image pixels in photographs taken from long distances

and also, sunlight obstructs traffic light detection.

Kozel and Robert (2020)proposed to identify traffic lights and their three states in both

urban and suburban areas with the development of a deep learning model which uses

YOLOv3. The Bosch Small Traffic Lights benchmark was used for training. The Bosch

University of the Aegean Department of Financial and Management Engineering

[29]

Small Traffic Lights dataset includes 5,093 pictures that contain thirteen classes

organized in annotated files (see Fig. 2.22).

Figure 2.22 Testing on Bosch Small Traffic Lights dataset (Kozel & Robert, 2020)

The Mask Region-Based Convolutional Neural Network (Mask RCNN) method and the

pre-trained weights from the COCO dataset were used. The training process lasted for

3 hours and for testing the trained network, generic traffic light images were

downloaded from the internet (see Fig.2.27). Nevertheless, with the Mask RCNN

model, the results were impossible and slow as prediction accuracy couldn't exceed

90% mainly because the vehicle lights were being detected as traffic lights.

Figure 2.23 Testing of Trained model on random image from Google (Kozel &
Robert, 2020)

To improve the performance, YOLOv3 pre-trained weights from the Darknet network

were used. Furthermore, the model was trained over 100 epochs. The trained model

was able to detect traffic lights at a satisfactory detection rate even when vehicle lights

were present in the picture (Kozel & Robert, 2020).

University of the Aegean Department of Financial and Management Engineering

[30]

2.3.2 Paper: YOLOv3 Algorithm with additional convolutional neural network

trained for traffic sign recognition (Novak, et al., 2020).

The most important ability of autonomous vehicles and most Advanced Driving

Assistance Systems (ADAS) is the capacity to perceive all the static and dynamic

objects around the vehicle (Novak, et al., 2020). Convolutional Neural Network (CNN)

helps deliver safe ADAS in modern vehicles.

Based on the work by (Novak, et al., 2020) the YOLOv3 model has been pre-trained

for the detection and classification of only five traffic sign objects. The YOLO algorithm

is used to locate and detect objects in real time and then, an additional CNN is used

to classify more specific subclasses of traffic signs. The CNN was trained in the code of

YOLOv3 with excellent results on the test images. The dataset that was used for

training is the Berkley Deep Drive Dataset, which contains limited examples of traffic

signs for a total of 75 classes. For this reason, the additional CNNs that were used were

trained on a different dataset which contains only traffic signs.

Two CNNs were created. The first treats traffic signs classes, while the second treats

traffic signal classes. The difference between the two CNNs was only in the last Fully

Connected layer. The training dataset contained 121,098 images, 95,020 of those

were used for training, 23,773 for validation and 2,305 for testing. The first CNN -

responsible for traffic sign type recognition- was trained for 20 epochs and the second

CNN -responsible for traffic signal class recognition- was trained for 50 epochs. In

conclusion, the accuracy of the algorithm was very high (close to 95%) for both

categories. However, expanding The Berkley Deep Drive Dataset with new pictures

took significant amount of time and effort even though it improved the predicted

outcome (Novak, et al., 2020).

The results from the above 2 papers show that the YOLOv3 model has greater accuracy

in object detection than other models. In addition, if some modifications are made to

the CNN of the algorithm (for example the change of the epoch number) and if large

datasets are used, then, the accuracy can reach 95%.

University of the Aegean Department of Financial and Management Engineering

[31]

2.4 Contribution of this thesis

The objective of the thesis is to study and develop state-of-the-art techniques for

traffic signal recognition, specifically traffic lights. This application is critical in driver-

assistant systems and in autonomous vehicles. In order to accomplish these objectives

we will perform the following steps:

1. Select the appropriate object recognition mode. As discussed above, there are

several object recognition models, including SSD, R-CNN, Faster R-CNN, etc.).

YOLOv3 is the preferred choice for our work for the reasons already discussed

in Section 2.3.

2. Train the l, YOLOv3 Model, using appropriate, available datasets. Training

involves a sequence of experiments in order to select the most effective

datasets ant training parameters

3. Acquire (develop) a new all inclusive data set of images, involving traffic lights

under various conditions; i.e.

a. Traffic light state: red, yellow, green

b. Distances between the traffic light and the location from which the

photo/video was taken.

c. Time and weather: day, night, rain, fog, sunshine.

4. Apply the trained model to the above original dataset. Improve its fidelity

through new techniques

5. Draw conclusions and develop guidelines for training and implementation

processes for this very important application.

University of the Aegean Department of Financial and Management Engineering

[32]

Chapter 3 Data preparation and training of the object detection

model using the YoloV3 algorithm

Prior to training the dataset to be used should be prepared carefully. The dataset

should be in a special form, e.g. .xml or .txt. The .txt format is used in YOLOv3. Each

image should be annotated with bounding boxes and hand labelled. To do so, an

annotation tool is necessary. As a result, in the .txt file the information about the

bounding box coordinates and the object classes are saved. There are multiple

techniques used for this process in order to eliminate overfitting, normalize the data,

augment (enrich) the dataset etc. This is discussed in Section 3.1.

The Section 3.2 explains in detail the steps that were followed to make the training

process and the pre-trained weights that downloaded from the Darknet-534 network.

This technique is called transfer learning. Additionally, the YOLOv3 model is used and

analyzed in detail in Section 3.3. Furthermore, the results of the custom training

process, for training and validation datasets, were analyzed with Figures of the

average loss and the mean average precision for object detection.

3.1 Data collection, generation and labeling

There are many publicly available open labelled datasets, including ImageNet (Yang,

et al., 2021), Common Objects in Context (COCO) (Tsung-Yi, et al., 2015), Google’s

Open Images (Duerig & Krasin , 2016) etc. Each is a set of digital photographs with

different states (Malevé, 2019) that developers use to train and validate the

performance of their algorithms. The algorithms are said to learn from the examples

contained in the dataset.

In this Thesis, four datasets have been used. The datasets contain (not exclusively)

three classes, each for one state of a traffic light: Red, yellow, green The Four datasets

are:

4 ImageNet Classification (pjreddie.com)

https://pjreddie.com/darknet/imagenet/#darknet53

University of the Aegean Department of Financial and Management Engineering

[33]

Table 3. 1 The datasets that are used for training

Dataset Source Number of images

included on the

datasets

Number of

images used

Large Dataset (Srivastana,

2017)

3,299 1,000

Bosch Small Traffic

Lights Dataset

(Kaggle, 2020) 13,427 582

SJTU Small Traffic

Light Dataset

(Xue, 2020) 5,786 1,217

Berkley DeepDrive

Dataset

(Yu, 2021) 100,000 2,873

The “Large Dataset” (see Fig. 3.1) is downloaded from GitHub5. This dataset contains

3,299 images classified in 3 useful folders. The first contains 971 images with red traffic

lights; the second contains 255 images with yellow traffic lights (see Fig. 3.1) and the

third folder contains 145 images with green traffic lights. The size of each image is

224 × 224 (in pixels). All images are derived from the Carla autonomous car simulator

program. “CARLA is an open source simulator for autonomous driving and has been

produced by a team from the Computer Vision Centre at the Autonomous University of

Barcelona, Intel and the Toyota Research Institute using the Unreal computer game

engine. “ (Tepteris , 2020). In these images the traffic lights are very close to the

camera. Furthermore, the image contains only traffic lights and no other objects (such

as road, signs, pedestrians, cars etc.) except general background. In our case we used

only 1,000 images in model training, in order to maintain an appropriate balance with

real photographs (that is, 369 from the folder with red traffic lights are not used).

5 https://github.com/level5-engineers/system-integration/wiki/Traffic-Lights-Detection-and-
Classification

University of the Aegean Department of Financial and Management Engineering

[34]

Figure 3.1 Traffic lights from Carla simulator

The second dataset is “Bosch Small Traffic Lights Dataset” from the Kaggle6 platform.

Kaggle is an online platform that allows users to identify free datasets, explore and

build models in a web-based data-science environment. This platform hosts data

scientists, machine learning engineers and holds designs competitions to solve data

science challenges (Lardinois, et al., 2017). The dataset contains 13,427 camera

images. The dimension size of each image is 1280 × 720 pixels. All camera images are

RGB (red, green, blue)and, in addition to traffic lights, include cars, road and multiple

other objects. See examples in Fig. 3.2. Only 582 images are used to train the model;

i.e. the ones that contain traffic lights at an appropriate environment

Figure 3.2 Traffic Lights of Bosch Small Traffic Lights Dataset

6 https://www.kaggle.com/

University of the Aegean Department of Financial and Management Engineering

[35]

The third dataset, “SJTU Small Traffic Light Dataset” is downloaded from GitHub. It

contains 5,786 images which are separated into two categories or “resolutions” a) of

1080 × 1920 pixels and b) 720 × 1280 pixels. It also contains 5 categories of traffic

lights (red, yellow, green, off and wait on). Only the 3 categories were used (red,

yellow and green) containing 1217 images, which are very clear. Figure 3.3 shows

some sample images from this dataset.

Figure 3.3 Images from SJTU Small Traffic Light Dataset

The fourth dataset, “Berkley DeepDrive” (BDD100K) is downloaded from the

Kaggle7site. The package consists more than 100,000 HD videos recorded at various

times of the day, seasons and weather. The data were collected from 4 locations (San

Francisco, Berkeley, Bay Area and New York). The dimension of each image is 1280 ×

720 pixels. From the classes of traffic lights 2,873 images are used for training the

model (see Fig.3.4). From these images, 2,005 are the original ones and the other (868)

have been created by data augmentation. The data augmentation techniques (see

section 2.2) applied are the following:

a) Horizontal flip

7 https://www.kaggle.com/solesensei/solesensei_bdd100k

University of the Aegean Department of Financial and Management Engineering

[36]

b) Vertical flip

c) Shear range by ±15° horizontal and ±15° vertical

Figure 3.4 Images of Berkley DeepDrive Dataset

For training our network, the images in the above datasets were divided to three new

sets. In each sets the images were allocated (randomly) into validation and training

subsets.

 The first set contained the images taken from the Carla simulator (Large

Dataset). There are 1000 images which are split into 700 images for training

and 300 for validation (usually all images of datasets are divides into 70% for

training and 30% for validation).

 The second set contained 1,217 images from the “SJTU Small Traffic Light

Dataset”, 852 for training and 365 for validation. The images in this dataset are

University of the Aegean Department of Financial and Management Engineering

[37]

clear (day or night) photos of actual scenes that contain multiple objects in

addition to traffic lights.

 The third set contained images from the Berkley DeepDrive and Bosch Small

Traffic Lights datasets. In total it contained 3,455 images, from which 2,419

were used for training and 1,036 for validation. The images in this dataset are

not clear (blurred) photos of actual scenes, again containing multiple objects,

in addition to traffic lights. These photos are also taken during the day or night.

All images in the above datasets do not include ground truth bounding boxes.

However, these are necessary to perform the training of our Yolo3 network. Thus, in

order to train our custom model, we inserted the ground truth bounding boxes in the

traffic lights which are represented in all images. Do to so, we used the LabelImg8

graphical image annotation tool which is open source. The annotation tool and the

manual process is described in Appendix C.

3.2 Training and validation through Transfer Learning

The concept of overfitting and its challenges were presented In Section 2.2.3. As

already discussed, overfitting occurs when a NN with many parameters is trained using

a limited dataset; this results in poor overall performance. To address this issue, very

large data sets could be used to train the NN model. However, obtaining such datasets

is a very hard and expensive process. Small datasets that are easier to obtain may be

somehow enhanced with the methods presented in Section 2.3 but, although these

methods help, oftentimes are not sufficient to address the overfitting problem.

This Section describes Transfer Learning which refers to the practice of using the

weight parameters of a NN -that has been pre-trained on a large dataset- to classify

real world images. Such a large dataset is ImageNet (Deng, et al., 2009), which is a

150GB dataset containing more than 1.2 million real-world labelled images organized

in 1000 categories and it is one of the most widely used datasets in modern computer

vision (CV) research.

Transfer learning capitalizes on the features that the model has already learned.

Especially where only a small training dataset is available for a new NN model, the

8 Github repository of darrenl tzutalin: https://github.com/tzutalin/labelImg

University of the Aegean Department of Financial and Management Engineering

[38]

weights of the pre-trained NN model help initialize the weights of the new NN model.

In such cases, only the weights of the last few layers of the new NN model are adjusted

through training. In this way, training addresses the overfitting issue.

Figure 3.5 Series of convolutional layers model that are locked, and application of
Transfer Learning method in the last fully connected layers (Coursera(2020c))

Figure 3.5 shows the concept of Transfer Learning: The pre-trained convolutional

layers (shown in red in the figure) are locked and cannot be retrained using additional

data obtained from a new dataset. These locked layers have already extracted the

features from an existing image dataset

Transfer Learning process

Figure 3.6 Transfer learning Steps (Leclerc, et al., 2018)

As shown in Figure 3.6, the Transfer Learning steps are:

1. Selecting a pre-trained model

University of the Aegean Department of Financial and Management Engineering

[39]

There are several open-source models that have been trained on the ImageNet

dataset and out of these, one that looks more suitable for the problem in

question is selected (Krizhevsky, et al., 2012). Τhe model choice depends on

the image classes to be detected and whether these classes are part of the

model’s output layer. In this Thesis, Darknet-53 is a convolutional network and

it is pre-trained on the ImageNet dataset. Darknet-53 is used as the foundation

for object detection problems and YOLO workflows. This dataset can classify

images into 1000 classes which makes it a very powerful tool. One of the

classes is the traffic signal (but without the R, G, Y states) and Darknet-53 has

been trained in this class.

2. Creating a base model

The architecture of Darknet-53 contains 53 convolutional layers with pre-

trained weights. For creating the base model, the final output layer is removed

and replaced by an output layer that is compatible with the problem in

question. Figure 3.7 shows the Detection Flow Diagram.

Figure 3.7 Detection Flow Diagram (Raza & Song, 2020)

Initially, each image of the new dataset is imported and passed through the

already trained convolutional layers of Darknet-53 and its features extracted

are stored. These features are inputs to the last trainable layer. The initial

layers reflect general features, while the later trainable ones focus more on

specific characteristics (see Fig. 3.7).

3. Locking layers so they don’t change during training

This step is needed because the weights in these layers shouldn’t be altered by

training. The main idea is to keep the convolutional base in its original form

University of the Aegean Department of Financial and Management Engineering

[40]

and then use its outputs to feed the classifier. The pre-trained model is used

as a feature extraction mechanism that can be useful if either the computation

power is low, the dataset is small or the pre-trained model solves a problem

that is very similar to the problem in question.

4. Adding new “trainable” layers

This step adds new trainable layers that will turn extracted features into

predictions for the new dataset.

5. Integrating with YOLOv3. Darknet53 is integrated with YoloV3. The objective

of this integration is for YOLOv3 to localize the identified objects in the image

(in this case the traffic signal) by placining the appropriate bounding boxes

around these objects

This process is summarized in Fig. 3.8, where the integration of Darknet-53

with YOLOv3 is displayed (Benslimane, et al., 2019). The concept is the

following: The layers of Darknet-53 are used with locked weights. The final

(dense) layer of the network is modified to include in this case three classes

(traffic light R, Y, G) instead of 1000. This part identifies the three states of the

traffic light. Furthermore, YOLOv3 is integrated (at various layers) with

Darknet-53 in order to locate the traffic lights in the photograph by fitting the

appropriate bounding boxes.

It is noted that the integrated system of Figure 3.8 is adopted (downloaded),

but its parameters are modified in order to fit the problem in question.

University of the Aegean Department of Financial and Management Engineering

[41]

Figure 3.8 Adding of new “trainable” layers (Almog, 2020)

6. Training the trainable layers (last one of Darknet-53 and YoloV3) using the new

dataset

In this step, the additional layers of the model are trained.

The training process of the new model is analyzed in the Section 3.3.

3.3 Darknet-53+YOLOv3 model training

The training process of the model is described in the current Section. The training set

up and the steps of the related algorithm are presented, and the model training results

are analyzed. The final part of the Section includes the conclusions from the training

exercise.

3.3.1 Setting up the model training environment

Section 3.2 described the transfer learning process and how the feature extraction

mechanism of the pre-trained model can effectively help the new model produce

better overall image classification results. Once all data of the dataset used for the

training have been labelled, the actual training process of the trainable part of the

model can begin. An adequate dataset size with correctly labelled objects plays an

important role in the accuracy of the training process which -in the case of the work

done as part of this Thesis- was based on the YOLOv3 Darknet model from AlekseyAB

and was developed in the Google Collaboratory tool.

