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Abstract 
 

This thesis focuses on two important aspects of autonomous vehicles:  Control of the 

vehicle’s longitudinal and lateral motion, and recognition of the objects in the vehicle’s 

drivable space.  In terms of vehicle control, we first drilled down to the existing 

kinematic and dynamical models used to describe the motion of the vehicle.  

Subsequently, we developed appropriate lateral and longitudinal controllers to be 

used in the CARLA vehicle simulator. For longitudinal control we developed a PID 

controller, while for lateral control we developed a Stanley controller, and we 

implemented both in the Python language. The controllers generated brake, throttle 

and accelerator commands to drive the vehicle dynamical model in the CARLA 

environment. For longitudinal control, we tuned the gains of the PID controller to 

achieve satisfactory performance.  Τhe results indicated that a PD controller  

appropriately tuned resulted in good performance. In terms of visual perception, we 

drilled down on aspects of existing related methods and techniques and outlined how 

they can be used to achieve this very complex task.  Subsequently, we developed 

Python routines to process the semantic segmentation output of a deep neural 

network and perform relatively simple tasks, such as ground plane estimation, lane 

marking identification, object recognition within predefined bounding boxes and 

distance estimation between the recognized objects and the vehicle. Possibly the 

most significant contribution of this thesis is the systematic presentation of existing 

fundamental knowledge in the above two areas in a way that one can build upon to 

develop new, improved concepts for vehicle control and visual perception. 
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Περίληψη 

Η παρούσα διπλωματική εργασία εστιάζεται σε δύο σημαντικές πτυχές των 

αυτόνομων οχημάτων: α) Στον έλεγχο του οχήματος σε διαμήκη και πλευρική κίνηση 

και β) στην αναγνώριση του πεδίου οδήγησης του οχήματος.  

Όσον αφορά στον έλεγχο του οχήματος, αρχικά εξετάσαμε τα υπάρχοντα κινητικά και 

δυναμικά μοντέλα που χρησιμοποιήθηκαν για να περιγραφεί η κίνηση του οχήματος. 

Στη συνέχεια, αναπτύξαμε κατάλληλους πλευρικούς και διαμήκεις κατευθυντές που 

χρησιμοποιήθηκαν στον προσομοιωτή οχημάτων CARLA. Για το διαμήκη έλεγχο 

αναπτύξαμε κατευθυντή PID, ενώ για τον πλευρικό έλεγχο αναπτύξαμε κατευθυντή 

Stanley και υλοποιήσαμε και τους δύο κατευθυντές σε γλώσσα Python. Οι τελευταίοι 

υπολογίζουν τις εντολές επιτάχυνσης και επιβράδυνσης (θέση των πεντάλ γκάζι και 

φρένου) καθώς και κατεύθυνσης (γωνία τιμονιού) που δίδονται στο δυναμικό 

μοντέλο του οχήματος στο περιβάλλον του CARLA. Για τον διαμήκη κατευθυντή, 

επιλέξαμε τις παραμέτρους PID για να επιτευχθεί ικανοποιητική απόδοση. Σύμφωνα 

με τα αποτελέσματα, ο κατευθυντής PD με κατάλληλες παραμέτρους οδηγεί σε καλή 

απόδοση. 

 Όσον αφορά στην οπτική αναγνώριση του πεδίου οδήγησης, εξετάσαμε τις πτυχές 

βασικών υπαρχόντων σχετικών μεθόδων και τεχνικών και σκιαγραφήσαμε πώς 

μπορούν να χρησιμοποιηθούν για την επίτευξη αυτού του πολύπλοκου στόχου. Στη 

συνέχεια, αναπτύξαμε συναρτήσεις Python για την επεξεργασία της εξόδου από 

υφιστάμενο νευρωνικό δίκτυο εννοιολογικής κατηγοριοποίησης (semantic 

segmentation) και για να υλοποιήσουμε σχετικά απλές δράσεις, όπως η εκτίμηση του 

επιπέδου του εδάφους, η αναγνώριση σήμανσης της λωρίδας, η αναγνώριση 

αντικειμένων εντός προδιαγεγραμμένων πλαισίων οριοθέτησης και η εκτίμηση της 

απόστασης μεταξύ των αντικειμένων αυτών και του οχήματος. Πιθανόν η πιο 

σημαντική συνεισφορά της διπλωματικής αυτής εργασίας είναι η συστηματοποίηση 

του υφιστάμενου  γνωστικού υπόβαθρου στους παραπάνω δύο τομείς ώστε να 

χρησιμοποιείται στην ανάπτυξη νέων βελτιωμένων προσεγγίσεων για τον έλεγχο του 

οχήματος και την οπτική αναγνώριση πεδίου. 
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Chapter 1 Introduction 
 

 

 

In recent years, autonomous vehicles are becoming progressively important in the 

automotive industry and oftentimes monopolize the interest of the media. In this 

area, significant research is being conducted in both academia and industry. 

Furthermore, several companies are testing models of autonomous vehicles on the 

road such us Tesla1 and Waymo2.  

It has been ascertained that the launch of autonomous vehicles will have many 

positive effects. For example, accidents may decrease due to sophisticated safety 

systems embedded in the vehicles and the absence of human errors. Passenger 

convenience, less ecological impact and the more efficient use of road infrastructure 

are also considerable advantages. However, there is a long way to go for the 

commercial launch of autonomous vehicles, and much more research, development 

and testing are needed.   

Active areas of research and development include dynamic motion planning, control 

of the motion of the vehicle, visual perception, safety concepts in urban areas, real 

time decisions and others.  The present thesis focuses on two such areas of self-driving 

vehicles; dynamic control and visual perception. Both areas are complex, highly 

promising, and fit the background of the students in the Financial and Management 

Engineering Department of the University of the Aegean. 

In dynamic vehicle control, the fundamentals include a solid analysis of the vehicle 

longitudinal and lateral dynamics and the use of relevant approaches in control 

systems. In visual perception, deep neural networks are used to detect the road 

infrastructure such as lanes, obstacles, traffic signs and traffic signals, as well as 

moving objects, such as other vehicles, bicycles, pedestrians.  

                                                 
1 https://waymo.com/ 
2 https://www.tesla.com/autopilot 

https://waymo.com/
https://www.tesla.com/autopilot
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In order to gain the particular necessary knowledge in these areas, we followed 

relevant Coursera courses3 in: 

 Introduction to Self-Driving Cars (University of Toronto) 

 State Estimation and Localization for Self-Driving Cars (University of Toronto) 

 Visual Perception for Self-Driving Cars (University of Toronto) 

 Machine learning (Stanford University) 

We also used the open source autonomous vehicle simulator CARLA to conduct 

relevant experiments (Dosovitskiy, et al., 2017).  

This thesis  

 presents and explains the basics of vehicle dynamics 

 uses established control approaches to control these dynamics both in the 

longitudinal and lateral sense.  Simulation experiments are used to tune the 

parameters of the longitudinal speed controller and draw interesting 

conclusions 

 presents and explains the basics of visual perception 

 develops software using relevant available functions to perform visual 

perception tasks, based on CARLA visual inputs. 

This thesis contributes to the understanding of the complex technological background, 

upon which the vehicle control and visual perception tasks are based.  Furthermore, 

it explores aspects of both areas and indicates how simulation and the related 

software development environment may be used to develop and test important 

concepts towards contributions in these areas.  

The structure of the remainder of the thesis is as follows:  Chapter 2 provides an 

introduction to self-driving hardware and software architectures, discusses safety 

assurance and overviews the need of sensors and computing power. Chapter 3 

introduces the two types of vehicle control, lateral and longitudinal control.  

Furthermore, it presents the implementation of an appropriate controller and the 

                                                 
3 https://www.coursera.org/ 

https://www.coursera.org/
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tuning of its parameters through simulation.  In Chapter 4, convolutional neural 

networks are described, and a case study is presented, involving three major tasks: 

drivable space estimation, lane estimation and object detection. The conclusions of 

the work are given in Chapter 5. 
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Chapter 2 The need of autonomous vehicles 
 

 

 

2.1 The impact of autonomous vehicles 

The basic role of technology is to facilitate humanity with the necessary precondition 

for respect to the environment. For several decades now, as technology evolves and 

the planet's population has increased, the need to create new innovative ventures is 

becoming more pressing. One of them is the creation of autonomous vehicles. To 

achieve this, science and technology have to collaborate. 

The presence of driverless vehicles will solve many everyday difficulties as well as will 

improve universal problems such as global pollution. This will be achieved by removing 

congestion, especially in urban centers, reducing accidents and pollution. Of course, 

such an action requires hard and precise work as well as many experiments and 

studies. 

The software of autonomous vehicle must be precise, fast and perfectly programmed 

to grasp the space in which it moves and to prevent or avoid the intentions of other 

vehicles. It is clear that improper design of such a vehicle can be fatal for its user and 

also for vehicle users. 

Impact on traffic congestion 

It is worth considering the hours everyone spends driving. A typical example is the 

Americans who, according to the American Society of Civil Engineers, spend more than 

6.9 billion hours per year on the road (American Society of Civil Engineers, 2017). Also, 

various university studies report the so-called “phantom traffic jam”, in which drivers 

create a "stop-and-go" traffic, regardless of lane changes, merges or other disruptions.  

The key to resolve the above phenomenon is the communication between the self-

driving vehicles and their surroundings in order to be able to identify the ideal route. 

Needless to say, the reduction of traffic congestion will lead to reduction of accidents 

and traffic deaths. For the above reasons, the pace control of the autonomous vehicles 

will smooth the flow of traffic for all cars. 
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Impact on mobility 

One of the main issues that arise during driving is the movement of highways and the 

speed at which the vehicle will reach its destination as quickly as possible. Of course, 

arrival requires the safety of all drivers. Research from time to time on the launch of 

the autonomous vehicle in market has shown that driverless vehicles could increase 

lane capacity (vehicles per lane per hour) on highways. 

To begin with, the ability to monitor every single second surrounding traffic and 

respond with finely tuned braking and acceleration adjustments should enable 

autonomous vehicles to travel safely at higher speeds and with reduced headway 

between each vehicle. Furthermore, autonomous vehicles will greatly facilitate people 

who have difficulty to drive or cannot drive, such as seniors and people with 

disabilities. 

Impact on safety 

One notable reason that urges researchers to study more and everything related to 

self-driving cars is the plethora of accidents. Worldwide, 1.35 million people are killed 

each year in car crashes and the majority of these accidents are due to fatal human 

errors while driving (e.g. driver inattention, malaise, alcohol, cell phone use, speed 

limit transgression) (WHO, 2018). A cooperative autonomous driving environment will 

be incapable of preventing all accidents.  

Autonomous vehicles will reduce traffic accidents, deaths and injuries especially those 

that result from driver distraction. However, there are some risk factors that deserve 

attention. First of all, passengers of AVs (Autonomous Vehicles) should not become 

overtly sure of themselves and neglect to take elementary precautions, such as 

fastening their seat belt. In addition to, pedestrians should cross streets carefully and 

not have the mentality that AVs pose no threat to them. Last but not least, driverless 

vehicles could be targeted by hackers or terrorists since their networks could become 

a breeding ground for the distribution of ransom ware or malware. Therefore, a 

foolproof system is needed which will be immune to such attacks. 
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Impact on the environment 

As the years go by, nature gives us more and more signs. Climate change is now a fact 

and phenomena such as the greenhouse effect and deforestation need to be 

controlled. Science and technology must collaborate and allow the planet to breathe.  

Autonomous vehicle technology could reduce fuel emission by accelerating and 

decelerating more smoothly than a human driver. Further improvements could be had 

from reducing distance between vehicles and increasing roadway capacity enabling 

lower peak speeds (improving fuel economy) but higher effective speeds (improving 

travel time). Thus, by reducing exhaust emissions, both time and money savings are 

achieved. 

2.2 Fundamental concepts of autonomous vehicles 

The Driving Task consists of three sub-tasks. The first one is perception, which pertains 

to the necessary mapping and comprehension of key elements in the driving 

environment, including the road, road signs, traffic signals, other vehicles, pedestrians 

and other elements that constitute the world around the vehicle. In addition to 

recognizing all moving objects of relevance, there is a need to predict their future 

state. The second sub-task is motion planning, that allows the vehicle to move from 

point A to point B successfully. For example, to travel from home to the university, the 

route the vehicle will follow should be decided. Finally, the third sub task, is to control 

the vehicle itself, that is control the vehicle’s position and speed through breaking, 

steering and acceleration decisions. All these three sub-tasks of the driving task are 

necessary in order to drive a vehicle successfully. 

