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Abstract

Traffic lights recognition and classification play an important role in the realization of
autonomous vehicles. This automated process uses video (frames) to recognize and
classify traffic lights along the vehicle’s path in real time. In this thesis, we adapt a
proven deep learning model to recognize three classes (states) of traffic lights: green,
red and yellow. The model is YOLOv3, it includes Darknet-53 and combines object
detection and classification. The deep learning algorithms are implemented in Google
Colab (a cloud platform developed by Google). The resulting Convolutional Neural
Network (CNN) is trained using publicly available data sets that we modify to enhance

the available training data.

Firstly, the training and validation datasets are generated. Secondly, ground truth
bounding boxes -which define the class and the object in the images- are created and
uploaded to the Colab environment that runs the algorithm for object detection. The
algorithm preprocesses the images, creates bounding boxes that contain the object
and adjusts the weights of some model layers. To obtain the most appropriate
weights, we perform various training/validation experiments using combinations of
available datasets. The experiments indicate that the addition of very clear photos,
which contain only traffic lights in the training datasets, and in general photos in which

traffic lights are part of a general environment, significantly help the training process.

We use the best performing weights to conduct a large case study that uses as input
video footage taped from the streets of Thessaloniki, which contains numerous traffic
lights in all three states. We divide the predictions into 3 categories: True, False and
No predictions. Initially the study indicated a relatively low performance of the model
caused by a high percentage of No predictions. To address this issue, we used more
than one photographs of each traffic light-state combination and combined the
related predictions. As a result, the percent of No predictions was reduced

significantly, and the combined process yielded better results.

[V]
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Nepidnyn
H avayvwplon kat n taélvopnon tTwv onuatwyv KukAodopiag nailouv onuavtikd poAo
OTNV UAOTIOLNON TWV QUTOVOUWV OXNUATWY. AUTH n autopatomnolnpévn Stadikacia
XPNOLUOTOLEL oav €l0060 NG Bivteo (CUYKEKPLUEVA LOVASIKEC CUVEXOUEVEC ELKOVEC
TIou mapaxdnkav amo to Bivteo) yia va avayvwpllel Kat va TaglVoUEL TNV KATAoTAoN
TWV PWTEVWV onuatodotwv(davaplwyv) Katd PNRKog tng SLadpoun o€ mMPAYUATIKO
Xpovo. e oautn Vv SutAwpatikrn epyacia, mpooapuolouvpe £va amodedelypévo
HOVTEAO BaBldg pabnong ylo va avoyvwplooUUE TPELG KATNYOPLEG (KOTAOTAOELC)
davaplwv: TPACLVO, KOKKIVO Kol Kitpwvo. To povtédo eivat to YOLOvV3 kot
nepthapBavel to diktuo Darknet-53. Tuvdualel Tnv avayvwplon Kot tnv Taflvopnon
TWV aVTIKELPEVWY. OL p€Bodot Babiag pabnong edpapuolovtal oto Google Colab (pia
mAatdOpUa TTou avarmtuxdnke amo tnv Google). To veupwvikd diktuo Convolutional
Neural Network (CNN) sknatdevetal xpnotponolwvtag dnuoota dtabéoipua cuvola
6ebopévwy (public datasets) mou tpomomnolol e yia va BeAtiwooupe ta Stabgoipa

6ebopéva ta Asyopeva training data.

MpwTtov, npoupyou e cUVOAA SESOUEVWV EKTTALEELONC KAL ETUKUPWONC, YVWOTA WG
training and validation data. AsUtepov, SnuoupyoUpe xelpokivnta £va Booiko
TAaiolo 0ploBETNONG TWV AVTIKELLEVWY KABe dpwTtoypadiag, yvwotd wg ground truth
bounding box, yla va mpocblopicoupe tnv KAAon (katnyopia) KoL TO QVTLKELLEVO TNG
€LKOVAG KOl 0T ouVvEXeLla aveBAlou e TIG ELKOVEG oTov Kwoika (og mepBaliov Colab)
yla va yivel n dtadikacia avayvwplong. O adyoplBuog npo-enefepyaleTal TIG ELKOVEG,
Snuoupywvrag eldika mAaiola oploBétnong (bounding boxes) mou meplExouv TO
QVTLKE(UEVO KaL TIPOCAPHOLEL T BAPN OPLOUEVWV ETUITES WV TOU POVTEAOU, YVWOTA WG
model layers. MNa va omoktooupe ta mo KOTAAAnAa Bapn, ektehovpe diadopa
Telpapata eknaidevong kat emkupwong (training and validation) xpnotponowvtag
ouvbuaopolg Twv Slabéoiuwy cuvoAwy dedouévwy. Ta mepduata deixvouv OTL N
eloaywyn oAU kabapwv dwtoypadLlwy Mmou TEPLEXOUV UOVO onUAToSOTEG (Ko OxL
GAAa avtikeipeva) ota cuvola Sedopévwy tng ekmaibevong pe dwtoypadieg otig
oroleg ta pavapla anoteAolV LEPOG EVOC YeVIKOU Teplallovtog, fonBd onuavtika

™ Sadikaocia ekmaidevonc.
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XpnotuomnoloUpe ta Bapn HE T KAAUTEPEC €MIOOOELC yla VO UAOTIOLOOUVE ULa
EKTETAUEVN UEAETN TEPLTTWONG, N omola xpnolpomnolel wg elcodo Bivteo mou €xouv
payvntookomnBei amo tou¢ Spopoug ¢ Osocoalovikng. To PBIViEo auTO TEPLEXEL
HEYAAO TANBOC oNUATOS0TWY KAl OTL( TPELG KOTAOTAOEL( TOUG. Xwplloupe TIg
npoPAEPelg o 3 katnyopieg: Zwotn mpoBAedn, Aabog mpoBAen kat Qudepuia (un)
TPOPBAePN. ApXIKA, N LEAETN £6€LEE LLOL OXETIKA XapNAR amodoon Tou POVIEAOU TTOU
MPOKANONke amd uPnAd TOC0OTO TNG Katnyopiag twv pun mpoPAéPewv (No
prediction). T TNV QVIPETWNLON autoU Tou INTHUATOC, XPNOLUOTIOL|CAUE
TIEPLOCOTEPEC MmO Mia pwroypadieg kabe cuvduaopol PpwTevoU onUATOSOTN Kol
NG KOTAOTOONC TOU KAl CUVOUAOAUE TIC OXETIKEG TIPOPAEYELS. Q¢ amOTEAECTUA, TO
MOOOOTO TWV HN TPoPAEPewv HeEWwONKE onuAvTKA Kal n andédoon NG

oAokAnpwpeévng Stadikaoiag BeAtiwOnke avaioya.
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Chapter 1 Introduction

Deep learning is used to accelerate the solution of certain types of complex
computational problems, such as in the fields of computer vision and natural language
processing (NLP). In deep learning, the data scientist is not required to manually select
the relevant features; instead, a deep learning model will learn the important
features. In recent years, deep learning and Artificial Intelligence (Al) has been applied
in various engineering fields including autonomous driving, for which it significantly

accelerated research and eventually has moved it closer to reality.

An autonomous vehicle with complete self-driving capability (i.e., without a human
intervention) must accurately -and in real time- comprehend traffic signs and traffic
lights, avoid conflicts with other vehicles, humans, or obstacles, while remaining on
the road to ensure safe and correct operation. To achieve this, various sensors
(cameras, sonar, Lidar etc.) are used to provide the raw data to Al models that control
the vehicle. The detection and identification of objects is also assisted by using
multiple camera sensors since this achieves a better overall level of object detection

accuracy in standalone driving systems ( Choi, et al., 2019).

An object detection algorithm for autonomous vehicles should satisfy both a high
detection object accuracy and real time detection speed. There are many state-of-the-
art methods that use deep learning for image classification such as the Convolutional
Neural Networks (CNN), as well as the ResNet and the DenseNet networks to name a
few. Inthe past few years, many object detectors have been developed based on CNN
(Wang, 2021). These detectors can be split into two categories: two-stage and single-
stage. Two-stage methods (RCNN, Fast R-CNN, Faster R-CNN) are used to improve the
detection speed. A region proposal® is generated in the first stage followed by the

second in which object classification and bounding box regression are performed. In a

1 The way a Region Proposal Network (RPN) works is that an image (of any size) is imported and the
output is several rectangular object proposals, each with a unique objectness score.

[1]
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single-stage method (SSD, YOLO, YOLOv2, YOLOv3 etc.) object classification and
bounding box regression are performed concurrently -without including a region

proposal stage- using a comprehensive feature extractor mechanism.

The scope of this thesis is to study, analyze, use and improve object detection methods
that are appropriate for autonomous driving, focusing on the detection of traffic signal
state (Red, Yellow and Green). Based on our study, the most appropriate method and
model are selected, the model parameters are tuned, the model is trained and is
tested using an original dataset encompassing numerous traffic lights of Thessaloniki.
Based on the test results, appropriate refinements are made to improve model

performance.
More specifically, the thesis

e presents and describes relevant aspects of the background in deep learning

e presents and describes the state-of-the-art in object classification and
detection of traffic lights for autonomous vehicles

e uses Darknet-53 and YOLOv3 to classify and detect traffic lights images.
Appropriate training is performed by executing multiple experiments to select
and use the most appropriate training dataset

e presents and explains the new dataset that is created from the author for
further testing

o tests the model with this dataset to evaluate the detection and accuracy
performance of the model

e proposes a refinement stage to improve model performance.

For the necessary theoretical background in the aforementioned research areas, the

author followed relevant Coursera courses? in:

e Machine learning (Stanford University)
e Computer vision basics (The State University of New York)

e Neural Networks and deep learning (DeepLearning.Al3)

2 https://www.coursera.org/
3 An education technology company called DeepLearning.Al, develops a global community of Artificial
Intelligence talent.

[2]
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e Sequences, Time series and prediction (DeepLearning.Al)
e Introduction to TensorFlow for Artificial Intelligence, Machine learning and
Deep learning (DeepLearning.Al)
The Google Colab tool was also utilized. This is an online environment which allows
anyone to write and execute python code with zero configuration through a web

browser to conduct relevant experiments (Li, 2020).

The structure of the remainder of this thesis is as follows: Chapter 2 provides an
introduction to Neural Networks (NN), Convolutional Neural Networks (CNNs), models
used for image classification and object detection, and discusses the architecture of
networks and state-of-the-art methods applied for object detection in real time.
Chapter 3 introduces the model adopted for traffic light recognition and the model’s
training process. It presents the datasets that are used and the steps of the process.
Furthermore, it contains the results of the training experiments and the selection of
the optimal dataset and network weights. In Chapter 4, the new dataset used for the
test process is analyzed and the testing process and its results are presented. A new
post-processing approach is proposed to improve model performance. The conclusion

of the work and proposals for further research are included in Chapter 5.

[3]
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Chapter 2 Object detection methods and techniques

In this Chapter we provide background information on the foundations of image
classification, the Convolutional Neural Networks (CNN), and on a very effective model
used in object detection, YOLOv3, which we used for the work of this thesis. For
completion, a useful tutorial on the theory of Neural Networks is provided in Appendix
A.l.

2.1 Image classification using Convolutional neural networks (CNNs)

The two main types of layers in a CNN are the convolutional layers and the pooling
layers. For example, VGG-16, which is a CNN for classification, receives a picture as
input and processes it through a set of convolutional layers, then through a pooling
layer and this process continues until the fully connected layers and the SoftMax

output layer (see Fig. 2.1).

/j/ 112 x[112x 128
/'{'th' 06 x 206

@ /d,//“fhx-'whul_ '-':‘_X“’
ﬁ“hﬁl%“ 1x1x4096 1x1x1000
/fl
L L ¥
ﬂ convolution+ Rel.lT
max poaling
fully connected+Hel.U
// | softmax

Figure 2.1 VGG-16 Convolutional Neural Network (Smeda, 31/10/2019)

2.1.1 Convolution filters and maxpooling operations

Consider an RGB image that is provided as input to the neural network. The image is

an M X N X 3 array of pixels, where 3 corresponds to the three colors of the RGB

[4]
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image (R=Red, G=Green, B=Blue). The width of the input picture is in the horizontal
dimension, the height is its vertical dimension and the depth is the number of

channels, that is three as stated above.

Zero elements are added around the image, an operation called padding. This
operation results in a a single pixel border added to the image with a pixel value of
zero. Also, to assist the kernel with processing the image, padding allows for more
space for the kernel to cover the whole image and leads to a more accurate analysis

of images.

Convolution is the operation that modifies the above input when it is passed through
a filter; in this case the filter is the convolution kernel. In CNN, multiple kernels are
used to scan the input image. Each filter/kernel, slides from left to right across the
image and continues this operation in each pixel row from top to bottom. The
resulting output image is called feature map or activation map. 2D convolutions are
usually used for black and white images, while 3D convolutions are used for colored

images.

Input Output
0 0
) 0N e EeN [LON % 0" 0/ Lol ol 0
ol o |10 |61 | () | ) O el = 20 SRR AN O
y EAGaEaIAE o 0 0 O 20332
) SIS S I el O i L A a7 ROl B8 AN N
W | T e 2013 3 =9

Figure 2.2 Kernel moves over the input to generate the output (Coursera(2020c))

There are many sizes of kernels, which can used; for example of small (3 X 3) or larger
kernel sizes (5 X 5). The most popular choice used by deep learning practitioners is

(3 x3).

[5]



University of the Aegean Department of Financial and Management Engineering

The mathematical formula for the convolution operation in 2D is given by following
equation. In this equation, the image is represented by matrix |, the kernel is Kand i, j
are the pixel indices on which the convolution is applied, also m and n are the width

and the height of the kernel (Goodfellow, et al., 2016)

(UKD = Y D 1G+mj +mK(mn) (2.1)

An explanatory example regarding the implementation and functionality of filters is

given in Fig. 2.3.
Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
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offoffoJo o o o o[-t o) il i -2 1
OUN2 0241104 [ 5 125 ke 01 ||o 1 =1 -7 5 -4
OUN2 | § 00 ] (04 128 i9 1 |f-1)1 BN 51 0 -1 3 =2
G E18 (07 25 6 12N §O) WO, 20 1) WLz, £,29 (o BT )
=l 5 @ 51 2 6 [ B2 Bl Sl
il E o i 0 1f-1 )1 -1 -1 -1 -1 2 -2
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Figure 2.3 Representing a RGB image and applying convolutional W Filter (Kernel)

(Stanford Course)

The first, second and third channels represent the red, green and blue colors
respectively. In this case two kernels (filters) are applied, the first filter is the W, and

second filter is the W, . The first green matrix contains the results of applying filter W,

[6]
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and the three channels. The second green matrix contains the output results from the

second filter W, Filter W,, contains 3 different matrices, one for each channel.

Let’s start with the first channel (7 x 7) input image with zero padding and we use the
first (3 x 3) convolution filter to get an output image. The first step is to multiply the
highlighted box in the input image with the first kernel. Each element is multiplied
with an element in the corresponding location. Then, all the results are summed up,
providing one value of the output. This is performed for each channel. The bias is 1

and is applied to the sum of the results of the three operations.
The first operation that involves the first channel and the corresponding kernel is:

0x0)+ (0x(-1))+ (OxD+ (0x0)+ 2x 1)+ (2%0)

(2.2)
+ (OxD+ 2xD)+ (Ox1D)=2-2=0
The same process is applied to the second channel:
OxD+ Ox 1))+ (O0xD+ (0x(-1))+ (0x(-1))
+ 2x1D+ (0x0)+ (1x(-1)+ (0x(-1)) (2.3)
=2-1=1
For the third channel the first operation with its kernel is as follows:
(Ox(-1)+ (Ox0)+ (0x(-1)+ (0x 1)+ (1x0)
+ 2xCEED)+ O0xD+ @xD+ (1x(-1D) (2.4)

=-2+2-1= -1
Adding the results of the three operations and the bias ( 1), the output result is 0 +
1—1+4+1=0+41=1forthe first output filter. This is shown as element (1,1) of the
first green matrix in Fig. 2.7. This operation is repeated by moving the kernel to the
right to get element (1,2) of the output. The step size of the kernel sliding across the
image is called a stride. Here, the stride is 2. A stride size greater than 1 will always
downsize the image. So, in order to find the other results for the first output, the
highlighted box moves by a stride of 2 pixels horizontally, vertically, and horizontally

again, and so on (for each color). In this case the output is a 3x3 matrix.

The same procedure will be followed by the second filter (W;) as shown in Fig. 2.4.

The second green matrix contains the results from multiplying the matrices from filter
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W, and the three channels. The first green matrix contains the outputs results of

applying filter W,. Here, the bias is 0.