University of the Aegean Department of Financial and Management Engineering

[42]

Google Colab is a product developed by Google Research. This online tool, which is

accessible via a web-browser, helps data scientists and Artificial Intelligence

researchers import existing software libraries and develop high level software code

blocks which can then be shared online. Google Colab is especially well suited to

machine learning, data science and analysis, and education. The environment allows

anyone to write and execute python code with zero configuration through a web

browser. Free access to computing resources including GPUs is also provided (Li,

2020).

Google Research also features Colab Pro, which provides faster Graphics Processing

Units (GPUs), longer runtime limits and more memory allocation. Colab Pro also

provides better connectivity options with the online server. The latter is useful in

cases, in which large amounts of data are involved in the training process. Some of

advantages and disadvantages between Collab and Collab Pro are shown in Table 3.2.

Note that the GPU is the core processing unit that implements the matrix

multiplication operations involved in a Neural Network (NN). The higher the number

of GPUs, the faster the NN data processing becomes and thus, state-of-the-art fast

GPU processors make real-time CV algorithms possible (Abri, et al., 2020).

Table 3.1 Colab and Colab Pro tools (Buomsoo, 2020)

 Price GPU Runtime Limits

Colab Free tool K80: access a simple

GPU card

A user can have up to 12

hours of run time

Colab

Pro

Costs 10€/month as of

June 2021

T4 & P100: access to

high-end GPUs

A user can have up to 24

hours of runtime

For the purpose of the work done as part of this Thesis, the Google Colab Pro was

chosen because of its higher processing power and memory limits. The software code

taken from the GitHub software repository of AlexeyAB9 was used to train the NN

model in the Colab Pro environment.

9 https://github.com/AlexeyAB

University of the Aegean Department of Financial and Management Engineering

[43]

The algorithm comprises of the following steps as shown in Fig. 3.9:

Step 1: This first step activates the NVIDIA GPU controllers. CUDA is a parallel

processing platform developed by NVidia that takes full advantage of the available

GPU resources and is used in machine learning, gaming and deep learning

applications. The CUDA platform is the Nvidia’s language/API for programming the

graphics card and is engineered to boost throughput in real-world applications

(Rosebrock, 2020).

Step 2: This step accesses the custom dataset that includes the images to be used in

the training and validation process. The dataset is stored online in the Google Drive

service that is provided as part of the 10 (Google Workspace, 2012).

Step 3: This step utilizes the Darknet open-source neural network framework. Darknet

is a network which can work together with the YOLO model as YOLO uses Darknet’s

pre-trained weights. For this process the network must first be compiled. Darknet

requires that both the GPU and OpenCV11 (see below) options be enabled. The CUDNN

is a high level software library used by deep learning neural networks models and is

built on the CUDA platform.

Step 4: This step creates a copy of the configuration file “yolov3.cfg” and names it

“yolov3_training.cfg”. The various configuration options that will be chosen for the

custom model will be saved in the copy and not the original file. A backup of the

original .cfg file is also kept for reference.

10 Google Drive is a cloud-based storage solution that allows you to save files online and access them
anywhere from any smartphone, tablet, or computer.
11 “OpenCV (Open Source Computer Vision Library) is an open source computer vision

and machine learning software library. OpenCV was built to provide a common

infrastructure for computer vision applications and to accelerate the use of machine

perception in the commercial products. Being a BSD-licensed product, OpenCV makes

it easy for businesses to utilize and modify the code” (OpenCV team , 2021).

University of the Aegean Department of Financial and Management Engineering

[44]

Step 5: This step adds the necessary configuration options in the “yolov3_training.cfg”

to define the number of classes of the objects to be classified. The parameters and

their values are shown in Table 3.3 and are discussed below.

Table 3.2 Parameter modifications for training

Option name Default

value

Updated

value

The relevant equation/comments

Batches (Batch

size)

1 64 number of samples (e.g. images)

which will be processed in one batch

Subdivision 1 16 Subdivision represents how the batch

is again divided into blocks of images

Max batches 500200 6000 This equation (𝑀𝑎𝑥_𝑏𝑎𝑡𝑐ℎ𝑒𝑠 =

2000 × 𝑛) is used for 3 classes

Classes 80 3 3 classes are used for training (traffic

light green, red and yellow)

Filters 255 24 The equation (Number of filters = (𝑛 +

5) × 3) is used to calculate the filters

used in the images

Learning rate 0.0001-0.1 0.0001-0.1 A learning rate parameter is a number

between 0.0001 and 0.1 and controls

how fast the values of weights

change.

Steps 400000,

450000

4800, 5400 The learning rate is decreased after

4,800 and it is decreased much more

after 5,400 iterations.

Scale The scale parameter specifies how

much the learning rate will decrease;

thus, it multiplies the learning rate.

Batches

The batch size is changed from 1 (default) to 64 and refers to the number of photos

that will be processed in one batch (the model loads 64 images that will be processed

in each iteration).

University of the Aegean Department of Financial and Management Engineering

[45]

Subdivision

Subdivision represents a further division of the batch into the blocks of images and it

is changed from 1 (default) to 16. Starting with subdivisions = 1 there was an out of

memory error. When we increased this parameter to 2, 4, 8, 16 etc. the training

process started successfully. The GPU processes its images through batch and

subdivision.

Max batches

The “Max Batches” configuration option defines the maximum number of batches,

which training will run for. The number of “max batches” is reduced from 500,200

(default) to 6,000 because the classes are three instead of 80. The equation for “max

batches” is the following:

𝑀𝑎𝑥_𝑏𝑎𝑡𝑐ℎ𝑒𝑠 = 2000 × 𝑛 (3.1)

where,

 n is the number of classes,

 200012 is a standard value from YOLOv3 (B.Sargunam & N.Kirthika, 2020)

Classes

There are three traffic lights classes (red, yellow and green). For this purpose, the 80

classes of the original file are changed to 3. Also, the number of filters is reduced from

255 (default value in the original file) to 24 that is:

Number of filters = (𝑛 + 5) × 3 (3.2)

where,

 n is the number of classes

 3 represents the number of the bounding boxes used by YOLOv3

 5 represents the 4 bounding box attributes plus one object confidence score.

Learning rate, steps and scale

The learning rate parameter is defined as a number between 0.0001 and 0.1 and

controls how fast the values of weights change. At the beginning of the training

12 https://github.com/AlexeyAB/darknet#how-to-train-to-detect-your-custom-objects

https://github.com/AlexeyAB/darknet#how-to-train-to-detect-your-custom-objects

University of the Aegean Department of Financial and Management Engineering

[46]

process, the learning rate should be high. The learning rate decreases over time

because as the network processes more data and converges towards the minimum of

the loss function, the weights should change less aggressively. The step parameter is

applied, which indicates that the learning rate will remain constant for many iterations

and then will be decreased. This parameter must be 80% and 90% of the maximum

batch value, which means that after 0.8 * maximum batch iteration (in our case 0.8 ×

6,000 = 4,800), the learning rate will decrease and after a total of 0.9 * maximum

batch iterations (0.9 × 6,000 = 5,400), it will decrease further. The scale parameter

specifies how much the learning rate will decrease.

Step 6: This step creates the obj.name and .obj.data files inside the darknet/data/obj

directory. These files contain metadata information such as class names and number

of classes required for the training process. The photos of the custom dataset are

uploaded in two folders. The first folder is named “train” and contains the images for

training while the second folder is named “valid” and contains the pictures for

validation.

Step 7: The yolov3_training.cfg and the files which contain the class names of objects

(obj.names) are copied to Google Drive.

Step 8: This step uploads the custom dataset in Google Drive in zip form and then

“unzips” the photos file stored in Google Drive to the darknet/data/obj directory.

There are two folders for unzipping. As mentioned above, the “valid” folder contains

the photos for the validation process, the “train” folder contains the photos used in

the training process.

Step 9: This step creates two files in .txt form, named train and valid, respectively. The

folders contain the location with the last part containing the names of all images (e.g.

/content/gdrive/MyDrive/yolov3/darknet/data/obj/train/out00000.png). The images

will be fetched from the location specified in this file during training.

Step 10: In this step the pre-trained weights of Darknet-53 are downloaded for the

convolutional layers. In Section 3.2, Transfer Learning is discusses as well as how

Darknet-53 interacts with YOLOv3.

University of the Aegean Department of Financial and Management Engineering

[47]

Step 11: In this step, the pre-trained weights are loaded into the YOLOv3 model and

the training process begins. The model takes about 8-10 hours to train for 3 classes.

The time required for the training of a custom model depends on the dataset size and

the number of classes. We used one GPU resource (Nvidia Tesla P100-PCIE-16GB),

from Google Colab Pro with a speed of 32 GB/sec. In case the training process stops

(due to network or power failure or non-availability of GPU resource allocation), it can

start again and continue from the last saved weights.

The steps and the high-level software code are presented in Fig. 3.9 below:

Step 1: Check if NVIDIA GPU is enabled

!nvidia-smi

Step 2: Mount your Google Drive on Google Colab.

from google.colab import drive

drive.mount('/content/gdrive')

!ln -s /content/gdrive/

!ls /content/gdrive/MyDrive/yolov3

Step 3: Configure and compile Darknet.

Configure

%cd /content/gdrive/MyDrive/yolov3/darknet

#!sed -i 's/OPENCV=0/OPENCV=1/' Makefile

!sed -i 's/GPU=0/GPU=1/' Makefile

!sed -i 's/CUDNN=0/CUDNN=1/' Makefile

Compile

!make

Step 4: Make a copy of yolov3.cfg

!cp cfg/yolov3.cfg cfg/yolov3_training.cfg

University of the Aegean Department of Financial and Management Engineering

[48]

Step 5: Change lines in yolov3.cfg file

!sed -i 's/batch=1/batch=64/' cfg/yolov3_training.cfg

!sed -i 's/subdivisions=1/subdivisions=16/' cfg/yolov3_training.cfg

!sed -i 's/max_batches = 500200/max_batches = 6000/' cfg/yolov3_training.cfg

!sed -i '610 s@classes=80@classes=3@' cfg/yolov3_training.cfg

!sed -i '696 s@classes=80@classes=3@' cfg/yolov3_training.cfg

!sed -i '783 s@classes=80@classes=3@' cfg/yolov3_training.cfg

!sed -i '603 s@filters=255@filters=24@' cfg/yolov3_training.cfg

!sed -i '689 s@filters=255@filters=24@' cfg/yolov3_training.cfg

!sed -i '776 s@filters=255@filters=24@' cfg/yolov3_training.cfg

!sed -i '22 s@steps=400000,450000@steps=4800,5400@' cfg/yolov3_training.cfg

Step 6: Create .names and .data files.

!echo -e 'traffic light green\ntraffic light red\ntraffic light yellow' > data/obj.names

!echo -e 'classes= 3\ntrain = data/train.txt\nvalid

= data/test.txt\nnames = data/obj.names\nbackup = /content/gdrive/MyDrive/yolov3' > d

ata/obj.data

Step 7: Save yolov3_training.cfg and obj.names files in Google Drive.

!cp cfg/yolov3_training.cfg /content/gdrive/MyDrive/yolov3/yolov3_testing.cfg

!cp data/obj.names /content/gdrive/MyDrive/yolov3/classes.txt

Step 8: Unzip the images dataset.

!mkdir data/obj

!unzip /content/gdrive/MyDrive/yolov3/train.zip -d data/obj/train

!mkdir data/obj/test

!unzip /content/gdrive/MyDrive/yolov3/valid.zip -d data/obj/valid

Step 9: Create train.txt file.

import glob

images_list = glob.glob("/content/gdrive/MyDrive/yolov3/darknet/data/obj/train/*.jpg")

with open("data/train.txt", "w") as f:

 f.write("\n".join(images_list))

University of the Aegean Department of Financial and Management Engineering

[49]

images_list = glob.glob("/content/gdrive/MyDrive/yolov3/darknet/data/obj/valid/*.jpg")

with open("data/test.txt", "w") as f:

 f.write("\n".join(images_list))

Step 10: Download pre-trained weights for the convolutional layers file.

!wget https://pjreddie.com/media/files/darknet53.conv.74

 Step 11: Start training.

!./darknet detector train data/obj.data cfg/yolov3_training.cfg darknet53.conv.74 -

dont_show -map | tee output.log

Figure 3.9 Code for developing and training the traffic signal detection model

3.3.2 Basic of model training aspects

There are two important metrics used in training and validation. The training loss is

used to measure the error between predicted and true values related to the bounding

box and ground truth bounding box respectively. In addition ,the training loss is used

to assess the training process. The mean average precision is an accuracy metric that

shows how accurate the model is. It is particularly useful in validation.

In the graphs used to present the results of the experiments below two lines are

shown. The blue line represents the training loss (related to the training dataset) and

the red line represents mAP which is related to the validation dataset.

3.3.3 Training Loss

The loss function in YOLOv3 consists of three parts:

1. Localization loss (error between the predicted bounding box and ground truth

bounding box)

2. Confidence loss

3. Classification loss

These three parts are related to the following errors.

University of the Aegean Department of Financial and Management Engineering

[50]

That is (Wu & Xu, 2020).

𝐿𝑜𝑠𝑠 = 𝐸𝑟𝑟𝑜𝑟𝑐𝑜𝑜𝑟𝑑 + 𝐸𝑟𝑟𝑜𝑟𝑖𝑜𝑢 + 𝐸𝑟𝑟𝑜𝑟𝑐𝑙𝑠 (3.3)

where,

1. 𝐸𝑟𝑟𝑜𝑟𝑐𝑜𝑜𝑟𝑑: refers to the coordinate prediction error (localization loss).

2. 𝐸𝑟𝑟𝑜𝑟𝑖𝑜𝑢: refers to an Intersection Over Union(IoU) error (confidence loss)

3. 𝐸𝑟𝑟𝑜𝑟𝑐𝑙𝑠: refers to the classification error or loss

Localization Loss (coordinate prediction error)

Localization loss assesses the errors between bounding box center coordinates and

ground truth box center coordinates.

𝐸𝑟𝑟𝑜𝑟𝑐𝑜𝑜𝑟𝑑 = 𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗[(𝑥𝑖 − 𝑥𝑖)2 + (𝑦𝑖 − �̂�𝑖)2]

𝐵

𝑗=0

𝑆2

𝑖=0

+𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗 [(√𝑤𝑖 − √�̂�𝑖)

2
+ (√ℎ𝑖 − √ℎ̂𝑖)

2

]

𝐵

𝑗=0

𝑆2

𝑖=0

(3.4)

where,

 𝜆𝑐𝑜𝑜𝑟𝑑: is a weight parameter

 𝑆2: refers to the number of the grids (𝑆 × 𝑆). For example, in 13 × 13 grid

the 𝑆 can take values from 𝑖 = 0,1,2, … ,12.

 1𝑖𝑗
𝑜𝑏𝑗

: is 1 if an object has been detected in the 𝑗 𝑡ℎ bounding box in cell 𝑖,

otherwise it is 0. This parameter refers to whether there is an object that falls

in the 𝑗 𝑡ℎ bounding box of the 𝑖 𝑡ℎ grid cell

 (�̂�𝑖, �̂�𝑖 , �̂�𝑖, ℎ̂𝑖) refer to the predicted bounding box parameters (center

coordinates, width and height)

 (𝑥𝑖, 𝑦𝑖 , 𝑤𝑖 , ℎ𝑖) refer to the center coordinates, width and height of the ground

truth box

 ∑ :𝐵
𝑗=0 this sum is calculated for each anchor box (5 in total), where B=5-1=4

(because the index starts from 0)

 B: refers to the number of bounding boxes per grid cell.

University of the Aegean Department of Financial and Management Engineering

[51]

As one can see in the Equation, the square root of the bounding box width and height

is used in the calculation of the localization loss. This means that small prediction

deviations from the actual box matter less in large boxes than in small boxes.