Another important aspect of vehicle automation is the Operational Design Domain or 

ODD, which defines the operating conditions the vehicles are designed to operate. 

ODD encompasses characteristics such as time of day, roadways and other 

components upon which the self-driving car performance depends.  It also affects the 

level of autonomy of the vehicle. 

Level 0: A human driver has full control of the vehicle, that is all driving sub-tasks: 

perception, planning and control. 
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Level 1: The vehicle’s systems help the driver through lateral or longitudinal control 

tasks. A characteristic example of longitudinal control is the Adaptive Cruise Control 

or ACC function, which controls the speed of the vehicle at a predefined level. An 

example of lateral control is lane keeping assistance, which warns the driver when 

s/he changes lane inadvertently. 

Level 2: The vehicle’s systems exercise lateral and longitudinal control under special 

driving scenarios. However, the driver is always needed to control the vehicle. 

Level 3: The vehicle’s systems can operate partly Object and Event Detection. In this 

case, on condition of malfunction, the driver should take control of the vehicle. In 

contrast to Level 2, in Level 3 and under certain scenarios consideration of the driver 

is not necessary. 

Level 4: This is one step before full autonomy: The system may handle an emergency 

situation when the driver doesn’t intercede quickly. In some cases, the system notifies 

the driver to take control of the vehicle. 

Level 5: Full autonomy, under which ODD is unlimited; that is the system can handle 

any situation of the traffic environment. (U.S. Department of Transportation, 2017) 

2.3 Hardware and software architecture of autonomous vehicles 

To achieve vehicle autonomy above Level 2 up to Level 5, there are significant 

interventions required to any vehicle both in hardware and software.  In this Section, 

we provide a descriptive introduction to both aspects.  Later in this Thesis we drill 

down on technical details as needed. 

2.3.1 Major hardware of autonomous vehicles4 

There are two hardware categories in autonomous vehicles: Sensors and Computing 

Hardware. The latter perform certain important computations based on the inputs 

provided by the former. 

 

 

                                                 
4 Inspired by (Bussemaker, 2014) 
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Sensors 

The sensors sense and measure objects in the environment of the vehicle, or detect 

the alterations of dynamical objects in this environment.  

 

Figure 2.1 Typical sensors of an autonomous vehicle (Coursera(2019a)) 

Typical sensors of an autonomous vehicle are shown in Fig. 2.1. The camera is the eyes 

of the autonomous vehicle and is positioned on the upper part of the vehicle. For 

example, on the roof (as in most autonomous vehicles) or in the middle of the 

windshield. The Lidar sensor is placed at the highest level of the vehicle, since the plot 

of the environment around the vehicle that Lidar produces should not be obstructed 

by parts of the vehicle. The Radar sensor is placed at the front bumper and tracks the 

position of other vehicles, which are nearby. The Ultrasonic sensors are placed 

sideways in the front bumper and the rear bumper. They are used to measure objects 

that are located very close to the vehicle, such us curbs or other vehicles which are 

parked. The Wheel odometry sensor measures the number of wheels turns and 

estimates the distance travelled by the vehicle. This sensor can combine with other 

sensors, such as the GNSS/IMU antenna, in order to improve GPS information. The 

GNSS/IMU sensor receives signals from the GPS satellites and combines the 

measurements from tachometers, altimeters and gyroscope for accurate positioning 

of the autonomous vehicle.  
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The above sensors are classified into two types: Exteroceptive (or extero) sensors that 

are used to identify objects in the vehicle’s environment, and proprioceptive sensors, 

which sense ego properties, that is, properties of the vehicle of reference.  These two 

types are further examined below. 

Exteroceptive Sensors 

This sensor type includes cameras, that is passive, light-collecting sensors that capture 

detailed visual information of the environment (see for example Fig. 2.2). A camera 

uses three metrics: resolution, dynamic range and field of view. The resolution metric 

is the number of pixels that create an image; the higher number of pixels, the better 

the image quality. The dynamic range of a camera relates to the difference between 

the darkest and the lightest tones in an image. For autonomous vehicles high dynamic 

range is critical, due to the significant changes in lighting status, for example, at night. 

The field of view is defined-by the horizontal and vertical angular extent that is visible 

to the camera and can be varied through the lens selection and zoom.  

 

Figure 2.2 A typical camera with three camera lens (Autonomous vehicle 
international (2019)) 

 

The other important extero sensor is LIDAR (Light Detection and Ranging), which 

implements a surveying method that measures the distance of objects by emitting 

light beams, receiving the reflected return, and performing the necessary calculations 
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involving the related time difference and the speed of light. It usually comprises a 

spinning item that sends laser beams. The output is a three-dimensional point cloud 

map (3-D Map), which is an approximation of the geometry of the environment. LIDAR 

is not affected by environmental lighting. One important aspect of LIDAR is the 

number of laser beams used, that is 8, 16, 32 or 64 beams. A second important aspect 

is the number of points per second the sensor may collect and process. The faster 

processing, the more accurate the 3D map. One more component is the rotation rate. 

The higher the rate, the faster the 3D marks are updated. A fourth aspect is the 

detection range and is guided by the power of the light source. Finally, like the camera, 

LIDAR is characterized by the field of view, which is the angular expansion visible to it.  

Figure 2.3 presents an example of a 3D map.  Figure 2.4 presents examples of LIDAR 

sensors. 

 

 

Figure 2.3 A 3D map example (Coursera (2019a)) 
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Figure 2.4 Typical LIDAR sensors and examples of mounting on various vehicles 
(Coursera (2019a)) 

 

A third important sensor is the RADAR (Radio Detection and Ranging) that can detect 

larger objects in a shorter distance than LIDAR – see Fig. 2.5. RADAR has the distinct 

advantage of not been affected by rain. The characteristics of the RADAR sensor 

include detection range, field of view, position and speed measurement accuracy. 

Also, RADAR may cover a wide angular field in short range, a narrow field a longer 

range. 

 

 

Figure 2.5 Radar detects other objects (Coursera (2019a)) 
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The final extero sensor is the ultrasonic sensor or SONAR (Sound Navigation and 

Ranging), which measures the distance between the ego car and the car ahead or 

behind or next to it, using sound waves. SONAR is used in short range applications; for 

example, in parking scenarios in which the reference vehicle needs to manoeuvre 

close to other vehicles (see Fig. 2.6). Its characteristics include maximum range and 

the detection field of view. 

 

Figure 2.6 Self-driving car detects a free parking space with sonar (Coursera (2019a)) 

Proprioceptive Sensors 

The second category/ type of sensors includes proprioceptive sensors, which sense 

ego properties, that is, properties of the reference vehicle. A key sensor is the GNSS 

(Global Navigation Satellite Systems), such as GPS, which measures the ego position, 

velocity and sometimes heading.    

Another important proprioceptive sensor is the IMU (Inertial Measurement Unit) – 

see Fig. 2.7.  It measures the angular accelerations of the ego vehicle. The IMU 

synthesizes the outputs of three gyroscopes and three accelerometers to monitor the 

motion of the vehicle. The gyroscope is very accurate but generates noisy 

measurements. It computes the angular rotation rate, actually taken from three 

gyroscopes, that is the angular speed of the body structure relative to an inertial frame 

of reference. The accelerometer measures body accelerations which are important in 
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estimating the accurate position of the ego-car.  All these sensor measurements 

estimate the 3D orientation of the car, that is the vehicle’s, a most necessary variable 

for vehicle control. 

The last type of proprioceptive sensors includes the wheel odometry sensors, which 

measure the wheel rotation rate. This sensor records the frequency of rotation, which 

is used in estimating the speed and the rate of change of the autonomous vehicle’s 

heading. It is also the sensor that calculates the range of kilometres of any vehicle. 

                     

 

Figure 2.7 Typical IMU sensors (Coursera (2019a)) 

Computing hardware 

The central computer is shielded in the car body and it is connected with the sensors.  

It analyses the sensor outputs in order to operate steering, acceleration and brake.  

For example, Nvidia’s central computer is called Drive PX and Intel’s computer is called 

Mobileye’s EyeQ. Computing hardware performs serial and parallel computations. For 

example, the LIDAR and image processing used for segmentation mapping and object 

detection would use GPUs, FPGAs, and custom ASICs, which are special hardware used 

to perform complex computations, such as image processing. 
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2.3.2 Software architecture of autonomous vehicles5 

The software architecture of autonomous vehicles runs on the computing hardware 

overviewed   above. The main software modules of autonomous driving perform a) 

environment perception, b) environment mapping, c) motion planning, d) vehicle 

control and e) system supervision. All are essential for full vehicle autonomy.  

 

 

Figure 2.8 Software architecture of autonomous vehicles (Coursera, 2019a) 

 

Modules (a) and (b) are used to recognize the environment around the vehicle based 

on the outputs of the appropriate sensors. Module (a) recognizes where the 

autonomous vehicle is in space by detecting and categorizing necessary objects in the 

environment. These objects could be other vehicles, pedestrians, road marking, road 

signs, bikes, motorbikes and the road; that is everything that affects the driving 

behaviour of a vehicle.  

Module (b) constructs necessary maps to locate objects in the immediate 

environment of the ego car.  These maps are used for motion planning, tracking, 

collision prevention, etc.  There are three types of such maps: 

 The occupancy grid map:  It is used to capture objects in the vehicle’s 

environment.  The latter is mapped based on grid cells; a probability is 

related to each grid cell to indicate whether the cell is occupied or not.  

                                                 
5 Inspired by Coursera (2019a) 
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Certain objects are excluded from the grid map, such as the drivable 

surface, and dynamic objects 

 The localization map: It is used to track the exact position of the ego vehicle 

within its environment by combining LIDAR or camera data with other 

sensor data 

 The detailed road map: It is a fusion of existing data and incoming static 

data regarding the ego vehicle’s environment.  Such important data include 

line markings and road signs, which support motion planning. 

Modules (a) and (b) interact; the static data about the environment of the ego vehicle 

that are necessary to update the detailed road map are provided by the perception 

module.  The detailed road map is, in turn, used by the perception module in its object 

detection task.  

The motion planning module (c) uses the outputs of modules (a) and (b) to ensure that 

the vehicle moves from its origin to its destination in a safe and effective way.  Motion 

planning comprises the following:  

 long term planning of the entire driving task between the origin and 

destination along the predefined route; the latter comprises the on the 

best path synthesized by road segments 

 behavioural planning, which accepts the above long-term plan as input 

and constructs a short term plan, that is a set of actions and manoeuvres 

to be followed along the path of the long term plan.  For example, a lane 

change may be allowed considering the behaviour of the surrounding 

vehicles 

 Immediate or reactive planning: It defines the route and the speed profile 

to be followed, satisfying all the constraints of the ego vehicle’s 

environment.  The inputs used by this planning level include the output of 

the behavioural planner, the occupancy grid, etc. 

The controller (module d) uses as input the path of the motion planning module (c) 

and executes it in the best possible way by controlling four variables:  steering angle, 
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brake pedal position, throttle pedal position, and gear settings. The module performs 

two control actions: 

 Longitudinal control:  It regulated the break and throttle pedal positions, 

and the gear settings to achieve the desired speed set by motion planning 

 Lateral control:  It regulates the steering angle to follow the planned path 

also set by motion planning 

The system supervisor (module e) ensures that all systems are functioning properly 

and notifies the driver of any malfunctions or issues.  It includes 

 The hardware supervisor that monitors data from all ego vehicle’s 

hardware. The data of each monitored piece of hardware are examined 

whether they fall within the expected range for the environment in which 

the ego vehicle operates 

 The software supervisor monitors all software outputs and detects any 

inappropriate values, actions, or dissimilarities between outputs of 

different software modules 

2.4 The planning hierarchy 

In this Section, we discuss the decision making that is necessary to be carried out in 

an autonomous vehicle. There are three types of related decisions a) long-term 

planning b) short-term planning and c) immediate-term planning (Urmson, et al., 

2008). The first type concerns long-term planning and is responsible for the 

autonomous vehicle to travel from the one point (origin) to another (destination). For 

example, from Athens to Thessaloniki or from the university to home. It results in a 

high-level plan for the entire driving task, including which roads to travel, which lanes, 

which turns to make, etc. 

The second type of decisions concerns short-term planning, including when the 

autonomous vehicle must change lane with safety, when it should execute a right turn, 

etc. These decisions involve control and trajectory planning and answer questions of 

the type, how do I follow a lane on this curved road? What steering input should I 

apply? Should I accelerate or brake? If so, by how much. 
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To clarify the above two types of decisions, consider the following example. Let’s 

assume that the vehicle will enter an intersection, and then turn left at this 

intersection (see Figs. 2.9 and 2.10). This task falls in the short-term planning type as 

the related decisions involve lane changes and stopping locations. Given that the 

intersection is controlled by traffic lights, the vehicle should decide if it should change 

lanes in order to turn left. Then, as it approaches the intersection it should choose to 

slow down smoothly in order to respect passenger comfort.  