Input Volume (+pad 1) (7x7x3) Filter W0 (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
o R oa | wO[:,:,0] wlf:;:,0] ol:;:,0]
oo jofo o 0 O -1 -1 0 1)-1 )1 -1 -4 0
offo o1 1 0 0O 14 [ =1 11 )1 0 2 -2
o2 |11 0 0 1 |f-1)-1 -1 1 -1
BN 28 2 0 0 5 S | o ] B b |
01 0 0 0 L [-1]s 2
0 0 0 0 0 -1]10 jfo 5 0 3
0 0 0 i} -1 0 2 2 3
x[ T i 2]

ofofoo 2

o220 oj°

0 210 e

SlepEEE e Biag b0 (1x1x1 Biagbl (1x1x1)

ON (08 (0 P 2 12 0[:,: o1 bl[:,:,0]

Gl 2 [N 20 2=l o ! Iz]

0 0 0 0 0

0o jjofo o 0

00 j24+2 0 1

0 (ﬁ 2 23 18

0N BTN 28 SiaN fOTN [0 E0

O SEN| ST D8 528 (9N 1O

0N (08 (0N 200 VIS (2 1)

O [0 (0N MON KON FON O

Figure 2.4 Representing a RGB image and applying convolutional W; Filter (Kernel)

(Stanford Course).

As we can see in Figure 2.5, VGG -16 has 16 layers among quits multiple convolutional

layers in particular are:

Convolution using 64 filters

Convolution using 64 filters + Max pooling
Convolution using 128 filters

Convolution using 128 filters + Max pooling
Convolution using 256 filters

Convolution using 256 filters

Convolution using 256 filters + Max pooling

Convolution using 512 filters

W N o U kB W N

Convolution using 512 filters

10. Convolution using 512 filters+Max pooling
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11. Convolution using 512 filters

12. Convolution using 512 filters

13. Convolution using 512 filters+Max pooling
14. Fully connected with 4096 nodes

15. Fully connected with 4096 nodes

16. Output layer with Softmax activation with 1000 nodes.

each convolutional layer including a large number of kernels; e.g. 64 filters (3 X 3) are

applied in the first convolutional layer, 128 filters in the second one etc.

Convolutional networks may include pooling layers to streamline the underlying
computation. Pooling layers reduce the dimensions of the data by combining the
outputs of several neurons of one layer into a single neuron in the next layer. One of
the possible aggregations we can make is to take the maximum value of the pixels in
the group (this is known as Max Pooling). Another common aggregation is taking the
average of the pixels in the group (Average Pooling). Max pooling is used to reduce
the image size. In the case of Figure 2.9 if a 2 X 2 max filter is used and a stride of two,

the output will be a 2 X 2 array.

o | o |
48
128 | 128
7] 64 128 128 144 144
48 144 | 144
142 6 0 142
0 (2] 64 0
(]
0 64

Figure 2.5 Max pooling (Coursera,2020c)
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For every consecutive 2 X 2 window, only the maximum number is considered, as it

can be seen in the middle part of the above Figure 2.9. Here, a filter of size 2x2 and a

stride of 2 is applied. These are the hyperparameters for the pooling layer. In the first

2 X 2 window of the image with values (0, 64, 48, 192), the maximum is 192. So, the

first element of the output takes the value 192. The same process continues for the

next three outputs.

Consider as an example the VGG -16 network that consists of 16 convolutional layers,

5 pooling layers and 3 fully connected layers. The input is a 224 X 224 X 3 array of

an RGB image. The pre-processing layer takes this RGB image comprised of pixel values

and subtracts the mean image value computed over the entire image.

The first two layers are convolutional layers with 64 filters each; each filter has
a 3X 3 dimension (see Figure 2.5). The 3x3 filters have a stride of 1. In these
layers, 64 filters are used that result in dimensions 224 X 224 X 64.

Next is the pooling layer with maxpool of 2X 2 size and stride 2, which reduces
the image size from 224 X 224 X 64to 112 X 112 X 64.

This is followed by two more convolutional layers, each with 128 filters, which
results in the new dimension of 112 X 112 x 128.

Then maxpooling is used followed by

another three convolutional layers are added with 256 each filters, which
changes the size to 56 X 56 X 256.

Then a max-pool layer reduces the size further, followed by

Three convolutional layers with 512 filters resulting in 28 X 28 X 512.

Finally, after max pooling and three last convolutional layers include 512 filters
and result to a size of 14 X 14 X 152

This is succeeded by a max-pool layer with 7 X 7 X 512 volume

The 7x7x512 output is flattened into a Fully Connected (FC) layer, which is
followed by a SoftMax operation. “The fully connected layers perform
classification of the significant features contained in each bounding box of the

image (for the bounding boxes see the sub-section on object recognition
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below). Finally, for the final detection the Softmax output layer is used which
is a vector with a single score per class. The highest score usually defines the

class of the contents of each bounding box”. (Tepteris , 2020)

The underlying idea behind VGG-16 is simplicity. The focus is on having convolutional
layers with 3 X 3 kernels (and always using the same padding). The max pool layer is

used after a group of convolution layer with a filter size of 2 and a stride of 2.

Generally, convolutional layers are strong feature extractors in which
the convolutional filters are capable of finding or picking up characteristics of images.
The VGG-16 architecture is in the top 5 in terms of accuracy. It is sufficient to building

powerful models with correct training and high validation accuracy.

2.1.2 Coding a Convolutional Neural Network with Pooling in TensorFlow

Let’s now see how we implement CNN in Tensorflow.
First, we need to import all the libraries,

» import keras_preprocessing
The Keras dataset preprocessing utilities, located in tf.keras.preprocessing, help to go
from raw data to a tf.data.Dataset object that can be used to train a model (Aakash,

et al., 2021). The tf.data.Dataset represents a sequence of elements, in which each

element is composed of one or more elements (Brain, 2021).

Images present in the dataset are in a variety of shape and sizes. For a neural network
to be trained on these images, they must be in a certain shape. For a greyscale image,
color depth of 1 byte (pixel) is used . For the images in color, there is a color depth of

3 bytes as they are in RGB.

Subsequently we use tf.keras.models.Sequential. The term “sequential” means that

model creation involves defining a Sequential class and adding layers to the model one

by one in a linear manner, from input to output. The example below (Fig. 2.10) defines

a Sequential model that accepts image inputs with size 150 x 150.

Next, tf.keras.layers.Conv2D is used, which takes as input the image of size 150 X

150 X 3 (RGB). The number of filters depends on the type and complexity of the image

[11]
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data. In general, the more features someone wants to capture in an image the higher
the number of filters required in CNN. For 2D convolution we utilize the VGG-16
architecture, which uses multiple 3 X 3 filters. Since the first column and row as well
as the last column and row are populated by 0, the image size becomes 148 X 148 X
3, when padding is removed. The image is processed through the filters using the
method mentioned above. The related (weight) parameters are 1,792 =3 X 3 X 3 X

64 + 64.

Then, max-pooling is applied on the output of the first tf.keras.layers.Conv2D and the
result of the Max-Pooling layer is 74 X 74 X 64. Having passed through all

convolutional and max-pooling layers, the output of the last tf.keras.layers.Conv2D

will be flattened, and then the flattened neurons will be connected with each and

every neuron of the next layer of 512 neurons.

Layer (type) Output Shape Param #
com2d (Com20)  (Nome, 148, 148, 68) 1792
max_pooling2d (MaxPooling2D) (None, 74, 74, 64) a
conv2d_1 (Conv2D) (Nene, 72, 72, 64) 36028
max_pooling2d_1 (MaxPooling2 (Nene, 36, 36, 64) a
conv2d_2 (Conv2D) (None, 34, 34, 128) 73856
max_pooling2d_2 (MaxPooling2 (None, 17, 17, 128) a
conv2d_2 (Conv2D) (None, 15, 15, 128) 147584

max_pooling2d_3 (MaxPooling2 (None, 7, 7, 128) a

Figure 2.6 Results of code for Convolutions and max-pooling (Coursera(2020c))

These latter operations are shown in Fig. 2.6. Firstly, 6272 is the output shape
resulting from the last max_pooling (see Fig 2.10), that is, 7 X 7 X 128 = 6272 .
Dropout is a technique to prevent overfitting. Specifically, dropout refers to ignoring
units (neurons) during the training phase which are chosen at random. The selected
units are not considered during a forward or backward propagation. Dense inserts a
neural network with 512 hidden units (neurons) to use in feedforward and
backpropagation. The 3,211,776 parameters result from the Flatten Dimension
multiplied by the number of Neurons and adding the bias; that is, (6272) *
Dense Dimension (512) + One bias per hidden neuron (512) = 3,211,776. The
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output has three classes, and the number of parameters is Input Dimension (512) *

Output Dimension (3) + One bias per output neuron (3) = 1539.

flatten (Flatten) (None, 6272 (%]
dropout (Dropout) (None, 6272) (%]
dense (Dense) (None, 512) 3211776
dense_1 (Dense) (None, 3) 1539

Figure 2.7 Results of code for input (Coursera(2020c))

During training, a multi-class loss function will be used since this is a multi-class
classification problem. Furthermore, a a SoftMax activation function will be used,

which has non-binary outputs (3 classes ).

For training the NN, the RMSprop optimization algorithm is used that is similar to the
gradient descent algorithm. The RMSprop automates the learning rate tuning by using
a moving average of the squared gradient. The latter utilizes the magnitude of recent

gradient descents in order to normalize the gradient (See Appendix B.2).

2.1.3 Methods to avoid Overfitting

The models discussed above are overly complex with too many parameters. If the
training dataset is not rich enough, the model may be overfitted. A model that is
overfitted is inaccurate. Overfitting of a model may be easily assessed by monitoring
its performance on both the training dataset and on a holdout validation dataset.
Specifically, in our case with a very large number of parameters, the model produces
good results in training data but, if overfitted, it performs badly on the validation data
set. The goal of a deep learning model is to generalize well from the training accuracy
to validation accuracy. This is very important for the model to produce accurate

predictions.

2.1.4 Simplifying the model

The first method dealing with overfitting is to simplify the model. We may reduce the
complexity of a model by simply removing layers or reducing the number of filters. This
technique may reduce overfitting and is similar to the Dropout technique.

Unfortunately, there is no general rule on how much to remove or how limited our
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neural network should be, and, thus, we should resort to tests until finding the correct

number of filters and layers.

2.1.5 Image augmentation

Image augmentation is a strategy focused on generation of new images from already-
available ones. And more specifically, it's a technique that helps us reproduce an
image in another form or dimension. Image Augmentation is a very simple, but very

powerful tool to help avoid overfitting.

To do so we may use an image generator, which gives the flexibility of generating

more images by executing any of the following techniques (see Appendix B.3):
v' Scale

The final image size can be larger or smaller than the original image. Some pixels from
the original image may be trimmed like the image below. The image can be scaled
outward or inward. While scaling outward, the final image size will be larger than the
original. Most of the time a part of the image is cut, with size equal to the original

image. Inward scaling reduces the image size.

Figure 2.8 Rescaled image( (Gandhi, 2021)

v' Rotation

Rotates an image randomly in the range of 0-180 degrees.
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Figure 2.9 Rotated Image (Elisha, 2020)

v' Width shift range, Height shift range

Shifting, moves the image around inside its frame. Many pictures have the subject
centered. Training based on this kind of images might result in overfitting because they
have a lot of features. The related parameters specify, as a proportion of the image
size, how much the subject should randomly be moved around. For example, an image

may be offset by 20 percent vertically or horizontally.

Figure 2.10 Shifted image ( (Sarin, 2019)

v Shear range

Consider the following image of Fig. 2.15.

Figure 2.11 Human Image (Coursera(2020c))
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In this example, in the training set (left image of 2.12), there are no images of a person
lying down. In the left image of Fig. 2.12 the human is standing up. In the right image
(not part of the training data set) the person is lying down. To generate a similar image
using the existing training set, one may shear the former image along the x-axis, its

pose may end up very similar to the pose in the image on the right (see Fig. 2.13).

Figure 2.12 Human Image applied shear range (Coursera(2020c))

The shear parameter will shear the image by the specified amount. In the above

example the shearis 0%.

v’ Zoom range

Zoom can also be very effective. For example, consider the following image on the
right (not part of the training set). It is a woman facing to the right. If the training
image (left image) is zoomed, it could end up with a very similar image to the one on

the right.
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Figure 2.13 Girl image with zoom (Coursera(2020c))

In this case, the zoom range will be a random value up to 20 percent of the size of the

image. Depending on the size of the image we calculate the zoom values.

v Horizontal flip

Another useful tool is horizontal flipping. An image flip means reversing the rows or
columns of pixels in the case of a vertical or horizontal flip respectively. To turn on
random horizontal flipping, just write horizontal flip equals true in code and the images
will be flipped at random. The following image shows a cat. In the left image, the right
leg of the cat is lower than the other leg while the right image shows the opposite and

thus horizontal flip is shown.

Figure 2.14 Cat Image with Horizontal flip ( (Balla, 2020))

[17]



University of the Aegean Department of Financial and Management Engineering

v" Fill mode

This fills in any pixels that might have been lost by previous operations. If the fill mode
equals ‘nearest’ in the code, the pixel is filled using the value of its nearest neighbors
to try and keep uniformity. Specifically, the closest pixel value is chosen and repeated

for all empty values (see Appendix B.3).
For the implementation in TensorFlow, as always we need to import all libraries first.

» from tensorflow.keras.preprocessing.image import ImageDataGenerator

Original Balch of Image
»| Augmentation
Image Dataset Images Object

Randomly
Transformed |-a——
Batch of Images

Train CNN on -
Batch -

Figure 2.15 Data augmentation consists of on-the-fly image batch manipulations.

This is the most common form of data augmentation with Keras (Rosebrock, 2019)

In order to make the most of our few training examples, we will "augment" them via
a number of random transformations, so that our model would never see twice the
exact same picture. This helps prevent overfitting and helps the model generalize

better.

In Keras this can be done via the keras.preprocessing.image.ImageDataGenerator

class. This class allows us to:

e apply random transformations and normalization operations to our image data

during training
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e instantiate generators of augmented image batches (and their labels)

via .flow(data, labels) or.flow_from_directory(directory). These generators
can then be used with the Keras model methods that accept data generators

as inputs, fit_generator, evaluate _generator and predict_generator.

2.2 Real Time Object Detection through the YOLOv3 algorithm
In the previous section, the state-of-the-art methods for image recognition were

presented. The current section deals with object detection, a subset of computer
vision that detects and classifies the position of an object inside the image. Object
detection algorithms have been extensively developed in recent years and the most
widely used include Single Shot Detection (SSD), You Only Look Once (YOLO), Regional
CNN (R-CNN) and the Faster R-CNN algorithms (Mantripragada, 2020). These
algorithms classify the objects inside an image and specify the coordinates of
bounding boxes around these objects, thus providing the exact location of the objects

in respect to the bounds of the image.

Object detection methods: The state-of-the-art

Object detection and image classification are core computer vision (CV) problems with
a distinct difference: Image classification aims to classify the image according to a set
of pre-defined classes. Object detection, on the other hand, is more complicated: the
aim is to classify the image into a class and also to detect the position of the object

inside the image, using a bounding box (Ganesh, 2019).

In recent years, the use of faster hardware made deep learning implementations
possible and gave rise to new methods (Figure 2.20) that solve the problem of object

detection (Zou, et al., 2019).
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Object Detection Milestones + Multi-resolution Detection

/ + Hard-negative Mining

SSD (W. Liu Retina-Net

et al-16) (T. Y. Lin et al-17)

/  +Bounding Box Regression YOLO (J. Redmon

DPM ! etal-16,17) /
HOG Det. (P. Felzenszwalb et al-08, 10) / One-stage
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Figure 2.16 Timeline of evolution of object detection algorithms (Zou, et al., 2019)

2.2.1 Single Shot Detection

The Single Shot Detection (SSD) model (Wei Liu, 2016) was developed by Google and
is based on a feed-forward Convolutional Neural Network (CNN) that extracts the
features of the image into a “feature map”. The feature extraction is based on a small
convolution kernel of size 3 X 3 that is applied to a series of convolutional layers. SSD
predicts bounding boxes after multiple convolutional layers, with each layer focusing
on different object size (small, medium, large) (see Fig. 2.17) (Liu, et al., 2015). Thus,
in each layer, semantic meaning is extracted from the image by lowering the
resolution of it. At the end of the convolutional steps, a classification probability is
produced for each detected object and the coordinates of the bounding boxes around
these objects are found. Finally, the SSD method applies a non-max suppression step
(this technique keeps the one bounding box that fits the object perfectly) to produce

the final detection results (Hosang, et al., 2017).

SSD simultaneously predicts the object bounding box and the object class as it

processes the image. The basic steps are the following:

e The input image passes through a series of convolutional layers. The results
are several sets of extracted feature maps at different sizes (Figure 2.17). SSD

uses the Visual Geometry Group-16 (VGG-16) method to extract feature maps.
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A 3 X 3 kernelsize convolutional layer is applied to each of these feature maps,
to evaluate a small set of default bounding boxes. There are 4 types bounding
boxes, each bounding box will have (Number_of Classes+4) outputs. Thus,
Conv4_3 output has the size of 38 x 38 x (Number_of _Classes + 4), where
38x38 represents the size of the grid over the image, and 4 stands for the fact
that for each grid cell there are 4 bounding boxes. If for example, there were 3
object classes, the output would be of size 38 x 38 x (3 + 4). In terms of
number of bounding boxes, there are 38 x 38 x 4 = 5,776 bounding boxes

SSD predicts both the bounding boxes and the class probability simultaneously
During training, the ground truth bounding box (a human drawn box that
specifies the position of the object in the image and these predicted bounding
boxes are matched, based on the Intersection over Union (loU) method (see
Section 2.3.4 “Intersection over Union”). The best predicted bounding box is

the box that has an loU -with the truth bounding box- larger than 0.5.