Confidence Loss (IoU error)

The error associated with the IoU score is calculated by:

𝐸𝑟𝑟𝑜𝑟𝑖𝑜𝑢 = ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗 (𝑐𝑖 − �̂�𝑖)2

𝐵

𝑗=0

𝑆2

𝑖=0

+𝜆𝑛𝑜𝑜𝑏𝑗 ∑ ∑ 1𝑖𝑗
𝑛𝑜𝑜𝑏𝑗 (𝑐𝑖 − �̂�𝑖)2

𝐵

𝑗=0

𝑆2

𝑖=0

(3.5)

where,

 𝑐𝑖: represents the confidence score. This is a metric that indicates the

probability that the bounding box predicted by the model actually contains the

object

 𝑐�̂̂�: represents the intersection over union of the predicted bounding box with

the ground truth bounding box.

 1𝑖𝑗
𝑜𝑏𝑗

: is 1 when an object is detected in the 𝑗 𝑡ℎ bounding box of cell 𝑖,

otherwise it is 0.

 1𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

 When there is an object present in the cell the value is 0. When there is

no object in the cell the value is 1.

 𝜆𝑛𝑜𝑜𝑏𝑗: equals to 5

Classification Loss

𝐸𝑟𝑟𝑜𝑟𝑐𝑙𝑠 = ∑ 1𝑖
𝑜𝑏𝑗 ∑ (𝑝𝑖(𝑐) − �̂�𝑖(𝑐))2

𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑆2

𝑖=𝑜

 (3.6)

where,

 1𝑖
𝑜𝑏𝑗

: takes the value of 1 if an object is precent in cell 𝑖, otherwise it is 0

 �̂�𝑖(𝑐): represents the probability of the object detected in cell 𝑖 to actually

belong to class 𝑐

 𝑆2 refers to the number of the grids (𝑆 × 𝑆)

University of the Aegean Department of Financial and Management Engineering

[52]

 𝑝𝑖(𝑐): should be 1 if the object in cell i belongs to class c and 0 otherwise.

The total Loss value of the NN is the sum of classification loss, localization loss and

confidence loss (see eq.3.3) (Ahmad, et al., 2020) (Gai, et al., 2021).

𝐿𝑜𝑠𝑠 = 𝐸𝑟𝑟𝑜𝑟𝑐𝑜𝑜𝑟𝑑 + 𝐸𝑟𝑟𝑜𝑟𝑖𝑜𝑢 + 𝐸𝑟𝑟𝑜𝑟𝑐𝑙𝑠

= 𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗 [(𝑥𝑖 − 𝑥𝑖)2 + (𝑦𝑖 − �̂�𝑖)2]

𝐵

𝑗=0

𝑆2

𝑖=0

+ 𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗 [(√𝑤𝑖 − √�̂�𝑖)

2
+ (√ℎ𝑖 − √ℎ̂𝑖)

2

]

𝐵

𝑗=0

𝑆2

𝑖=0

+ ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗 (𝑐𝑖 − �̂�𝑖)2

𝐵

𝑗=0

𝑆2

𝑖=0

+ 𝜆𝑛𝑜𝑜𝑏𝑗 ∑ ∑ 1𝑖𝑗
𝑛𝑜𝑜𝑏𝑗(𝑐𝑖 − �̂�𝑖)2

𝐵

𝑗=0

𝑆2

𝑖=0

+ ∑ 1𝑖
𝑜𝑏𝑗 ∑ (𝑝𝑖(𝑐) − �̂�𝑖(𝑐))2

𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑆2

𝑖=𝑜

(3.7)

3.3.4 Mean Average Precision (mAP)

As mentioned above, this metric is used to evaluate the performance of object

detection models such as YoloV3, R-CNN and SSD Average Precision (AP).

Two equations are used in computing AP. One is the precision equation (3.8) and the

other is the Recall equation (3.9). Precision is a percentual metric to assess how

accurate the predictions are. Recall is a percentual metric of the number of positive

predictions made (Gai, et al., 2021).

Precision=
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3.8)

Recall=
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3.9)

where,

 TP represents the true positive (Predicted as positive and was correct)

 FP represents the false positive (Predicted as positive but was incorrect)

 FN Represents the false negative (Failed to predict an object that was there)

3.3.5 Results of training

University of the Aegean Department of Financial and Management Engineering

[53]

The model described in Section 2.3 was trained using the data described in Section

3.1. Several training runs were performed using combinations of the datasets of

Section 3.1. The objective is to optimize training by selecting those parameters that

result to the best possible validation.

Thus, image datasets were separated into two subsets: The first contained the images

used for training and the second the images used for validation. The training subset is

used to build the model. The validation data are used to evaluate the model using the

accuracy metric of mean average precision. To assist in distinguishing the datasets

easily we renamed them as in the following Table.

Table 3.3 Upgrade names of datasets

Original names Upgrade

names

Large Dataset CARLA Dataset

SJTU Small Traffic Light Dataset Clear Dataset

Combination of Bosch Small Traffic Lights Dataset and Berkley

DeepDrive Dataset

Blurred

Dataset

1st Training exercise

This exercise uses images from Carla’s simulator (as already discussed in Section 3.1).

From 1,000 total photos 700 were used for training and 300 for validation.

University of the Aegean Department of Financial and Management Engineering

[54]

Figure 3.10 shows the results of the training process of the model. The training loss

refers to the training process that uses the training dataset and mAP to the validation

process that uses the validation dataset.

Figure 3.10 Results of Carla dataset (training loss and mAP)

In the initial iterations, both the training loss (blue line in Fig. 3.10) and the learning

rate (slope of blue line) are high as expected, since the “trainable” layers of the model

contain just the initialization weights. Subsequently, the training loss falls as iterations

increase. Between 1800 and 6000 iterations, the training loss falls close to zero and

the mAP increases to 99.5%. This is expected because the photos used in the training

process contained clear images of traffic lights taken from a close range. The high mAP

is attributed to the clarity of the images used in the custom dataset. The right image

follows the left one and shows the training process from 4,000 to 6,000 iterations.

2nd Training exercise

The second dataset contained 1,217 clear traffic light images within a generic

environment that contains also other objects (road elements, signs, vehicles, etc.)

from the “SJTU Small Traffic Light” dataset. Out of the 1,217 images, 852 images were

used for training and 365 images were used for validation.

The mean average precision for this dataset is shown in Fig. 3.11 and came out to be

38.5%. The mAP value is very low because the number of photos (dataset) is limited.

University of the Aegean Department of Financial and Management Engineering

[55]

Figure 3.11 Results of training loss and mAP for Clear dataset

3rd Training exercise

The third experiment contains 3,455 images out of which 2,419 images are used for

training and 1,036 images are used for validation. As already discussed in Section 3.1,

this dataset contains images under various conditions such as day or night etc. and

many blurred ones.

The results of this dataset are shown in Figure 3.12. The mAP is 41.7%. The fluctuation

in mAP may be explained by the fact that some batches contain more blurred pictures

than the others.

University of the Aegean Department of Financial and Management Engineering

[56]

Figure 3.12 The training loss and mAP of Blurred dataset

4th Training exercise

The fourth experiment contains all the three datasets. In this experiment, the total

number of images is 5,672 as presented in Table 3.5 :

Table 3.4 The combination of three datasets

Datasets All (First+Second+Third) CARLA Clear Blurred

Training set (70%) 3971 700 852 2419

Validation set (30%) 1701 300 365 1036

Total 5672 1000 1217 3455

The results are shown in Fig. 3.13. The mAP is 70,7%. The drop near the 4000th

iteration possibly occurs when the code reads batches that contain the blurred

photographs. This has a negative effect on the final prediction. In this case as well mAP

fluctuates depending on the images contained in each batch.

University of the Aegean Department of Financial and Management Engineering

[57]

Figure 3.13 Results of the combination of three datasets

5th Training exercise

In this case, the Carla and Clear datasets are used, that is in total, 2,217 images of

which 1,552 are used for training (700 from the CARLA dataset and 852 the Clear

dataset). 665 images are used for the validation process (300 from CARLA and 365

from Clear).

Table 3.5 Combination of CARLA and Clear datasets

Datasets First and second CARLA Clear

Training set (70%) 1552 700 852

Validation set (30%) 665 300 365

Sum 2217 1000 1217

University of the Aegean Department of Financial and Management Engineering

[58]

The results are shown in Fig. 3.14. The mAP is 76.8%. The dataset includes a large

number of photos and many clear ones.

Figure 3.14 Results of combination of CARLA and Clear datasets

6th Training exercise

The sixth experiment contains two datasets: CARLA + Blurred. In this experiment, the

total number of images is 4,455 as presented in Table 3.7 :

Table 3.6 Combination of CARLA and Blurred datasets

Datasets First and

third

CARLA Blurred

Training

set (70%)

3119 700 2419

Validation

set (30%)

1336 300 1036

Sum 4455 100 3455

University of the Aegean Department of Financial and Management Engineering

[59]

The results of this dataset are shown in Figure 3.15. The mAP is 79,1%. The mAP

fluctuates, possibly due to the blurred images.

Figure 3.15 Results of combination of CARLA and Blurred datasets

7th Training exercise

The final experiment contains two datasets: Clear and Blurred. In this experiment, the

total number of images is 4,672 as presented in Table 3.8:

Table 3.7 Combination of Clear and Blurred Datasets

Datasets Second and third Clear Blurred

Training set (70%) 3271 852 2419

Validation set (30%) 1401 365 1036

Sum 4672 1217 3455

The mean average precision for this dataset is shown in Fig. 3.16 and came out to be

48,7%. The mAP is very low.

University of the Aegean Department of Financial and Management Engineering

[60]

Figure 3.16 Results of combination of Clear and Blurred datasets

Concluding Remarks

Table 3.9 presents a synopsis of the above experiments.

Table 3.8 Synopsis of the experiments

Experiments Datasets Mean Average Precision (mAP) Average loss

1 CARLA 99.5% 0.13

2 Clear 38.5% 0.15

3 Blurred 41.7% 0.23

4 CARLA + Clear+ Blurred 70.7% 0.25

5 CARLA + Clear 76.8% 0.17

6 CARLA + Blurred 79,1% 0.23

7 Clear and Blurred 48,7% 0.24

The results in Table 3.9 show that the highest mAP results always include the CARLA

dataset and thus, the CARLA dataset helps the training process significantly. This is

because the photographs of the CARLA dataset display traffic lights very clearly. The

Blurred dataset also helps the training process due to the increased number of images

University of the Aegean Department of Financial and Management Engineering

[61]

in the dataset. The combination of CARLA and Blurred datasets gives a strong result in

the training process.

University of the Aegean Department of Financial and Management Engineering

[62]

Chapter 4 Traffic light state detection: A case study

In the previous Chapter we described the NN model and how it has been trained. The

current Chapter deals with the performance of the trained model and its refinement

on real-life traffic light photos taken in a general urban environment under various

conditions. These photos were frames extracted from videos and contain multiple

background objects in addition to the traffic lights. The latter assumed all three states

(red, green, yellow).

4.1 Experimental set up

The images that were used for testing were created from a compilation of small videos

with a total duration of 77 minutes. These videos were taken by an iPhone camera

from inside a moving car while driving along a route that contained a high number of

traffic lights. The images contain scenes with traffic lights, roads and cars and were

taken in different times of the day. A total of 165 small duration videos were taken as

part of the experiment and contain the identity and the state of each traffic light. The

videos were then converted to 2,817 still images which were used as input to the

model. The total number of traffic lights contained in all videos were 182 (a video may

contain more than one traffic light in some cases). Of these, 97 videos contain all three

states of the traffic light (green, red, yellow), whereas 85 videos contain only one

state, green. This is because it was practically difficult to wait for the traffic light to

change state due to traffic.

University of the Aegean Department of Financial and Management Engineering

[63]

Figure 4.1 State of 1st and 2nd from 180 traffic lights

In Fig. 4.1 the first 3 images show the first traffic light (out of the 180 contained in the

dataset) in all 3 states and the bottom image shows the second traffic light only in its

red state, the only one existing in the dataset. This Figure illustrates that some traffic

lights have been photographed in only one state and some have been photographed

in all 3. In total, 305 traffic light and traffic light state combinations were created.

University of the Aegean Department of Financial and Management Engineering

[64]

4.2 Data processing

The network architecture of the model used in processing the above photographs is

the one described in Section 3.3. Concerning the weights, we Table 4.1 shows the

training sessions used to obtain the alternative weights values used in the case study.

Table 4.1 Datasets used to obtain alternative weights

Training session Dataset used

1 Carla and clear

2 Carla and blurred

3 Carla

4 Clear and blurred

For tuning the model parameters and processing the test images / photos, we used

the four steps described below and presented in the code of Fig. 4.2:

Step 1: The images of the custom dataset are uploaded to a cloud storage space

(Google Drive) in compressed (.zip) form. This step also uncompresses the images

from the cloud storage and places them to the darknet/data/obj folder directory.

Step 2: The physical folder and file location of the images is saved and this step creates

one text file (txt form), named “test”, which contains the location of all images.

Step 3: Since it was necessary to adapt the code to our own set of data, some changes

were made to the .cfg file. As mentioned in Section 3.3, the number of subdivisions

and the number of batches affect the outcome. In this case the number of batches

was changed from 64 to 1 and the number of subdivisions from 16 to 1. The reason

for changing these parameters is to test 2,817 images one by one. The output of the

model contains the results of the test process (i.e. the recognition of the traffic lights)

for each image separately.

Step 4: This step tests the weights from the initial training datasets on the custom data

and the results are checked for accuracy. The model has been set up for testing and

the testing process takes around 6-7 minutes for each weight case in each batch. The

time required for testing the custom model depends on the dataset size and the

University of the Aegean Department of Financial and Management Engineering

[65]

number of classes (3 in this case). This last step outputs the photos used in the test

process together with the traffic light recognition results.

Step 1:

!mkdir data/obj/test

!unzip /content/gdrive/MyDrive/yolov3/test.zip -d data/obj/test

Step 2:

import glob

images_list = glob.glob("/content/gdrive/MyDrive/yolov3/darknet/

data/obj/test/*.jpg")

with open("data/test.txt", "w") as f:

 f.write("\n".join(images_list))

Step 3:

%cd cfg

!sed -i 's/batch=64/batch=1/' yolov3_training.cfg

!sed -i 's/subdivisions=16/subdivisions=1/' yolov3_training.cfg

%cd ..

Step 4:

!./darknet detector test data/obj.data cfg/yolov3_training.cfg /

content/gdrive/MyDrive/yolov3/weights/Carla_and_blurred_images/y

olov3_training_final.weights -

dont_show < /content/gdrive/MyDrive/yolov3/darknet/data/valid.tx

t > result.txt

Figure 4.2 Test data processing

4.3 Results of the Neural Network Model

The results of processing the photographs of the Thessaloniki dataset by the model

were classified into three categories (True predictions, False predictions, No

predictions).

Table 4.2 shows the predictions made by each of the four models.

Table 4.2 Results of predictions

weights True Prediction False Prediction No prediction

Carla and clear (pictures) 1,261 203 1,353

percentage 45% 7% 48%

Carla and blurred (pictures) 1,706 135 976

percentage 61% 5% 34%

Carla (pictures) 952 84 1,781

University of the Aegean Department of Financial and Management Engineering

[66]

percentage 34% 3% 63%

Clear and blurred (pictures) 1,712 78 1,027

percentage 61% 3% 36%

max 61% 7% 64%

As shown in the Table above, not all weights performed well. Many of the False or No

predictions were encountered in the sets containing the photographs taken in low

light conditions (evening/night). In these cases, the model confuses the traffic lights

with the stop lights of the vehicles in the photo. An example of this is shown in Figure

4.3. In the photo on the left there are traffic lights which were not identified and in

the photo on the right, no traffic lights were identified. In both cases the model is

confused by the car rear lights.

Figure 4.3 False prediction results

The highest percentage (61%) in True Predictions correspond to the weights of “Carla

and Blurred” and “Clear and Blurred” datasets. Τhis is because the weights were

determined using a large number of photographs. In the case of “Carla and Blurred”

the Carla images were from simulated traffic lights. This may be the reason why the

University of the Aegean Department of Financial and Management Engineering

[67]

percentage of False Predictions (5%) is higher. On the other hand, the “Clear and

Blurred” dataset contains multiple real-life photographs in various conditions taken

from various distances and the False Predictions are lower. Furthermore, the photos

also contained other objects such as cars, road, etc. In this respect, the “Clear and

Blurred” dataset fits well to the Thessaloniki dataset and that's why its weights are

able to make the best predictions and object detection in the test photographs.

In general, however, the results have a low percentage of True Predictions. This is

attributed mostly to the low number of images in the datasets used to train the model.