 

 

 

Figure 2.9 Turning left at an intersection: The vehicle should also stop just before the 
pedestrian crossing. (Coursera 2019a) 

Moreover, there situations that may arise along the way. The decisions to address 

these situations fall into the immediate decision type and require safe reactions from 

the planning system.  Object detection and event detection and response play a very 

critical role here. What if another vehicle pulls into the turn lane in front? The ego 

vehicle would need to stop earlier to make room for the other vehicle. What if the 

stop lines weren't marked? In this case, the ego vehicle would have to approximately 
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judge where the implied stop line is and stop before the pedestrian crossing. What if 

there were other vehicles behind the ego vehicle or even stalled in the intersection? 

How does the decision to execute a left turn change based on the many possible 

scenarios that can rapidly arise in normal driving? The final result is an enormous list 

of possible decisions that must be taken and evaluations that have to be made on 

different timescales. In every scenario, there is a need to have a reliable set of choices 

that can be evaluated in real time and be updated as new information comes in. 

Furthermore, even a seemingly simple driving scenario requires three or four levels of 

decisions and must then be executed with careful vehicle control. This example 

illustrated the constant stream of decisions needed for motion planning.  

To represent the immediate type decisions in the software of the autonomous vehicle 

involves two methods. The first method is reactive planning. In this method we define 

sets of rules that only consider the current state and not future predictions.  These 

rules take into account the current state of the ego vehicle and other objects in the 

environment and produce immediate actions. An example of such rules would be, if 

there is a pedestrian crossing the road, stop, or if the speed limit changes, you have 

to adjust your speed to match it. In both examples, the system observes current 

events and makes a decision based on immediately available information.  

Another method of planning is predictive planning. 
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Figure 2.10 Intersection, decelerate smoothly to the stop line (Coursera 2019a) 

 

In predictive planning we make predictions on how other agents in the environment 

will move over time, including vehicles and pedestrians. This prediction information 

affects all involved decisions.  This is a more natural way to generate decisions and 

relates closely to how humans operate vehicles. An example of rules in predictive 

planning is if the car has stopped for the last 10 seconds, then it's probably going to 

stay stopped for the next few seconds. So, maybe there is a way that the ego vehicle 

can move past it safely. Or consider a pedestrian jaywalking: the pedestrian will enter 

the ego vehicle lane by the time it gets close to it. Then, the vehicle needs to slow 

down and give the pedestrian a chance to cross the road ahead of the ego vehicle. The 

system predicts where other objects on the road will be in the future before it makes 

the needed decisions. Accurate predictions of the actions of the other actors in the 

environment adds a significant layer of complexity to the perception tasks. 

Nonetheless, the scenarios of a safe handling of self-driving vehicles, are expanded by 

predictive planning. 
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2.5 Safety concerns 

Prior to the deployment of autonomous vehicles, Governments have been active in 

setting safety rules to prevent accidents from hardware or software malfunctions. 

Furthermore, the parties involved in developing autonomous vehicles are developing 

and testing safety systems. Testing may involve creating traffic scenarios and testing 

them in simulators and in a real environment. Developers should be considering all 

the safety standards set by the National Highway Traffic Safety Administration 

(NHTSA). 

In this Section, we overview this critical topic.  

2.5.1 Examples of safety incidents involving autonomous vehicles 

Unfortunately, over the last five years several accidents have taken place during this 

initial and limited deployment period of autonomous vehicles. A characteristic 

example involved the autonomous vehicle of Waymo (Google), which in the Spring of 

2016 ran into the side of a bus in order to avoid an obstacle. Specifically, a bus was 

approaching the vehicle from the rear and intended to pass it, while the Waymo 

vehicle was prepared to turn (see Fig. 2.11). As the distance between the two vehicles 

was limited, the vehicle’s software estimated that the bus would not attempt to pass 

it. It turns out that buses usually pass through smaller gaps than the software 

anticipated in this case. By the time the software updated the bus location, it was too 

late, and the conflict was inevitable. Figure 2.11 shows how the autonomous vehicle 

perceived the environment. The path of the vehicle is indicated by a green background 

and right next to it, the bus with purple attempting to pass the vehicle. The red circle 

shows a piece of the autonomous vehicle wedged on the bus door.  
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Figure 2.11 Crash of Waymo car with bus (Coursera (2019a)) 

A year later, an Uber self-driving vehicle overreacted during a minor collision caused 

by another vehicle and ended up overturning (see Fig. 2.12). As it turned out, the 

controller had not been tested for such a scenario and overreacted because the 

dynamic models of the vehicle did not anticipate significant disturbance forces from 

other vehicles acting on the car. The vehicle’s controller was faced with the following 

dilemma; to crash into two cars in the adjacent lane or to collide with a motorcycle. 

It's not clear what specific decision was made, since a lawsuit has buried the details of 

the case.  

In general, since decisions in self-driving vehicles are made by multiple agents, it is 

very challenging to determine what the right action is in many unusual situations. The 

above sample cases illustrate the need for robustness integrated into the control 

systems of the vehicle, and for exploratory testing that covers as many foreseeable 

events as possible.  
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Figure 2.12 Uber’s autonomous vehicle crash (Coursera (2019a)) 

In 2018, Uber instituted an extensive program that involved safety drivers monitoring 

the autonomy software of vehicles been tested in the region of Tempe Arizona. Within 

this program, a fatal accident took place; that is, an autonomous vehicle travelling on 

a wide multilane divided road at night collided with a person riding a bicycle (Fig. 2.13).  

Several causes were found to be relevant to this unfortunate incident. First, the safety 

driver did not perform proper checks. It is rumoured that the driver was watching 

Hulu. However, Uber did not have a way to assess the driver’s carelessness. In such 

testing programs, there is need to use a safety driver monitoring system, due to the 

intrinsic difficulty of the driver to stay focused in monitoring the operation of the 

autonomous drive system. 

Second, there was significant confusion in the detection software system. During the 

initial detection at six seconds to impact, the rider (and the bicycle) was first 

considered as an unknown object. Then the rider was misclassified as a vehicle, and 

then misclassified again as a bicycle. At the end, the decision made by the autonomy 

software was to ignore the detections, since they were considered as untrustworthy 

(National Transportation Safety Board, 2018).   
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Finally, 1.3 seconds before impact, the Volvo emergency braking system detected the 

rider and would have applied the brakes immediately to reduce the impact speed, 

potentially saving the life of the victim. However, Uber had disabled the Volvo system 

when in autonomous mode because it is unsafe to have multiple collision avoidance 

systems operating simultaneously during testing. Eventually, the autonomous vehicle 

did not react to the presence of the rider and the inattentive driver was unable to 

react quickly enough to avoid the collision.  

The combination of a) the failure of the perception system to correctly identify the 

rider with a bicycle  b) the failure of the planning control system to avoid the detected 

object due to uncertainty, c) the human inattentiveness, and d) the disconnection of 

the emergency braking backup system led to this fatal accident.   

2.5.2 Safety and hazards in autonomous vehicles 

From the above cases, it is evident that design, perception and control may all lead to 

failures. Oftentimes the simultaneous operation and interaction of multiple systems 

or multiple decision-makers can lead to unanticipated consequences. 

 

Figure 2.13 Uber’s deadly crash with pedestrian (National Transportation Safety 

Board, 2018) 

In general, safety assurance is the process of avoiding unnecessary risk of harm to a 

living being. For example, driving into an intersection when the traffic signal is red 

would be unsafe as it leads to unreasonable risk of harm to pedestrians crossing the 
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intersection, to the occupants of the vehicle and to those of other vehicles moving 

through the intersection.  Furthermore, a hazard is a potential source of unreasonable 

risk of harm or a threat to safety.  

The most common sources of hazards for autonomous vehicles include:  a) typical  

mechanical faults, such as incorrect assembly of a brake system causing a premature 

failure; b) typical electrical faults, such as incorrect internal wiring leading to a loss of 

indicator lighting; c) failure in computing hardware used in autonomous driving; d) 

errors or bugs in software, or in bad or noisy sensor data, or in inaccurate perception; 

e) incorrect planning or decision-making, inadvertently selecting hazardous actions ; 

f) failures in the fallback interaction with a human driver, that is, not providing enough 

warning to the driver to resume responsibility; g) hacking , whereby a self-driving car 

is hacked by some malicious entity . 

2.5.3 Emerging safety regulation and current approaches 

The National Highway Traffic Safety Administration (NHTSA) of the US requires 

industry to develop a complete strategy addressing twelve areas in order to make 

autonomous vehicles safer (U.S. Department of Transportation, 2017). The first area 

concerns the system design, which should provide the foundation for the entire safety 

concept. Especially software design requires careful planning and control and any 

existing SAE and ISO standards from aerospace and other industries related to 

automotive should be applied. 

The other 11 areas can be categorized in two large groups. The first group concerns 

the autonomy design and the second group concerns testing of the autonomy function 

and finding ways to decrease failure.  

The first group of areas in the NHTSA framework promotes a precise practical design 

that provides designers with a clear insight of errors and constraints of the system. 

Also, it permits designers to determine supported safe cases before testing. Designers 

should also secure the autonomous vehicle has a fallback mechanism that is friendly 

to the driver and informs him for potential risks or the vehicle may return in the safety 

mode. It is very important to note that the driver may not be attentive when the 

vehicle turns to the safety mode. Thus, the designers should consider minimum risk 
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settings, until the driver takes control of the vehicle. In addition to the above, the 

driving system design should abide by all federal, state and local laws for traffic within 

ODD. The NHTSA framework also encourages designers to consider cybersecurity 

threats and the related solutions to protect the system from such threats. Finally, the 

human machine interface should be paid attention to. As a result, the driver should 

be fully aware at all times of the condition of the autonomous vehicle, for example if 

the sensors are functional, the current route, the environmental factors that may 

affect the state of the vehicle, etc. 

The second group of areas in the NHTSA framework supports severe testing and the 

development of exceptional assurance programs that are more stringent than any 

other system. Simulation, close track testing and public road driving are the three 

principal foundations of this part of the framework.  Autonomy systems with special 

components that reduce crash energy and guarantee passengers’ welfare like 

restraints, airbags and crash worthiness should be widely adopted. An important issue 

is the immediate transition of the vehicle after an accident to a safe state. All 

autonomous vehicles must have a black box, much like aircraft which records all 

necessarily data to provide information on what went wrong. Finally, the NHTSA 

recommends that consumers must be mentality trained to operate an autonomous 

vehicle.   



University of the Aegean                          Department of Financial and Management Engineering 

 

 

[26] 

 

The work of Waymo provides good insights into the application of the NHTSA 

framework.   Waymo’s safety report (Waymo, 2018) covers all twelve areas of NHTSA 

and classifies them in five safety levels shown in Fig. 2.14. 

 

Figure 2.14 Architecture safety levels of Waymo industry (Coursera (2019a) 

Firstly, the systems of Waymo safeguard the safety of behavioural driving under key 

scenarios; for example when the traffic light goes from green to red what operations 

should the autonomous vehicle software perform in order to stop the vehicle while 

managing all traffic rules?. Secondly, the functional safety of the system includes 

backups and redundancies; that is, if the primary system fails then the vehicle switches 

to a secondary backup process to lead the vehicle towards a safe state.  

In terms of non-collision safety, Waymo’s systems protect the passengers of the 

vehicle in the event of a crash. Waymo has introduced a multiple back-up system 

which includes collision avoidance systems. These systems slow down or stop the 

vehicle in the infrequent occurrence that the primary system does not detect or 

respond to objects in the route of the vehicle.  

In terms of operational safety, the system lets the passengers assume partial control 

of the vehicle, when it is in the safe mode. Finally, Waymo’s advanced non-collision 
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safety system reduces risks that relate to the system in some way. For example, sensor 

hazards or electrical system failures that could cause injuries to the passengers, 

vehicle technicians, test drivers, etc.  The Waymo team produced and tested many 

hazard scenarios to analyse moderation strategies for each of these risks. They used a 

range of methods to analyse these scenarios, such as fault trees that work from top 

down in terms of dynamic driving tasks and bottom-up in terms of small subsystem 

failures.  