Extra Feature Layers
VGG-16 :
through Conv5_3 layer

Classifier : Conv: 3Gxj4x{Classes+4))

]

1
| Detections:8732 per Class |

Classifier : Conv: Ix3x{Bx{Classes+4))

1

| Non-Maximum Suppression |

Coet 3 Gt Gt : Cor: 3n3x(4x{Classes+4))

]

5 e e 57 5% = =
_________ Conv: 3x3x1024 Conv: 1x1x1024 Conv: 1x1x256  Conv: 1x1x128  Conv. x'x128  Corw: 1x1x128
Conv: 3x3x512-52 Conv: 2325662 Conv: D@56 Cow: I256-51

Figure 2.17 SSD architecture (Jiatu, 2018)

In addition to the Conv4_3 layer, which contains 5,776 bounding boxes and was

discussed above, he number of the bounding boxes for the other convolution layers,

after the Conv4_3 one, are listed below (Tsang, 2018):

Conv7is19x 19 x 6 = 2.166 bounding boxes (6 boxes for Conv7)
Conv8_2is 10 x 10 x 6 = 600 bounding boxes (6 boxes for Conv8_2)
Conv9_2is5x5x 6 = 150 bounding boxes (6 boxes for Conv9_2)

[21]
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e (Convl0_2is3x3x4= 36bounding boxes (4 boxes for Conv10_2)
e (Convll 2is1x1x4 = 4bounding boxes (4 boxes for Conv11_2)
The total bounding boxes are 5.776 + 2.166 + 600 + 150 + 36 + 4 = 8.732

2.2.2 R-CNN and Faster R-CNN

R-CNN (Figure 2.18) is an object recognition model (Girshick, 2014), which initially
calculates the possible position of an object inside an image and then classifies the
objects in the image. To find the position of an object inside an image, a selective
search algorithm is used. The selective search algorithm, outputs approximately 2000
region proposals which are then fed to the CNN model to extract image features. The
feature extraction method produces a 4.096-dimentional vector of image features and
a Support Vector Machine (SVM) algorithm decides for the presence of an image class

inside each region.

R-CNN: Regwns with CNN features
warpeJd region ﬂ‘ aeropla..ne" no. |

> person" yes. |

4‘ tvmomtor" no. |

1. Input 2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions

Figure 2.18 R-CNN model (Girshick, 2014)

The R-CNN model which is responsible for object recognition is inherently very slow.
The 2.000 region proposals have a significant impact on the algorithm resolution time
because the feature extractor must perform the same task for each one of these
regions. Another problem is that, during the selective search, the network does not

learn anything related with the patterns inside the image (Ren, 2017).

For these reasons, an improved model was developed (Ren, 2017) to address the
inefficiencies of the R-CNN model. This improved model is called Faster R-CNN and

does not use the Selective Search method for the region proposals; the model itself is
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trained to predict region proposals using a CNN (Figure 2.19). These region proposals
are then fed to a separate CNNs to decide if there is an object of interest inside this
region. The output of the Faster R-CNN is both the class that the object belongs to and

also its position inside the image.

classifier

Rol pooling

proposals

Region Proposal Network

feature maps

cony layers /

) . 77

——

Figure 2.19 Faster R-CNN (Ren, 2017)

2.2.3 You Only Look Once (YOLO)

Overview

Most object recognition algorithms (such as the SSD approach discussed above)
approach object detection as a classification problem. The YOLO architecture
(Redmon, 2016) approaches the recognition part of the problem as a regression
problem. A single Neural Network predicts the object’s class and finds its location
inside the image with just one “look”. The YOLO'’s detection speed is about 10 times

faster than other state of the art methods (Boesch , 2021).
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The YOLO algorithm follows a simple approach: at first the image is resized into
448x448pixels. Then, the YOLO model divides the image intoan S x S grid and assumes
an object is centered in each grid cell. For each grid cell a bounding box and the
probability of each class is predicted. The output is the class probabilities and the
(tx, ty, tn, ty) coordinates of the object, which are provided if the class confidence is

over a specific pre-set threshold.

The YOLOv3 model (Figure 2.20) contains 24 convolutional layers followed by two fully
connected layers. These convolutional layers of the model are pre-trained on the
ImageNet dataset; this makes the model easier to train in a transfer learning matter
(Mwiti, 2021). The model uses the weights taken from the darknet-53 model
(Redmon, 2016).

NG E=T

3 192 236 37 C 0la Q4

iy ; j ﬁ ' X UX |

©
Conv. Layer Conv. Loyer Conv. Layers Conv. Loyers Conv. Layers Conv. Layers Conn. Loyer Conn loyer
TxTnbds2 Ix3Ix192 Tx1x128 1.1-256}_4 Ix1x512 2 331024
Maxpool Loyer Maxpool Loyer IxIx256 33512 Ix3x1024 3:3x1024
2x242 2x242 Ix1x256 Ix1x512 3x3x1024
IxIx512 Ix3x1024 Ix3Ix102452
Maxpool Loyer  Maxpool Loyer
2x2-52 2x242

Figure 2.20 YOLOv3 architecture. (Vinh, 2020) (Jiatu, 2018)

Figure 2.24 shows the YOLOv3 network. YOLOv3 accepts 448pxx448px or
608pxx608px sized images, since this allows the processing of the images in batches
which in turn speeds up the training of the network (Vignesh, 2020). For this reason,
input images are resized to one of these fixed square dimensions. To extract the
features such as color, shape and other aspects of the objects, multiple convolutions

are applied to the image as it propagates through the network. The output layer is a
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3D feature map and each depth channel represents a feature of the image or object

(Vignesh, 2020).

The network characteristics are outlined below:

The network has 24 convolutional layers for feature extraction and 2 fully
connected layers for the output class scores and location coordinates (Fig.
2.24)

The first 20 convolutional layers are followed by an average pooling layer and
a fully connected layer is pre-trained on ImageNet

The layers comprise 3x3 convolutional layers and 1x1 reduction layers.

There are 64 filters that have a size of 7x7

The output is a 7x7x30 vector which predicts the class probability and

bounding boxes (Redmon, 2016).

Input and output of the YOLOv3 model

The input fed to the YOLOv3 model is a digital image (typically RGB) that includes an

unknown number of objects.

The output of the modelisan Sx Sx (B x (5 + () ) tensor, where

S X S is the size of the grid imposed by the model over the input image

B is the number of bounding boxes for each cell. These boxes are positioned
at the center of each object and have a different size and aspect ratio. Each
bounding box is associated with five parameters: The box center coordinates
(x,y), the box height h, the box width w, and the probability P that the box
contains an object

C is the number of object classes. For each class, the output contains a
conditional class probability value P(Class;|Object) which depend on the cell

containing an object.

Thus, the output is a list of bounding boxes along with their coordinates, and the

detected object class for each box. The 6 numbers (P, by, by, by, by, C) associated

with each bounding box are the following:
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® by, by arethe box’s center coordinates

e b, is the width of bounding box and b, is the height of the bounding box

e P, is the objectness score which represents the probability that an object falls

within a bounding box

e (isthe class that the object belongs to.
Initially, the image is divided into § X S grid cells with each grid cell containing 3
bounding boxes. These boxes are called “anchor boxes” and are used to predict the
object present at the center of each grid cell (these boxes have different size and
aspect ratio). Each cell can only predict one object for each box size (small, medium,
large). This is done because many images can contain many objects of different sizes.
In Fig. 2.21 there are three techniques of object detection. The first shows the grid
cells on the input image. The second technique of the same Figure consists of the
number of bounding boxes and the confidence score which explain the process of
anchor boxes. The class probability map is derived simultaneously with bounding
boxes + confidence, this process defines each object in a different color to identify the

object and the class that it belongs.

The final step contains the outputs which include the object’s position and the object’s
class. This technique is named non max suppression and is used to remove all
bounding boxes, except the bounding box that fits the object perfectly (Hosang, et al.,
2017).
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S X S grid on input Final Detections

-l

Class probability map

Figure 2.21 Combination of the three techniques (Saxena, 2021)

In Figure 2.21 there are lots of box predictions but only the best ones are kept in the
final output. To select the best prediction box for each grid cell a non-max suppression
method is applied to avoid selecting overlapping boxes. First, all boxes with a
confidence score below a certain threshold are removed, then, the box with the
highest probability is used to compute the loU against all other boxes. If the resulting
loU is greater than another threshold (usually 0.6), the compared box is discarded

(Sharma, 2018).

Training is based on the creation of the ground truth bounding boxes are created.
These are hand labeled boxes that help to train the model in order to specify the
position of the object in the image (Mohana, 2019). The ground truth bounding boxes
are created using an annotation tool, described in more detail see Section 3.1. The loU

relates to the comparison between ground truth bounding box and predicted box.

2.2.4 Comparison between SSD, YOLO, R-CNN, and Faster R-CNN

According to Table 2.1 (Hui, 2018), YOLO achieves the best result in the best
computational time (78.6% accuracy in only 91 Frames Per Second). Second is SSD,
followed by Faster R-CNN and R-CNN. These results are expected since YOLO can
detect and classify an object in one step. For this reason, real-time applications

significantly favor the YOLO model (Hui, 2018). In this work we will use YOLO.
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Table 2.1 Object detection algorithms comparison

Method Mean Average Precision  Frames Per Second (FPS)
(mAP)
SSD 74.3% 46
YOLO 78.6% 91
R-CNN 66% 2
Faster R-CNN 73.2% 7

2.3 Current State-Of-The-Art
Initially, the YOLO algorithm was slow (Redmon & Farhadi, 2018). Some necessary

upgrades were made (changing of parameters for the choice of the better network
will be used) and its successor, YOLOv3, became a fast detector of objects in
photographs. YOLOv3 uses a pre-trained model called Darknet network and has higher
accuracy than comparable models. In addition, the network structure utilizes the GPU

more effectively, making it more efficient (Redmon & Farhadi, 2018).

Even though many object detection algorithms exist, public data sets of labelled
pictures are often limited. Particularly for the problem in question, there are no
datasets that contain labels of traffic lights. Two research papers that study traffic light

detection and recognition are highlighted below.

2.3.1 Research Paper 1: Real-Time Traffic Lights Identification using YOLOv3
Algorithm for Autonomous Vehicles ( Kozel & Robert, 2020).

Traffic lights and traffic sign detectors play a major role in autonomous vehicle safety.
Although there are many methods that utilize a combination of a) image processing
and b) training a neural network model, those methods are not fully accurate in
detecting traffic light states. The root cause is the practical nature of the problem: a
traffic light occupies just few image pixels in photographs taken from long distances

and also, sunlight obstructs traffic light detection.

Kozel and Robert (2020)proposed to identify traffic lights and their three states in both
urban and suburban areas with the development of a deep learning model which uses

YOLOv3. The Bosch Small Traffic Lights benchmark was used for training. The Bosch
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Small Traffic Lights dataset includes 5,093 pictures that contain thirteen classes

organized in annotated files (see Fig. 2.22).

Figure 2.22 Testing on Bosch Small Traffic Lights dataset ( Kozel & Robert, 2020)

The Mask Region-Based Convolutional Neural Network (Mask RCNN) method and the
pre-trained weights from the COCO dataset were used. The training process lasted for
3 hours and for testing the trained network, generic traffic light images were
downloaded from the internet (see Fig.2.27). Nevertheless, with the Mask RCNN
model, the results were impossible and slow as prediction accuracy couldn't exceed

90% mainly because the vehicle lights were being detected as traffic lights.

Figure 2.23 Testing of Trained model on random image from Google ( Kozel &
Robert, 2020)

To improve the performance, YOLOv3 pre-trained weights from the Darknet network
were used. Furthermore, the model was trained over 100 epochs. The trained model
was able to detect traffic lights at a satisfactory detection rate even when vehicle lights

were present in the picture ( Kozel & Robert, 2020).
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2.3.2 Paper: YOLOv3 Algorithm with additional convolutional neural network
trained for traffic sign recognition (Novak, et al., 2020).

The most important ability of autonomous vehicles and most Advanced Driving
Assistance Systems (ADAS) is the capacity to perceive all the static and dynamic
objects around the vehicle (Novak, et al., 2020). Convolutional Neural Network (CNN)

helps deliver safe ADAS in modern vehicles.

Based on the work by (Novak, et al., 2020) the YOLOv3 model has been pre-trained
for the detection and classification of only five traffic sign objects. The YOLO algorithm
is used to locate and detect objects in real time and then, an additional CNN is used
to classify more specific subclasses of traffic signs. The CNN was trained in the code of
YOLOv3 with excellent results on the test images. The dataset that was used for
training is the Berkley Deep Drive Dataset, which contains limited examples of traffic
signs for a total of 75 classes. For this reason, the additional CNNs that were used were

trained on a different dataset which contains only traffic signs.

Two CNNs were created. The first treats traffic signs classes, while the second treats
traffic signal classes. The difference between the two CNNs was only in the last Fully
Connected layer. The training dataset contained 121,098 images, 95,020 of those
were used for training, 23,773 for validation and 2,305 for testing. The first CNN -
responsible for traffic sign type recognition- was trained for 20 epochs and the second
CNN -responsible for traffic signal class recognition- was trained for 50 epochs. In
conclusion, the accuracy of the algorithm was very high (close to 95%) for both
categories. However, expanding The Berkley Deep Drive Dataset with new pictures
took significant amount of time and effort even though it improved the predicted

outcome (Novak, et al., 2020).

The results from the above 2 papers show that the YOLOv3 model has greater accuracy
in object detection than other models. In addition, if some modifications are made to
the CNN of the algorithm (for example the change of the epoch number) and if large

datasets are used, then, the accuracy can reach 95%.
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24 Contribution of this thesis
The objective of the thesis is to study and develop state-of-the-art techniques for

traffic signal recognition, specifically traffic lights. This application is critical in driver-
assistant systems and in autonomous vehicles. In order to accomplish these objectives

we will perform the following steps:

1. Selectthe appropriate object recognition mode. As discussed above, there are
several object recognition models, including SSD, R-CNN, Faster R-CNN, etc.).
YOLOv3 is the preferred choice for our work for the reasons already discussed
in Section 2.3.

2. Train the |, YOLOv3 Model, using appropriate, available datasets. Training
involves a sequence of experiments in order to select the most effective
datasets ant training parameters

3. Acquire (develop) a new all inclusive data set of images, involving traffic lights
under various conditions; i.e.

a. Traffic light state: red, yellow, green

b. Distances between the traffic light and the location from which the
photo/video was taken.

c. Time and weather: day, night, rain, fog, sunshine.

4. Apply the trained model to the above original dataset. Improve its fidelity
through new techniques

5. Draw conclusions and develop guidelines for training and implementation

processes for this very important application.
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Chapter 3 Data preparation and training of the object detection
model using the YoloV3 algorithm

Prior to training the dataset to be used should be prepared carefully. The dataset
should be in a special form, e.g. .xml or .txt. The .txt format is used in YOLOv3. Each
image should be annotated with bounding boxes and hand labelled. To do so, an
annotation tool is necessary. As a result, in the .txt file the information about the
bounding box coordinates and the object classes are saved. There are multiple
techniques used for this process in order to eliminate overfitting, normalize the data,

augment (enrich) the dataset etc. This is discussed in Section 3.1.

The Section 3.2 explains in detail the steps that were followed to make the training
process and the pre-trained weights that downloaded from the Darknet-53* network.
This technique is called transfer learning. Additionally, the YOLOv3 model is used and
analyzed in detail in Section 3.3. Furthermore, the results of the custom training
process, for training and validation datasets, were analyzed with Figures of the
average loss and the mean average precision for object detection.

3.1 Data collection, generation and labeling

There are many publicly available open labelled datasets, including ImageNet (Yang,
et al., 2021), Common Objects in Context (COCO) (Tsung-Yi, et al., 2015), Google’s
Open Images (Duerig & Krasin , 2016) etc. Each is a set of digital photographs with
different states (Malevé, 2019) that developers use to train and validate the
performance of their algorithms. The algorithms are said to learn from the examples

contained in the dataset.

In this Thesis, four datasets have been used. The datasets contain (not exclusively)
three classes, each for one state of a traffic light: Red, yellow, green The Four datasets

are:

4 ImageNet Classification (pjreddie.com)
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Table 3. 1 The datasets that are used for training

Large Dataset (Srivastana, 3,299 1,000
2017)
Bosch Small Traffic (Kaggle, 2020) 13,427 582

Lights Dataset

SJTU Small Traffic (Xue, 2020) 5,786 1,217
Light Dataset

Berkley DeepDrive (Yu, 2021) 100,000 2,873
Dataset

The “Large Dataset” (see Fig. 3.1) is downloaded from GitHub®. This dataset contains
3,299 images classified in 3 useful folders. The first contains 971 images with red traffic
lights; the second contains 255 images with yellow traffic lights (see Fig. 3.1) and the
third folder contains 145 images with green traffic lights. The size of each image is
224 x 224 (in pixels). Allimages are derived from the Carla autonomous car simulator
program. “CARLA is an open source simulator for autonomous driving and has been
produced by a team from the Computer Vision Centre at the Autonomous University of
Barcelona, Intel and the Toyota Research Institute using the Unreal computer game
engine. “ (Tepteris , 2020). In these images the traffic lights are very close to the
camera. Furthermore, the image contains only traffic lights and no other objects (such
as road, signs, pedestrians, cars etc.) except general background. In our case we used
only 1,000 images in model training, in order to maintain an appropriate balance with

real photographs (that is, 369 from the folder with red traffic lights are not used).