4.4 Improving the Results of the Neural Network Model

We used a simple idea in order to improve the results of the model:

- Consider a combination of a traffic light and its state for which we had multiple

photos. For each photo the model recognized one of the three possible states,

or did not recognize any state

- The state attributed to this combination of traffic light - state results from the

majority between the above recognitions, ignoring the No Predictions.

That is, if we had 6 photos for such a combination, in 4 of which a red signal was

recognized, in 1 photo a green signal was recognized, and in 1 no signal/state was

recognized, then the state attributed to the combination was red. Consider another

example with 5 photos: 2 green, 1, yellow, 3 No recognition. The state attributed was

green. In the event of a tie, the state was labelled as inconclusive.

University of the Aegean Department of Financial and Management Engineering

[68]

Figure 4.4 States of 10th Traffic light

Consider the traffic light of Figure 4.4, which is contained in multiple video frames (33

video frames). Out of all these video frames 4 frames were taken in the green state,

28 were taken in the red state and was taken in the yellow state.

- Out of the 4 photos of the green state, the 2 photos were indeed detected by

the model as green (True Prediction) but the other 2 were detected as red

(False Prediction). So, this traffic light-state prediction was classified as

Inconclusive.

- Out of the 28 red state photos, 7 photos were not detected by the model (No

Prediction) and these were excluded from the majority calculation.

Consequently, the traffic light was categorized based on the majority of the

remaining photos. 21 the remaining photos with recognized as red. Thus, the

prediction for this traffic light was classified under the True Predictions

category.

Table 4.3 shows the percentage of predictions of traffic light-state combinations of

the two best models.

University of the Aegean Department of Financial and Management Engineering

[69]

Table 4.3 Improvement method results

trained weights True Prediction False Prediction No prediction Inconclusive

Carla and blurred 239 13 52 1

 (%) 78% 4% 17% 0%

Clear and blurred 237 13 50 5

 (%) 78% 4% 16% 2%

As shown in Table 4.3, the models with weights from the Carla and blurred dataset

predict the correct outcome with 78% accuracy (True prediction), predict an incorrect

state in 4% of the cases and cannot predict a state in 17% of the cases. On the other

hand, the weights from the “Clear and Blurred” dataset predict the correct outcome

with 78% accuracy (True prediction), predict incorrectly a state in 4% of the cases and

cannot predict a state in 16% of the cases. These results demonstrate that

- The refinement method improves the True Prediction percentages significantly

from 61% to 78%. This is due to the fact that the majority rule reduces

significantly the No Prediction percentage

- Both models perform equally well in the case of traffic light-state predictions.

4.5 Conclusion

A high-accuracy and real-time object detection algorithm is part of the safety and real-

time control systems of autonomous vehicles. Various studies focus on safety of

autonomous driving and describe models which provide satisfactory -but not perfect-

predictions This is due to the trade-off between accuracy and the model’s operational

speed. For this reason, this study proposes an object detection algorithm (Darknet-

53+YOLOv3) that achieves a reasonable trade-off between accuracy and operational

speed when trained in specific datasets. A high rate (78%) of traffic light states were

correctly predicted and only 5% of the states were predicted incorrectly. To this effect,

the Datknet-53+YOLOv3 algorithm combined with the majority rule may significantly

improve detection and accuracy.

University of the Aegean Department of Financial and Management Engineering

[70]

Chapter 5 Conclusions

We propose an accurate and effective model that can detect traffic lights and their

states in real-time. Such a model can be practically used in systems that control

autonomous vehicles. The implementation is based on the Darknet-53+YOLOv3

model. Two main processes are analyzed: the training process which “trains” the

model to detect the traffic lights using existing image datasets, and the testing process

which tests the effectiveness of the model in detecting traffic light states in images

collected from numerous traffic lights of Thessaloniki.

For the training process we used three image datasets and combinations of them.

During this process, we conducted experiments for each dataset and each

combination and compared the detection accuracy of the model and its resulting

weights. The image dataset which proved to be the best for training the model was a

combination that contains a) clear photographs of traffic lights taken from a close

distance, b) clear photographs of traffic lights within a general environment, and c)

blurred photographs of traffic lights taken from a distance under various light

conditions, in the presence of objects that resemble (but are not) traffic lights. In

addition, as expected, the volume of the images in the dataset and the light condition

in which the photographs were captured , influence the results of the process. The

results of the training process show that the highest mAP results always include the

CARLA dataset and thus, the CARLA dataset helps the training process significantly.

For the test process we used a custom image dataset that was created by the author

and contains photographs of multiple traffic lights (under various states) taken from

Thessaloniki streets. Τhe test was performed using the most appropriate Neural

Network weights that were obtained during the training process of the model.

The testing results indicated a 61% percentage of true predictions, with 3% false

predictions and 36% no predictions. Using a simple post-processing step that is based

on the majority of predictions among multiple photographs of a certain traffic light

University of the Aegean Department of Financial and Management Engineering

[71]

and state, the no prediction percentage fell significantly to 16%, while the true

prediction accuracy was improved to 78%.

As a result, the proposed approach can significantly improve the camera-based object

detection system in autonomous vehicles. This technique of traffic lights detection can

serve as a prototype for future development.

Recommendations for future work include the following:

 Utilize different networks (except Darknet-53) to be used in conjunction with

YOLOv3 for object detection (for example, Darknet19, Resnet 101, etc.)

 Use different models (except YOLOv3) for object localization (e.g. R-CNN,

Faster R-CNN, SSD, etc.)

 Increase the number of images in the training process

 Experiment with different parameters of the model (through the configuration

file)

 Apply other pre-trained weights from other datasets include different pictures

University of the Aegean Department of Financial and Management Engineering

[72]

University of the Aegean Department of Financial and Management Engineering

[73]

References

Abri, S., Çetin, S., Yarıcı, A. & Abri, R., 2020. Multi-Thread Frame Tiling Model in

Concurrent Real-Time Object Detection for Resources Optimization in YOLOv3.

ICCTA '20: Proceedings of the 2020 6th International Conference on Computer and

Technology Applications, 14 April, pp. 69-71.

B.Sargunam & N.Kirthika, 2020. Detecting Multi-Class Artifacts in Endoscopic

Images using YOLOv3. International Journal of Recent Technology and Engineering

(IJRTE), 26 May, 9(1).

Benslimane, S., Tamayo, S. & de La Fortelle, A., 2019. Classifying logistic vehicles

in cities using Deep learning. WORLD CONFERENCE ON TRANSPORT RESEARCH

SOCIETY, 4 June, pp. 6-7.

Choi, J., Chun, D., Kim, H. & Lee, H.-J., 2019. Gaussian YOLOv3: An Accurate and

Fast Object Detector Using Localization Uncertainty for Autonomous Driving. 2019

IEEE/CVF International Conference on Computer Vision (ICCV), 9 April, pp. 1-10.

Kozel, R. & Robert, N., 2020. Real-Time Traffic Light Identification using YOLOv3

Algorithm For Autonomous Vehicles. CAT Vehicle 2020 Technical Reports, 12 April,

pp. 0-10.

Raza, K. & Song, H., 2020. Fast and Accurate Fish Detection Design with Improved

YOLO-v3 Model and Transfer Learning. International Journal of Advanced

Computer Science and Applications, January, 11(2), pp. 7-11.

Wang, S., 2021. Yolo-Series Algorithms: Comparison and Analysis of Object

Detection Models for Real-Time UAV Applications. IOP Publishing Ltd, 14-16 May,

1948(1).

Wu , Y. & Xu, D., 2020. Improved YOLO-V3 with DenseNet for Multi-Scale Remote

Sensing Target Detection. Computer Science, Medicine, 31 Jule, pp. 10-13.

Aakash, N., Sayak, P. & Maynard-Reid, M., 2021. Keras: Dataset preprocessing.

[Online]

Available at: https://keras.io/api/preprocessing/

[Accessed 2021].

Ahmad, T. et al., 2020. Object Detection through Modified YOLO Neural Network.

Scientific Programming, 6 June, pp. 2-4.

Almog, U., 2020. YOLO V3 Explained. [Online]

Available at: https://towardsdatascience.com/yolo-v3-explained-ff5b850390f

University of the Aegean Department of Financial and Management Engineering

[74]

Balla, N., 2020. FIVE POPULAR DATA AUGMENTATION TECHNIQUES IN DEEP

LEARNING. [Online]

Available at: https://dataaspirant.com/data-augmentation-techniques-deep-learning/

Boesch , G., 2021. Object Detection in 2021: The Definitive Guide. [Online]

Available at: https://viso.ai/deep-learning/object-detection/

Boesch, G., 2021. What is Image Annotation? (Easy-to-understand Guide). [Online]

Available at: https://viso.ai/computer-vision/image-annotation/

Brain, G., 2021. tf.data: Build TensorFlow input pipelines. [Online].

Buomsoo, K., 2020. Google newly launches Colab Pro! - comparison of Colab and

Colab pro. [Online]

Available at: https://buomsoo-kim.github.io/colab/2020/03/15/Google-newly-

launches-colab-pro.md/

[Accessed 2021].

Deng, J. et al., 2009. ImageNet: A large-scale hierarchical image database. IEEE

Conference on Computer Vision and Pattern Recognition, 20-25 June, pp. 1-2.

Duerig, T. & Krasin , I., 2016. Introducing the Open Images Dataset. [Online]

Available at: https://ai.googleblog.com/2016/09/introducing-open-images-

dataset.html

Elisha, O., 2020. Overcoming overfitting in image classification using data

augmentation. [Online]

Available at: https://heartbeat.fritz.ai/overcoming-overfitting-in-image-classification-

using-data-augmentation-9858c5cee986

Gai, W., Liu, Y., Zhang, J. & Jing, G., 2021. An improved Tiny YOLOv3 for real-

time object detection. Systems Science & Control Engineering, 23 March, 9(1), pp.

314-321.

Gandhi, A., 2021. Data Augmentation | How to use Deep Learning when you have

Limited Data. [Online]

Available at: https://nanonets.com/blog/data-augmentation-how-to-use-deep-learning-

when-you-have-limited-data-part-2/

Ganesh, P., 2019. Towards data science. [Online]

Available at: https://medium.com/@prakhargannu

[Accessed 10 07 2021].

Girshick, R. D. J. D. T. a. M. J., 2014. Rich Feature Hierarchies for Accurate Object

Detection and Semantic Segmentation.. Columbus, Ohio., 2014 IEEE Conference on

Computer Vision and Pattern Recognition.

Goodfellow, I., Bengio, Y. & Courville, A., 2016. Deep Learning. s.l.:The MIT Press.

University of the Aegean Department of Financial and Management Engineering

[75]

Google Workspace, 2012. Drive. [Online]

Available at:

https://workspace.google.com/intl/en_ie/products/drive/?utm_source=google&utm_m

edium=cpc&utm_campaign=emea-gb-all-en-dr-bkws-all-all-trial-b-t1-

1010042&utm_content=text-ad-crnurturectrl-none-DEV_c-CRE_471198181652-

ADGP_Hybrid%20%7C%20BKWS%20-%20BMM%20%7C%

Hosang, J., Benenson, R. & Schiele, B., 2017. Learning non-maximum suppression.

EEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4507-

4515.

Hui, J., 2018. Object detection: speed and accuracy comparison (Faster R-CNN, R-

FCN, SSD, FPN, RetinaNet and YOLOv3). [Online]

Available at: https://jonathan-hui.medium.com/object-detection-speed-and-accuracy-

comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359

Jiatu, W., 2018. Complexity and accuracy analysis of common artificial neural

networks on pedestrian detection, s.l.: MATEC Web of Conferences.

Kaggle, 2020. Bosch Small Traffic Lights Dataset. [Online]

Available at: https://www.kaggle.com/researcherno1/small-traffic-lights

Krizhevsky, A., Sutskever, I. & Hinton, G. E., 2012. ImageNet classification with

deep convolutional neural networks. Proceedings of the 25th International

Conference on Neural Information Processing Systems , 03 December, Volume 1, pp.

1097-1105.

Lardinois, F., Lynley , M. & Mannes, J., 2017. Google is acquiring data science

community Kaggle. [Online]

Available at: https://techcrunch.com/2017/03/07/google-is-acquiring-data-science-

community-

kaggle/?guccounter=1&guce_referrer=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnLw

&guce_referrer_sig=AQAAAM2R464MjUXf2vX6ceMENiIH8td5liLWOwUU0iEiK

_ukMppoKei3k6iWtOjTLG_n8CD3H5ubKq66bYL0qpyzGE

Leclerc, M. et al., 2018. Ship Classification Using Deep Learning Techniques for

Maritime Target Tracking. International Conference on Information Fusion

(FUSION), 21 July, pp. 738-739.

Li, A., 2020. Google introduces Colab Pro w/ faster GPUs, more memory, and longer

runtimes. [Online]

Available at: https://9to5google.com/2020/02/08/google-introduces-colab-pro/

Liu, W. et al., 2015. SSD: Single Shot MultiBox Detector. [Online]

Available at: https://arxiv.org/abs/1512.02325

[Accessed 10 August 2020].

University of the Aegean Department of Financial and Management Engineering

[76]

Malevé, N., 2019. An Introduction to Image Datasets. [Online]

Available at: https://unthinking.photography/articles/an-introduction-to-image-

datasets

Mantripragada, M., 2020. Digging deep into YOLO V3 - A hands-on guide Part 1.

[Online]

Available at: https://towardsdatascience.com/digging-deep-into-yolo-v3-a-hands-on-

guide-part-1-78681f2c7e29

Mohana, H. V. R. A., 2019. Object Detection and Classification Algorithms. 8 June.

Morgunov, A., 2021. Deep Learning Guide: Choosing Your Data Annotation Tool.

[Online]

Available at: https://neptune.ai/blog/annotation-tool-comparison-deep-learning-data-

annotation

Mwiti, D., 2021. Transfer Learning Guide: A Practical Tutorial With Examples for

Images and Text in Keras, s.l.: s.n.

Novak, B., Ilic, V. & Pavkovic, B., 2020. YOLOv3 Algorithm with additional

convolutional neural network trained for traffic sign recognition. 2020 Zooming

Innovation in Consumer Technologies Conference (ZINC), 24 June.pp. 1-5.

OpenCV team , 2021. opencv. [Online]

Available at: https://opencv.org/about/

[Accessed August 2021].

Redmon, J. D. S. G. R. a. F. A., 2016. You Only Look Once: Unified, Real-Time

Object Detection. Las Vegas, Nevada, United States., s.n.

Redmon, J. & Farhadi, A., 2018. YOLOv3: An Incremental Improvement. Computer

Science, 8 April, pp. 1-6.

Ren, S. H. K. G. R. a. S. J., 2017. Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis

and Machine Intelligence.

Rosebrock, A., 2019. Keras ImageDataGenerator and Data Augmentation. [Online]

Available at: https://www.pyimagesearch.com/2019/07/08/keras-imagedatagenerator-

and-data-augmentation/

Rosebrock, A., 2020. How to use OpenCV’s “dnn” module with NVIDIA GPUs,

CUDA, and cuDNN. [Online]

Available at: https://www.pyimagesearch.com/2020/02/03/how-to-use-opencvs-dnn-

module-with-nvidia-gpus-cuda-and-cudnn/

[Accessed August 2021].

University of the Aegean Department of Financial and Management Engineering

[77]

Sarin, S., 2019. Exploring Data Augmentation with Keras and TensorFlow. [Online]

Available at: https://towardsdatascience.com/exploring-image-data-augmentation-

with-keras-and-tensorflow-a8162d89b844

Saxena, P., 2021. YOLO : You Only Look Once – Real Time Object Detection. 29

January.

Sharma, P., 2018. A Practical Guide to Object Detection using the Popular YOLO

Framework – Part III (with Python codes). [Online]

Available at: https://www.analyticsvidhya.com/blog/2018/12/practical-guide-object-

detection-yolo-framewor-python/

Srivastana, V., 2017. Self Driving Vehicles: Traffic Light Detection and Classification

with TensorFlow Object Detection API. [Online]

Available at: https://becominghuman.ai/traffic-light-detection-tensorflow-api-

c75fdbadac62

Tepteris , G. V., 2020. Autonomous Vehicles: Basic Concepts in Motion Control and

Visual Perception, s.l.: Department of Financial and Management Engineering.

Tsang, S.-H., 2018. Review: SSD — Single Shot Detector (Object Detection), s.l.: s.n.

Tsung-Yi, L. et al., 2015. [Online]

Available at: https://arxiv.org/pdf/1405.0312.pdf

[Accessed 12 August 2021].