For securing the above requirements, Waymo developers use simulators to test all 

changes in software (see Fig. 2.15); for example, each change or new scenario, is 

tested by simulating operation during ten million miles in the simulation software. 

During these tests, Waymo’s team performs methodical scenario investigation by 

varying multiple parameters, such as speed and position of other cars and pedestrians 

to test whether the ego-car behaves with safety.  

 

Figure 2.15 Simulation tasting of Waymo’s industry (Coursera (2019a) 

Post simulation, the team performs physical tests in closed tracks to confirm specific 

goals in safety performance.  The final step comprises tests in an actual traffic 

environment to explore more challenging scenarios. 

In 2017, Waymo in California drove 563,000 km and has encountered 63 

disconnections (i.e. one disconnection every 9,000 km.) Disconnections or 
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disengagements are the deactivations of the autonomous mode when failures are 

detected in the autonomous software or hardware or when the safe operation 

demands from the test driver of the autonomous vehicle to take control . General 

Motors (GM) in California drove 210,000 km with 105 disconnections or 

approximately one every 2,000 km. This performance is far away from the target of 

both companies of 400,000 km between successive accidents or disconnections.  

Considering that accidents are unique events, the report of DMV (Department of 

Motor Vehicles, 2018) states that more than 8 billion miles would be required to verify 

the safety case for an autonomous vehicle. With a fleet of 100 vehicles travelling 24 

hours a day, seven days a week, it would take more than 400 years to launch the first 

autonomous vehicle. For this reason, companies need to increase their fleets to earn 

more experience with the autonomous systems on the road.  
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Chapter 3 Vehicle control 
 

 

 

3.1 Introduction to vehicle control 

Vehicle control provides the actuation commands to drive the vehicle based on the 

decisions made by the perception of the environment and short-term planning. 

The architecture of vehicle control is shown in Fig. 3.1 This architecture comprises four 

major parts/layers, which are interconnected. The first layer is perception and 

recognizes the road and the environment around of the autonomous vehicle. 

Perception is synthesized by the outputs of sensors and the perception intelligence 

built-in the software of the autonomous vehicle.  Perception provides input 

information to the short-term planning layer. 

This second layer generates the speed profile and the vehicle’s path, collectively called 

the drive cycle. The latter comprises the short-term motion plan of the vehicle and 

provides the critical inputs to the third layer, vehicle control.  These inputs are the 

reference velocity, and an array of consecutive coordinates that define the short-term 

path of the vehicle (reference path). 

The third layer controls the vehicle dynamics in order to execute these reference 

inputs as best as possible.  The third layer comprises the longitudinal and lateral 

control, that regulate the longitudinal and lateral dynamics of the autonomous 

vehicle, respectively. Longitudinal control aspires to achieve the reference speed, and 

lateral control aspires to achieve the reference path.  Both control tasks are necessary 

to follow the short-term plan as accurately as possible by minimizing the errors 

between the reference inputs and actual outputs. To do so the two control schemes 

provide three control commands:  Throttle angle, break position, and steering angle 

(the same control settings as in any non-autonomous vehicle driven by a human 

driver). 
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The final layer of the architecture is the actuation layer, i.e. the vehicle 

throttle/engine, break and steering systems, which receive the signals from the 

control layer and implement these commands in the actual vehicle.  

The lateral dynamics have an impact on the longitudinal dynamics and the reserve. 

The coupling variable is the actual vehicle velocity.  It affects the lateral dynamics of 

the vehicle (due to centrifugal forces, etc.); the lateral dynamics, in turn, affect the 

actual vehicle velocity and thus the longitudinal dynamics. 

The vehicle dynamics, both longitudinal and lateral, are modelled by differential 

equations, which regulate the state of the vehicle. The forward speed and 

displacement are determined by the longitudinal forces. Lateral speed and 

displacement are determined by lateral forces and moments. During vehicle control, 

it is essential that the desired route and the desired speed be maintained stable. 

Due to the importance of vehicle control in the focus of this thesis (and especially of 

this chapter), we provide in Sections 3.2, and 3.3 an overview of longitudinal and 

lateral dynamics and control based on (Rajamani, 2012).  In Section 3.4 we focus on 

the tuning of the longitudinal controller via a well-known simulation software of 

autonomous vehicle operation. 

 

Figure 3.1 The strategy architecture of vehicle control (Coursera (2019a)) 
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3.2 Lateral control6 

Lateral control is responsible to execute the motion plan for a predetermined route. 

This is done by adjusting the steering angle, also considering possible differences 

between the actual and the planned routes (route errors). Lateral control selects a 

strategy to eliminate these errors taking into account the dynamics of the vehicle, the 

desired drive characteristics, as well the steering angle constraints  

The planned route can be described in numerous ways. A simple description is through 

a sequence of straight-line segments that connect a sequence of points along the 

route. These points may be determined by the GPS from earlier runs of the route. 

Another, improved, way to define the route is by using a sequence of continuous 

parameterized curves, which can be identified from a fixed set of motion primitives. 

To describe the lateral control strategies, in this section we present a simple model 

for the kinematics of the vehicle, a related model for the vehicle dynamics, and the 

controllers that drive the vehicle dynamics towards the desired state. 

Vehicle kinematics: The bicycle model 

In the bicycle model, the vehicle geometry is simplified as follows: The rear axle and 

the two rear wheels are represented by a single wheel; a similar representation is used 

for the front wheels and axle (see Fig. 3.2).  

To analyze the kinematics of the bicycle model, three points may be used a) the centre 

of the rear axle, b) the centre of the front axle and c) the centre of gravity of the 

autonomous vehicle. Thus, to develop the kinematic equations, it is important to 

define the reference point. More specifically, consider the coordinates of the center 

of the rear axle to be 𝑥𝑟 and 𝑦𝑟, the heading angle of the bicycle model to be 𝜃 and 

the distance between the rear axle and the front axle to be 𝐿 (see Fig. 3.2).  The 

steering angle is δ and the speed is 𝑣. Note that instantaneous centre of rotation (ICR) 

is the intersection of the straight line of the rear axle with the perpendicular line of 

the front wheel.  In the absence of slip forces and considering the radius of rotation 

from ICR to be 𝑅, then Eq. (3.1) holds.  

                                                 
6 Inspired by (Snider, 2009) and (Rajamani, 2012) 
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𝜃̇ = 𝜔 =
𝑣

𝑅
 (3.1) 

Considering the triangle of Fig. 3.2 

tan 𝛿 = 
𝐿

𝑅
 

 

(3.2) 

Thus, Eq. (3.1) becomes                     

𝜃̇ = 𝜔 = 
𝑣

𝑅
=  

𝑣 tan 𝛿

𝐿
 (3.3) 

 

 

Figure 3.2 Kinematics of bicycle model with respect to (𝑥𝑟 , 𝑦𝑟) (Coursera (2019a)) 

The equations of motion for the reference point (𝑥𝑟 , 𝑦𝑟) and the rotation angle 𝜃 are: 

𝑥̇𝑟 = 𝑣 cos 𝜃 (3.4) 

𝑦̇𝑟 = 𝑣 sin 𝜃 (3.5) 

𝜃̇ =  
𝑣 tan 𝛿

𝐿
    (3.6) 

 

For the center of the front axle (𝑥𝑓 , 𝑦𝑓) these equations according to the triangle of 

figure 3.2 become (refer also to Fig. 3.3) 
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𝑥̇𝑓 = 𝑣 cos(𝜃 + 𝛿)  (3.7) 

𝑦̇𝑓 = 𝑣 sin(𝜃 + 𝛿)  (3.8) 

𝜃̇ =  
𝑣 sin 𝛿

𝐿
 (3.9) 

 

 

Figure 3.3 Kinematics of bicycle model with respect to (𝑥𝑓 , 𝑦𝑓) (Coursera (2019a)) 

The difference between Eq. (3.6) and (3.9) result from approximations of the radius of 

rotation. 

For the centre of gravity 𝑐𝑔, with coordinates (𝑥𝑐, 𝑦𝑐), the slip angle 𝛽 needs to be 

considered (see Fig. 3.4). Let 𝑙𝑟 be the distance between the centre of the rear axle 

and the centre of gravity.  From Fig. 3.4 and considering Eq. (3.2) 

𝑡𝑎𝑛𝛽 =
𝑙𝑟
𝑅

⟹ 𝛽 = 𝑡𝑎𝑛−1(
𝑙𝑟
𝑅

) ⟹ 𝛽 = 𝑡𝑎𝑛−1(
𝑙𝑟
𝐿

𝑡𝑎𝑛𝛿) (3.10) 

If there is no slip rate, then the kinematic equations with respect to the centre of 

gravity become: 

𝑥̇𝑐 = 𝑣 cos(𝜃 + 𝛽) (3.11) 

𝑦̇𝑐 = 𝑣 sin(𝜃 + 𝛽) (3.12) 

𝜃̇ =
𝑣 cos𝛽 tan 𝛿

𝐿
 (3.13) 

Again the differences between Eq. (3.6) and (3.13) are due to the radius of rotation. 
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Figure 3.4 Kinematics of bicycle model with respect to (𝑥𝑐, 𝑦𝑐)  (Coursera (2019a)) 

The dynamics of the bicycle model  

To describe the lateral dynamics of the bicycle model let’s make the following 

simplifying assumptions: 

 The forward speed is constant  

 Other nonlinear effects, such as suspension movement, aerodynamic forces 

and road inclination are assumed unimportant.  

 

Consider the centre of gravity (𝑐𝑔) of the autonomous vehicle as the reference point.  

With reference to Fig. 3.5, the total acceleration comprises the lateral acceleration 𝑦̈ 

and the centripetal acceleration from rotation of the vehicle. 

𝑎𝑦 = 𝑦̈ + 𝜔2𝑅𝑐 (3.14) 

Considering v to be the longitudinal speed of the vehicle  

𝑣 = 𝜔𝑅𝑐   (3.15) 

Under certain simplification assumptions, the rate of the heading angle 𝜃̇ can be 

considered equal to the angular speed of vehicle.  

𝜔 = 𝜃̇ (3.16) 
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The vehicle sideslip angle 𝛽 may be defined through the triangle of Fig. 3.5.  The 

second relationship in Eq. (3.17) holds for small angles 𝛽..   

 

Figure 3.5 Relationship between the speed 𝑣 and its component 𝑦̇   

sin 𝛽 =
𝑦̇

𝑣
⟹ 𝛽 =

𝑦̇

𝑣
⟺ 𝑦̇ = 𝛽𝑣 (3.17) 

Using Eqs. (3.15), (3.16) and (3.17) into Eq. (3.14), we obtain  

𝑎𝑦 = 𝑣𝛽̇ + 𝑣𝜃̇ (3.18) 

Thus, for the lateral dynamics we may write the second law of Newton as: 

𝑚𝑉(𝛽̇ + 𝜃̇) = 𝐹𝑦𝑓 + 𝐹𝑦𝑟  (3.19) 

where m is the mass of the vehicle, and 𝐹𝑦𝑓 𝐹𝑦𝑟 are the forces applied on the front and 

the rear tires respectively (in the y direction of course). 