5 https://github.com/level5-engineers/system-integration/wiki/Traffic-Lights-Detection-and-
Classification
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Figure 3.1 Traffic lights from Carla simulator

The second dataset is “Bosch Small Traffic Lights Dataset” from the Kaggle® platform.
Kaggle is an online platform that allows users to identify free datasets, explore and
build models in a web-based data-science environment. This platform hosts data
scientists, machine learning engineers and holds designs competitions to solve data
science challenges (Lardinois, et al., 2017). The dataset contains 13,427 camera
images. The dimension size of each image is 1280 X 720 pixels. All camera images are
RGB (red, green, blue)and, in addition to traffic lights, include cars, road and multiple
other objects. See examples in Fig. 3.2. Only 582 images are used to train the model;

i.e. the ones that contain traffic lights at an appropriate environment

Figure 3.2 Traffic Lights of Bosch Small Traffic Lights Dataset

5 https://www.kaggle.com/
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The third dataset, “SITU Small Traffic Light Dataset” is downloaded from GitHub. It
contains 5,786 images which are separated into two categories or “resolutions” a) of
1080 x 1920 pixels and b) 720 x 1280 pixels. It also contains 5 categories of traffic
lights (red, yellow, green, off and wait on). Only the 3 categories were used (red,
yellow and green) containing 1217 images, which are very clear. Figure 3.3 shows

some sample images from this dataset.

Figure 3.3 Images from SJTU Small Traffic Light Dataset

The fourth dataset, “Berkley DeepDrive” (BDD100K) is downloaded from the
Kaggle’site. The package consists more than 100,000 HD videos recorded at various
times of the day, seasons and weather. The data were collected from 4 locations (San
Francisco, Berkeley, Bay Area and New York). The dimension of each image is 1280 X
720 pixels. From the classes of traffic lights 2,873 images are used for training the
model (see Fig.3.4). From these images, 2,005 are the original ones and the other (868)
have been created by data augmentation. The data augmentation techniques (see

section 2.2) applied are the following:

a) Horizontal flip

7 https://www.kaggle.com/solesensei/solesensei_bdd100k
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b) Vertical flip

c) Shearrange by +15° horizontal and +15° vertical

Figure 3.4 Images of Berkley DeepDrive Dataset

For training our network, the images in the above datasets were divided to three new
sets. In each sets the images were allocated (randomly) into validation and training

subsets.

= The first set contained the images taken from the Carla simulator (Large
Dataset). There are 1000 images which are split into 700 images for training
and 300 for validation (usually all images of datasets are divides into 70% for
training and 30% for validation).

= The second set contained 1,217 images from the “SJTU Small Traffic Light

Dataset”, 852 for training and 365 for validation. The images in this dataset are
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clear (day or night) photos of actual scenes that contain multiple objects in
addition to traffic lights.

= The third set contained images from the Berkley DeepDrive and Bosch Small

Traffic Lights datasets. In total it contained 3,455 images, from which 2,419

were used for training and 1,036 for validation. The images in this dataset are

not clear (blurred) photos of actual scenes, again containing multiple objects,

in addition to traffic lights. These photos are also taken during the day or night.

All images in the above datasets do not include ground truth bounding boxes.

However, these are necessary to perform the training of our Yolo3 network. Thus, in

order to train our custom model, we inserted the ground truth bounding boxes in the

traffic lights which are represented in all images. Do to so, we used the Labellmg®

graphical image annotation tool which is open source. The annotation tool and the

manual process is described in Appendix C.

3.2 Training and validation through Transfer Learning
The concept of overfitting and its challenges were presented In Section 2.2.3. As

already discussed, overfitting occurs when a NN with many parameters is trained using
a limited dataset; this results in poor overall performance. To address this issue, very
large data sets could be used to train the NN model. However, obtaining such datasets
is a very hard and expensive process. Small datasets that are easier to obtain may be
somehow enhanced with the methods presented in Section 2.3 but, although these

methods help, oftentimes are not sufficient to address the overfitting problem.

This Section describes Transfer Learning which refers to the practice of using the
weight parameters of a NN -that has been pre-trained on a large dataset- to classify
real world images. Such a large dataset is ImageNet (Deng, et al., 2009), which is a
150GB dataset containing more than 1.2 million real-world labelled images organized
in 1000 categories and it is one of the most widely used datasets in modern computer

vision (CV) research.

Transfer learning capitalizes on the features that the model has already learned.

Especially where only a small training dataset is available for a new NN model, the

8 Github repository of darrenl tzutalin: https://github.com/tzutalin/labellmg
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weights of the pre-trained NN model help initialize the weights of the new NN model.
In such cases, only the weights of the last few layers of the new NN model are adjusted

through training. In this way, training addresses the overfitting issue.
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Figure 3.5 Series of convolutional layers model that are locked, and application of
Transfer Learning method in the last fully connected layers (Coursera(2020c))

Figure 3.5 shows the concept of Transfer Learning: The pre-trained convolutional
layers (shown in red in the figure) are locked and cannot be retrained using additional
data obtained from a new dataset. These locked layers have already extracted the

features from an existing image dataset

Transfer Learning process

Create a base Improve the
Obtain the pre- ’”"I"[r' E;th,L ——» Freeze ayers ————» Train the new layers » model via fine
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Figure 3.6 Transfer learning Steps (Leclerc, et al., 2018)

As shown in Figure 3.6, the Transfer Learning steps are:

1. Selecting a pre-trained model
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There are several open-source models that have been trained on the ImageNet
dataset and out of these, one that looks more suitable for the problem in
guestion is selected (Krizhevsky, et al., 2012). The model choice depends on
the image classes to be detected and whether these classes are part of the
model’s output layer. In this Thesis, Darknet-53 is a convolutional network and
itis pre-trained on the ImageNet dataset. Darknet-53 is used as the foundation
for object detection problems and YOLO workflows. This dataset can classify
images into 1000 classes which makes it a very powerful tool. One of the
classes is the traffic signal (but without the R, G, Y states) and Darknet-53 has
been trained in this class.
2. Creating a base model

The architecture of Darknet-53 contains 53 convolutional layers with pre-
trained weights. For creating the base model, the final output layer is removed
and replaced by an output layer that is compatible with the problem in

guestion. Figure 3.7 shows the Detection Flow Diagram.

Training Set

Dataset — Splitting /1
Collection Dataset Labeling dataset \
Testing Set
. Hyperparameters
Evaluation Object Detection Network Training e 15’;‘ melb:
learning

Figure 3.7 Detection Flow Diagram ( Raza & Song, 2020)

Initially, each image of the new dataset is imported and passed through the
already trained convolutional layers of Darknet-53 and its features extracted
are stored. These features are inputs to the last trainable layer. The initial
layers reflect general features, while the later trainable ones focus more on
specific characteristics (see Fig. 3.7).

3. Locking layers so they don’t change during training
This step is needed because the weights in these layers shouldn’t be altered by

training. The main idea is to keep the convolutional base in its original form
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and then use its outputs to feed the classifier. The pre-trained model is used
as a feature extraction mechanism that can be useful if either the computation
power is low, the dataset is small or the pre-trained model solves a problem
that is very similar to the problem in question.

4. Adding new “trainable” layers
This step adds new trainable layers that will turn extracted features into
predictions for the new dataset.

5. Integrating with YOLOv3. Darknet53 is integrated with YoloV3. The objective
of this integration is for YOLOv3 to localize the identified objects in the image
(in this case the traffic signal) by placining the appropriate bounding boxes
around these objects
This process is summarized in Fig. 3.8, where the integration of Darknet-53
with YOLOvV3 is displayed ( Benslimane, et al., 2019). The concept is the
following: The layers of Darknet-53 are used with locked weights. The final
(dense) layer of the network is modified to include in this case three classes
(traffic light R, Y, G) instead of 1000. This part identifies the three states of the
traffic light. Furthermore, YOLOv3 is integrated (at various layers) with
Darknet-53 in order to locate the traffic lights in the photograph by fitting the

appropriate bounding boxes.

It is noted that the integrated system of Figure 3.8 is adopted (downloaded),

but its parameters are modified in order to fit the problem in question.
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Figure 3.8 Adding of new “trainable” layers (Almog, 2020)
6. Training the trainable layers (last one of Darknet-53 and YoloV3) using the new
dataset

In this step, the additional layers of the model are trained.

The training process of the new model is analyzed in the Section 3.3.

33 Darknet-53+YOLOv3 model training
The training process of the model is described in the current Section. The training set

up and the steps of the related algorithm are presented, and the model training results
are analyzed. The final part of the Section includes the conclusions from the training

exercise.

3.3.1 Setting up the model training environment

Section 3.2 described the transfer learning process and how the feature extraction
mechanism of the pre-trained model can effectively help the new model produce
better overall image classification results. Once all data of the dataset used for the
training have been labelled, the actual training process of the trainable part of the
model can begin. An adequate dataset size with correctly labelled objects plays an
important role in the accuracy of the training process which -in the case of the work
done as part of this Thesis- was based on the YOLOv3 Darknet model from AlekseyAB

and was developed in the Google Collaboratory tool.

[41]
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Google Colab is a product developed by Google Research. This online tool, which is
accessible via a web-browser, helps data scientists and Artificial Intelligence
researchers import existing software libraries and develop high level software code
blocks which can then be shared online. Google Colab is especially well suited to
machine learning, data science and analysis, and education. The environment allows
anyone to write and execute python code with zero configuration through a web
browser. Free access to computing resources including GPUs is also provided (Li,

2020).

Google Research also features Colab Pro, which provides faster Graphics Processing
Units (GPUs), longer runtime limits and more memory allocation. Colab Pro also
provides better connectivity options with the online server. The latter is useful in
cases, in which large amounts of data are involved in the training process. Some of

advantages and disadvantages between Collab and Collab Pro are shown in Table 3.2.

Note that the GPU is the core processing unit that implements the matrix
multiplication operations involved in a Neural Network (NN). The higher the number
of GPUs, the faster the NN data processing becomes and thus, state-of-the-art fast

GPU processors make real-time CV algorithms possible ( Abri, et al., 2020).

Table 3.1 Colab and Colab Pro tools (Buomsoo, 2020)

Colab Free tool K80: access a simple A user can have up to 12
GPU card hours of run time
Colab Costs 10€/month as of T4 & P100: access to A user can have up to 24

Pro June 2021 high-end GPUs hours of runtime

For the purpose of the work done as part of this Thesis, the Google Colab Pro was
chosen because of its higher processing power and memory limits. The software code
taken from the GitHub software repository of AlexeyAB® was used to train the NN

model in the Colab Pro environment.

9 https://github.com/AlexeyAB
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The algorithm comprises of the following steps as shown in Fig. 3.9:

Step 1: This first step activates the NVIDIA GPU controllers. CUDA is a parallel
processing platform developed by NVidia that takes full advantage of the available
GPU resources and is used in machine learning, gaming and deep learning
applications. The CUDA platform is the Nvidia’s language/API for programming the
graphics card and is engineered to boost throughput in real-world applications

(Rosebrock, 2020).

Step 2: This step accesses the custom dataset that includes the images to be used in
the training and validation process. The dataset is stored online in the Google Drive

service that is provided as part of the 1° (Google Workspace, 2012).

Step 3: This step utilizes the Darknet open-source neural network framework. Darknet
is a network which can work together with the YOLO model as YOLO uses Darknet’s
pre-trained weights. For this process the network must first be compiled. Darknet
requires that both the GPU and OpenCV*! (see below) options be enabled. The CUDNN
is a high level software library used by deep learning neural networks models and is

built on the CUDA platform.

Step 4: This step creates a copy of the configuration file “yolov3.cfg” and names it
“yolov3_training.cfg”. The various configuration options that will be chosen for the
custom model will be saved in the copy and not the original file. A backup of the

original .cfg file is also kept for reference.

10 Google Drive is a cloud-based storage solution that allows you to save files online and access them
anywhere from any smartphone, tablet, or computer.
Y “OpenCV (Open Source Computer Vision Library) is an open source computer Vision

and machine learning software library. OpenCV was built to provide a common
infrastructure for computer vision applications and to accelerate the use of machine
perception in the commercial products. Being a BSD-licensed product, OpenCV makes

it easy for businesses to utilize and modify the code” (OpenCV team , 2021).
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Step 5: This step adds the necessary configuration options in the “yolov3_training.cfg”
to define the number of classes of the objects to be classified. The parameters and

their values are shown in Table 3.3 and are discussed below.

Table 3.2 Parameter modifications for training

Batches (Batch 1 64 number of samples (e.g. images)
size) which will be processed in one batch
Subdivision 1 16 Subdivision represents how the batch

is again divided into blocks of images

Max batches 500200 6000 This equation (Max_batches =
2000 X n) is used for 3 classes

Classes 80 3 3 classes are used for training (traffic
light green, red and yellow)

Filters 255 24 The equation (Number of filters = (n +
5) X 3 ) is used to calculate the filters
used in the images

Learning rate 0.0001-0.1 0.0001-0.1 A learning rate parameter is a number
between 0.0001 and 0.1 and controls

how fast the values of weights

change.
Steps 400000, 4800, 5400 The learning rate is decreased after
450000 4,800 and it is decreased much more

after 5,400 iterations.
Scale The scale parameter specifies how
much the learning rate will decrease;

thus, it multiplies the learning rate.

Batches

The batch size is changed from 1 (default) to 64 and refers to the number of photos
that will be processed in one batch (the model loads 64 images that will be processed

in each iteration).
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Subdivision

Subdivision represents a further division of the batch into the blocks of images and it
is changed from 1 (default) to 16. Starting with subdivisions = 1 there was an out of
memory error. When we increased this parameter to 2, 4, 8, 16 etc. the training
process started successfully. The GPU processes its images through batch and

subdivision.
Max batches

The “Max Batches” configuration option defines the maximum number of batches,
which training will run for. The number of “max batches” is reduced from 500,200
(default) to 6,000 because the classes are three instead of 80. The equation for “max

batches” is the following:

Max_batches = 2000 X n (3.1)

where,

e nisthe number of classes,
e 2000%?is a standard value from YOLOv3 ( B.Sargunam & N.Kirthika, 2020)

Classes

There are three traffic lights classes (red, yellow and green). For this purpose, the 80
classes of the original file are changed to 3. Also, the number of filters is reduced from

255 (default value in the original file) to 24 that is:

Number of filters = (n +5) X 3 (3.2)

where,

e nisthe number of classes
e 3 represents the number of the bounding boxes used by YOLOv3
e 5Srepresents the 4 bounding box attributes plus one object confidence score.

Learning rate, steps and scale

The learning rate parameter is defined as a number between 0.0001 and 0.1 and

controls how fast the values of weights change. At the beginning of the training

12 https://github.com/AlexeyAB/darknet#thow-to-train-to-detect-your-custom-objects
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process, the learning rate should be high. The learning rate decreases over time
because as the network processes more data and converges towards the minimum of
the loss function, the weights should change less aggressively. The step parameter is
applied, which indicates that the learning rate will remain constant for many iterations
and then will be decreased. This parameter must be 80% and 90% of the maximum
batch value, which means that after 0.8 * maximum batch iteration (in our case 0.8 X
6,000 = 4,800), the learning rate will decrease and after a total of 0.9 * maximum
batch iterations (0.9 X 6,000 = 5,400), it will decrease further. The scale parameter

specifies how much the learning rate will decrease.

Step 6: This step creates the obj.name and .obj.data files inside the darknet/data/obj
directory. These files contain metadata information such as class names and number
of classes required for the training process. The photos of the custom dataset are
uploaded in two folders. The first folder is named “train” and contains the images for
training while the second folder is named “valid” and contains the pictures for

validation.

Step 7: The yolov3_training.cfg and the files which contain the class names of objects

(obj.names) are copied to Google Drive.

Step 8: This step uploads the custom dataset in Google Drive in zip form and then
“unzips” the photos file stored in Google Drive to the darknet/data/obj directory.
There are two folders for unzipping. As mentioned above, the “valid” folder contains
the photos for the validation process, the “train” folder contains the photos used in

the training process.

Step 9: This step creates two files in .txt form, named train and valid, respectively. The
folders contain the location with the last part containing the names of all images (e.g.
/content/gdrive/MyDrive/yolov3/darknet/data/obj/train/out00000.png). The images

will be fetched from the location specified in this file during training.