Vignesh, S., 2020. YOLO: You Only Look Once., s.l.: s.n.

Vinh, T. Q., 2020. Efficient Foreign Object Detection between PSDs and Metro

Doors via Deep Neural Networks. YUAN DAI,WEIMING LIU, HAIYU LI AND LAN

LIU, 06 March, p. 12.

Wei Liu, D. A. D. E. C. S. S. R. C.-Y. F. A. C. B., 2016. SSD: Single Shot MultiBox

Detector. s.l., s.n.

Xue, Y., 2020. SJTU Small Traffic Light Dataset (S2TLD). [Online]

Available at: https://github.com/Thinklab-SJTU/S2TLD

Yang, K. et al., 2021. An Update to the ImageNet Website and Dataset. [Online]

Available at: https://www.image-net.org/update-mar-11-2021.php

Yu, F., 2021. A Diverse Driving Dataset for Heterogeneous Multitask Learning.

[Online]

Available at: https://www.bdd100k.com/

Zou, Z., Shi, Z., Guo, Y. & Ye, J., 2019. Cornell University. [Online]

Available at: https://arxiv.org/pdf/1905.05055.pdf

[Accessed 20 July 2021].

University of the Aegean Department of Financial and Management Engineering

[78]

University of the Aegean Department of Financial and Management Engineering

[79]

Appendix A. Learning in MLP networks
A.1.1 Preamble

This appendix presents every simple example of the about analysis. Its purpose is a

perception of understanding the networks. This is a short but substantial tutorial that

illustrates how backpropagation works in Multilayer Perception (MLP) Neural Network

training. The material is taken from several scientific articles (see also references at

the end of this document). We also use a practical example from the Coursera

machine learning course/week 5 to explain the logic behind NN training.

Furthermore, in order to get hands-on validation of all the relationships that support

NN training (and are derived below), Appendix A.2 presents and derives these

relationships for a much simpler (theoretical) example.

The tutorial is structured as follows:

1. Outline of the NN structure

2. The feedforward operation during training

3. Cost function for NN training

4. Gradients of the cost function

5. Backpropagation

6. The training algorithm

A.1.2 The MLP architecture

Figure A.1 represents the NN structure in the above practical of Coursera (Machine

Learning, Week 5 programming exercise). In this example, the input is a picture

(image) of a handwritten digit (0 to 9) of size 20x20 pixels and the output is the number

represented in the picture. The Figure A.1 presents a shallow network, however used

to better understand this analysis of neural networks.

University of the Aegean Department of Financial and Management Engineering

[80]

Figure A. 1 Neural network model of the example

The neural network has 3 layers:

 Input_layer_size = 400 (20x20 input pixel values of digit image) - We increase

the input layer by one element 𝑎0
(1)

 in order for the matrix multiplication that

provides the output of the first layer to contain the addition of the bias. Thus,

the input layer size becomes 401.

 Hidden_layer_size = 25 (hidden units)

 Output layer size = 10 (output units) – The output vector contains the value of

1 in the appropriate vector element (that corresponds to the digit value) and

the value 0 in all other vector elements

 Number of labels K = 10 (labels from 1 to 10)

Dimensions of the 𝛩 matrices (weighting matrices) 𝑧 and 𝑎 (for the image above) :

 Θ(1) is of size (25, 401), (the first column contains the bias elements)

 a(1) is of size (1,401)

 z(2) is of size (1,25)

 a(2) is of size (1,26) (be adding the bias)

 Θ(2) is of size (10, 26) (the first column contains the bias elements)

Input Layer Hidden Layer Output Layer

a(1) = x

(add a0
(1)

)

z(2) = α(1)Θ(1)T

a(2) = σ(z(2))

(add a0
(2)

)

z(3) = α(2)Θ(2)T

a(3) = σ(z(3)) = hθ(x)

University of the Aegean Department of Financial and Management Engineering

[81]

 z(3) is of size (1,10)

 a(3) is of size (1,10)

 hθ(x)= a(3) of size (1,10) agai

A.1.3 The feedforward operation during training

Consider the following training set:

 5000 training samples (training set of 5000 images of handwritten digits, each

comprising 20x20 pixels)

 The 20 by 20 grid of pixels is “unrolled” into a 400-dimensional row vector

 𝑥 is a matrix of 5000 number images of dimension (5000, 400) each image

occupies a row of the matrix

 𝑦 is a matrix, each row of which represents the actual value of the

corresponding sample digit. The dimension is (5000, 10) and the elements of

a row are all 0 except of the element corresponding to the actual value, which

is equal to 1.

The training data will be loaded into the variables 𝑥 and 𝑦 (by the ex4.m script in our

example).

In this case (for the entire training set):

 a(1) = x, of size (5000, 400+1)

 z(2) = α(1)Θ(1)T, of size (5000, 25)

 a(2) = σ(z(2)), of size (5000, 25+1)

 z(3) = α(2)Θ(2)T, of size (5000,10)

Note: *We exclude the first row from 𝛩(2)𝑇 and 𝛩(1)𝑇, and the bias units are not

included when the exercise run in Octave for reduction reasons. So 𝑎(2) is a (5000,25)

matrix and 𝛩(2)𝑇 is a (25,10) matrix and we can multiply them to find 𝑧(3). We are

using the same mathematics to compute 𝑎(1) 𝑎𝑛𝑑 𝛩(1)𝑇.

a(3) = σ(z(3)) = hθ(x), of size (5000, 10)

Note: ** 𝜎 is the Sigmoid function with a range values between (0,1).

University of the Aegean Department of Financial and Management Engineering

[82]

A.1.4 The cost function for NN training

Let us start with the case of a NN with a single output

In this case, the single output NN classifies whether the input 𝑥 belongs to a single

class (value = 1) or not (value = 0).

In this case, let the output for the i-th training sample be ℎ𝜃(𝑥(𝑖)) and the true answer

for that sample be 𝑦(𝑖). Then the cost function will represent the sum of the errors,

that is, the difference between the predicted value and the real (labeled) value.

J(θ) =
1

m
∑ Cost(

m

i=1

hθ(x(i)), y(i)) (A.1)

Where e.g. 𝑚 = 5000 is the number of training samples.

Our goal is to minimize the cost function by finding min J(θ). Note that the Sigmoid

function is a “non-convex” function which means that there are multiple local

minimums. So it’s not guaranteed to converge (find) the global minimum. What we

need is a “convex” function in order for the gradient descent algorithm to find the

global minimum (minimize J(θ)). In order to do that we use the following log function.

Figure A. 2 Cost function (convex&non-convex)

Cost(hθ(x), y) = {
−ylog(hθ(x)) if y = 1

−(1 − y)log(1 − hθ(x)) if y = 0

(A.2)

Note that

 if y = hθ(x) = 1, then the cost is zero, since log(1) = 0

 if y = 1 and hθ(x) = 0, then the cost is ∞, since log(0) = −∞

University of the Aegean Department of Financial and Management Engineering

[83]

Similarly

 if y = hθ(x) = 0, then the cost is zero, since log(1) = 0

 if y = 0 and hθ(x) = 1, then the cost is ∞, since log(0) = −∞

Since y (labeled value) is either 0 or 1 we can write the cost function in one equation.

Cost(hθ(x), y) = −ylog(hθ(x)) − (1 − y)log(1 − hθ(x)) (A.3)

For the m training samples, the cost function for this single output NN becomes

J(θ) =
1

m
∑ −y(i)log (hθ(x(i))) − (1 − y(i))log(1 − hθ(x(i)))

m

i=1

(A.4)

To illustrate that the cost function is a convex function we plot a simple example using

python. Consider that the input y(i) = 1. Then

J(θ) =
1

m
∑ −y(i)log (hθ(x(i)))m

i=1 (A.5)

As we already know a(3) = σ(z(3)) = hθ(x). Let hθ(x(i)) ∈ [0,1] increasing from zero

to 1 by 0.1 in every iteration of the numerical example. Then, J(θ) has the convex

form of Fig. A.2, which is hardly surprising given its logarithmic nature. This applies

only to logistic regression i.e. a neural network with no hidden layers.

Figure A. 3 The convex shape of a simple instance of the cost function

University of the Aegean Department of Financial and Management Engineering

[84]

This is the same result presented on the machine learning lectures (week 5, Coursera)

– see below.

Figure A. 4 Convex between ℎ𝜃(𝑥) and Cost(J) if y=1.

The cost function of Eq. (A.4) does not include regularization. Note that in our

example, the number of elements of the 𝛩 matrices is over 10,000 and the number of

training samples is just 5,000, which means that theoretically we have more than

adequate parameters to obtain a value of 0 for J(θ) (consider a system with 10,000

unknowns, the elements of 𝛩 and 5,000 equations) that may result to overfitting. In

order to address this overfitting risk, we reduce the magnitude/values of θ (making

many of them to be 0) by introducing a penalty term as below.

J(θ) = −
1

m
∑[y(i)log(hθ(x(i))) + (1 − y(i))log(1 − hθ(x(i)))] +

λ

2m
∑ θj

2

n

j=1

m

i=1

(A.6)

Equation (A.6) represents the regularized cost function.

Let’s move now to our example that has multiple outputs

If we generalize the above for multiple NN output nodes (multiclass classification)

what we get is:

 0 1

If y=1

University of the Aegean Department of Financial and Management Engineering

[85]

J(θ) =
1

m
∑ ∑ [−yk

(i)
log(hθ(x(i))k) – (1 − yk

(i)
)log(1 − hθ(x(i))k)]

K=10

k=1

m=5000

i=1

+
λ

2m
[∑ ∑(θj,n

(1)
)2

400

n=1

+ ∑ ∑(θj,n
(2)

)2

25

n=1

10

j=1

25

j=1

]

(A.7)

where in our example 𝐾 = 10 is the number of outputs/labels and m= 5000 is the

number of training samples, λ is the regularization factor, hθ(x) ∈ RK and (hθ(x(i))k

is the value of the k-th output for the i-th training sample.

A.1.5 Gradient of the cost function (without regularization)

Gradient descent is an optimization algorithm used to minimize our cost function. In

general, it is used to find the values of the parameters that optimize a non-linear

objective function.

In machine learning, specifically, we use gradient descent to determine

the parameters of our NN model during training. Note that the non-linear

optimization problem we deal with is relatively straightforward, since it does not

involve any constraints (just the objective function). We can think of the gradient as

the slope of the function. The higher the gradient, the steeper the slope and the faster

a model can learn (determine the appropriate values for its parameters). If the slope

is zero, the model stops learning.

Given a training set, the cost function 𝐽(𝜃) depends strictly on the values of ΝΝ

parameters, the weights 𝛩(1)and 𝛩(2). Thus, in our example training of the NN is the

process of determining the values of 𝜃 that drive the value of the cost function of

Section A.1.4 to its minimum. We should start the process by setting initial values of

the parameters, and gradient descent will iteratively adjust these values to minimize

the cost-function based on the following relationship:

θj+1 = θj − a∇J(θj) (A.8)

where: θj+1 is the value of the next iteration

 θj is the value of the current iteration

 α is the step along the gradient

https://ml-cheatsheet.readthedocs.io/en/latest/glossary.html#glossary-parameters

University of the Aegean Department of Financial and Management Engineering

[86]

 ∇J(θj) is the gradient, i.e., the vector of partial derivatives of J with respect

to each parameter of 𝜃 at point θj. It is simply the direction of the steepest slope of

the function at this point.

Concerning step α (or learning rate), it must be set to an appropriate value, which is

neither too low nor too high. This is important because if the steps are excessively

long, the algorithm may overshoot the minimum. If the learning rate is too low, the

process may take excessive time to reach the local minimum, or it may never reach it

due to excessively slow convergence.

The values of θ that correspond to the minimum are the final values of the NN

parameters to be used thereafter and the NN has been trained. Thus, in order to

determine the minimum of the cost function and the values of θ that correspond to

this minimum, the most computationally intensive task is to determine ∇J(θj) at each

iteration j.

This is achieved by backpropagation, which uses the output of NN (h), compares it to

the real value (y) and derives the error (δ). The errors for each layer can be used to

calculate the partial derivatives. In our example, starting from the final layer L = 3,

backpropagation attempts to define the error value δk
(L)

 where k is the node and L is

the layer.

In order to define the gradient of the cost function with respect to the parameters θ,

we will start from the single output NN and we will generalize to the K output NN. In

both cases we will start from the last layer.

A.1.5.1 Single output NN

Consider the following network

University of the Aegean Department of Financial and Management Engineering

[87]

Dimensions of the Θ matrices (weighting matrices) z and a (for the image above):

 Θ(1) is of size (25, 401), (the first column contains the bias elements).

 a(1) is of size (1,401)

 z(2) is of size (1,25)

 a(2) is of size (1,26)(be adding bias)

 Θ(2) is of size (1, 26) (the first column contains the bias elements)

 z(3) is of size (1,1)

 a(3) is of size (1,1)

 hθ(x)= a(3)is of size (1,1)

In this case (for the entire training set):

 a(1) = x, of size (5000, 400+1)

 z(2) = α(1)Θ(1)T, of size (5000, 25)

 a(2) = σ(z(2)), of size (5000, 25+1)

 z(3) = α(2)Θ(2)T, of size (5000,1)

Note: The first row of the 𝛩(2)𝑇 and 𝛩(1)𝑇 matrices contain the bias elements. We can

exclude this row without affecting our results. Additionally, this will reduce the data

and make them easier to compute. As a result, 𝑎(2) is a (5000,25) matrix, 𝛩(2)𝑇 is a

a(1) = x

(add a0
(1)

)

z(2) = α(1)Θ(1)T

a(2) = σ(z(2))

(add a0
(2)

)

z(3) = α(2)Θ(2)T

a(3) = σ(z(3)) = hθ(x)

University of the Aegean Department of Financial and Management Engineering

[88]

(25,1) matrix and are multiplied to compute 𝑧(3). We are using the similar operations

to compute 𝑧(2) from 𝑎(1) and 𝛩(1)𝑇.

As we have already mentioned and analyzed above, the cost function for a single

output NN is:

J(θ) = −
1

m
∑[y(i)log(hθ(x(i))) + (1 − y(i))log(1 − hθ(x(i)))]

m

i=1

 We can compute the gradient ∇𝐽(𝜃) from the chain rule

∇J(θ) =
∂J(θ)

∂θ
=

∂J

∂α

∂α

∂z

∂z

∂θ

We will now focus on the third layer to determine the partial derivatives with

respect to elements 𝛩𝑗
(2)

 of Θ(2), 𝑗 = 1, … ,25

∂J(θ)

∂𝛩𝑗
(2)

= −
1

𝑚
∑

∂[y(i)log (hθ(x(i))) + (1 − y(i))log (1 − hθ(x(i)))]

∂𝛩𝑗
(2)

𝑚

𝑖=1

=
1

𝑚
∑

d[−y(i) log (hθ(x(i))) − (1 − y(i))log (1 − hθ(x(i)))]

da(3)(i)

da(3)(i)

dz(3)(𝑖)

∂z(3)(𝑖)

∂𝛩𝑗
(2)

𝑚

𝑖=1

=
1

𝑚
∑

d𝐽𝑖

da(3)((i)

da(3)(i)

dz(3)(𝑖)

∂z(3)(𝑖)

∂𝛩
𝑗

(2)

𝑚

𝑖=1

where the notation
d𝐽𝑖

da(3)((i) represents the derivative
d𝐽

da(3) evaluated using the values

of the (i)-th training instance. The same notation is used for
da(3)(i)

dz(3)(𝑖), and
∂z(3)(𝑖)

∂𝛩𝑗
(2) .