The moments generated by the tire forces have opposite directions and the equation 

becomes 

𝐼𝑧𝜃̈ =  𝑙𝑓𝐹𝑦𝑓 − 𝑙𝑟𝐹𝑦𝑟 (3.20) 

where 𝐼𝑧 is vehicle inertia term and 𝑙𝑓 and 𝑙𝑟 are the distances between the center of 

gravity and the front and the rear tires respectively (See Fig 3.6). 
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Figure 3.6 Lateral dynamic model with respect to cg (Coursera (2019a)) 

Forces 𝐹𝑦𝑓 and 𝐹𝑦𝑟 are given from: 

𝐹𝑦𝑓 = 𝐶𝑓𝑎𝑓 = 𝐶𝑓(𝛿 − 𝛽 −
𝑙𝑓𝜃̇

𝑣
) (3.21) 

where 𝐶𝑓 is the linearized cornering stiffness of the front wheel and 𝑎𝑓 is the slip angle 

of front tire  

𝑎𝑓 = 𝛿 − 𝜃𝑣𝑓 = 𝛿 − 𝛽 −
𝑙𝑓𝜃̇

𝑣
  (3.22) 

where 𝜃𝑣𝑓 is the angle between the actual speed vector and the longitudinal axis of 

the vehicle and δ is the front wheel steering angle (Rajamani, 2012) – see also Fig 3.6. 
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Figure 3.7 Front tire sleep angle (Rajamani, 2012) 

𝐹𝑦𝑟 = 𝐶𝑟𝑎𝑟 = 𝐶𝑟(−𝛽 +
𝑙𝑟𝜃̇

𝑣
) (3.23) 

where 𝐶𝑟 is the linearized cornering stiffness of the rear wheel and 𝑎𝑟 is the slip angle 

of the rear tire. The equation of 𝑎𝑟 is similar given by  

𝑎𝑟 = −𝜃𝑉𝑟 = −𝛽 +
𝑙𝑟𝜃̇

𝑣
 (3.24) 

Substituting the lateral forces 𝐹𝑦𝑓, 𝐹𝑦𝑟 into to the dynamic equations for the bicycle 

model (3.21) and (3.23), we obtain the following state equations: 

 

𝛽̇ =  
−(𝐶𝑟 + 𝐶𝑓)

𝑚𝑣
𝛽 + (

𝐶𝑟𝑙𝑟 − 𝐶𝑓𝑙𝑓

𝑚𝑣2
− 1) 𝜃̇ +

𝐶𝑓

𝑚𝑣
𝛿 (3.25) 

 

and 

𝜃̈ =  
(𝐶𝑟𝑙𝑟 + 𝐶𝑓𝑙𝑓)

𝐼𝑧
𝛽 +

𝐶𝑟𝑙𝑟
2 − 𝐶𝑓𝑙𝑓

2

𝐼𝑧𝑉
𝜃̇ +

𝐶𝑓𝑙𝑓

𝐼𝑧
𝛿 (3.26) 
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Assuming that the states of the system are 𝑦, 𝛽, 𝜃 and 𝜃̇, the input is the steering angle 

𝛿 and the outputs are, 𝑦 and θ,the system lateral dynamics (along the 𝑦 axis)  is given 

by Eq. (3.17) to (3.13), considering  Eqs.  (3.18), (3.25) and (3.26).: 

𝑋̇𝑙𝑎𝑡 = 𝐴𝑙𝑎𝑡𝑋𝑙𝑎𝑡 + 𝐵𝑙𝑎𝑡𝛿 (3.27) 

where  

𝐴𝑙𝑎𝑡 =

[
 
 
 
 
 
0 𝑣 𝑣 0

0 −
𝐶𝑟 + 𝐶𝑓

𝑚𝑣
0

𝐶𝑟𝑙𝑟 − 𝐶𝑓𝑙𝑓

𝑚𝑣2
− 1

0 0 0 1

0
𝐶𝑟𝑙𝑟 − 𝐶𝑓𝑙𝑓

𝐼𝑧
0 −

𝐶𝑟𝑙𝑟
2 + 𝐶𝑓𝑙𝑓

2

𝐼𝑧𝑣 ]
 
 
 
 
 

 (3.28) 

 

𝐵𝑙𝑎𝑡 =

[
 
 
 
 
 

0
𝐶𝑓

𝑚𝑣
0

𝐶𝑓𝑙𝑓

𝐼𝑧 ]
 
 
 
 
 

 (3.29) 

 

𝑋𝑙𝑎𝑡 = [

𝑦
𝛽
𝜃
𝜃̇

] (3.30) 

 

Controllers 

Two types of lateral control are typically used in autonomous vehicles. The first type 

comprises geometric controllers, which are based on the geometry and coordinates 

of the desired route and the kinematic models of the vehicle. There are two sub-types 

of geometric controllers: a) pure pursuit and b) Stanley controllers. The second type 

of control concern dynamic controllers, such as the model predictive controller (MPC). 

In this thesis we will discuss geometric controllers. 

The main idea of pure pursuit control is that a reference point is defined in the vehicle 

and a target point is set on the desired route (trajectory) at a fixed distance from the 

reference point.  The steering angle is then determined so that the vehicle turns 
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smoothly towards the route.  Typically, the center of the rear axle is used as the 

reference point and is connected to the target point on the route ahead of the vehicle 

with line of length (𝑙𝑑), which is defined as the look-ahead line. The angle between the 

axis of the vehicle and the look-ahead line is 𝛼 (see Fig 3.8).  

 

Figure 3.8 Connecting the reference point with target point (Coursera (2019a)) 

The target point on the route (trajectory), the instantaneous centre of rotation and 

the centre of the rear axle form a triangle with two sides of length R and a third of 

length 𝑙𝑑 (see Fig. 3.8).   Using the law of sines for the triangle if Fig. 3.9, and after 

some algebra 

 

1

𝑅
=  

2 sin 𝑎

𝑙𝑑
 (3.31) 

where 𝑘 =  
1

𝑅
 is the path curvature. Then, from the bicycle model, the steering angle 

δ required for the vehicle to stay on route is calculated as (see Eq. 3.3)  

𝛿 = tan−1
𝐿

𝑅
  

 

(3.32) 
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where 𝐿 is the distance between the rear and front axles and  

From Eqs. (3.27) and (3.28) we have  

𝛿 = tan−1(
2𝐿 sin 𝑎

𝑙𝑑
) (3.33) 

 

 

Figure 3.9 Steering angle needs to follow the arc towards the target point (Coursera 

(2019a)) 

The Stanley controller is a geometric path tracking controller. The main idea is to 

change the reference point.  To do so, three modifications are required (see also Fig. 

3.10): 

 Change of the reference point from the centre of the rear axle to the centre of 

the front axle. 

 Do not consider the look ahead distance but take into consideration the 

heading alignment and cross track errors.  The heading alignment error is 

shown as 𝜓(𝑡) in Fig. 3.10 where the heading relative to the trajectory is 𝜃(𝑡). 

The cross-track error is shown as e. 

This type of control strategy has the following advantages vs. the pursuit strategy: 

 It directly eliminates the heading error relative to the route 
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 The steering angle its set equal to the heading directly. 

 

For cross-track error dynamics the following equation holds (see Fig. 3.10): 

𝑒̇(𝑡) = −𝑣(𝑡) sin(𝜃(𝑡) − 𝛿(𝑡))  (3.34) 

For the heading error dynamics, the following equation holds (see also Fig. 3.10): 

𝜃̇(𝑡) =
−𝑣(𝑡) sin 𝛿(𝑡)

𝐿
 

 

(3.35) 

To eliminate the heading error relative to the planned route, the steering angle should 

be set equal to the heading  

𝛿1(𝑡) = 𝜃(𝑡)  (3.36) 

To eliminate the cross-track error a proportional control is added. This is scaled by the 

inverse of the forward speed (𝑣). If the the cross-track error is 𝑒 then the steering 

angle is given by the following equation, where function 𝑡𝑎𝑛−1 maps the proportional 

control signal to the angular range (−𝜋, 𝜋) and k is the gain of the proportional 

controller 

𝛿2(𝑡) = tan−1(
𝑘𝑒(𝑡)

𝑣(𝑡)
) (3.37) 

Combining Eqs. (3.35), (3.36) and (3.37) the control law providing the steering angle 

of the vehicle is as follows 

𝛿(𝑡) = 𝜃(𝑡) + 𝑡𝑎𝑛−1(
𝑘𝑒(𝑡)

𝑣(𝑡)
),            𝛿(𝑡) ∈ [𝛿𝑚𝑖𝑛, 𝛿𝑚𝑎𝑥]        (3.38) 

For large cross-track error: 

tan−1(
𝑘𝑒(𝑡)

𝑣(𝑡)
) ≈

𝜋

2
→  𝛿(𝑡) ≈ 𝜃(𝑡) +

𝜋

2
 (3.39) 

In this case the heading error increases in the opposite direction and the steering 

command will drop to zero when the heading error achieves (−
𝜋

2
). Then the vehicle 

continues to the route until the cross-track error becomes 0. 
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Figure 3.10 Geometry of the Stanley controller (Coursera (2019a)) 

3.3 Longitudinal control  

Longitudinal control generates the input commands, or the actuator signals, that drive 

the vehicle, i.e. the throttle and the brake commands.  Let us first review the vehicle 

longitudinal dynamic model, which is responsible for generating the forward motion 

of the vehicle. 

Vehicle longitudinal dynamics7  

 

Figure 3.11 A typical vehicle on an inclined road (Coursera (2019a)) 

                                                 
7 Inspired by (Rajamani, 2012) 
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According to Fig. 3.11, the forces acting on the vehicle are the following: the driving 

force at the front wheels of the vehicle 𝐹𝑥𝑓,  the driving force at the rear wheels of the 

vehicle, 𝐹𝑥𝑟 (if any), the aerodynamic drug force  𝐹𝑎𝑒𝑟𝑜, gravity 𝑚𝑔𝑠𝑖𝑛𝑎, and finally the 

rolling friction forces 𝑅𝑥𝑓 and the 𝑅𝑥𝑟. Based on Newton’s second law the longitudinal 

dynamic equation is therefore 

𝑚𝑥̈ =  𝐹𝑥𝑓 + 𝐹𝑥𝑟 − 𝐹𝑎𝑒𝑟𝑜 − 𝑅𝑥𝑓 − 𝑅𝑥𝑟 − 𝑚𝑔 sin 𝑎 (3.40) 

By grouping the driving forces  𝐹𝑥 = 𝐹𝑥𝑓 + 𝐹𝑥𝑓 and the rolling resistance forces 𝑅𝑥 =

 𝑅𝑥𝑓 + 𝑅𝑥𝑓 Eq. (3.40) becomes  

𝑚𝑥̈ =  𝐹𝑥 − 𝐹𝑎𝑒𝑟𝑜 − 𝑅𝑥 − 𝑚𝑔 sin 𝑎 (3.41) 

Let   

𝐹𝑙𝑜𝑎𝑑 = 𝐹𝑎𝑒𝑟𝑜 + 𝑅𝑥 + 𝑚𝑔 sin 𝑎 (3.42) 

 

The aerodynamic resistance force is provided by 

𝐹𝑎𝑒𝑟𝑜 = 
1

2
𝐶𝑎𝜌𝛢𝑥̇2 = 𝑐𝑎𝑥̇2 (3.43) 

where,  𝐶𝑎 is the aerodynamic drag coefficient, 𝜌 is the mass density of air, 𝛢 is the 

frontal area of the vehicle, which is the projected area of vehicle in direction of travel, 

and 𝑥̇ is the longitudinal speed.  

The rolling resistance depends on the tire normal force on the rear tires and the 

autonomous vehicle speed 𝑥̇: 

𝑅𝑥 = 𝑁(𝑐̂𝑟,0 + 𝑐̂𝑟,1|𝑥̇| + 𝑐̂𝑟,2𝑥̇
2) ≈  𝑐𝑟,1|𝑥̇| (3.44) 

where 𝑐𝑟,1 is the linear rolling resistance factor. 

Thus,  

𝐹𝑙𝑜𝑎𝑑 = 𝑐𝑎𝑥̇2 + 𝑐𝑟,1|𝑥̇| + 𝑚𝑔 sin 𝑎 (3.45) 

and Eq. (3.41) becomes 

𝑚𝑥̈ =  𝐹𝑥 − 𝐹𝑙𝑜𝑎𝑑= 𝐹𝑥 − (𝑐𝑎𝑥̇2 + 𝑐𝑟,1|𝑥̇| + 𝑚𝑔 sin 𝑎) (3.46) 

𝐹𝑥 is the driving or traction force that is generated by the power train. The power is 

generated by the combustion of fuel in internal combustion engines or 
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electrochemical reactions in batteries for electric vehicles. The engine torque is passed 

to the automatic transmission system, which includes a torque converter placed 

between the engine shaft and the gearbox. The gears in the gearbox change 

accordingly to the desired speed. Thus, through the differential, the power generates 

the wheel torque which finally generates the traction forces. 

The relation between the engine speed and the wheel speed its modeled as a 

kinematic constraint. The wheel rotation speed  𝜔𝑤 is the result of the engine angular 

speed 𝜔𝑒 modulated by several gear ratios including those of the torque converter, 

transmission and differential. If this combined gear ratio is symbolized as GR,  the 

equation of the wheel rotational speed 𝜔𝑤 is 

𝜔𝑤 = GR𝜔𝑒 (3.47) 

where 𝜔𝑒 is the engine angular speed.  The vehicle longitudinal speed is provided by 

𝑥̇ =  𝑟𝑒𝑓𝑓𝜔𝑤= 𝑟𝑒𝑓𝑓GR𝜔𝑒 (3.48) 

where 𝑟𝑒𝑓𝑓 is the tire effective radius.  