Step 10: In this step the pre-trained weights of Darknet-53 are downloaded for the
convolutional layers. In Section 3.2, Transfer Learning is discusses as well as how

Darknet-53 interacts with YOLOv3.
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Step 11: In this step, the pre-trained weights are loaded into the YOLOv3 model and
the training process begins. The model takes about 8-10 hours to train for 3 classes.
The time required for the training of a custom model depends on the dataset size and
the number of classes. We used one GPU resource (Nvidia Tesla P100-PCIE-16GB),
from Google Colab Pro with a speed of 32 GB/sec. In case the training process stops
(due to network or power failure or non-availability of GPU resource allocation), it can

start again and continue from the last saved weights.

The steps and the high-level software code are presented in Fig. 3.9 below:

Step 1: Check if NVIDIA GPU is enabled

Invidia-smi

Step 2: Mount your Google Drive on Google Colab.

from google.colab import drive
drive.mount('/content/gdrive')
lIn -s /content/gdrive/

lls /content/gdrive/MyDrive/yolov3

Step 3: Configure and compile Darknet.

Configure

%cd /content/gdrive/MyDrive/yolov3/darknet
#lsed -i 's/OPENCV=0/0OPENCV=1/' Makefile
Ised -i 's/GPU=0/GPU=1/' Makefile

Ised -i 's/CUDNN=0/CUDNN=1/" Makefile

Compile

Imake

Step 4: Make a copy of yolov3.cfg
Icp cfg/yolov3.cfg cfg/yolov3_training.cfg
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Step 5: Change lines in yolov3.cfg file

Ised -i 's/batch=1/batch=64/' cfg/yolov3_training.cfg

Ised -i 's/subdivisions=1/subdivisions=16/" cfg/yolov3_training.cfg

Ised -i 's/max_batches = 500200/max_batches = 6000/ cfg/yolov3_training.cfg
Ised -i '610 s@classes=80@classes=3@' cfg/yolov3_training.cfg

Ised -i '696 s@classes=80@classes=3@"' cfg/yolov3_training.cfg

Ised -i '783 s@classes=80@classes=3@' cfg/yolov3_training.cfg

Ised -i '603 s@filters=255@filters=24@"' cfg/yolov3_training.cfg

Ised -i '689 s@filters=255@filters=24@"' cfg/yolov3_training.cfg

Ised -i '776 s@filters=255@filters=24@"' cfg/yolov3_training.cfg

Ised -i '22 s@steps=400000,450000@steps=4800,5400@' cfg/yolov3_training.cfg

Step 6: Create .names and .data files.

lecho -e 'traffic light green\ntraffic light red\ntraffic light yellow' > data/obj.names

lecho -e 'classes= 3\ntrain = data/train.txt\nvalid
= data/test.txt\nnames = data/obj.names\nbackup = /content/gdrive/MyDrive/yolov3' > d

ata/obj.data

Step 7: Save yolov3_training.cfg and obj.names files in Google Drive.
Icp cfg/yolov3_training.cfg /content/gdrive/MyDrive/yolov3/yolov3_testing.cfg

Icp data/obj.names /content/gdrive/MyDrive/yolov3/classes.txt

Step 8: Unzip the images dataset.
Imkdir data/obj

lunzip /content/gdrive/MyDrive/yolov3/train.zip -d data/obj/train

Imkdir data/obj/test

lunzip /content/gdrive/MyDrive/yolov3/valid.zip -d data/obj/valid

Step 9: Create train.txt file.
import glob
images_list = glob.glob("/content/gdrive/MyDrive/yolov3/darknet/data/obj/train/*.jpg")

with open("data/train.txt", "w") as f:

f.write("\n".join(images_list))
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images_list = glob.glob("/content/gdrive/MyDrive/yolov3/darknet/data/obj/valid/*.jpg")
with open("data/test.txt", "w") as f:

f.write("\n".join(images_list))

Step 10: Download pre-trained weights for the convolutional layers file.

lwget https://pjreddie.com/media/files/darknet53.conv.74

Step 11: Start training.
I./darknet detector train data/obj.data cfg/yolov3_training.cfg darknet53.conv.74 -

dont_show -map | tee output.log

Figure 3.9 Code for developing and training the traffic signal detection model

3.3.2 Basic of model training aspects

There are two important metrics used in training and validation. The training loss is
used to measure the error between predicted and true values related to the bounding
box and ground truth bounding box respectively. In addition ,the training loss is used
to assess the training process. The mean average precision is an accuracy metric that

shows how accurate the model is. It is particularly useful in validation.

In the graphs used to present the results of the experiments below two lines are
shown. The blue line represents the training loss (related to the training dataset) and

the red line represents mAP which is related to the validation dataset.

3.3.3 Training Loss

The loss function in YOLOv3 consists of three parts:

1. Localization loss (error between the predicted bounding box and ground truth
bounding box)

2. Confidence loss

3. Classification loss

These three parts are related to the following errors.
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That is ( Wu & Xu, 2020).

where,

Loss = Erroreporq + ETror;ey, + ETror,; (3.3)

1. Erroreorq: refers to the coordinate prediction error (localization loss).

2. Error;,,: refers to an Intersection Over Union(loU) error (confidence loss)

3. Errorg: refers to the classification error or loss

Localization Loss (coordinate prediction error)

Localization loss assesses the errors between bounding box center coordinates and

ground truth box center coordinates.

where,

s?2 B
bj ~ ~
Erroreoora = Acoord z z 1?]' J [(xi - xi)z + (Yi - Yi)z]

i=0 j=0

+Acoora 2]2 15’ [(«/Wi V) + <‘/E - \/E‘ )2]

(3.4)

Acoora: IS @ weight parameter
S2: refers to the number of the grids (S X S). For example, in 13 X 13 grid
the S can take values fromi =0,1,2, ...,12.

obj,
1ij .

is 1 if an object has been detected in the j th bounding box in cell i,
otherwise it is 0. This parameter refers to whether there is an object that falls
in the j th bounding box of the i th grid cell

(;,9;, W;, h;) refer to the predicted bounding box parameters (center
coordinates, width and height)

(x;, yi, Wy, h;) refer to the center coordinates, width and height of the ground
truth box

2‘13=0: this sum is calculated for each anchor box (5 in total), where B=5-1=4
(because the index starts from 0)

B: refers to the number of bounding boxes per grid cell.
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As one can see in the Equation, the square root of the bounding box width and height
is used in the calculation of the localization loss. This means that small prediction

deviations from the actual box matter less in large boxes than in small boxes.

Confidence Loss (loU error)

The error associated with the loU score is calculated by:

(3.5)
B
+Anoobj z z 11}001)1 (Ci - 61‘)2

where,

e (;: represents the confidence score. This is a metric that indicates the
probability that the bounding box predicted by the model actually contains the
object

° a: represents the intersection over union of the predicted bounding box with
the ground truth bounding box.

1?]-bj: is 1 when an object is detected in the jth bounding box of cell i,

otherwise it is O.

1700

ij When there is an object present in the cell the value is 0. When there is

no object in the cell the value is 1.
®  Anoopjiequalsto5

Classification Loss

Error,s =

1 i) - i) (3.6)

S
i=o ceclasses

where,

° 1fbj: takes the value of 1 if an object is precent in cell i, otherwise it is O
e p;(c): represents the probability of the object detected in cell i to actually
belong to class ¢

e SZrefers to the number of the grids (S X S)
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e p;(c): should be 1 if the object in cell i belongs to class c and 0 otherwise.
The total Loss value of the NN is the sum of classification loss, localization loss and

confidence loss (see eq.3.3) (Ahmad, et al., 2020) (Gai, et al., 2021).

Loss = ETrorcoora + ETroti0y + ETTOT 16

s B
= Acoord Z Z 11-0}” [(ri — 2% + (vi — 9]

i=0 j=0
s?2 B 2
bi — 2 ~
+Acoordzz 1?]'] [(Vwi _VWi) + <\/E_\/;l> ]
i=0 j=0
o, e (3.7)
+ z z 1?}71 (Ci — 61')2 + Anoobj z z 1Z'OObj(Ci - 61’)2
i=0 j=0 i=0 j=0
52
F 1 i) - il)?
i=0 c€classes

3.3.4 Mean Average Precision (mAP)

As mentioned above, this metric is used to evaluate the performance of object

detection models such as YoloV3, R-CNN and SSD Average Precision (AP).

Two equations are used in computing AP. One is the precision equation (3.8) and the
other is the Recall equation (3.9). Precision is a percentual metric to assess how
accurate the predictions are. Recall is a percentual metric of the number of positive

predictions made (Gai, et al., 2021).

Precision= P (3.8)
TP
Recall= P (3.9)

where,

e TP represents the true positive (Predicted as positive and was correct)
e FP represents the false positive (Predicted as positive but was incorrect)

e FN Represents the false negative (Failed to predict an object that was there)

3.3.5 Results of training
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The model described in Section 2.3 was trained using the data described in Section
3.1. Several training runs were performed using combinations of the datasets of
Section 3.1. The objective is to optimize training by selecting those parameters that

result to the best possible validation.

Thus, image datasets were separated into two subsets: The first contained the images
used for training and the second the images used for validation. The training subset is
used to build the model. The validation data are used to evaluate the model using the
accuracy metric of mean average precision. To assist in distinguishing the datasets

easily we renamed them as in the following Table.

Table 3.3 Upgrade names of datasets

Large Dataset CARLA Dataset
SJTU Small Traffic Light Dataset Clear Dataset
Combination of Bosch Small Traffic Lights Dataset and Berkley Blurred

DeepDrive Dataset Dataset

1% Training exercise
This exercise uses images from Carla’s simulator (as already discussed in Section 3.1).

From 1,000 total photos 700 were used for training and 300 for validation.
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Figure 3.10 shows the results of the training process of the model. The training loss
refers to the training process that uses the training dataset and mAP to the validation

process that uses the validation dataset.
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Figure 3.10 Results of Carla dataset (training loss and mAP)

In the initial iterations, both the training loss (blue line in Fig. 3.10) and the learning
rate (slope of blue line) are high as expected, since the “trainable” layers of the model
contain just the initialization weights. Subsequently, the training loss falls as iterations
increase. Between 1800 and 6000 iterations, the training loss falls close to zero and
the mAP increases to 99.5%. This is expected because the photos used in the training
process contained clear images of traffic lights taken from a close range. The high mAP
is attributed to the clarity of the images used in the custom dataset. The right image

follows the left one and shows the training process from 4,000 to 6,000 iterations.

2" Training exercise

The second dataset contained 1,217 clear traffic light images within a generic
environment that contains also other objects (road elements, signs, vehicles, etc.)
from the “SITU Small Traffic Light” dataset. Out of the 1,217 images, 852 images were

used for training and 365 images were used for validation.

The mean average precision for this dataset is shown in Fig. 3.11 and came out to be

38.5%. The mAP value is very low because the number of photos (dataset) is limited.
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Figure 3.11 Results of training loss and mAP for Clear dataset

3" Training exercise

The third experiment contains 3,455 images out of which 2,419 images are used for
training and 1,036 images are used for validation. As already discussed in Section 3.1,
this dataset contains images under various conditions such as day or night etc. and

many blurred ones.

The results of this dataset are shown in Figure 3.12. The mAP is 41.7%. The fluctuation
in MAP may be explained by the fact that some batches contain more blurred pictures

than the others.
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Figure 3.12 The training loss and mAP of Blurred dataset

4™ Training exercise

The fourth experiment contains all the three datasets. In this experiment, the total

number of images is 5,672 as presented in Table 3.5 :

Table 3.4 The combination of three datasets

Datasets All (First+Second+Third)

Training set (70%) 3971 700 852 2419
Validation set (30%) 1701 300 365 1036
Total 5672 1000 1217 3455

The results are shown in Fig. 3.13. The mAP is 70,7%. The drop near the 4000%™
iteration possibly occurs when the code reads batches that contain the blurred
photographs. This has a negative effect on the final prediction. In this case as well mAP

fluctuates depending on the images contained in each batch.
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Figure 3.13 Results of the combination of three datasets

5t Training exercise

In this case, the Carla and Clear datasets are used, that is in total, 2,217 images of
which 1,552 are used for training (700 from the CARLA dataset and 852 the Clear
dataset). 665 images are used for the validation process (300 from CARLA and 365

from Clear).
Table 3.5 Combination of CARLA and Clear datasets
Datasets First and second
Training set (70%) 1552 700 852
Validation set (30%) 665 300 365
Sum 2217 1000 1217
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The results are shown in Fig. 3.14. The mAP is 76.8%. The dataset includes a large
number of photos and many clear ones.
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Figure 3.14 Results of combination of CARLA and Clear datasets

6t Training exercise

The sixth experiment contains two datasets: CARLA + Blurred. In this experiment, the

total number of images is 4,455 as presented in Table 3.7 :

Table 3.6 Combination of CARLA and Blurred datasets

CARLA Blurred

Training 3119 700 2419
set (70%)
Validation 1336 300 1036
set (30%)
Sum 4455 100 3455

[58]



University of the Aegean Department of Financial and Management Engineering

The results of this dataset are shown in Figure 3.15. The mAP is 79,1%. The mAP

fluctuates, possibly due to the blurred images.
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Figure 3.15 Results of combination of CARLA and Blurred datasets

7t Training exercise
The final experiment contains two datasets: Clear and Blurred. In this experiment, the

total number of images is 4,672 as presented in Table 3.8:

Table 3.7 Combination of Clear and Blurred Datasets

Datasets Second and third

Training set (70%) 3271 852 2419
Validation set (30%) 1401 365 1036
Sum 4672 1217 3455

The mean average precision for this dataset is shown in Fig. 3.16 and came out to be

48,7%. The mAP is very low.

[59]



University of the Aegean Department of Financial and Management Engineering

mAPZ

L L 44%
8.0 3 417% 41%

6.0
4.0

0.0
0

600 1200 1800 2400 3000 3600 4200 4800 5400 60
current avg loss = 0.2422  iteration = 6000  approx. time left = 0.11 hours
Press 's' to save : chart.png - Saved Iteration number in cfg max_batches=6000

Figure 3.16 Results of combination of Clear and Blurred datasets

Concluding Remarks

Table 3.9 presents a synopsis of the above experiments.

Table 3.8 Synopsis of the experiments

1 CARLA 99.5% 0.13
2 Clear 38.5% 0.15
3 Blurred 41.7% 0.23
4 CARLA + Clear+ Blurred  70.7% 0.25
5 CARLA + Clear 76.8% 0.17
6 CARLA + Blurred 79,1% 0.23
7 Clear and Blurred 48,7% 0.24

The results in Table 3.9 show that the highest mAP results always include the CARLA
dataset and thus, the CARLA dataset helps the training process significantly. This is
because the photographs of the CARLA dataset display traffic lights very clearly. The

Blurred dataset also helps the training process due to the increased number of images
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in the dataset. The combination of CARLA and Blurred datasets gives a strong result in

the training process.
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Chapter 4 Traffic light state detection: A case study

In the previous Chapter we described the NN model and how it has been trained. The
current Chapter deals with the performance of the trained model and its refinement
on real-life traffic light photos taken in a general urban environment under various
conditions. These photos were frames extracted from videos and contain multiple
background objects in addition to the traffic lights. The latter assumed all three states
(red, green, yellow).

4.1 Experimental set up

The images that were used for testing were created from a compilation of small videos
with a total duration of 77 minutes. These videos were taken by an iPhone camera
from inside a moving car while driving along a route that contained a high number of
traffic lights. The images contain scenes with traffic lights, roads and cars and were
taken in different times of the day. A total of 165 small duration videos were taken as
part of the experiment and contain the identity and the state of each traffic light. The
videos were then converted to 2,817 still images which were used as input to the
model. The total number of traffic lights contained in all videos were 182 (a video may
contain more than one traffic light in some cases). Of these, 97 videos contain all three
states of the traffic light (green, red, yellow), whereas 85 videos contain only one
state, green. This is because it was practically difficult to wait for the traffic light to

change state due to traffic.
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Figure 4.1 State of 1st and 2" from 180 traffic lights

In Fig. 4.1 the first 3 images show the first traffic light (out of the 180 contained in the
dataset) in all 3 states and the bottom image shows the second traffic light only in its
red state, the only one existing in the dataset. This Figure illustrates that some traffic
lights have been photographed in only one state and some have been photographed

in all 3. In total, 305 traffic light and traffic light state combinations were created.
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4.2 Data processing
The network architecture of the model used in processing the above photographs is

the one described in Section 3.3. Concerning the weights, we Table 4.1 shows the

training sessions used to obtain the alternative weights values used in the case study.

Table 4.1 Datasets used to obtain alternative weights

1 Carla and clear

2 Carla and blurred
3 Carla

4 Clear and blurred

For tuning the model parameters and processing the test images / photos, we used

the four steps described below and presented in the code of Fig. 4.2:

Step 1: The images of the custom dataset are uploaded to a cloud storage space
(Google Drive) in compressed (.zip) form. This step also uncompresses the images

from the cloud storage and places them to the darknet/data/obj folder directory.

Step 2: The physical folder and file location of the images is saved and this step creates

one text file (txt form), named “test”, which contains the location of all images.