University of the Aegean Department of Financial and Management Engineering

[89]

d�̂�

da(3)
=

d�̂�

dhθ(x)
=

d

dhθ(x)
[(−ylog(hθ(x)) − (1 − y)log(1 − hθ(x))]

= −
y

hθ(x)
+

1 − y

1 − hθ(x)
= −

y

a(3)
+

1 − y

1 − a(3)

Thus

d�̂�𝑖

da(3)(i)
= −

y(i)

a(3)(i)
+

1 − y(i)

1 − a(3)(i)

(A.9)

da(3)

dz(3)
=

d

dz(3)

1

1 + e−z(3) =
d

dz(3)
(1 + e−z(3))

−1

= − (1 + e−z(3)
)

−2

(−e−z(3)
)

=
e−z(3)

(1 + e−z(3)
)

−2 =
1

1 + e−z(3) (1 −
1

1 + e−z(3)) = σ(z(3)) (1 − σ(z(3)))

= a(3)(1 − a(3))

𝑆𝑜 ,
da(3)(𝑖)

dz(3)(𝑖)
= a(3)(𝑖)(1 − a(3)(𝑖))

(A.10)

∂z(3)

∂𝛩𝑗
(2)

=
∂

∂𝛩𝑗
(2)

(a(2)Θ(2)Τ) = a𝑗
(2)

→
∂z(3)(i)

∂𝛩𝑗
(2)

= a𝑗
(2)(𝑖)

(A.11)

Combining the above for the output layer:

∂J(θ)

∂𝛩𝑗
(2)

=
1

m
∑ (−

y(i)

a(3)(i)
+

1 − y(i)

1 − a(3)(i)
)

m

i=1

a(3)(i)(1 − a(3)(i))a𝑗
(2)(𝑖)

=
1

m
∑(a(3)(i) − y(i))

m

i=1

a𝑗
(2)(𝑖)

∂J(θ)

∂𝛩𝑗
(2)

=
1

m
∑ δ(3)(i)

m

i=1

a𝑗
(2)(i)

(A.12)

where δ(3)(i) = a(3)(i) − y(i) = hθ(x(i)) − y(i) is a (1,1) vector of the error for training

instance 𝑖. Moreover, we can combine the results of Eq. (12) for all 𝑗 = 1, … ,25 to

obtain
∂J(θ)

Θ(2) , an (1,25) vector.

A.1.5.2 Multiple output NN

University of the Aegean Department of Financial and Management Engineering

[90]

We will now generalize to the K output NN. Again, from the chain rule

∂J(θ)

∂θ
=

∂J

∂α

∂α

∂z

∂z

∂θ

Let’s focus on the third layer as before

∂J(θ)

∂𝛩𝑘𝑗
(2)

=
1

𝑚
∑

∂[−𝑦𝑘
(𝑖)

log(hθ(x(i))k) − (1 − 𝑦𝑘
(𝑖)

)log (1 − hθ(x(i))k)]

∂𝛩𝑘𝑗
(2)

𝑚

𝑖=1

=
1

𝑚
∑

d[− 𝑦𝑘
(𝑖)

log(hθ(x(i))k) − (1 − y(i))log (1 − hθ(x(i))k))]

da𝑘
(3)(𝑖)

da𝑘
(3)(𝑖)

dz𝑘
(3)(𝑖)

∂z𝑘
(3)(𝑖)

∂𝛩𝑘𝑗
(2)

𝑚

𝑖=1

=
1

𝑚
∑

d𝐽𝑘𝑖

da𝑘
(3)(𝑖)

da𝑘
(3)(𝑖)

dz𝑘
(3)(𝑖)

∂z𝑘
(3)(𝑖)

∂𝛩𝑘𝑗
(2)

𝑚

𝑖=1

(A.13)

where again the notation
d𝐽𝑘𝑖

da
𝑘
(3)(𝑖) represents the derivative

d𝐽𝑘

da
𝑘
(3) evaluated using the

values of the (i)-th training instance. The same notation is used for
da𝑘

(3)(𝑖)

dz
𝑘
(3)(𝑖), and

∂z𝑘
(3)(𝑖)

∂𝛩𝑘𝑗
(2)

In the first row of Eq. (A.13) the summation ∑ 𝐾
𝑘=1 of the cost function J(θ) does not

appear, since
∂[−𝑦𝑛

(𝑖)
log(hθ(x(i))n)−(1−𝑦𝑛

(𝑖)
)log (1−hθ(x(i))n)]

∂𝛩𝑘𝑗
(2) is zero if 𝑛 ≠ 𝑘.

d�̂�𝑘

da𝑘

(3)
=

d�̂�𝑘

dhθ(x)
k

=
d

dhθ(x)
k

[−𝑦
𝑘

log(hθ(x)k) − (1 − 𝑦
𝑘
)log (1 − hθ(x)k)]

= −
𝑦

𝑘

hθ(x)k

+
1 − 𝑦

𝑘

1 − hθ(x)k

= −
𝑦

𝑘

a𝑘

(3)
+

1 − 𝑦
𝑘

1 − a𝑘

(3)

Thus

d�̂�𝑘𝑖

da𝑘

(3)(𝑖)
= −

𝑦
𝑘

(𝑖)

a𝑘

(3)(𝑖)
+

1 − 𝑦
𝑘

(𝑖)

1 − a𝑘

(3)(𝑖)

(A.14)

From Eq. (A.10)

da𝑘
(3)(𝑖)

dz𝑘

(3)(𝑖)
= a𝑘

(3)(𝑖)
(1 − a𝑘

(3)(𝑖)
)

(A.15)

University of the Aegean Department of Financial and Management Engineering

[91]

Furthermore

∂z𝑘
(3)

∂𝛩𝑘𝑗
(2)

=
∂

∂𝛩𝑘𝑗
(2)

(a(2)Θ(2)Τ) = a𝑘𝑗
(2)

→
∂z𝑘

(3)(𝑖)

∂𝛩𝑘𝑗
(2)

= a𝑗
(2)(𝑖)

(A.16)

Combining the above for the output layer:

∂J(θ)

∂𝛩𝑘𝑗
(2)

=
1

𝑚
∑ (−

𝑦𝑘
(𝑖)

a𝑘
(3)(𝑖)

+
1 − 𝑦𝑘

(𝑖)

1 − a𝑘
(3)(𝑖)

) a𝑘
(3)(𝑖)

(1 − a𝑘
(3)(𝑖)

)a𝑗
(2)(𝑖)

𝑚

𝑖=1

=
1

𝑚
∑(a𝑘

(3)(𝑖)
− 𝑦𝑘

(𝑖)
)a𝑗

(2)(𝑖)

𝑚

𝑖=1

∂J(θ)

∂𝛩𝑘𝑗
(2)

=
1

𝑚
∑ 𝛿𝑘

(3)(𝑖)
a𝑗

(2)(𝑖)

𝑚

𝑖=1

(A.17)

with 𝛿𝑘
(3)(𝑖)

= a𝑘
(3)(𝑖)

− 𝑦𝑘
(𝑖)

= hθ(x(i))k − 𝑦𝑘
(𝑖)

 is the error of output 𝑘 = 1, … ,10 for

training instance 𝑖. Moreover, we can combine the results of Eq. (A.17) for all 𝑘 =

1, … ,10 , 𝑗 = 1, … ,25 to obtain
∂J(θ)

Θ(2) , an (1,250) vector.

A.1.5.3 Gradient for all NN layers

Following the same process as in Sections A.5.1 and A.5.2, one can obtain

For the single output NN and for the output layer L

∂J(θ)

∂𝛩𝑗
(𝐿−1)

=
1

m
∑ δ(𝐿)(i)

m

i=1

a𝑗
(𝐿−1)(i)

(A.18)

For all the other layers (𝑙) of the single output NN and for all layers (𝑙 = 1, … 𝐿) of the

multiple output NN

University of the Aegean Department of Financial and Management Engineering

[92]

∂J(θ)

∂𝛩𝑘𝑗
(𝑙)

=
1

𝑚
∑ 𝛿𝑘

(𝑙+1)(𝑖)
a𝑗

(𝑙)(𝑖)

𝑚

𝑖=1

(A.19)

Depending on the case, using Eq. (A.18) or (A.19) we may compute the entire gradient

vector ∇𝐽(𝜃) from the outputs of the NN a𝑗
(𝑙)(𝑖)

 (from forward propagation) provided

we know the errors 𝛿𝑘
(𝑙+1)(𝑖)

. The errors are known only for the last layer 𝑙 = 𝐿, i.e.

𝛿𝑘
(𝐿)(𝑖)

= ak
(3)(i)

− yk
(𝑖), again from forward propagation. For 𝑙 < 𝐿, the errors 𝛿𝑘

(𝑙)(𝑖)

are obtained from back propagation as discussed below.

A.1.6 Backpropagation

Let’s now compute the errors δ involved in Eq. (A.18) or (A.19) that provide the

gradients of the cost function for label 𝑘 and layer 𝑙. For simplicity, we will again use

our example with the three layers.

A.1.6.1 Errors of layer 𝑳 = 𝟑

As we have discussed above, the error for the final layer (in our example layer 3) for

output 𝑘 = 1, … , 𝐾 = 10 is determined using forward propagation by

δk
(3)

= ak
(3)

− y
k

or for each training instance i

δk
(3)(i)

= ak

(3)(i)
− y

k

(i)
 (A.20)

and may be obtained directly from forward propagation by subtracting the actual

value yk
(i)

 of output k of instance i from the NN output ak

(3)(i)
 of label k of instance i.

A.1.6.2 Errors of layer l = 𝟐

Consider the single output NN. We use the following notation:

J(θ) =
1

𝑚
∑[−y(i) log (hθ(x(i))) − (1 − y(i)) log (1 − hθ(x(i))) =

1

𝑚
∑ 𝐽𝑖

𝑚

𝑖=1

𝑚

𝑖=1

Without proof the following holds:

University of the Aegean Department of Financial and Management Engineering

[93]

δj
(2)(i)

=
∂�̂�(𝜃)

𝑖

∂z𝑗

(2)(𝑖)

(A.21)

Where
∂𝐽(𝜃)𝑖

∂z
𝑗
(2)(𝑖) is the value of the derivative of

∂𝐽(𝜃)

∂z𝑗
(2) for training instance i. We will

evaluate this derivative for instance i.

∂�̂�(𝜃)
𝑖

∂z𝑗

(2)(𝑖)
=

∂[−y
(i) log (hθ(x(i))) − (1 − y(i))log (1 − hθ(x(i)))]

∂𝑧𝑗

(2)(𝑖)

=
d[−y(i) log (hθ(x(i))) − (1 − y(i))log (1 − hθ(x(i)))]

da(3)

da(3)(i)

dz(3)(𝑖)

∂z(3)(𝑖)

∂a𝑗

(2)(𝑖)

da𝑗
(2)(𝑖)

dz𝑗

(2)(𝑖)

(A.22)

 From Eq. (A.9)

d[−y(i) log (hθ(x(i))) − (1 − y(i))log (1 − hθ(x(i)))]

da(3)(i)
= −

y(i)

a(3)(i)
+

1 − y(i)

1 − a(3)(i)

From Eq. (A.10)

da(3)(i)

dz(3)(𝑖)
= a(3)(𝑖)(1 − a(3)(𝑖))

∂z(3)(𝑖)

∂a𝑗

(2)(𝑖)
=

∂[α(2)(i)Θ(2)Τ]

∂a𝑗

(2)(𝑖)
= 𝛩𝑗

(2)

with Θj
(2)

the j − th element of Θ(2). In the single output NN, Θ(2) is a row vector,

e.g. (1,25).

Finally

da𝑗
(2)(𝑖)

dz
𝑗

(2)(𝑖)
= a𝑗

(2)(𝑖)
(1 − a𝑗

(2)(𝑖)
)

Combining the above we obtain

∂�̂�(𝜃)
𝑖

∂z𝑗

(2)(𝑖)
= (−

y(i)

a(3)(i)
+

1 − y(i)

1 − a(3)(i)
) a(3)(𝑖)(1 − a(3)(𝑖))𝛩𝑗

(2)
a𝑗

(2)(𝑖)(1 − a𝑗
(2)(𝑖))

= 𝛿
(3)(𝑖)

𝛩𝑗
(2)

[a
𝑗

(2)(𝑖)
(1 − a𝑗

(2)(𝑖)
)]

University of the Aegean Department of Financial and Management Engineering

[94]

That is,

∂�̂�(𝜃)
𝑖

∂z𝑗

(2)(𝑖)
= 𝛿

(3)(𝑖)𝛩𝑗
(2)

a𝑗
(2)(𝑖)

(1 − a𝑗
(2)(𝑖)

) = δj
(2)(i)

(A.23)

The last equality coming from Eq. (A.21). Now if we consider

∂𝐽(𝜃)𝑖

∂z(2)(𝑖)
= (

∂𝐽(𝜃)𝑖

∂𝑧1

(2)(𝑖)
, … ,

∂𝐽(𝜃)𝑖

∂𝑧𝑗

(2)(𝑖)
, …)

then

∂�̂�(𝜃)
𝑖

∂z(2)(𝑖)
= (δ(3)(𝑖)Θ(2)).∗ (a(2)(𝑖).∗ (1 − α(2)(𝑖)))

(A.24)

where the symbol (.*) represents the element-wise multiplication of two matrices

(vectors in this particular case).

Then from Eq. (A.21)

δ(2)(𝑖) =
∂�̂�(𝜃)

𝑖

∂z𝑗

(2)(𝑖)
= (δ(3)(𝑖)Θ(2)).∗ (a(2)(𝑖).∗ (1 − α(2)(𝑖)))

(A.25)

Now consider the multiple output NN

With similar arguments we obtain the following equation:

δ(2)(𝑖) = (δ(3)(𝑖)Θ(2)).∗ (a(2)(𝑖).∗ (1 − α(2)(𝑖))) (A.26)

A.1.6.3 Errors of layer 𝒍

Now let us generalize to error 𝛿(𝑙) for layer 𝑙 < 𝐿 in terms of the error 𝛿(𝑙+1) of layer

𝑙 + 1

𝛿(𝑙)(𝑖) = (δ(𝑙+1)(𝑖)Θ(𝑙)).∗ (𝛼(𝑙)(𝑖).∗ (1 − 𝛼(𝑙)(𝑖)))
(A.27)

or

 (A.28)

University of the Aegean Department of Financial and Management Engineering

[95]

𝛿(𝑙) = (δ(𝑙+1)Θ(𝑙)).∗ (𝛼(𝑙).∗ (1 − 𝛼(𝑙)))

This last equation may be considered equivalent to Eq. (A.27) if 𝛿(𝑙) =
1

𝑚
∑ 𝛿(𝑙)(𝑖)𝑚

𝑖=1 .

Equation (A.28) moves the error backwards through the activation function of layer 𝑙,

giving us the error 𝛿(𝑙) as the weighted sum of error 𝛿(𝑙+1)of layer 𝑙 + 1. The initial

error of the last layer is, of course, obtained directly by subtracting the actual value of

the output from the estimated value of the output (NN output).

From Eq. (A.27) we may get the δ terms of each layer. Then, we use them in Eq. (A.19)

to obtain the partial derivative of the error function J with respect

to individual parameters of the NN and thus compute the gradient ∇J of Eq. (A. 8),

which is used in the related step of the gradient descent. This process is repeated for

each step, since the θ values are updated and so are the terms a𝑗
(𝑙)(𝑖)

 of forward

propagation (evaluated with the new θ) and 𝛿𝑘
(𝑙+1)(𝑖)

 of backpropagation. The process

minimizes J with respect to the NN parameters θ and trains the NN by obtaining the

optimal values of θ.

A.1.7 A theoretical validation example

In order to obtain a hands-on understanding of the forward and backpropagation

relationships used in NN training, as well as their proofs, Appendix A.2 presents and

proves these relationships for a very simple (but theoretical) example.

A.1.8 The training algorithm

In order to put together the mathematical concepts of Sections A.1.5 (forward

propagation) and A.1.6 (backpropagation), we present the following algorithm for the

original example of Section 1.

Training is based on a set [(𝑥(1), 𝑦(1)), … , (𝑥(𝑚), 𝑦(𝑚))], where 𝑚 = 5,000, that is

considered as input to the algorithm.

Step 1

University of the Aegean Department of Financial and Management Engineering

[96]

Start training by initializing the values of 𝛩1 and 𝛩2 with small random numbers equal

to zero or near it. Then, gradient descent will update the 𝛩1 and 𝛩2 values in an

attempt to minimize the error.

Step 2

Perform forward propagation to compute α(l)(𝑖) for layers (l = 2,3) for the training

sample i (𝑖 = 1, … ,5000). Forward propagation uses the following equations:

 Input to hidden layer : a(1)(i) = 𝑥(𝑖) , of size (1,400+1)

 z(2)(i) = α(1)(i)Θ(1)(i)T, of size (1,25)

Hidden to output layer : a(2)(i) = σ(z(2)(𝑖)) , of size (1,25+1)

 z(3)(i) = α(2)(i)Θ(2)(i)T, 𝑜𝑓 𝑠𝑖𝑧𝑒 (1,10)

 a(3)(i) = σ(z(3)(𝑖)) = hθ(x), of size (1,10)

Forward propagation provides 𝑎𝑘
3(𝑖)

, 𝑘 = 1, … ,10 𝑖 = 1, … , 5000 to be used in Eq.