Considering now the practical power train inertia 𝐽𝑒 , we can write a dynamic equation 

that balances the engine torque 𝑇𝑒with the total torque needed to generate the 

engine acceleration and to overcome the momentum due to the load. Thus, the 

engine dynamic model simplifies to  

𝐽𝑒𝜔̇𝑒 = 𝑇𝑒 − (𝐺𝑅)(𝑟𝑒𝑓𝑓𝐹𝑙𝑜𝑎𝑑) (3.49) 

The engine torque 𝑇𝑒 is a function of the accelerator pedal position, 𝑥𝜃 and the engine 

speed 𝜔𝑒 (in RPM - revolutions per minute) as shown in Fig. 3.12.  It may be 

approximated by a second-order polynomial equation 

𝑇𝑒(𝜔𝑒, 𝑥𝜃) ≈ 𝑥𝜃(𝐴0 + 𝐴1𝜔𝑒 + 𝐴2𝜔𝑒
2) (3.50) 

where 𝐴0, 𝐴1, 𝐴2 are engine-dependent parameters.  Thus,  

𝐽𝑒𝜔̇𝑒 = 𝑥𝜃(𝐴0 + 𝐴1𝜔𝑒 + 𝐴2𝜔𝑒
2) − (𝐺𝑅)(𝑟𝑒𝑓𝑓𝐹𝑙𝑜𝑎𝑑) (3.51) 

 

Equations (3.46), (3.48), (3.51) and (3.45) model the vehicle longitudinal dynamics, 

where 𝑥𝜃 is the input. 
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Figure 3.12 Typical engine maps (Coursera (2019a)) 

Longitudinal speed control system 8 

The longitudinal speed control system receives as reference input the desired speed 

from the navigation system and tries to minimize the error between the reference 

speed and the actual speed.  To do so, it uses the control architecture of Fig. 3.13.  The 

reference speed is compared to the actual speed, and the error is the input to the 

controllers that set the throttle (and brake) positions.  The latter are inputs to the 

vehicle dynamics described above.  The output is the actual speed. 

 

 

Figure 3.13 A longitudinal speed control feedback system 

                                                 
8 Inspired by (Francis, 2015) 
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The high level controller computes the difference between the set reference speed 

and the autonomous vehicle actual speed to produce the required vehicle 

acceleration from:  

𝑥̈𝑑𝑒𝑠 = 𝐾𝑝(𝑥̇𝑟𝑒𝑓 − 𝑥̇) + 𝐾𝐼 ∫ (𝑥̇𝑟𝑒𝑓 − 𝑥̇)
𝑡

0

𝑑𝑡 + 𝐾𝐷

𝑑(𝑥̇𝑟𝑒𝑓 − 𝑥)̇

𝑑𝑡
 (3.51) 

where 𝐾𝑝, 𝐾𝐼 , 𝐾𝐷 are the PID controller gains, 𝑥̇𝑟𝑒𝑓 is the reference speed and 𝑥̇ is the 

vehicle velocity. 

Based on the desired acceleration, the low level controller generates the throttle (or 

braking) commands. Figure 3.14 explains the action of the lower level controller. 

 

Figure 3.14 Low level controller 

Equation (3.49) can be re-written as 

𝑇𝑒𝑛𝑔𝑖𝑛𝑒 =
𝐽𝑒

(𝑟𝑒𝑓𝑓)(𝐺𝑅)
𝑥̈𝑑𝑒𝑠 + 𝑇𝑙𝑜𝑎𝑑 (3.52) 

The lower level controller uses the above equation to compute the required engine 

torque from the desired acceleration provided by the upper level controller.  It then 

computes the throttle angle (opening) form the steady-state engine map of Fig. 3.12 

based on the required torque and the engine angular speed in RPM. This is then the 

input to the longitudinal vehicle dynamics discussed above. 

3.4 Experiments on longitudinal control 

3.4.1 The CARLA (Car – Like – To – Act) autonomous vehicle simulator   

General description of CARLA 

CARLA is an open source simulator for autonomous driving and has been produced by 

a team from the Computer Vision Centre at the Autonomous University of Barcelona, 

Intel and the Toyota Research Institute using the Unreal computer game engine.  
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CARLA has been developed in order to render and simulate with flexibility and realism. 

The simulation is applied as an open-source layer over the Unreal Engine 4 (UE4), 

which makes possible future extensions by the community. State – of –the - art 

rendering quality, realistic physics, standard NPC (non-player-character) logic, and an 

ecosystem of interoperable plugins are supplied by the engine. 

Thus, CARLA is designed as a server-client system, where the server runs the 

simulation and depicts the scene (UE4) and the client is used to record data, control 

the autonomous vehicle scenarios and send commands to the vehicle.  The client API 

regulates the interaction with the server via sockets and is developed in Python. It 

sends commands and meta-commands to the server and then receives sensor 

readings. The commands are used to control the vehicle and the meta – commands 

regulate the behavior of the server. Steering, accelerating, and braking are considered 

as commands. Meta-commands reset the simulation, modify the properties of the 

environment, such as the weather conditions, the illumination and the density of the 

cars and pedestrians. 

         

 

The environment (see Fig. 3.15 and Fig. 3.17) includes 3D models of static objects 

(buildings, vegetation, traffic signs, infrastructure) and of dynamic objects (vehicles 

and pedestrians). All models are designed thoroughly in order to combine visual 

quality and rendering speed. 

Figure 3.16 CARLA simulation graphs 
(Screenshots from the DeOPSys Lab 

system) 

 

 

Figure 3.15 CARLA simulation 

environment (Screenshots from the 

DeOPSys Lab system) 
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The simulation graphs (see Fig. 3.16) includes the route of the autonomous vehicle 

and the result graphs (forward speed, steering, throttle, brake, and the error between 

the desired and the actual speed). All these graphs are shown the behavior of the 

vehicle on the default route. 

CARLA permits flexible configuration of the client’s (agent’s) sensor suite. Sensors are 

limited to RGB cameras and to pseudo-sensors, which provide ground-truth depth and 

semantic segmentation. The client determines the type, the position and the number 

of the cameras. Thus, the user specifies the 3D location, the 3D orientation with 

respect to the vehicle’s coordinate system, the field of view, and the depth of field. 

Regarding pseudo-sensors, semantic segmentation is an image processing algorithm 

that identifies objects from the camera pixels. It uses twelve sematic classes: road, 

lane-marking, traffic sign, sidewalk, wall, building, vegetation, vehicle, pedestrian and 

other. Thus, the pseudo-sensor displays the orientation and the position of static and 

dynamic objects. 

Except from the sensor and pseudo-sensor readings, CARLA provides a variety of 

measurements related to the state of the client, such as the vehicle location, the speed 

and the acceleration vector, the impact from collisions and the vehicle orientation. 

CARLA also provides measurements of the traffic environment, including the state of 

the traffic lights, the speed limit at the current location of the vehicle along with the 

percentage of the vehicle’s footprint that overlaps with wrong-way lanes or sidewalks. 

Last but not least, CARLA provides information about the exact locations and bounding 

boxes of all dynamic objects in the environment. These signals are crucial when the 

driving policies are assessed.  

The simulation is performed in discrete steps. One-time step is referred as a frame 

and the frequency rate is 30 frames per second. 
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Figures 3.17 and 3.18 show the environment of the CARLA simulator. The top window 

of the right corner of both pictures shows the semantic segmentation (right) pseudo-

sensor which includes the classes of lanes (light green colour), sidewalks (purple 

colour), traffic lights (with yellow) and cars (light blue colour). The second pseudo-

sensor shown next on the semantic segmentation pseudo-sensor is the ground-truth 

depth which is important in the initial supervised classification of an image. 

CARLA client components used in this thesis 

The autonomous vehicle in the CARLA simulator constantly receives steering, throttle 

and brake commands. For the work in this thesis we provide the server with 

appropriate settings. For example, for the control study, we have eliminated 

pedestrians and other vehicles in order to investigate the intrinsic properties of the 

longitudinal speed controller.  We have also programmed the lateral and longitudinal 

controllers in the client software (in Python).  The controllers compute the current 

position, the speed and the heading angle of the vehicle. Based on the control logic 

implemented in the client, the controllers return the commands for the steering angle, 

throttle and brake to the server. This is repeated every time frame. 

The hardware used for the Carla simulator is as follows: 

 CPU: Intel(R) Xeon(R) CPU E5-2620 0 @ 2.00GHz 

 Ram: 32GB DDR3 1333MHz 

Figure 3.18 CARLA simulation 
environment with semantic 

segmentation and depth cameras 
(Screenshots from the DeOPSys Lab 

system) 

Figure 3.17 CARLA simulation 
environment with sematic 

segmentation and depth cameras 
(Screenshots from the DeOPSys Lab 

system) 
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 Graphics card: GeForce GTX 1060 6GBF 

 Hard drive: SSD 256GB and HDD 500GB 

The above hardware specifications support efficient performance of the simulator. 

The operational system used in this thesis is Ubuntu 16.04 with CUDA drivers and 

python 3.6. For more information about to install CARLA simulator check in Appendix 

A.  

3.4.2 Experimental study of motion control 

For this thesis, we used CARLA to develop and implement the longitudinal and lateral 

controllers of the autonomous vehicle. The operation system used with the CARLA 

simulator was Ubuntu 16.4. CUDA, which was also employed to improve the 

performance of the simulator by enabling the hardware and software of the Graphics 

Processor Unit (GPU) to achieve better and faster computing performance. Also, we 

used Python version 3.6 to compile and run all client programs used by the CARLA 

server. More information on the simulator installation steps are provided in Appendix 

A. 

Controller development in CARLA 

For the longitudinal control we developed the code for the PID controller, which was 

described in Section 3.3. The PID controller takes as reference inputs the desired 

speed at the waypoints of the simulator, as well as the position that the vehicle should 

attain. The waypoints provide both the vehicle’s trajectory and the speed that become 

the reference signals for vehicle navigation along its trajectory and for the PID 

controller.  

This output of the controller is formed by the sum of three parts: The proportional 

part that multiplies gain 𝐾𝑃 with speed error, the integral part with gain 𝐾𝐼, which 

multiplies the accumulated past errors (error integral) in order to eliminate the steady 

state error (deviation between the desired speed and the actual speed), and the 

derivative part with gain 𝐾𝐷, which reduces the overshoot caused by the integration 

(𝐾𝐼) term. The output of the PID controller constitutes the throttle and brake 
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commands. Positive outputs correspond to appropriate throttle positions and 

negative outputs correspond to appropriate brake positions. 

For the lateral control that provides the steering angle we developed the Stanley 

controller, which was described in Section 3.2. The reference signal is given at the 

waypoint positions and the control routine computes the cross track and heading 

errors. To do so it uses the current way point and the previous one to produce the 

trajectory line that is expressed by the following equation (see Fig. 3.19). 

𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 (3.53) 

Based on this line, the cross-track error is computed from the following equation  

𝑒 =
𝑎𝑥𝑐 + 𝑏𝑦𝑐 + 𝑐

√𝑎2 + 𝑏2
 (3.54) 

This is the perpendicular distance between the reference trajectory and the front axle 

point (see Fig. 3.19). Eq. (3.54) is proven by geometric arguments. 

Then, using Eq. (3.37) of Section 3.2, the steering angle to eliminate the cross-track 

error is provided by the following expression.     

tan−1(
𝑘𝑒

𝑣
) (3.55) 

where 𝑘 (for any 𝑘 > 0) is a proportional gain of proportional and 𝑣 is the forward 

speed. 

Τhe heading error 𝜓 is computed by  

𝜓 = tan−1(
−𝑎

𝑏
) − 𝜃𝑐 (3.56) 

where 𝑎 and 𝑏 are the coefficients of the trajectory line and 𝜃𝑐  is the heading angle. 

By adding Eqs. (3.55) and (3.56), the steering angle is given as  

𝛿 = 𝜓 + tan−1(
𝑘𝑒

𝑣
) (3.57) 

The lateral controller provides the steering angle of the vehicle.  
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Figure 3.19 Geometry of Stanley Controller (Coursera (2019a)) 

Experimental set up 

We conducted experiments to investigate the effects of the gains 𝐾𝑃, 𝐾𝐼, 𝐾𝐷 of the 

PID longitudinal controller of Section 3.3 on the vehicle speed and trajectory.  In the 

experiments we varied systematically the values of the gains and observed the 

resulting effect. It is noted that when 𝐾𝐼 = 𝐾𝐷 = 0, then the PID controller becomes 

a P controller.  Similarly, when 𝐾𝐼 = 0 a PD controller is obtained and when 𝐾𝐷 = 0 a 

PI controller is obtained (see Table 3.1). Overall, we performed twenty-two (22) 

experiments. 