Step 3: Since it was necessary to adapt the code to our own set of data, some changes
were made to the .cfg file. As mentioned in Section 3.3, the number of subdivisions
and the number of batches affect the outcome. In this case the number of batches
was changed from 64 to 1 and the number of subdivisions from 16 to 1. The reason
for changing these parameters is to test 2,817 images one by one. The output of the
model contains the results of the test process (i.e. the recognition of the traffic lights)

for each image separately.

Step 4: This step tests the weights from the initial training datasets on the custom data
and the results are checked for accuracy. The model has been set up for testing and
the testing process takes around 6-7 minutes for each weight case in each batch. The

time required for testing the custom model depends on the dataset size and the
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number of classes (3 in this case). This last step outputs the photos used in the test

process together with the traffic light recognition results.

Step 1:
'mkdir data/obj/test
'lunzip /content/gdrive/MyDrive/yolov3/test.zip -d data/obj/test

Step 2:

import glob

images list = glob.glob("/content/gdrive/MyDrive/yolov3/darknet/

data/obj/test/*.jpg")

with open ("data/test.txt"™, "w") as f:
f.write("\n".Jjoin (images list))

Step 3:

%cd cfg

!sed -1 's/batch=64/batch=1/' yolov3 training.cfg

!sed -i 's/subdivisions=16/subdivisions=1/"' yolov3 training.cfg

Scd ..

Step 4:

!'./darknet detector test data/obj.data cfg/yolov3 training.cfg /
content/gdrive/MyDrive/yolov3/weights/Carla and blurred images/y
olov3 training final.weights -

dont show < /content/gdrive/MyDrive/yolov3/darknet/data/valid.tx
t > result.txt

Figure 4.2 Test data processing

4.3 Results of the Neural Network Model
The results of processing the photographs of the Thessaloniki dataset by the model

were classified into three categories (True predictions, False predictions, No

predictions).
Table 4.2 shows the predictions made by each of the four models.

Table 4.2 Results of predictions

Carla and clear (pictures) 1,261 203 1,353
percentage 45% 7% 48%

Carla and blurred (pictures) 1,706 135 976
percentage 61% 5% 34%
Carla (pictures) 952 84 1,781
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percentage 34% 3% 63%

Clear and blurred (pictures) 1,712 78 1,027
percentage 61% 3% 36%

max 61% 7% 64%

As shown in the Table above, not all weights performed well. Many of the False or No
predictions were encountered in the sets containing the photographs taken in low
light conditions (evening/night). In these cases, the model confuses the traffic lights
with the stop lights of the vehicles in the photo. An example of this is shown in Figure
4.3. In the photo on the left there are traffic lights which were not identified and in
the photo on the right, no traffic lights were identified. In both cases the model is

confused by the car rear lights.

Figure 4.3 False prediction results

The highest percentage (61%) in True Predictions correspond to the weights of “Carla
and Blurred” and “Clear and Blurred” datasets. This is because the weights were
determined using a large number of photographs. In the case of “Carla and Blurred”

the Carla images were from simulated traffic lights. This may be the reason why the
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percentage of False Predictions (5%) is higher. On the other hand, the “Clear and
Blurred” dataset contains multiple real-life photographs in various conditions taken
from various distances and the False Predictions are lower. Furthermore, the photos
also contained other objects such as cars, road, etc. In this respect, the “Clear and
Blurred” dataset fits well to the Thessaloniki dataset and that's why its weights are

able to make the best predictions and object detection in the test photographs.

In general, however, the results have a low percentage of True Predictions. This is
attributed mostly to the low number of images in the datasets used to train the model.
4.4 Improving the Results of the Neural Network Model

We used a simple idea in order to improve the results of the model:

- Consider a combination of a traffic light and its state for which we had multiple
photos. For each photo the model recognized one of the three possible states,
or did not recognize any state

- The state attributed to this combination of traffic light - state results from the
majority between the above recognitions, ignoring the No Predictions.

That is, if we had 6 photos for such a combination, in 4 of which a red signal was
recognized, in 1 photo a green signal was recognized, and in 1 no signal/state was
recognized, then the state attributed to the combination was red. Consider another
example with 5 photos: 2 green, 1, yellow, 3 No recognition. The state attributed was

green. In the event of a tie, the state was labelled as inconclusive.
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Figure 4.4 States of 10th Traffic light

Consider the traffic light of Figure 4.4, which is contained in multiple video frames (33
video frames). Out of all these video frames 4 frames were taken in the green state,

28 were taken in the red state and was taken in the yellow state.

- Out of the 4 photos of the green state, the 2 photos were indeed detected by
the model as green (True Prediction) but the other 2 were detected as red
(False Prediction). So, this traffic light-state prediction was classified as
Inconclusive.

- Out of the 28 red state photos, 7 photos were not detected by the model (No
Prediction) and these were excluded from the majority calculation.
Consequently, the traffic light was categorized based on the majority of the
remaining photos. 21 the remaining photos with recognized as red. Thus, the
prediction for this traffic light was classified under the True Predictions
category.

Table 4.3 shows the percentage of predictions of traffic light-state combinations of

the two best models.
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Table 4.3 Improvement method results

Carla and blurred 239 13 52 1
(%) 78% 4% 17% 0%
Clear and blurred 237 13 50 5
(%) 78% 4% 16% 2%

As shown in Table 4.3, the models with weights from the Carla and blurred dataset
predict the correct outcome with 78% accuracy (True prediction), predict an incorrect
state in 4% of the cases and cannot predict a state in 17% of the cases. On the other
hand, the weights from the “Clear and Blurred” dataset predict the correct outcome
with 78% accuracy (True prediction), predict incorrectly a state in 4% of the cases and

cannot predict a state in 16% of the cases. These results demonstrate that

- Therefinement method improves the True Prediction percentages significantly
from 61% to 78%. This is due to the fact that the majority rule reduces
significantly the No Prediction percentage

- Both models perform equally well in the case of traffic light-state predictions.

4.5 Conclusion
A high-accuracy and real-time object detection algorithm is part of the safety and real-

time control systems of autonomous vehicles. Various studies focus on safety of
autonomous driving and describe models which provide satisfactory -but not perfect-
predictions This is due to the trade-off between accuracy and the model’s operational
speed. For this reason, this study proposes an object detection algorithm (Darknet-
53+YOLOv3) that achieves a reasonable trade-off between accuracy and operational
speed when trained in specific datasets. A high rate (78%) of traffic light states were
correctly predicted and only 5% of the states were predicted incorrectly. To this effect,
the Datknet-53+YOLOv3 algorithm combined with the majority rule may significantly

improve detection and accuracy.
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Chapter 5 Conclusions

We propose an accurate and effective model that can detect traffic lights and their
states in real-time. Such a model can be practically used in systems that control
autonomous vehicles. The implementation is based on the Darknet-53+YOLOv3
model. Two main processes are analyzed: the training process which “trains” the
model to detect the traffic lights using existing image datasets, and the testing process
which tests the effectiveness of the model in detecting traffic light states in images

collected from numerous traffic lights of Thessaloniki.

For the training process we used three image datasets and combinations of them.
During this process, we conducted experiments for each dataset and each
combination and compared the detection accuracy of the model and its resulting
weights. The image dataset which proved to be the best for training the model was a
combination that contains a) clear photographs of traffic lights taken from a close
distance, b) clear photographs of traffic lights within a general environment, and c)
blurred photographs of traffic lights taken from a distance under various light
conditions, in the presence of objects that resemble (but are not) traffic lights. In
addition, as expected, the volume of the images in the dataset and the light condition
in which the photographs were captured , influence the results of the process. The
results of the training process show that the highest mAP results always include the

CARLA dataset and thus, the CARLA dataset helps the training process significantly.

For the test process we used a custom image dataset that was created by the author
and contains photographs of multiple traffic lights (under various states) taken from
Thessaloniki streets. The test was performed using the most appropriate Neural

Network weights that were obtained during the training process of the model.

The testing results indicated a 61% percentage of true predictions, with 3% false
predictions and 36% no predictions. Using a simple post-processing step that is based

on the majority of predictions among multiple photographs of a certain traffic light
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and state, the no prediction percentage fell significantly to 16%, while the true

prediction accuracy was improved to 78%.

As a result, the proposed approach can significantly improve the camera-based object
detection system in autonomous vehicles. This technique of traffic lights detection can

serve as a prototype for future development.
Recommendations for future work include the following:

e Utilize different networks (except Darknet-53) to be used in conjunction with
YOLOV3 for object detection (for example, Darknet19, Resnet 101, etc.)

e Use different models (except YOLOv3) for object localization (e.g. R-CNN,
Faster R-CNN, SSD, etc.)

e Increase the number of images in the training process

e Experiment with different parameters of the model (through the configuration
file)

e Apply other pre-trained weights from other datasets include different pictures
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Appendix A. Learning in MLP networks
A.1.1 Preamble

This appendix presents every simple example of the about analysis. Its purpose is a
perception of understanding the networks. This is a short but substantial tutorial that
illustrates how backpropagation works in Multilayer Perception (MLP) Neural Network
training. The material is taken from several scientific articles (see also references at
the end of this document). We also use a practical example from the Coursera

machine learning course/week 5 to explain the logic behind NN training.

Furthermore, in order to get hands-on validation of all the relationships that support
NN training (and are derived below), Appendix A.2 presents and derives these

relationships for a much simpler (theoretical) example.
The tutorial is structured as follows:

Outline of the NN structure

The feedforward operation during training
Cost function for NN training

Gradients of the cost function
Backpropagation

The training algorithm

A.1.2 The MLP architecture

Figure A.1 represents the NN structure in the above practical of Coursera (Machine
Learning, Week 5 programming exercise). In this example, the input is a picture
(image) of a handwritten digit (0 to 9) of size 20x20 pixels and the output is the number
represented in the picture. The Figure A.1 presents a shallow network, however used

to better understand this analysis of neural networks.
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Figure A. 1 Neural network model of the example
The neural network has 3 layers:

Input_layer_size =400 (20x20 input pixel values of digit image) - We increase
the input layer by one element a(()l) in order for the matrix multiplication that
provides the output of the first layer to contain the addition of the bias. Thus,
the input layer size becomes 401.

Hidden_layer_size = 25 (hidden units)

Output layer size = 10 (output units) — The output vector contains the value of
1 in the appropriate vector element (that corresponds to the digit value) and
the value 0 in all other vector elements

Number of labels K= 10 ( labels from 1 to 10)

Dimensions of the ® matrices (weighting matrices) z and a (for the image above) :

0 js of size (25, 401), (the first column contains the bias elements)
aM is of size (1,401)

7 is of size (1,25)

a® is of size (1,26) (be adding the bias)

0@ s of size (10, 26) (the first column contains the bias elements)
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23 is of size (1,10)
a® is of size (1,10)
hg (x)= a® of size (1,10) agai

A.1.3 The feedforward operation during training

Consider the following training set:

5000 training samples (training set of 5000 images of handwritten digits, each
comprising 20x20 pixels)

The 20 by 20 grid of pixels is “unrolled” into a 400-dimensional row vector

x is a matrix of 5000 number images of dimension (5000, 400) each image
occupies a row of the matrix

y is a matrix, each row of which represents the actual value of the
corresponding sample digit. The dimension is (5000, 10) and the elements of
a row are all 0 except of the element corresponding to the actual value, which

is equal to 1.

The training data will be loaded into the variables x and y (by the ex4.m script in our
example).

In this case (for the entire training set):

a(l = x, of size (5000, 400+1)

722 = aWEWT of size (5000, 25)

a® = o(z®), of size (5000, 25+1)

723 = a@E@T of size (5000,10)
Note: *We exclude the first row from O@T and @™WT, and the bias units are not
included when the exercise run in Octave for reduction reasons. So a® is a (5000,25)

@r

matrix and @ is a (25,10) matrix and we can multiply them to find z(®. We are

using the same mathematics to compute a® and @WT,
a® = ¢(2®) = hy(x), of size (5000, 10)

Note: ** g is the Sigmoid function with a range values between (0,1).
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A.1.4 The cost function for NN training

Let us start with the case of a NN with a single output

In this case, the single output NN classifies whether the input x belongs to a single

class (value = 1) or not (value = 0).

In this case, let the output for the i-th training sample be hy (x ) and the true answer
for that sample be y®. Then the cost function will represent the sum of the errors,

that is, the difference between the predicted value and the real (labeled) value.
1% o
](6) = az Cost( he(x(‘)),y(‘)) (A1)
i=1

Where e.g. m = 5000 is the number of training samples.

Our goal is to minimize the cost function by finding min J(8). Note that the Sigmoid
function is a “non-convex” function which means that there are multiple local
minimums. So it’s not guaranteed to converge (find) the global minimum. What we
need is a “convex” function in order for the gradient descent algorithm to find the

global minimum (minimize J(8)). In order to do that we use the following log function.

Convex Non-convex

Figure A. 2 Cost function (convex&non-convex)

—ylog(he(x)) ify=1

Cost(hg(x),y) = {—(1 —ylog(1l —he(x)) ify =0

(A.2)
Note that
if y = hg(x) = 1, then the cost is zero, since log(1) = 0

if y = 1 and hg(x) = 0, then the cost is o, since log(0) = —oo
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Similarly

if y = hg(x) = 0, then the cost is zero, since log(1) = 0
if y = 0 and hg(x) = 1, then the cost is o, since log(0) = —oo

Since y (labeled value) is either 0 or 1 we can write the cost function in one equation.

Cost(hg(x),y) = —ylog(he(x)) — (1 — y)log(1 — he(x)) (A.3)
For the m training samples, the cost function for this single output NN becomes

m

1 . . . .
J8) = — > —yPlog (ng(x(")) = (1 = y)log(1 — he(xV))

L (A.4)

To illustrate that the cost function is a convex function we plot a simple example using

python. Consider that the input y(i) = 1.Then

10) = =2, —yDlog (ho(x)) (A.5)

m

As we already know a® = ¢(z®) = hg(x). Lethg(x®) € [0,1] increasing from zero
to 1 by 0.1 in every iteration of the numerical example. Then, J(0) has the convex
form of Fig. A.2, which is hardly surprising given its logarithmic nature. This applies

only to logistic regression i.e. a neural network with no hidden layers.

0.0008

0.0006

Cost

00004

0.0002

0.0000

00 0.2 0.4 06 0.8 10

Figure A. 3 The convex shape of a simple instance of the cost function
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This is the same result presented on the machine learning lectures (week 5, Coursera)

—see below.
Cost =0 if y =1,hy(z) =1
i But as  hy(z) = 0
Ify=1 Clost = o0

Captures intuition that if hy(z) =0,
(predict P(y = 1]z;6) =0), but y = L,
we'll penalize learning algorithm by a very

¢;
I ] large cost.

Figure A. 4 Convex between hy(x) and Cost(J) if y=1.

The cost function of Eq. (A.4) does not include regularization. Note that in our
example, the number of elements of the ® matrices is over 10,000 and the number of
training samples is just 5,000, which means that theoretically we have more than
adequate parameters to obtain a value of O for J(0) (consider a system with 10,000
unknowns, the elements of ® and 5,000 equations) that may result to overfitting. In
order to address this overfitting risk, we reduce the magnitude/values of 6 (making

many of them to be 0) by introducing a penalty term as below.

n

L _ _ _ A
j(8) = — ;Z[y(l)logme(x@)) + (1= y®)log(1 — he(x V)] +5— > 0?

r— = (A.6)

Equation (A.6) represents the regularized cost function.

Let’s move now to our example that has multiple outputs

If we generalize the above for multiple NN output nodes (multiclass classification)

what we get is:
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m=5000 K=10

1 . _ . ,
O == > > [y logg O - (1 = ylog(1 — hg(xV),)]
i=1 k=1

25 400 10 25 (A.7)
Z Z ©®)2 + Z Z (022
j=1 n= j=1 n=

where in our example K = 10 is the number of outputs/labels and m= 5000 is the
number of training samples, A is the regularization factor, hg(x) € R¥ and (hg(x™),

is the value of the k-th output for the i-th training sample.

A.1.5 Gradient of the cost function (without regularization)
Gradient descent is an optimization algorithm used to minimize our cost function. In
general, it is used to find the values of the parameters that optimize a non-linear

objective function.

In machine learning, specifically, we use gradient descent to determine
the parameters of our NN model during training. Note that the non-linear
optimization problem we deal with is relatively straightforward, since it does not
involve any constraints (just the objective function). We can think of the gradient as
the slope of the function. The higher the gradient, the steeper the slope and the faster
a model can learn (determine the appropriate values for its parameters). If the slope

is zero, the model stops learning.

Given a training set, the cost function J(8) depends strictly on the values of NN
parameters, the weights @ and 0. Thus, in our example training of the NN is the
process of determining the values of 8 that drive the value of the cost function of
Section A.1.4 to its minimum. We should start the process by setting initial values of
the parameters, and gradient descent will iteratively adjust these values to minimize

the cost-function based on the following relationship:

041 = 0; —avJ(e;) (A.8)

where: 8j,, is the value of the next iteration

0.

i is the value of the current iteration

a is the step along the gradient
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V](Gj ) is the gradient, i.e., the vector of partial derivatives of | with respect
to each parameter of 6 at point 6;. It is simply the direction of the steepest slope of

the function at this point.