(A.19) and (A.20), as well as 𝑎𝑗
2(𝑖)

, 𝑗 = 1, … , 25 to be used in Eq. (A.27)

Step 3

 Compute:

δk
(3)(i)

= ak

(3)(i)
− yk

(i), 𝑘 = 1, … ,10, 𝑖 = 1, … , 5000

𝛿2(𝑖) = (δ(2)(𝑖)Θ(2)).∗ (𝛼(2)(𝑖).∗ (1 − 𝛼(2)(𝑖))), 𝑖 = 1, … , 5000)

with 𝛿2(𝑖) = (𝛿1
(2)(𝑖), … , 𝛿𝑗

(2)(𝑖), … , 𝛿25
(2)(𝑖)), an (1, 25) vector

Step 4

Using the results of Steps 2 and 3, compute

∂J(θ)

∂𝛩𝑘𝑗
(2)

=
1

𝑚
∑ 𝛿𝑘

(3)(𝑖)
a𝑗

(2)(𝑖)

𝑚

𝑖=1

, 𝑘 = 1, … ,10, 𝑗 = 1, … . ,25

and

University of the Aegean Department of Financial and Management Engineering

[97]

∂J(θ)

∂𝛩𝑘𝑗
(1)

=
1

𝑚
∑ 𝛿𝑘

(2)(𝑖)
a𝑗

(1)(𝑖)

𝑚

𝑖=1

, 𝑘 = 1, … ,25, 𝑗 = 1, … . ,400

This is without regularization. We can easily add regularization.

Step 5

Having obtained ∇J(θj) =
∂J(θ)

∂𝜃
|𝜃 = 𝜃𝑗 an (1, 10250) vector, then update 𝜃 using

θj+1 = θj − a∇J(θj)

With a the chosen step.

Step 6

Repeat steps 1-5 till ‖∇J(θj)‖ < 휀. Set 𝜃 equal to the values of the parameters of the

last iteration. The NN has been trained.

A.2 Feedforward and backpropagation equations

Consider a very simple neural network that has 2 input nodes, 3 hidden nodes, and 2

output nodes (see Fig. A.1). The vectors and the Θ matrices (weighting matrices)

involved are the following:

α(1) = [x1 x2] = [α1
(1)

 α2
(1)

]

θ(1) = [

θ11
(1)

θ12
(1)

θ21
(1)

θ22
(1)

θ31
(1)

θ32
(1)

]

z(2) = [z1
(2)

z2
(2)

z3
(2)]

α(2) = [α1
(2)

α2
(2)

α3
(2)]

θ(2) = [
θ11

(2)
θ12

(2)
θ13

(2)

θ21
(2)

θ22
(2)

θ23
(2)

]

University of the Aegean Department of Financial and Management Engineering

[98]

z(3) = [z1
(3)

z2
(3)]

α(3) = [α1
(3)

α2
(3)]

A.2.1 Forward propagation

The forward propagation relationships are as follows:

Layer 2

z(2) = α(1)θ(1)Τ → z(2) = [α1
(1)

 α2
(1)

] [
θ11

(1)
θ21

(1)
θ31

(1)

θ12
(1)

θ22
(1)

θ32
(1)

]

or

z1
(2)

= α1
(1)

θ11
(1)

+ α2
(1)

θ12
(1)

z2
(2)

= α1
(1)

θ21
(1)

+ α2
(1)

θ22
(1)

z3
(2)

= α1
(1)

θ31
(1)

+ α2
(1)

θ32
(1)

(A.29)

Then

a(2) = σ(z(2))

or

α1
(2)

= σ(z1
(2)

) =
1

1 + e−z1
(2)

α2
(2)

= σ(z2
(2)

) =
1

1 + e−z2
(2)

α3
(2)

= σ(z3
(2)

) =
1

1 + e−z3
(2)

(A.30)

University of the Aegean Department of Financial and Management Engineering

[99]

Layer 3

z(3) = α(2)θ(2)Τ =>→ z(3) = [α1
(2)

α2
(2)

α3
(2)] [

θ11
(2)

θ21
(2)

θ12
(2)

θ22
(2)

θ13
(2)

θ23
(2)

]

or

z1
(3)

= α1
(2)

θ11
(2)

+ α2
(2)

θ12
(2)

+ α2
(2)

θ13
(2)

z2
(3)

= α1
(2)

θ21
(2)

+ α2
(2)

θ22
(2)

+α2
(2)

θ23
(2)

(A.31)

Then

a(3) = σ(z(3)) = hθ(x)

α1
(3)

= σ(z1
(3)

) =
1

1 + e−z1
(3)

α2
(3)

= σ(z2
(3)

) =
1

1 + e−z2
(3)

(A.32)

Note that the vector of the NN parameters is 𝜃 and contains 6+6=12 parameters 𝜃𝑘𝑗
(𝑙)

θ(1) = [

θ11
(1)

θ12
(1)

θ21
(1)

θ22
(1)

θ31
(1)

θ32
(1)

] θ(2) = [
θ11

(2)
θ12

(2)
θ13

(2)

θ21
(2)

θ22
(2)

θ23
(2)

]

A.2.2 The cost function

Consider now that the training set consists of two training samples (𝑖 = 1,2), which of

course is unrealistic, but it is simple enough for the theoretical example. Thus the

training set is {(𝑥1
(1)

, 𝑥2
(1)

), (𝑦1
(1)

, 𝑦2
(1)

); (𝑥1
(2)

, 𝑥2
(2)

), (𝑦1
(2)

, 𝑦2
(2)

)

University of the Aegean Department of Financial and Management Engineering

[100]

If we fully write our cost function with the summation we would get:

J(θ) =
1

2
∑{[−y1

(i)
log(α1

(3)(i)
) − (1 − y1

(i)
)log(1 − α1

(3)(i)
)] + [−y2

(i)
log(α2

(3)(i)
)

2

i=1

− (1 − y2
(i)

)log(1 − α2
(3)(i)

)]}

(A.33)

A.2.3 Partial derivatives of J(θ) with respect to the weights θ11
(2)

, . . . , θ23
(2)

 (6

parameters)

Consider

∂J(θ)

∂θkj
(2)

=
1

2
∑

∂ {
[−y1

(i)log(α1
(3)(i)) − (1 − y1

(i))log (1 − α1
(3)(i))] + [−y2

(i)log(α2
(3)(i))

−(1 − y2
(i))log(1 − α2

(3)(i))]
}

∂θkj
(2)

2

i=1

=
1

2
∑

𝑑 {
[−y1

(i)log(α1
(3)(i)) − (1 − y1

(i))log (1 − α1
(3)(i))] + [−y2

(i)log(α2
(3)(i))

−(1 − y2
(i))log(1 − α2

(3)(i))]
}

𝑑αk
(3)(i)

2

i=1

×
dαk

(3)(i)

dz
k

(3)(i)

∂zk
(3)(i)

∂θkj
(2)

(A.34)

Let k=1 and j=2

d{−y1
(i)log(α1

(3)(i)) − (1 − y1
(i))log(1 − α1

(3)(i))}

dα1
(3)(i)

=
−y1

(i)

α1
(3)(i)

+
(1 − y1

(i))

1 − α1
(3)(i)

And the derivative of the second term of the numerator in the first equation of

Eq. (A.34) with respect to dα1
(3)(i) is zero. Furthermore,

(A.35)

University of the Aegean Department of Financial and Management Engineering

[101]

dα1
(3)(i)

dz1
(3)(i)

=
−1

(1 + e−z1
(3)(i)

)
2 (−e−z1

(3)(i)

) =
e−z1

(3)(i)

[1 + e−z1
(3)(i)

]
2

=
1

1 + e−z1
(3)(i)

[1 −
1

1 + e−z1
(3)(i)

] = α1
(3)(i)(1 − α1

(3)(i))

(A.36)

∂z1
(3)(i)

∂θ12
(2)

= α2
(2)(i)

from equation for z1
(3)

 in Eq. (A.31)

(A.37)

Thus, substituting Eqs. (A-6) to (A-8) into (A-5) for k=1 and j=2, we obtain

∂J(θ)

∂θ12
(2)

=
1

2
∑ (

−y1
(i)

α1
(3)(i)

+
(1 − y1

(i))

1 − α1
(3)(i)

) [α1
(3)(i)(1 − α1

(3)(i))]α2
(2)(i) =

2

i=1

=
1

2
∑ α2

(2)(i){

2

i=1

− y1
(i)(1 − α1

(3)(i)) + (1 − y1
(i))α1

(3)(i)}

=
1

2
∑ α2

(2)(i){

2

i=1

− y1
(i) + y1

(i)α1
(3)(i) + α1

(3)(i) − y1
(i)α1

(3)(i)}

∂J(θ)

∂θ12
(2)

= α1
(3)(i) − y1

(i) = δ1
(3)(i)

(A.38)

Similarly

∂J(θ)

∂θ12
(2)

=
1

2
∑ α2

(2)(i)

2

i=1

δ1
(3)(i)

 →
∂J(θ)

∂θkj
(2)

=
1

2
∑ αj

(2)(i)

2

i=1

δk
(3)(i)

 (A.39)

University of the Aegean Department of Financial and Management Engineering

[102]

with

δ1
(3)(i) = α1

(3)(i) − y1
(i)

We have now computed six partial derivatives of the cost function 𝐽(θ)

∂J(θ)

∂θkj
(2)

=
1

2
∑ αj

(2)(i)

2

i=1

δk
(3)(i)

, k = 1,2 and j = 1,2,3

(A.40)

since we know αj
(2)(i) from forward propagation Eqs. (A.29), (A.30) and δk

(3)(i)
=

α1
(3)(i) − y1

(i) with α1
(3)(i) from forward propagation Eq. (A.31), (A.32).

A.2.4 Partial derivatives of previous layers

Similarly with the Section above, the following holds (same proof as above)

∂J(θ)

∂θkj
(1)

=
1

2
∑ αj

(1)(i)

m

i=1

δk
(2)(i), k = 1,2,3 and j = 1,2

(A.41)

We will appose the proof from the derivative above.

Backpropagation starts in the last layer 𝐿 and successively moves back one layer at a

time. For each visited layer it computes the so called error:

∂𝐽(𝜃)𝑖

∂z𝑗

(2)(𝑖)

Using the chain rule :

University of the Aegean Department of Financial and Management Engineering

[103]

∂J(θ)

∂θ11
(1)

= (
∂𝐽(𝜃)𝑖

∂α1
(3)(𝑖)

∂α1
(3)(𝑖)

∂z1
(3)(𝑖)

∂z1
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ11
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α2
(3)(𝑖)

∂α2
(3)(𝑖)

∂z2
(3)(𝑖)

∂z2
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ11
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α3
(3)(𝑖)

∂α3
(3)(𝑖)

∂z3
(3)(𝑖)

∂z3
(3)(𝑖)

∂α2
(2)(𝑖)

∂α2
(2)(𝑖)

∂z2
(2)(𝑖)

∂z2
(2)(𝑖)

∂θ11
(1)

)

∂J(θ)

∂θ12
(1)

= (
∂𝐽(𝜃)𝑖

∂α1
(3)(𝑖)

∂α1
(3)(𝑖)

∂z1
(3)(𝑖)

∂z1
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ12
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α2
(3)(𝑖)

∂α2
(3)(𝑖)

∂z2
(3)(𝑖)

∂z2
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ12
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α3
(3)(𝑖)

∂α3
(3)(𝑖)

∂z3
(3)(𝑖)

∂z3
(3)(𝑖)

∂α2
(2)(𝑖)

∂α2
(2)(𝑖)

∂z2
(2)(𝑖)

∂z2
(2)(𝑖)

∂θ12
(1)

)

∂J(θ)

∂θ21
(1)

= (
∂𝐽(𝜃)𝑖

∂α1
(3)(𝑖)

∂α1
(3)(𝑖)

∂z1
(3)(𝑖)

∂z1
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ21
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α2
(3)(𝑖)

∂α2
(3)(𝑖)

∂z2
(3)(𝑖)

∂z2
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ21
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α3
(3)(𝑖)

∂α3
(3)(𝑖)

∂z3
(3)(𝑖)

∂z3
(3)(𝑖)

∂α2
(2)(𝑖)

∂α2
(2)(𝑖)

∂z2
(2)(𝑖)

∂z2
(2)(𝑖)

∂θ21
(1)

)

∂J(θ)

∂θ22
(1)

= (
∂𝐽(𝜃)𝑖

∂α1
(3)(𝑖)

∂α1
(3)(𝑖)

∂z1
(3)(𝑖)

∂z1
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ22
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α2
(3)(𝑖)

∂α2
(3)(𝑖)

∂z2
(3)(𝑖)

∂z2
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ22
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α3
(3)(𝑖)

∂α3
(3)(𝑖)

∂z3
(3)(𝑖)

∂z3
(3)(𝑖)

∂α2
(2)(𝑖)

∂α2
(2)(𝑖)

∂z2
(2)(𝑖)

∂z2
(2)(𝑖)

∂θ22
(1)

)

University of the Aegean Department of Financial and Management Engineering

[104]

∂J(θ)

∂θ31
(1)

= (
∂𝐽(𝜃)𝑖

∂α1
(3)(𝑖)

∂α1
(3)(𝑖)

∂z1
(3)(𝑖)

∂z1
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ31
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α2
(3)(𝑖)

∂α2
(3)(𝑖)

∂z2
(3)(𝑖)

∂z2
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ31
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α3
(3)(𝑖)

∂α3
(3)(𝑖)

∂z3
(3)(𝑖)

∂z3
(3)(𝑖)

∂α2
(2)(𝑖)

∂α2
(2)(𝑖)

∂z2
(2)(𝑖)

∂z2
(2)(𝑖)

∂θ31
(1)

)

∂J(θ)

∂θ32
(1)

= (
∂𝐽(𝜃)𝑖

∂α1
(3)(𝑖)

∂α1
(3)(𝑖)

∂z1
(3)(𝑖)

∂z1
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ32
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α2
(3)(𝑖)

∂α2
(3)(𝑖)

∂z2
(3)(𝑖)

∂z2
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ32
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α3
(3)(𝑖)

∂α3
(3)(𝑖)

∂z3
(3)(𝑖)

∂z3
(3)(𝑖)

∂α2
(2)(𝑖)

∂α2
(2)(𝑖)

∂z2
(2)(𝑖)

∂z2
(2)(𝑖)

∂θ32
(1)

)

Let's take a closer look at one of the terms,
∂J(θ)

∂θ11
(1).

∂J(θ)

∂θ11
(1)

= (δ1
(3)(i) ∂z1

(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ11
(1)

) + (δ2
(3)(i) ∂z2

(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ11
(1)

)

+ (δ3
(3)(i) ∂z3

(3)(𝑖)

∂α2
(2)(𝑖)

∂α2
(2)(𝑖)

∂z2
(2)(𝑖)

∂z2
(2)(𝑖)

∂θ11
(1)

)

We will also calculate the above derivatives for
∂J(θ)

∂θ12
(1) ,

∂J(θ)

∂θ21
(1) ,

∂J(θ)

∂θ22
(1) ,

∂J(θ)

∂θ31
(1) ,

∂J(θ)

∂θ32
(1)

Also we have already mention that the partial derivatives are the activation

functions. So it will be:

∂J(θ)

∂θ11
(1)

= (δ1
(3)(i)

θ11
(2)

α1
(2)(i)(1 − α1

(2)(i))
∂z1

(2)(𝑖)

∂θ11
(1)

)

+ (δ2
(3)(i)

θ21
(2)

α2
(2)(i)(1 − α2

(2)(i))
∂z1

(2)(𝑖)

∂θ11
(1)

)

+ (δ3
(3)(i)

θ31
(2)

α3
(2)(i)(1 − α3

(2)(i))
∂z2

(2)(𝑖)

∂θ11
(1)

)

University of the Aegean Department of Financial and Management Engineering

[105]

We should also calculate
∂J(θ)

∂θ12
(1) ,

∂J(θ)

∂θ21
(1) ,

∂J(θ)

∂θ22
(1) ,

∂J(θ)

∂θ31
(1) ,

∂J(θ)

∂θ32
(1) as the partial derivative above,

like
∂J(θ)

∂θ11
(1).