Table 3.1 The various controllers tested and the related gains 

PID PI PD P 

𝐾𝑃 𝐾𝐼 𝐾𝐷 𝐾𝑃 𝐾𝐼 𝐾𝑃 𝐾𝐷 𝐾𝑃 

 

The reference route of the autonomous vehicle is shown in Fig. 3.20. The 

measurement unit used in the x-axis and y-axis is meters (m). The total distance 

travelled by the autonomous vehicle is 1,755 m. 
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Figure 3.20 The reference route of the autonomous vehicle 

 

For the experiments we firstly set up Carla using the following parameters: 

 Weather: sunny. 

 Vehicle: Ford Mustang. 

 The total runtime before simulation lasts 200sec. 

 

Moreover, important libraries have been imported: 

 Library math 

 Library NumPy. This library accelerates the math operations used in the 

simulation by performing array multiplications, fast linear algebra operations, 

etc. 

 Library matplotlib used for plotting all graphs (e.g. the graph for the forward 

speed of the autonomous vehicle) 

 Library Time it is used to handle the time-related tasks. For example, the steps 

used to calculate the Frames per second (FPS). Also, it is used to compute 

elapsed time, and for gathering timestamps to update the PID controller. 
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Regarding the control commands steering, throttle and brake: 

 The steering wheel angle is represented it by a real number between (-1,1), 

where -1 corresponds to full left and 1 corresponds to full right 

 The angle (pressure) of the throttle pedal is represented by a real number 

between (0,1), where 1 corresponds to full pressure on the pedal and 0 

corresponds to no action 

 The brake pedal angle (pressure) is represented similarly to the throttle pedal. 

All above parameters were provided to the main program module7.py which interacts 

with the class controller2d.py.  

The performance of the controller is assessed through the mean squared error (MSE) 

provided in Eq. (3.58) 

𝑀𝑆𝐸 =
1

𝑛
 ∑ (𝑣𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑣𝑎𝑐𝑡𝑢𝑎𝑙)

2𝑛
𝑖=1 = 

1

𝑛
 ∑ 𝑣𝑒𝑟𝑟𝑜𝑟

2𝑛
𝑖=1  (3.58) 

where n are the points crossed by the vehicle. 

Experimental investigation and results 

Case 1:  Investigating the effect of the proportional gain 𝐾𝑃 on all four controller cases 

The main goal of case 1 is to assess the performance of the autonomous vehicle under 

the following values of the proportional gain 𝐾𝑃 = 0.1, 1, 5, and 10 in all four controller 

variations (PID, PD, PI, P).  In all cases in which 𝐾𝐷 and 𝐾𝐼 were not zero, these gains 

assumed the values 𝐾𝐷 = 0.01 and 𝐾𝐼 = 0.2. Thus, we performed 16 experimental 

runs (4 𝐾𝑃 values x 4 controllers). 

Table 3 presents the MSE for each case. These results are also presented in Fig. 3.29. 

From the results of the Table and the Figure, it is clear that  

 The lowest value of the proportional gain 𝐾𝑃 = 0.1 corresponds to the most 

inferior performance across all controllers 

 The value of 𝐾𝑃 = 1 corresponds to the most superior performance across all 

controllers 

 As expected, the PID controller performs better than the other controllers, 

since it offers a greater number of parameters for the designer to tune. 
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Thus, the best performance is obtained by the PID controller with 𝐾𝑃 = 1 and the 

worst by the P controller with 𝐾𝑃 = 0.1. 

Table 3.2 MSE for various values of 𝐾𝑃 and all four controllers 

𝐾𝑃 

Mean Squared Error (MSE) 

P PD PI PID 

0.1 35.14 35.12 2.09 1.9 

1 0.86 0.86 0.13 0.12 

5 1.72 1.35 0.77 0.77 

10 2.16 2.14 1.11 1.15 

 

Figures 3.21 to 3.22 drill down on the performance of the best performing PID 

controller with 𝐾𝑃 = 1. The x-axis of all graphs represents the waypoint number. 

                              

 

 

 

 

Figure 3.22 The angle 
(pressure) of the throttle 

pedal – best case 

Figure 3.21 The relationship 
between desired (orange) 
and actual (blue) speeds – 

best case 
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From Fig. 3.21 it is evident that the actual speed follows the desired speed very closely. 

This is validated by the very limited values of the speed error (in m/s) displayed in Fig. 

3.23.  At the start of the trajectory, the speed error is higher and, thus, the throttle 

and the steering commands assume significant values until the transition is complete 

(Figs. 3.22 and 3.24, respectively). 

Figures 3.25 to 3.28 drill down on the performance of the worst performing P 

controller with 𝐾𝑃 = 0.1. In this case as well, the x-axis of all graphs represents the 

duration (in seconds). 

                                   

                            

 

 

Figure 3.23 The error between 
the desired and the actual 

speed – best case 

Figure 3.26 The angle 

(pressure) of the throttle pedal 

– worst case 

Figure 3.25 desired 
(orange) and actual (blue) 

speeds – worst case 

 

Figure 3.24 The steering 
angle – best case 
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In Fig. 3.25 the desired speed and the actual speed have a significant difference, 

although, the pattern of the forward actual speed follows almost the pattern of the 

forward desired speed. 

Figure 3.26 shows that the pressure on the throttle pedal is less than the previous case 

(best case). That’s why the actual forward speed is in this case lower than the forward 

desired speed. 

Concerning the error (Fig-3.27) it is obvious that there is a large deference between 

actual forward speed and the desired forward speed at any waypoint.  

 

Figure 3.28 The error between 
the desired and the actual 

speed – worst case 

Figure 3.27 The steering 
angle - worst case 
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Figure 3.29 MSE for the various 𝐾𝑃 values for all four controllers 

From Fig. 3.29 it can be seen that the PID and PI controllers have similar performance.  

One may think that this is possibly due to the small value of 𝐾𝐷 = 0.01 in the PID 

controller. This is investigated further below. 

Case 2: Investigating the controller gains 𝐾𝐷 and 𝐾𝐼 for the PD and PI controllers 

The main goal of case 2 is to assess the performance of the autonomous vehicle under 

various values of the gains 𝐾𝐼 and 𝐾𝐷 for the PI and PD controllers, respectively. The 

values tested are those of Table 3.3 and in all cases 𝐾𝑃 assumed its nominal value of 

1. 

 

Table 3.3 𝐾𝐼 and 𝐾𝐷 values 

𝐾𝐷 𝐾𝐼 

0.001 0.02 

0.05 1 

0.1 2 

 

Thus, the procedure for this case included six (6) experiments. Tables 3.4 and 3.5 

present the MSE results for the two cases. From Table 3.4 it is clear that MSE remains 

35.14 35.12

2.09 1.900.86 0.86 0.13 0.12
1.72 1.35 0.77 0.77

2.16 2.14 1.11 1.15

P PD PI PID

KP

0.1 1 5 10
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almost the same for each value of 𝐾𝐷. Thus, the suspicion that the low value of 𝐾𝐷 is 

the cause of the PID and PI controllers displaying the same performance in Case 1 

above, is not true. 

In the PI controller case, the value 𝐾𝐼 = 2 leads to a very high value of MSE, indicating 

instability. This is validated by the simulation results.  In this case indeed the control 

system entered instability, and the violent oscillation of the throttle, the steering, and 

the speed resulted in the vehicle getting completely off course (see Figs 3.30 and 3.31).  

 

Table 3.4 MSE for the PD controller for different 𝐾𝐷 values 

𝐾𝐷 

value 

MSE 

PD 

0.001 0.90 

0.05 0.88 

0.1 0.87 

 

 

Table 3.5 MSE for the PI controller by different 𝐾𝐼 values 

𝐾𝐼 

value 

MSE 

PI 

0.02 0.29 

1 0.16 

2 217.75 
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The variation of the various parameters in this interesting case is presented in Figs. 

3.32 to 3.35 

                                       

   

 

Figure 3.31 The autonomous 
vehicle just before getting off 

course (Screenshot from 
DeOPSys Lab PC) 

  

 

Figure 3.30 The autonomous 
vehicle end position 

(Screenshot from DeOPSys Lab 
PC) 

 

 

 

Figure 3.33 The pressure of 
the throttle pedal 

Figure 3.32 The relationship 
between desired speed and 

actual speed 



University of the Aegean                          Department of Financial and Management Engineering 

 

 

[61] 

 

                                  

 

 

 

 

From Fig. 3.32 it is evident that the system becomes unstable, the amplitude of the 

speed oscillation increases, and the speed goes to 0 after the vehicle stops off course. 

The error of Fig. 3.35 presents similar characteristics.   

This instability is evident from Figs. 3.33 and 3.34 (especially the latter one). In the 

former Figure the throttle oscillates between its limits (0 and 1) and locks at 1 at the 

end of the trip.   

In Fig. 3.35, the steering angle oscillates between its limiting positions (-1 and 1) in a 

fruitless attempt to keep the vehicle close to the desired path. 

Major takeaways from the above experimental study include the following:  

 in case 1, it is observed that the PID controller with proportional gain of 1 had 

a superior error behavior. This leads to better vehicle behavior with respect to 

longitudinal control 

 in case 2, it is clear that MSE is similar for all examined values of the derivative 

gain for the  in PD controller. On the contrary, in the PI controller MSE is very 

sensitive to the integral gain.  High gain values may lead to instability. 

 

 

Figure 3.35 The difference of 
the desired and the actual 

speed 

Figure 3.34 The steering 
angle 
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Chapter 4 Object detection in autonomous vehicles 
 

 

 

4.1 Introduction to neural networks 

The main perception tasks in autonomous vehicle self-driving is to recognize static and 

dynamic objects. To detect these objects most automakers investing in the 

autonomous vehicles (AVs) use cameras.  As already discussed in Section 2.3, the 

camera is a passive sensor which provides detailed information regarding objects in 

the environment. This visual information is useful to understand the scene by 

performing tasks such as object detection, segmentation and identification. Through 

such processes, an AV may detect traffic signs or signals, other vehicles, pedestrians, 

driving lanes and other objects.    

AV perception is based on artificial neural networks that comprise layers, or groups of 

so-called neurons, which relate to other layers. The task of these layers is to convert 

the input data to outputs; this is done by computing the weighted sum of inputs and 

by normalizing using the activation functions that are allocated to the neurons (Mani, 

2019). 

 

Figure 4.1 A neural network with two layers 
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Feedforward neural networks 

A feedforward neural network (FNN) is a basic model of deep learning. The main goal 

of an FNN is to approximate some function 𝑓. Thus, it defines a mapping from input 𝑥 

to output 𝑦 through a function of 𝑥 and 𝜃 

 

𝑦 = 𝑓(𝑥; 𝜃) (4.1) 

 

For example, an FNN may receive an image as an input (𝑥) and then using the network 

connectivity and the parameters 𝜃 may classify the image to a category 𝑦 (i.e. car, 

pedestrian, etc.). 

 

Figure 4.2 Four-layer feedforward neural network (Coursera (2019c)) 

 

In the four-layer feedforward neural network of Fig. 4.2 the input x can be a vector or 

a tensor, such as one that comprises the pixels of a photo image. Then, the input is 

processed by the first layer of FNN through with function 𝑓(1)(𝑥).  Likewise, the 

second hidden layer takes as an input the output of the first hidden layer and operates 

on this output through function 𝑓(2)(𝑥); similarly, the output of the second layer 

passes through at the third hidden layer and function 𝑓(3)(𝑥). The final layer obtains 

the output of the last hidden layer and converts it to the output 𝑦.  This model is a 

Forward NN since the input data 𝑥 are processed by the intermediate computations 
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(using the related functions 𝑓) to obtain the output 𝑦 without feedback connections. 

Thus, the four-layer feedforward neural network may be represented by 

 

𝑓(𝑥; 𝜃) = 𝑓(4) (𝑓(3) (𝑓(2) (𝑓(1)(𝑥)))) (4.2) 

 

where x is the input layer  𝑓(1), 𝑓(2), 𝑓(3) are the functions of the hidden layers and 

𝑓(4) is the function of the output layer.  

During the training process, the function of the neural network 𝑓(𝑥;  𝜃) should be 

tuned in order to represent the true function 𝑓∗(𝑥) by estimating the parameters of 

𝜃. The hidden layers of the neural network are the most important ones. Each of these 

layers transform the output of the previous layer ℎ𝑛−1 using a non-linear function 𝑔, 

which called activation function, as well as multiplicative weight matrix 𝑊 and the bias 

𝑏: 

ℎ𝑛 = 𝑔(𝑊𝑇ℎ𝑛−1 + 𝑏) (4.3) 

 

These weights and bias values are the learning parameters 𝜃 of the neural network. 