Concerning step a (or learning rate), it must be set to an appropriate value, which is
neither too low nor too high. This is important because if the steps are excessively
long, the algorithm may overshoot the minimum. If the learning rate is too low, the
process may take excessive time to reach the local minimum, or it may never reach it

due to excessively slow convergence.

The values of 6 that correspond to the minimum are the final values of the NN
parameters to be used thereafter and the NN has been trained. Thus, in order to
determine the minimum of the cost function and the values of 0 that correspond to
this minimum, the most computationally intensive task is to determine V](Bj) at each

iteration j.

This is achieved by backpropagation, which uses the output of NN (h), compares it to
the real value (y) and derives the error (8). The errors for each layer can be used to

calculate the partial derivatives. In our example, starting from the final layer L = 3,
backpropagation attempts to define the error value 61(3“) where K is the node and L is

the layer.

In order to define the gradient of the cost function with respect to the parameters 6,
we will start from the single output NN and we will generalize to the K output NN. In

both cases we will start from the last layer.

A.1.5.1 Single output NN

Consider the following network
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Input Layer Hidden Layer Output Layer
2 — 2@ — WeT 23 = (@ @T
(add al®) a® = o(z ) a® = 6(z®) = he(x)
(add a$?)

Dimensions of the ® matrices (weighting matrices) z and a (for the image above):

0W s of size (25, 401), (the first column contains the bias elements).
aM is of size (1,401)

7@ s of size (1,25)

a® is of size (1,26)(be adding bias)

0@ s of size (1, 26) (the first column contains the bias elements)
723 is of size (1,1)

a® is of size (1,1)

hg (%)= a®is of size (1,1)

In this case (for the entire training set):

a(l = x, of size (5000, 400+1)

722 = aMWEWT of size (5000, 25)

a® = ¢(z®@), of size (5000, 25+1)

723 = a@E@T of size (5000,1)
Note: The first row of the @7 and @7 matrices contain the bias elements. We can
exclude this row without affecting our results. Additionally, this will reduce the data

and make them easier to compute. As a result, a(® is a (5000,25) matrix, @7 is a
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(25,1) matrix and are multiplied to compute z(®). We are using the similar operations

to compute z® from a® and OMT.

As we have already mentioned and analyzed above, the cost function for a single

output NN is:
o) = - Em [yPlog(h (x)) + (1 — yD)log(1 — he(x))]
rni=1 g s Y 8 0

We can compute the gradient VJ(8) from the chain rule

_0) _ 9 du e
vI(®) = 00 Qo dz 00

We will now focus on the third layer to determine the partial derivatives with

respect to elements @j(z) of @, j =1,...,25

)® _ 1 0[yPlog(hex)) + (1 —y®)log(1 — hex"))]

@~ " n 2
6(9j m 6@].

i=1

1 & d[—y® log (he(xP)) = (1 = y®)log(1 — he(x))] da@® gz
B mz da®® 1ZzOP0 5@
]

1w df, da®® gz
da® (@D 4z®O 5@
1 j

m .
i

d]i . . dj .
TaG)@ represents the derivative e evaluated using the values

where the notation

. S Lo da®® 39z(3®
of the (i)-th training instance. The same notation is used for OO and PO
J
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dj dj
= log(h 1-y)log(1—h
da® ~ dhy(x) dhe( y 1y 0g(he(x)) — (1 = y)log(1 — hy(x))]
.y ey oy 17y
he (X) 1 - he (X) a(3) 1 —_ a(3)
Thus
g, oy 1-y0
1200~ 2000 T 100 (A.9)
da®  d 1 d Loy OV _®
e = &1 N e_Z(3) = e (1 +e ) = - (1 +e ) (—e )
—7(3)
e’z 1 1
= = — — 5(z®) (1= o(z® (A.10)
(1+e7@)” 1+e™ ( 1+ e—Z(3)) o(z )(1 oz ))

=a® (1 -a®)

da®® ©10
—_ = 13 _ 1
So, L0~ a (1-a )
3 3
0z% (a@e@1) = @ L X _ @0
@ ~ (2) J 2 J
00; 00, 00,
(A.11)
Combining the above for the output layer:
® _y®
6](9) Z y 1-—y" a(3)(i)(1 B a(3)(i))a(z)(i)
a@]@ TIO0 1100 J
(A.12)

1 L o
- _Z(a(sxo —y) a0
m £

A® _ 25(3)(0 @0
26® m

where §)W = g®® — yO = K (xD) — yD s 3 (1,1) vector of the error for training

instance i. Moreover, we can combine the results of Eq. (12) for all j =1,...,25 to

2](0)
@’

A.1.5.2 Multiple output NN

obtain an (1,25) vector.
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We will now generalize to the K output NN. Again, from the chain rule

9)(8) _ 9] da 9z

90  dadz a0

Let’s focus on the third layer as before

J(®) 1 i d[-y,” log(he (xV)i) — (1 — ¥ )log(1 — he(x D))
m i=1

06 L
m i i i i : .
_ lz d[_ ylgl)log(he (X(l))k) — (1 - y(l))log(l - he(X(l))k))] dagf)(l) azl(<3)(l) (A 13)
o) D = a0
- ]

1 i Ay da®® a2V
“m BIOPFEOI0) 2
Mz da, " dz, T 00,

d :
’(’;) evaluated using the
k

. . dfyi N
where again the notation ﬁ represents the derivative "
ak a

4a®® PROI
values of the (i)-th training instance. The same notation is used for " 2‘3)(0, and —&
Z
k

@)
20y,

In the first row of Eq. (A.13) the summation »X_, of the cost function J(8) does not

9[-y 10g(he (xD))-(1-y D) log(1-hg (xD) )]

appear, since ) is zero if n # k.
90,
djk djk d
= = [y, log(he(x)1) — (1 — ylog(1 — hy(x),)]
da®  dhp(0,  dhe(), kT k oK
y 1- 1-
I VU et VRN PR et /8
hg(x) 1= he(x)y a,(f) 1- a,({g)
Thus
o _ v 1=y

-~ = — — + -
3)®» 3)® ©]0)
dak a, 1-— a,

(A.14)
From Eq. (A.10)
da’(f)(i)

3 ® 3@
~ =2 (1—-a )
dz,(f)@ k k

(A.15)
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Furthermore
©) (3)(1)
0z 0 (a(z)@(z)T) (2) 0z _ @0
200?302 a@(z) !
kj kj kj (A.16)

Combining the above for the output layer:

O ®
(e _ Z 1= aP0(1 - 2P0 )o@
@<z> m (3)(0 — a0 | k)3
k

m
1 i e o
== E :(aﬁ O _ 0y,
i=1

aJ(®) _ z 50O (2)(1)

@(2) (A.17)

with 6§00 = a®P® _ 3O = 1, (xD), — O is the error of output k = 1, ...,10 for

training instance i. Moreover, we can combine the results of Eq. (A.17) for all k =

1,..,10, j =1,...,25 to obtain Iga),an(l 250) vector.

A.1.5.3 Gradient for all NN layers

Following the same process as in Sections A.5.1 and A.5.2, one can obtain

For the single output NN and for the output layer L

A8
9)(6) z 510,10 (A-18)
OQ(L 1)

For all the other layers (1) of the single output NN and for all layers (I = 1, ... L) of the

multiple output NN
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9](0) m (A.19)

1 . )
+D®_ OO
—_— = 0 a;
[0 z : k J
a@ki m i=1

Depending on the case, using Eq. (A.18) or (A.19) we may compute the entire gradient
vector VJ(8) from the outputs of the NN a](-l)(i) (from forward propagation) provided
we know the errors 6,9“)(0. The errors are known only for the last layer [ = L, i.e.
5£L)(i) = al(f)(i) — v, again from forward propagation. For | < L, the errors S,El)(i)

are obtained from back propagation as discussed below.

A.1.6 Backpropagation
Let’s now compute the errors 6 involved in Eq. (A.18) or (A.19) that provide the
gradients of the cost function for label k and layer l. For simplicity, we will again use

our example with the three layers.

A.1.6.1 Errors of layer L = 3

As we have discussed above, the error for the final layer (in our example layer 3) for

output k =1, ..., K = 10 is determined using forward propagation by

3 3
81(<):al(<)_yk

or for each training instance i

3 3)(i .
81(( YD _ a1(< NONS y1(<1) (A.20)

and may be obtained directly from forward propagation by subtracting the actual

value yl((i) of output k of instance i from the NN output al(f)(i) of label k of instance i.

A.1.6.2 Errors of layer | = 2

Consider the single output NN. We use the following notation:

J0) = -3 1=y log (ho () = (1= y®)log (1~ ho(x?)) = -3

i=1 i=1

Without proof the following holds:
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@0 _ J(9), (A.21)

j OO0
azj

62(.2)

aj(0); . I aJ L : ,
Where a]((z)?"l) is the value of the derivative of 22 for training instance i. We will
Z.
J J

evaluate this derivative for instance i.

0j(®), -y 1og (ne(x)) - (1 = y)log(1 — hyx")]
020 0290

(A.22)

d[—y P 1og (he(x®)) = (1 — y)log(1 — he(x V)] da@® g;® da®®
1a® 2ZOD 5, @0 3,0
J jj

From Eqg. (A.9)

d[-ylog (he(x?)) = (1 —yD)log(1 —hexP)]  y&  1_y0
da®® = TLe0 T 1000

From Eqg. (A.10)

da®®

m = a(3)(i)(1 _ a(g)(i))
Z

9200 Ja@De@T
PROICEEPNOI0)
J J

—n®
= @j

with G)].(Z)thej — th element of ©®). In the single output NN, @ is a row vector,

e.g. (1,25).
Finally
E&?0 .
J — @O _ @O
o0 -4 1737
J

Combining the above we obtain

i 0 _ 0
oj@), _(_y°  1-y a(g)(l-)(l_a(g)(i))gc_na(z)(o(l_a(z)(z’))
aZ(.Z)(i) 3(3)0) 1-— a(3)(i) ] J J

]

= 50 [aﬁ @ (1-a®))
]
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That is,
] (6), @) . . . (A.23)
ANV e3D @O (1 _ @O _ @O
00 0 70,74 (1 3 )—51'
%
The last equality coming from Eq. (A.21). Now if we consider
9/ (6); _ 9/(6);  9J(8); )
0z@)® azf)“)’ ’azj(z)(l)’
then
3] (6). . _ , (A.24)
aZ(—Z)(il) — (6(3)(1)@(2))_* (a(z)(l)_* (1- a(z)(l)))

where the symbol (.*) represents the element-wise multiplication of two matrices

(vectors in this particular case).

Then from Eq. (A.21)

. 3] (6). . , . (A.25)
§® — a_(z)(il) — (8(3)(1)@(2))_* (a(Z)(l)_* (1-— a(Z)(l)))
Z.
j
Now consider the multiple output NN
With similar arguments we obtain the following equation:
5O — (5(3)(1‘)@(2)).* (3(2)(1')_* (1 - a@Dy) (A.26)

A.1.6.3 Errors of layer 1

Now let us generalize to error 6 for layer | < L in terms of the error §*1 of layer

I+1

sOO — (8(z+1)(i)@(z))_* (OO 4 (1 _ a(l)@)) (A.27)
or

(A.28)
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50 = (50000 x (a® 5 (1 — a®))

This last equation may be considered equivalent to Eq. (A.27) if 6 = %Z{’;l WO,

Equation (A.28) moves the error backwards through the activation function of layer [,
giving us the error §® as the weighted sum of error §¢*Dof layer [ + 1. The initial
error of the last layer is, of course, obtained directly by subtracting the actual value of

the output from the estimated value of the output (NN output).

From Eq. (A.27) we may get the 6 terms of each layer. Then, we use them in Eq. (A.19)

to obtain the partial derivative ofthe error function ] with respect

to individual parameters of the NN and thus compute the gradient V] of Eq. (A.8),

which is used in the related step of the gradient descent. This process is repeated for
M@

each step, since the 0 values are updated and so are the terms a; of forward

5£l+1)(0 of backpropagation. The process

propagation (evaluated with the new 0) and
minimizes | with respect to the NN parameters 6 and trains the NN by obtaining the

optimal values of 6.

A.1.7 A theoretical validation example

In order to obtain a hands-on understanding of the forward and backpropagation
relationships used in NN training, as well as their proofs, Appendix A.2 presents and

proves these relationships for a very simple (but theoretical) example.

A.1.8 The training algorithm

In order to put together the mathematical concepts of Sections A.1.5 (forward
propagation) and A.1.6 (backpropagation), we present the following algorithm for the

original example of Section 1.

Training is based on a set [(x(l),y(l)), - (x(m),y(m))], where m = 5,000, that is

considered as input to the algorithm.

Step 1
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Start training by initializing the values of ®; and @, with small random numbers equal
to zero or near it. Then, gradient descent will update the @; and @, values in an

attempt to minimize the error.

Step 2

Perform forward propagation to compute aP® for layers (I = 2,3) for the training

samplei(i = 1,...,5000). Forward propagation uses the following equations:
Input to hidden layer : a®® = x® of size (1,400+1)

20 = qOHYWOT, of size (1,25)
Hidden to output layer : a®@® = g(z@®) | of size (1,25+1)

230 = (@D@NT of size (1,10)

a®® = ¢(z3D) = hy(x), of size (1,10)

Forward propagation provides ag(i), k=1,..,10i =1,...,5000 to be used in Eq.
k

(A.19) and (A.20), as well as ajz(i), j=1,..,25to be usedinEq. (A.27)

Step 3
Compute:
5IW = a0 _ O} —1,.,10,i = 1,...,5000
520 = (@D 4 (a@® 4 (1 — @D)), { = 1, ...,5000)
with 8§20 = (§,@0, ...,6j(2)(i), s 85PDY an (1, 25) vector
Step 4

Using the results of Steps 2 and 3, compute

m
aJ(e 1 ; )
]((22 — _z 5}&3)(1)31(_2)(1) k=1,..10, j=1,..25
an}' m i=1

and
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8)(8) _
20,7

m
1 . .
_}:63)(1)3]@)(0, k=1,..25 j=1,...400
m i=1

This is without regularization. We can easily add regularization.

Step 5
. . 01O 1, .
Having obtained V](Gj) =0 |0 = 6; an (1, 10250) vector, then update 6 using

841 = 6; —av)(§;)
With a the chosen step.

Step 6

Repeat steps 1-5 till ||V](9]-)|| < ¢. Set 6 equal to the values of the parameters of the

last iteration. The NN has been trained.

A.2 Feedforward and backpropagation equations

Consider a very simple neural network that has 2 input nodes, 3 hidden nodes, and 2
output nodes (see Fig. A.1). The vectors and the ® matrices (weighting matrices)

involved are the following:

a® =[x, x,] = [alV o]

(€Y) (¢Y)
e11 e12
| (¢Y)
0 - e21 e22
(€Y) (¢Y)
e31 e32

z® = [252) zgz) zgz)] a®? = [0(52) agz) agz)]

(2) (2) (2)
92 — [611 01> e13]

@ a@ [
021 027 O
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23 = [zgg) Zgg) a® = [ag?’) ag?’)

A.2.1 Forward propagation

The forward propagation relationships are as follows:

Layer 2
(1) (1) (1)
0 0 0
2) — ~(DA(T 2) — 1 (1) 11 21 31
23 = aMOMT - 2 = [ o ][9(1) o 9(1)]
12 22 32
or
(A.29)
2 _ (W COFNGD
z;” = ;05 + oy 605,
2 _ (W COFNGY)
z, =05 07 0, 0y
) _ (D (1))
zy =0y 03 + oy 03,
Then
a® = o(z®)
or
1
@) 2
o, =0(z,7) = —
1 +e 2 (A 30)
1
2 2
o, =0(z,") = —
1+e™%
1
@) 2)
oy = 0(z§ ) = —
1+e7%
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Layer 3
2 2
07 03
2 = q@8T =552 = [(@ o@ «@][6@ @
@) 2
013 65
(A.31)
or
3) _ ,2)a2) )2 )2
z; = 0,707 +a; 7075 +a,70;
3) _ (2)n(2) )2 )2
Z, =0y 05 o0, +a, 0,5
Then
a® = 6(z®) = he(x)
1
3) 3)
o’ =o(z =
1 =o(z) e (A.32)
1
3 3
O‘g )= U(Zg = ©)
1+e %

Note that the vector of the NN parameters is 8 and contains 6+6=12 parameters B,S.)