Factoring out the
∂z1

(2)(𝑖)

∂θ11
(1) term, it will be:

∂J(θ)

∂θ11
(1)

=
∂z1

(2)(𝑖)

∂θ11
(1)

(δ1
(3)(i)

θ11
(2)

α1
(2)(i)(1 − α1

(2)(i))) + (δ2
(3)(i)

θ21
(2)

α2
(2)(i)(1 − α2

(2)(i)))

+ (δ3
(3)(i)

θ31
(2)

α3
(2)(i)(1 − α3

(2)(i)))

The
∂z1

(2)(𝑖)

∂θ11
(1) partial derivative will be replaced each time with an input, in our case

x1, x2.

So,

∂J(θ)

∂θ11
(1)

=
∂z1

(2)(𝑖)

∂θ11
(1)

(δ1
(2)(i)

)

We should also calculate
∂J(θ)

∂θ12
(1) ,

∂J(θ)

∂θ21
(1) ,

∂J(θ)

∂θ22
(1) ,

∂J(θ)

∂θ31
(1) ,

∂J(θ)

∂θ32
(1) as the partial derivative above,

like
∂J(θ)

∂θ11
(1).

We know αj
(1)(i) from the input values, but we do not know δ𝑘

(2)(𝑖)
 k=1,2,3. Let’s

compute it.

We know that:

University of the Aegean Department of Financial and Management Engineering

[106]

δj
(2)(i)

=
𝜕J(θ)𝑖

𝜕zj
(2)(𝐢)

δj
(2)(i) =

∂ {
[−y1

(i)log(α1
(3)(i)) − (1 − y1

(i))log (1 − α1
(3)(i))] − y2

(i)log(α2
(3)(i))

−(1 − y2
(i))log (1 − α2

(3)(i))]
}

∂zj
(2)(i)

=

∂ {
[−y1

(i)log(α1
(3)(i)) − (1 − y1

(i))log (1 − α1
(3)(i))] − y2

(i)log(α2
(3)(i))

−(1 − y2
(i))log (1 − α2

(3)(i))]
}

∂α1
(3)(i)

×

×
dα1

(3)(i)

dz1
(3)(i)

∂z1
(3)(i)

∂αj
(2)(i)

dαj
(2)(i)

dz𝑗
(2)(i)

+
∂{[−y1

(i)log(α1
(3)(i)) − (1 − y1

(i))log (1 − α1
(3)(i))] − y2

(i)log(α2
(3)(i)) − (1 − y2

(i))log (1 − α2
(3)(i))]}

∂α2
(3)(i)

×

×
dα2

(3)(i)

dz2
(3)(i)

∂z2
(3)(i)

∂αj
(2)(i)

dαj
(2)(i)

dzj

(2)(i)

(A.42)

since considering a function 𝐹(𝑥, 𝑦) where 𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡)

𝑑𝐹

𝑑𝑧
=

𝜕𝐹

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝐹

𝜕𝑦

𝑑𝑦

𝑑𝑡

Then,

∂ {
[−y1

(i)
log(α1

(3)(i)
) − (1 − y1

(i)
)log (1 − α1

(3)(i)
)] − y2

(i)
log(α2

(3)(i)
)

−(1 − y2
(i))log (1 − α2

(3)(i))]
}

∂α1
(3)(i)

= [−
y1

(i)

α1
(3)(i)

+
(1 − y1

(i))

1 − α1
(3)(i)

]

(A.43)

University of the Aegean Department of Financial and Management Engineering

[107]

Similarly

∂ {
−y1

(i)log(α1
(3)(i)) − (1 − y1

(i))log (1 − α1
(3)(i))] − y2

(i)log(α2
(3)(i))

−(1 − y2
(i))log (1 − α2

(3)(i))
}

∂α2
(3)(i)

= [−
y2

(i)

α2
(3)(i)

+
(1 − y2

(i))

1 − α2
(3)(i)

]

Furthermore from Eq. (A.35)

dα1
(3)(i)

dz1
(3)(i)

= α1
(3)(i)(1 − α1

(3)(i))

and

dα2
(3)(i)

dz2

(3)(𝑖)
= α2

(3)(i)(1 − α2
(3)(i))

Finally, from Eq. (A.31)

(A.44)

∂z1
(3)(i)

∂αj
(2)(i)

= θ1j
(2)

∂z2
(3)(i)

∂αj
(2)(i)

= θ2j
(2)

(A.45)

and,

dαj
(2)(𝐢)

dzj

(2)(i)
= αj

(2)(i)(1 − αj
(2)(i))

(A.46)

University of the Aegean Department of Financial and Management Engineering

[108]

Substituting Eqs. (A.42) – (A.45) into Eq. (A.41) we obtain

δj
(2)(i) =

=
∂J(θ)i

∂zj
(2)(i)

= [−
y1

(i)

α1
(3)(i)

+
(1 − y1

(i))

1 − α1
(3)(i)

] α1
(3)(i)(1 − α1

(3)(i))θ1j
(2)

αj
(2)(i)(1 − αj

(2)(i))

+ [−
y2

(i)

α2
(3)(i)

+
(1 − y2

(i))

1 − α2
(3)(i)

] α2
(3)(i)(1 − α2

(3)(i))θ2j
(2)

αj
(2)(i)(1 − αj

(2)(i))

(A.47)

Performing the multiplications (similarly to Eq. (A-9)) we obtain

δj
(2)(i) = δ1

(3)(i)θ1j
(2)

αj
(2)(i)(1 − αj

(2)(i)) + δ2
(3)(i)θ2j

(2)
αj

(2)(i)(1 − αj
(2)(i))

⇒ δj
(2)(i) = [δ1

(3)(i) δ2
(3)(i)] [

θ1j
(2)

θ2j
(2)

] αj
(2)(i)(1 − αj

(2)(i))

⇒ [δ1
(2)(i) δ2

(2)(i) δ3
(2)(i)]

= [δ1
(3)(i) δ2

(3)(i)] [
θ11

(2)
θ12

(2)
θ13

(2)

θ21
(2)

θ22
(2)

θ23
(2)

] .∗ [α
(2)(i).∗ (1 − α

(2)(i))]

⇒ δ(2)(i) = [δ(3)(i)θ(2)].∗ [α(2)(i).∗ (1 − α(2)(i))]

(A.48)

Taking the average of the two training samples 𝑖 = 1,2

δ(2) = δ(3)θ(2).∗ (α(2).∗ (1 − α(2)))

Now we can compute the other six partial derivatives of the gradient vector

University of the Aegean Department of Financial and Management Engineering

[109]

∂J(θ)

∂θkj
(1)

=
1

2
∑ αj

(1)(i)

m

i=1

δk
(2)(i)

, 𝑘 = 1,2,3 and 𝑗 = 1,2
(A.49)

with

δk
(2)(i) = [δ1

(3)(i) δ2
(3)(i)] [

θ1k
(2)

θ2k
(2)

] αk
(2)(i)(1 − αk

(2)(i))

all known from forward propagation

(A.50)

Thus, for any iteration we can compute the gradient ∇ J(θ) from the values of 𝜃 of

the previous iteration and the results of the forward propagation.

∇ J(θ) = [
∂J

∂θ11
(1)

, … ,
∂J

∂θ32
(1)

|
∂J

∂θ11
(2)

, … ,
∂J

∂θ23
(2)

]

Using Eqs. (A.39), (A.49), (A.50)

The new values of 𝜃 are [θ11
(1)

, . . . , θ32
(1)

|θ11
(2)

, . . . , θ23
(2)

]new

= [θ11
(1)

, . . . , θ32
(1)

|θ11
(2)

, . . . , θ23
(2)

]old −a∇J

University of the Aegean Department of Financial and Management Engineering

[110]

Appendix B. Implementing Convolution Neural Networks in

TensorFlow

In this Appendix contains techniques about image classification through Convolution

Neural Network. Firstly, a model for binary classification with less convolutional layers

is presented. Secondly, a model for multiple classifications is discussed which contain

a lot of convolutional networks. Finally, a model for data augmentation shows

techniques for image processing.

B.1 A model for binary classification

Below in Fig. A.1 we illustrate the implementation of a Neural Network model for

binary classification in code. The NN has 3 layers, one layer is the input the second layer

is the hidden one and the third layer is the output. The hidden layer has 1,024 hidden

units and we use Relu activation as we have mentioned in the text above. The output

layer has 1 unit. The loss function is binary crossentropy and the optimizer is RMSprop.

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

from tensorflow.keras.optimizers import RMSprop

Flatten the output layer to 1 dimension

x = layers.Flatten()(last_output)

Add a fully connected layer with 1,024 hidden units and ReLU activation

x = layers.Dense(1024, activation='relu')(x)

Add a final sigmoid layer for classification

x = layers.Dense (1, activation='sigmoid')(x)

model = Model(pre_trained_model.input, x)

model.compile(optimizer = RMSprop(lr=0.0001),

 loss = 'binary_crossentropy',

 metrics = ['accuracy'])

University of the Aegean Department of Financial and Management Engineering

[111]

history = model.fit(

 train_generator,

 validation_data = validation_generator,

 epochs = 20)

Figure B. 1 CNN with one Dense

B.2 A model for multiple classification

The coded model below is utilized for 3 class classification. The model has 4

convolutional and maxpooling layers. 64 filters are utilized, of size 3 × 3. Then, filters

are increased to 128. The maxpooling layer size is 2 × 2. The activation function for

convolutional layers is Relu. The Neural Network has 3 layers. First layer is the input,

second layer is the hidden one and third layer is the output. The input layer has images

with 150 × 150 size and 3 byte color (Red, Green, Blue). The input images are first

Flattened and then the Dropout technique is used (see text in Section 2.2) for

definitions). The hidden layer has 512 units and Relu activation is used. The output layer

has 3 units, since there are 3 classes. The output activation function is SoftMax, which

is more suitable for multiclass classification than Relu. The loss function is categorical

crossentropy and the optimizer is RMSprop.

import tensorflow as tf

import keras_preprocessing

model = tf.keras.models.Sequential([

 # Note the input shape is the desired size of the image 150x150 with 3 bytes color

 # This is the first convolution

 tf.keras.layers.Conv2D(64, (3,3), activation='relu', input_shape=(150, 150, 3)),

 tf.keras.layers.MaxPooling2D(2, 2),

 # The second convolution

 tf.keras.layers.Conv2D(64, (3,3), activation='relu'),

 tf.keras.layers.MaxPooling2D(2,2),

University of the Aegean Department of Financial and Management Engineering

[112]

 # The third convolution

 tf.keras.layers.Conv2D(128, (3,3), activation='relu'),

 tf.keras.layers.MaxPooling2D(2,2),

 # The fourth convolution

 tf.keras.layers.Conv2D(128, (3,3), activation='relu'),

 tf.keras.layers.MaxPooling2D(2,2),

 # Flatten the results to feed into a DNN

 tf.keras.layers.Flatten(),

 tf.keras.layers.Dropout(0.5),

 # 512 neuron hidden units

 tf.keras.layers.Dense(512, activation='relu'),

 tf.keras.layers.Dense(3, activation='softmax')

])

model.summary()

model.compile(loss = 'categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'

])

Figure B. 2 A model used for multiple classification.

B.3 A model for data augmentation

The code below is used to apply the data augmentation technique. Firstly, we prepare

the training and validation data before they are used in the neural network process.

Some of the training images are used to rescale, rotate 40%, width shift range 20%,

height shift range 20%, shear range 20%, zoom 20%, horizontal flip and fill mode. After

data augmentation, the training images have 150 × 150 size, the class mode is

categorical, since there are 3 classes, and the batch size of images is 126. The validation

data has 3 × 3 size, the class mode and the batch size are the same as the training data.

import tensorflow as tf

import keras_preprocessing

from keras_preprocessing import image

University of the Aegean Department of Financial and Management Engineering

[113]

from keras_preprocessing.image import ImageDataGenerator

TRAINING_DIR = "/tmp/rps/"

training_datagen = ImageDataGenerator(

 rescale = 1./255,

 rotation_range=40,

 width_shift_range=0.2,

 height_shift_range=0.2,

 shear_range=0.2,

 zoom_range=0.2,

 horizontal_flip=True,

 fill_mode='nearest')

VALIDATION_DIR = "/tmp/rps-test-set/"

validation_datagen = ImageDataGenerator(rescale = 1./255)

train_generator = training_datagen.flow_from_directory(

 TRAINING_DIR,

 target_size=(150,150),

 class_mode='categorical',

 batch_size=126

)

validation_generator = validation_datagen.flow_from_directory(

 VALIDATION_DIR,

 target_size=(150,150),

 class_mode='categorical',

 batch_size=126

)

Figure B. 3 Data augmentation technique.

University of the Aegean Department of Financial and Management Engineering

[114]

Appendix C. Annotating images with ground truth bounding boxes

Image annotation is defined as the task of annotating an image with labels for

supervised machine learning. Labels are chosen to provide the network with

information about what is shown in the image. In this thesis the annotated traffic

lights classes, such as green, red and yellow, are used for training and validation.

The majority of computer vision models are created using image annotation tools. The

latter usually involve manual work from users, sometimes with computer-assisted

help. Users define the labels, known as “classes”, and provide the image-specific

information to the computer vision model. After the model is trained, it will predict

and detect those features in new images that have not been annotated yet (Boesch,

2021).

There are many free tools for image annotation tasks. Some of them are (Morgunov,

2021):

 VGG Image Annotator (VIA)

 CVAT – Computer Vision Annotation Tool

 LabelImg

 Visual Object Tagging Tool (VoTT)

LabelImg13 is a graphical image annotation tool which is open source. This tool is

selected for creating label ground truth bounding boxes in the image dataset,

especially in cases of datasets over 10,000 images.

To install the tool, one needs to go to the LabelImg 1.8.514 website, which describes in

detail the installation steps. After installation, the LabelImg interface (see Fig B.1) is

displayed on the screen. For uploading the images from the dataset, the photos are

selected by selecting the “Open Dir” command. Next, the user selects the correct

folder (see Fig B.2).

13 Github repository of darrenl tzutalin: https://github.com/tzutalin/labelImg
14 https://pypi.org/project/labelImg/

University of the Aegean Department of Financial and Management Engineering

[115]

Figure C. 1 Open Directory

Subsequently, the location to save the annotation file is selected. This is done by the

command Change Save Dir.

Figure C. 2 The location of files

University of the Aegean Department of Financial and Management Engineering

[116]

After that, the annotation images will be saved in a format recognized by the YOLO

algorithm. The save format should be changed from the Pascal VOC to YOLO.

Figure C. 3 The save format (Pascal/VOC)

Figure C. 4 The save format (YOLO)

University of the Aegean Department of Financial and Management Engineering

[117]

In the final step, the label ground truth bounding boxes are created on the custom

images. The ground truth bounding boxes are drawn by the Create\nRectBox button.

Now, the ground truth bounding boxes can be drawn over the image.

Figure C. 5 Create\nRectBox button for drawing the ground truth bounding box

Each time drawing the box is completed, a new LabelImg window pop up shows up.

The object name in the text field of Fig, B.5 is defined by the user. Once labeling

objects in the image is completed, the Save button on the left menu or command ctrl+

s (of keyboard) should be clicked to save the annotation images in the folder.

The final custom dataset is ready for object detection. The annotation tool extracts

the information that it needs (txt files15) that contain the coordinates of ground truth

bounding boxes (scaled from 0 to 1) and the classes of the objects, which are included

in the image. In our case, these objects are traffic lights.

15 The txt file should be saved in the same directory, and the same name as the image.

	Chapter 1 Introduction
	Chapter 2 Object detection methods and techniques
	2.1 Image classification using Convolutional neural networks (CNNs)
	2.2 Real Time Object Detection through the YOLOv3 algorithm
	2.3 Current State-Of-The-Art
	2.4 Contribution of this thesis

	Chapter 3 Data preparation and training of the object detection model using the YoloV3 algorithm
	3.1 Data collection, generation and labeling
	3.2 Training and validation through Transfer Learning
	3.3 Darknet-53+YOLOv3 model training

	Chapter 4 Traffic light state detection: A case study
	4.1 Experimental set up
	4.2 Data processing
	4.3 Results of the Neural Network Model
	4.4 Improving the Results of the Neural Network Model
	4.5 Conclusion

	Chapter 5 Conclusions
	1.1

	References
	Appendix A. Learning in MLP networks
	Appendix B. Implementing Convolution Neural Networks in TensorFlow
	Appendix C. Annotating images with ground truth bounding boxes