(€Y) (€Y)

e11 e12
| (€Y) 2 —
0 - e21 e22 0 _[

(2) 2 @
07 85, e13]
®» 4D

037 03

(2) 2 @
021 03 033

A.2.2 The cost function

Consider now that the training set consists of two training samples (i = 1,2), which of

course is unrealistic, but it is simple enough for the theoretical example. Thus the

training set is {(xil), xgl)), (yl(l), yz(l)); (xiz),xéz)), (yl(z), 3’2(2))
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If we fully write our cost function with the summation we would get:

2
10 =5 ) {1y 1og@®®) - (1 y")log(1 - P )] + [y log(a?)
i=1

N| =

. . (A.33)
— (1 - yMlog(1 — o1}

A.2.3 Partial derivatives of J(0) with respect to the weights 9521),...,9223) (6

parameters)

Consider

0](8)
00

—(1 —yMlog(1 — a¥ )]

Il
N -
'MN

(2
=1 aek]'
d {[_yg)log(“?xi)) — (1 —yMlog(1 — «®D)] + [—yé”log(aé”“”} (A.34)
2 . .
_1 Y —(1 - y§)log(1 — af¥ D))
- @0
2 i=1 dO(k !
da}(f)(i) aZ](<3)(i)
(€]0)] (2)
dz, aek].
Let k=1 and j=2
d{—yf)log(af)(i)) —(1- ygi))log(l _ 0(53)(1))} B _yii) . - yii)) (A.35)
3O e 3
dO(l ! 0‘1 1 1 _ al 1

And the derivative of the second term of the numerator in the first equation of

Eqg. (A.34) with respect to dagg)(i) is zero. Furthermore,
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4a®0 1

@O .
a0 (i)

1

= - 1-
el

1+e*

973
@
00,5

from equation for Z( )in Eqg. (A.31)

DO
(o) =

_ 30
f)(i)l 4 1-

T (A.36)

[1 te 53)(0]2

53)0))
(A.37)

= o0

Thus, substituting Egs. (A-6) to (A-8) into (A-5) for k=1 and j=2, we obtain

3J(8) y (1 —yd

2
1
Ez ( &0 T
i=1

20

(3)(1)

)[ D01 — (P00 =

2
1 )M @ 3 (ORAPEI0)]
—EZ {—-wn (1_0‘1 ) (1 Y1) }
i=

2
1 @0, _ 0 4
= EZ {—v;
1=1

MOIY)
Ay

Similarly

9J(8) _
0@ ~

z @0 § (3)(1)

@ BO L (O _
1

3
ty; oy 11) ()(l)}

y
(A.38)

_y = 50

31(0) (A.39)

960

(2)(® 8(3)(1)
ZZ
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with

3)d 3
5D — (@D _

We have now computed six partial derivatives of the cost function J(0)

(A.40)

a](6
19((23 Z @O OOk =12andj =123

since we know ocj(z)(i) from forward propagation Egs. (A.29), (A.30) and 81(5')(1) =
PO _ W with o@D from forward propagation Eq. (A.31), (A.32).
A.2.4 Partial derivatives of previous layers

Similarly with the Section above, the following holds (same proof as above)

(A.41)

m

aJ(e 1 - '

) _ 100600, = 123an4) = 12
2 ]

060

We will appose the proof from the derivative above.

Backpropagation starts in the last layer L and successively moves back one layer at a

time. For each visited layer it computes the so called error:

0J(6);
720

Using the chain rule :
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3)(8)

a0

2)(6)

aj(a)i aa§3)(l’) 6253)(0 aagz)(i) 6252)(0
6a§3)(i) az§3)(i) 60(52)(0 6252)(0 66511)
aj(e)l 60(53)(0 6253)(1') aa§2)(i) aziz)(i)
aa;@(i) 6253)(1') a(XgZ)(i) 6252)(1') 66511)
aj(e)l 60(;3)(0 6253)(1') aagZ)(i) azgz)(i)
aa§3)(i) 6253)(1') a(XEZ)(i) aZgZ)(i) 66511)

90l)

2)(6)

aj(e)l aa§3)(l’) 6253)(0 a(XgZ)(i) azgz)(i)
aa?)(l’) aZ§3)(l’) a(XgZ)(l') 6252)(1') 69512)
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Let's take a closer look at one of the terms, %.
11

3®) _ (o0 87D oD 5, (500 579D o@D 5,
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We will also calculate the above derivatives for

Also we have already mention that the partial derivatives are the activation

functions. So it will be:

@)
9A®) _ [ @nge (0 (1 _ (@0 07,
aegll) 1 11 % 1 aegll)

(OIONMNEO) (2)(® 6252)(0
1 1 1
16,776 (-0 ) —
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3D @) 20 @0, 0%

1 1 1
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aJ(6) 9J(8) 2J(B) dJ(B) J(O , N
]((3, I((lg, “(3, “(3, ’((3 as the partial derivative above,
003y 0657 005, 0057 " 963,

We should also calculate

2IC))
90"

like

ML)

[€V)
011

Factoring out the term, it will be:

9)(8) _9zP?
[CORPYNEY
00, 00,

3)() (2 2)( 2)(i 3)[{) [ (2 2)(i 2)(i
(5§ )@ egl)ag )(l)(1 _ 0(5 )(1))) + (85 )@ 951)0(5 )(l)(l _ ag )(1)))

+ (823)0)9;21)0(;2)(0(1 _ (ng)(i)))

@)®

0z . . . . . . . .
The a(;(l) partial derivative will be replaced each time with an input, in our case
11

X1, X5.

So,

9](8) azf)@ ( 6(2)(1))
v (1) 1
6911 6911

0](8) 09J(6) aJ(6) aJ(8) 0J(8)
20D a0t ” 90l " 90D’ 90

We should also calculate as the partial derivative above,

. 0](8)

like aegll)'

We know ocj(l)(i) from the input values, but we do not know 61(3)(0 k=1,2,3. Let’s
compute it.

We know that:
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NOON 3](6);
T 5,00

5 {[—yil)IOg(a?)(l)) _ (1 _ yil))log(l _ 0(53)(1))] _ ygl)log(af)(l))}
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]
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da®D 5,0 do@D

X . - -
a2 30 4,0

since considering a function F(x,y) where x = x(t),y = y(t)

dF_aFdx_I_E)de
dz OJxdt Odydt

Then,

5 {[—ygl)log(a?)(l)) _ (1 _ ygl))log(l _ (X:(L3)(1))] _ ygl)log(ag3)(l))}

—(1 = yMlog(1 — Py
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da; !

- _
e o)
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(A.43)
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Similarly
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Furthermore from Eq. (A.35)

O] A.44
dog ™ _ 01— 0 (A.44)
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dz;
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Finally, from Eq. (A.31)
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Substituting Egs. (A.42) — (A.45) into Eq. (A.41) we obtain

8_(2)(1) —
]
(A.47)
M 1— @
_ 6](9).1 I _ +( V1 ) o(53)(1)(1_0(53)(1))6(2) gz)(l)(l_agz)(i))
220 AP0 T B0 1j j
vy, =y | @D\ a@ 20 @)
1 1 1 1
+ (3)<l)+ 50| @ (1_0‘2 )921 Q (1_0‘1 )
a, 1—a,
erforming the multiplications (similarly to Eq. (A-9)) we obtain
Performing the multiplications (similarly to Eq. (A-9)) we obtai
@0 _ ®Da@ @0 @MY, <D a@ @20 @)
50 = §PVeP PV (1 - (PO + 5PVP PV (1 — P D)
0@
@O _ [0 B0 (z)(l) @)
8 [6 ][ (2)] - )
S [sR0 sR0 520
@ @ a@
02 9 g -
@O @0 12 @0 , (1 — @O
= [8; 5, ][9(2) o) 9(2)] [ (1 a )]
22
= 5@ = [§DDYD ]« [a@D 4 (1 — c@D)] (A.48)

Taking the average of the two training samples i = 1,2
8@ = §30@ x (a@ x (1 — 0((2)))

Now we can compute the other six partial derivatives of the gradient vector
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2)(6) _
20}’

1 C o (A.49)
Ez PO ePD k=123andj =12
i=1

with

(2)
1k

. . 16 . . (A.50)
@O _ (2)(® (2)(®
2k

all known from forward propagation

Thus, for any iteration we can compute the gradient V J(0) from the values of 8 of

the previous iteration and the results of the forward propagation.

aJ a] 0] d]

V() = .
20" " 90l) 90" " 90l

Using Egs. (A.39), (A.49), (A.50)
The new values of 7] are [9511), . 9;12) |9§21), e, Gg?]new

1 1 2 2
=[67,...,0516%,...,0% 614 —aV]
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Appendix B. Implementing Convolution Neural Networks in
TensorFlow

In this Appendix contains techniques about image classification through Convolution
Neural Network. Firstly, a model for binary classification with less convolutional layers
is presented. Secondly, a model for multiple classifications is discussed which contain
a lot of convolutional networks. Finally, a model for data augmentation shows

techniques for image processing.

B.1 A model for binary classification

Below in Fig. A.1 we illustrate the implementation of a Neural Network model for
binary classification in code. The NN has 3 layers, one layer is the input the second layer
is the hidden one and the third layer is the output. The hidden layer has 1,024 hidden
units and we use Relu activation as we have mentioned in the text above. The output

layer has 1 unit. The loss function is binary crossentropy and the optimizer is RMSprop.

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

from tensorflow.keras.optimizers import RMSprop

# Flatten the output layer to 1 dimension

x = layers.Flatten()(last_output)

# Add a fully connected layer with 1,024 hidden units and ReLU activation
x = layers.Dense(1024, activation="relu')(x)

# Add a final sigmoid layer for classification

x = layers.Dense (1, activation="'sigmoid')(x)

model = Model( pre_trained_model.input, x)

model.compile(optimizer = RMSprop(Ir=0.0001),

loss = 'binary_crossentropy’,

metrics = ['accuracy'])
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history = model.fit(
train_generator,
validation_data = validation_generator,

epochs = 20)

Figure B. 1 CNN with one Dense

B.2 A model for multiple classification

The coded model below is utilized for 3 class classification. The model has 4
convolutional and maxpooling layers. 64 filters are utilized, of size 3 X 3. Then, filters
are increased to 128. The maxpooling layer size is 2 X 2. The activation function for
convolutional layers is Relu. The Neural Network has 3 layers. First layer is the input,
second layer is the hidden one and third layer is the output. The input layer has images
with 150 X 150 size and 3 byte color (Red, Green, Blue). The input images are first
Flattened and then the Dropout technique is used (see text in Section 2.2) for
definitions). The hidden layer has 512 units and Relu activation is used. The output layer
has 3 units, since there are 3 classes. The output activation function is SoftMax, which
is more suitable for multiclass classification than Relu. The loss function is categorical

crossentropy and the optimizer is RMSprop.

import tensorflow as tf

import keras_preprocessing

model = tf.keras.models.Sequential([
# Note the input shape is the desired size of the image 150x150 with 3 bytes color
# This is the first convolution
tf.keras.layers.Conv2D(64, (3,3), activation="relu’, input_shape=(150, 150, 3)),
tf.keras.layers.MaxPooling2D(2, 2),
# The second convolution
tf.keras.layers.Conv2D(64, (3,3), activation="relu’'),

tf.keras.layers.MaxPooling2D(2,2),
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# The third convolution
tf.keras.layers.Conv2D(128, (3,3), activation="relu’),
tf.keras.layers.MaxPooling2D(2,2),

# The fourth convolution
tf.keras.layers.Conv2D(128, (3,3), activation="relu’),
tf.keras.layers.MaxPooling2D(2,2),

# Flatten the results to feed into a DNN
tf.keras.layers.Flatten(),
tf.keras.layers.Dropout(0.5),

# 512 neuron hidden units
tf.keras.layers.Dense(512, activation="relu'),
tf.keras.layers.Dense(3, activation='softmax')

1)

model.summary()

model.compile(loss = 'categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'

1)

Figure B. 2 A model used for multiple classification.

B.3 A model for data augmentation

The code below is used to apply the data augmentation technique. Firstly, we prepare
the training and validation data before they are used in the neural network process.
Some of the training images are used to rescale, rotate 40%, width shift range 20%,
height shift range 20%, shear range 20%, zoom 20%, horizontal flip and fill mode. After
data augmentation, the training images have 150 X 150 size, the class mode is
categorical, since there are 3 classes, and the batch size of images is 126. The validation

data has 3 X 3 size, the class mode and the batch size are the same as the training data.

import tensorflow as tf
import keras_preprocessing

from keras_preprocessing import image
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from keras_preprocessing.image import ImageDataGenerator

TRAINING_DIR = "/tmp/rps/"
training_datagen = ImageDataGenerator(
rescale = 1./255,
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,

fill_mode='nearest')

VALIDATION_DIR = "/tmp/rps-test-set/"

validation_datagen = ImageDataGenerator(rescale = 1./255)

train_generator = training_datagen.flow_from_directory(
TRAINING_DIR,
target_size=(150,150),
class_mode='categorical’,

batch_size=126
)

validation_generator = validation_datagen.flow_from_directory(
VALIDATION_DIR,
target_size=(150,150),
class_mode='categorical’,

batch_size=126
)

Figure B. 3 Data augmentation technique.
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Appendix C. Annotating images with ground truth bounding boxes

Image annotation is defined as the task of annotating an image with labels for
supervised machine learning. Labels are chosen to provide the network with
information about what is shown in the image. In this thesis the annotated traffic

lights classes, such as green, red and yellow, are used for training and validation.

The majority of computer vision models are created using image annotation tools. The
latter usually involve manual work from users, sometimes with computer-assisted
help. Users define the labels, known as “classes”, and provide the image-specific
information to the computer vision model. After the model is trained, it will predict
and detect those features in new images that have not been annotated yet (Boesch,

2021).

There are many free tools for image annotation tasks. Some of them are (Morgunov,

2021):

e VGG Image Annotator (VIA)
e CVAT - Computer Vision Annotation Tool
e Labellmg
e Visual Object Tagging Tool (VoTT)
Labellmg®® is a graphical image annotation tool which is open source. This tool is

selected for creating label ground truth bounding boxes in the image dataset,

especially in cases of datasets over 10,000 images.

To install the tool, one needs to go to the Labellmg 1.8.5* website, which describes in
detail the installation steps. After installation, the Labellmg interface (see Fig B.1) is
displayed on the screen. For uploading the images from the dataset, the photos are
selected by selecting the “Open Dir” command. Next, the user selects the correct

folder (see Fig B.2).

13 Github repository of darrenl tzutalin: https://github.com/tzutalin/labellmg
1 https://pypi.org/project/labelimg/
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@ labellmg
File Edit View Help

¥ Ogen Ctri+0
'z Ctri+U
(4 age-Save Dir Ctri+R
¥ Open Annotation Ctrl+Shift+O
Open Recent »
Save Ctri+S
< PascalVOC Ctrls
Save As Ctri+Shift+S
@ Close CtrisW
£ ResetAll
@ auit cul+Q
Prev Image
</>
PascalvOC
Create\nRectBox
4

- o X
8ox Labels R
] dfficutt
[[] use default labtel
File List ¢

Figure C. 1 Open Directory

Subsequently, the location to save the annotation file is selected. This is done by the

command Change Save Dir.

Bations to the directory

« data > Traffic_lights > annotation

Opyduwon ~
@ OneDrive

= Autéc o unohoyic
P Avtielpeva 3D
8 sivieo

15 Eyypoga

& Ewoéveg

B Empéveia epyac
3 Movown

& Itoixeia Mync
E905(C)

~- SPPHD U3 (D)

odxeroc ||

Bax Labels &>

] difficutt

(] use default labtel

Figure C. 2 The location of files
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After that, the annotation images will be saved in a format recognized by the YOLO

algorithm. The save format should be changed from the Pascal VOC to YOLO.

@ 1abellmg C:/Users/pepi1/OneDrive/Eyypawa/EXONH/Amhwparikn/data/S2TLD (1080x1920) /S2TLD( 1080x1920) /IPEGImages/2020-03-30 11_36_36.686197486,pg

Box Labels

File Edit View Help
[ difficult

Open
e [ use default labtel

Open Dir

@

Change Save Dir

Next Image
File Uist

Create\nRectBox

[

Edit
RectBox

Figure C. 3 The save format (Pascal/VOC)

@ labellmg C/Users/pepi1/OneDrive/Eyypawa/IXONH/Amhwiatixii/data/S2TLD(1080x1920) /S2TLD(1080x1920) /IPEGImages/2020-03-30 11_36.00257216992jpg

Box Labels

File Edit View Help
O difficult

[ use defaul lebtel

Change Save Dir [k

»

Next Image

]

Frev Image

File List

=4
Create\nRectBox

@

Edit
RectBox

Figure C. 4 The save format (YOLO)
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In the final step, the label ground truth bounding boxes are created on the custom
images. The ground truth bounding boxes are drawn by the Create\nRectBox button.

Now, the ground truth bounding boxes can be drawn over the image.

Box Labels
] difficult

[ use defesk labtel

[ traffic light red

Fila List

[ affic hght red|
o
traffic light red

Figure C. 5 Create\nRectBox button for drawing the ground truth bounding box

Each time drawing the box is completed, a new Labellmg window pop up shows up.
The object name in the text field of Fig, B.5 is defined by the user. Once labeling
objects in the image is completed, the Save button on the left menu or command ctrl+

s (of keyboard) should be clicked to save the annotation images in the folder.

The final custom dataset is ready for object detection. The annotation tool extracts
the information that it needs (txt files!®) that contain the coordinates of ground truth
bounding boxes (scaled from 0 to 1) and the classes of the objects, which are included

in the image. In our case, these objects are traffic lights.

15 The txt file should be saved in the same directory, and the same name as the image.
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