The activation function 𝑔 may be one of ReLU, sigmoid, tan, Maxout Unit. For example, 

ReLU (Rectified Linear Unit) is used often as an activation function for FNN (see Eq. 4.4 

and Fig. 4.1).  

 

𝑔(𝑧) = max (0, 𝑥) (4.4) 
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Figure 4.3 ReLU activation diagram 

 

Feedforward neural networks are used for perception tasks associated with 

autonomous vehicle applications such as object classification; this process identifies 

with labels or bounding boxes objects in the picture. Furthermore, the object 

detection estimates the location as well as the objects in the area.  The other task is 

the depth estimation, which called pixel-wise task. This task helps the autonomous 

vehicle to determine where the objects are by estimate the depth value for each pixel 

in the picture. However, the semantic segmentation specifies which class each pixel 

of picture belongs to. 

4.2 Convolutional neural networks and object recognition 

Convolutional Neural Networks (CNN) execute a great number of perception tasks for 

autonomous vehicles.  A CNN is a special type of neural network suitable for 

processing data such as 1D time series, 2D pictures as well as 3D videos. For the 

purpose of this thesis we will discuss the two-dimensional case, which is central to 

image processing and object recognition (see Section 4.3). 

Network architecture 

The two main types of layers in a CNN are the convolutional layers and the pooling 

layers. For example, VGG 16, which is a CNN for classification and detection, receives 
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a picture as input and processes it through a set of convolutional layers, then  through 

a pooling layer and this process continues until the fully connected layers FC(i) and the 

Softmax output layer  (see the two equivalent representations of Fig. 4.4). 

 

 

 

Figure 4.4 VGG 16 architecture (tryolabs, 2020) 

For 2D object recognition the input picture is firstly processed using the VGG feature 

extractor which is built by alternate convolutional layers and pooling layers.  VGG 16 

accepts a 256x256x3 pixel image (3 representing the 3 RGB colors) and includes two 

convolutional layers with 64 filters each (for the meaning of a filter see next 

paragraph) followed by a pooling layer, where pooling is applied on a 2x2 pixel window 

with a stride of 2, thus reducing the height and width of the image by a factor of 2 (see 

also below for all these terms).  Subsequently, the architecture includes two more 

convolutional layers with 128 filters followed by a pooling layer of the same 

functionality, and so on, till a set of fully connected layers (FC1, FC2, FC3 see Fig. 4.4).  

The output of the concatenation of the convolutional and pooling layers is a feature 

map that contains the features of the image. The fully connected layers perform 

classification of the significant features contained in each bounding box of the image 

(for the bounding boxes see the sub-section on object recognition below).  Finally, for 
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the final detection the Softmax output layer is used which is a vector with a single 

score per class. The highest score usually defines the class of the contents of each 

bounding box.  

 

Figure 4.5 Sparse connectivity between the nodes of CNN (Coursera(2019c)) 

 

Convolution and pooling operations 

Consider a picture (image) inserted to the CNN that comprises pixels in a matrix form 

of 𝑀 ×  𝑁 ×  3 array of pixels. Every pixel represents the projection of a 3D point into 

the 2D picture plane.  The width of the input picture is in the horizontal dimension, 

the height is its vertical dimension and the depth is the number of channels.  When 

the input is a colored one, it relates to three channels: Red, Green and Blue. In a 

grayscale picture the data is a matrix of dimension 𝑀 × 𝑁.  At the boarder of the 

picture zero pixels are added, an operation called padding, which is important to 

preserve the picture’s form in order to execute the convolution operations. The zero 

padding helps the information at the borders not be lost after each convolutional 

layer. 

The convolutional layers use cross-correlation much as a linear operator. In this case 

there is sparse connectivity between the nodes of previous and the next layer (see Fig. 

4.5). Each convolution operation uses convolutional filters or kernels. The filters 

(kernels), which are set during initialization and cannot be modified afterwards, act as 



University of the Aegean                          Department of Financial and Management Engineering 

 

 

[68] 

 

feature detectors taking values during the training process. For example, a kernel 

could recognize the horizontal edges in an image. The resulting array is called feature 

map.  

The kernel is a matrix which scans (or slides) across the picture and multiplies the 

matrix of the input picture. A typical choice is to keep the kernel size at 3 × 3 or 5 ×

5. In our case we choose three 3 × 3 Kernels, each corresponding to a channel RGB 

(Red, Green, Blue). 

Every kernel includes a set of weights and a single bias. The cross-correlation 

operation is given by the following equation 

 

(𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑∑𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)𝐾(𝑚, 𝑛)

𝑛𝑚

 (4.5) 

 

where I is the input matrix (the 2D picture), 𝐾 is the kernel, 𝑖, 𝑗 are the pixel indices on 

which the convolution is applied, and m and n are the width and the height of the 

kernel (Ian Goodfellow, 2016).  

In the case of the 2D- colored picture with three input channels, each one of them is 

convoluted with the corresponding kernel; in this case Eq. (4.5) is executed three 

times, one for the red channel, one for the green channel and one for the blue 

channel. 
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Figure 4.6 A 3×3 kernel (per channel) moves over the input to generate the output 
(Coursera, 2019c) 

 

Referring to Fig. 4.6, the padding is represented by the zeroes at the edges of the 

matrix of each channel.  The first operation that involves the red channel and the 

corresponding kernel is 

 

(0𝑥0)  + (0𝑥(−1)) + (0𝑥1)  + (0𝑥(−1)) + (0𝑥(−1)) +  0𝑥(−1))  

+ (0𝑥0)  + (0𝑥(−1)) + (2𝑥1)  =  2 

 

(4.6) 

 

Similarly, the first operation involving the green channel with its kernel is 

(0𝑥1)  + (0𝑥0)  +  (0𝑥(−1))  + (0𝑥(−1))  + (0𝑥(−1))  + (1𝑥(−1))  

+ (0𝑥0)  + (1𝑥1)  + (0𝑥0)  =  0 

 

(4.7) 
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Finally, the first operation involving the blue channel with its kernel is 

(0𝑥0)  + (0𝑥1)  + (0𝑥0)  + (0𝑥(−1))  + (2𝑥1)  + (1𝑥1)  

+ (0𝑥(−1))  + (0𝑥1)  + (1𝑥1)  =  4 

 

(4.8) 

 

The bias is 1. 

Adding the results of the three operations with the bias, the output result is 7. To find 

the other outputs, the dark blue box moves by a stride of 2 pixels horizontally, 

vertically, and horizontally again (for each color). 

In the VGG 16 convolutional network, each convolutional layer includes a large 

number of kernels (filters) e.g. 64 filter (sets of three) in the first convolutional layer 

of Fig. 4.4. 

The other structural element of convolutional networks is the pooling layer, which is 

important for object recognition. Max pooling is the most common pooling method 

for convolutional networks. It summarizes the output using the max function.  A 

similar process as the one described above is used.  In the case of Fig. 4.6 a 2 × 2 max 

filter is used and a stride of two. Therefore, the output is an array   2 × 2. 

 



University of the Aegean                          Department of Financial and Management Engineering 

 

 

[71] 

 

 

Figure 4.7 Max pooling (Coursera, 2019c) 

 

In the first 2 × 2 part of the image the max function is max (21, 8, 12, 19) so the max 

of these four number is the 21. Thus, 21 goes at the first element of the output and 

the same process continues in the next three outputs. 

In the VGG 16 convolutional network, pooling is performed as above; i.e. in a 2x2 pixel 

sliding window with a stride of 2.  Thus, the dimensions of the image are reduced by 

2 after each pooling step.  

In VGG 16, the three fully connected layers (FC1, FC2 and FC3) have different depths: 

The first two have 4096 channels each and the third executes classification and 

includes 1000 channels (one for each class).  Finally, the Softmax layer produces the 

output by applying the Softmax function as activation function (see Eq. 4.11 in Section 

4.3). The Softmax function is a form of logistic regression which normalizes the input 

value into a vector of values that follows the probability distribution between zero and 

one. The output of the Softmax function is equivalent to a categorical distribution, 

which is the probability that any of the classes are true. 
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Training the network  

For training the network, first we define the input picture as 𝑥 and 𝑓∗(𝑥) the bounding 

box locations and class (for the bounding boxes see below). The first step to be done 

is to evaluate a loss function 𝐿 = 𝐿(𝑓(𝑥; 𝜃), 𝑦) that quantifies the similarity between 

the predicted bounding boxes and the ground truth bounding boxes (see also the 

object detection paragraph below). The result of the loss function is provided to the 

optimizer which outputs a new set of parameters 𝜃.  In order to adjust the parameters 

of the convolutional network the most common method used is the gradient decent. 

Gradient decent it is an iterative optimization procedure which uses the first order 

derivative to improve the parameters 𝜃. Once the iterative process begins the 

algorithm calculates the gradient of the loss function with respect to theta from the 

Eq. (4.9). The gradient decent of the training loss function with respect to parameter 

vector 𝜃 can be written as 

∇𝜃𝐽(𝜃) = ∇𝜃[
1

𝑛
∑𝐿[𝑓(𝑥𝑖; 𝜃), 𝑓∗(𝑥𝑖)]] =

1

𝑛
∑∇𝜃𝐿[𝑓(𝑥𝑖; 𝜃), 𝑓∗(𝑥𝑖)]

𝑛

𝑖=1

𝑛

𝑖=1

 (4.9) 

 

The parameters 𝜃 are updated based on the computed gradient from  

𝜃 ← 𝜃 − 𝜀∇𝜃𝐿(𝑓(𝑥; 𝜃), 𝑦) (4.10) 

 

where the learning rate 𝜀 is set in an appropriate a way to avoid taking too large or 

too small steps in the parameters space. For example, a large learning rate 𝜀 may 

cause the process to diverge and a small rate may cause slow convergence. To 

terminate the algorithm of gradient decent, a stopping criterion is defined, and the 

algorithm returns the last set of parameters. 

Object recognition 

This operation identifies objects such as signs, traffic lights etc. in a picture. It usually 

detects objects independently in each picture. In this sub-section we will describe the 

Faster R-CNN approach, an efficient object recognition method/architecture shown in 

Fig. 4.8. 



University of the Aegean                          Department of Financial and Management Engineering 

 

 

[73] 

 

 

Figure 4.8 Faster R-CNN architecture (tryolabs, 2020) 

 

After insertion, the picture is processed using a feature extractor (orange shape in Fig. 

4.8). This extractor is the most expensive part of a 2D object detector. The output of 

the extractor commonly has much lower width and height than the input image but 

much greater depth. Typical feature extractors include VGG, ResNet and Inception. In 

this discussion, the feature extractor is based on at the convolutional and pooling 

layers of the VGG 16 classification network discussed above. Note that each 

convolutional layer of VGG 16 generates abstractions of the layer’s input.  Thus, each 

layer focuses on different shapes.  The output of the convolutional and pooling layers 

is a feature map that has encoded the information (features) of the image along its 

depth.  The location of the features is maintained with respect to the original image.  

Note that Faster R-CNNs use an intermediate output of VGG 16; for example, the 

14x14x512 tensor of Fig. 4.4.  This is because VGG 16 is used only for feature extraction 

in Faster R-CNN and not for final classification.  The fully connected layers and the 

Softmax functionality of VGG 16 (see Fig. 4.4) are not used in Faster R-CNN.  

The next step in the architecture of Fig 4.8 concerns the identification of regions of 

interest in the image in order to classify these regions.  This is done by identifying 

appropriate bounding boxes of rectangular shape in the image that contain features; 

bounding boxes are inevitably of different sizes and aspect ratios.  This process starts 

by centering at each point of the (14x14 point) layer of the feature map a set of anchor 

boxes of different sizes and aspect ratios (several different anchor boxes are centered 

at each point).  Usually the anchor boxes are defined by their size (e.g. 64, 128px and 

256 pixels) and the aspect ratios (e.g. 0.5, 1 and 1.5). The anchor boxes reference the 

original image (picture).  In the case of the 14x14x512 feature map of VGG 16, the 
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spacing of the centers of anchor boxes in the original image will be 16 pixels, since 

14x16=256, the width and height of the original image.   

The feature map augmented by the bounding (anchor) boxes is the input to the Region 

Proposal Network (RPN) which is used to identify proposed objects. To do so, it 

 determines the probability of each anchor box to contain an object or not (i.e. 

object or background) 

 adjusts the shape and size of each anchor box that contains an object to better 

fit that object 

RPN comprises three convolutional layers: a layer with 512 channels and 3 × 3 kernel 

size and two parallel convolutional layers the channel number of which depends on 

the number of anchors k per point and an 1 × 1 kernel (see Fig. 4.9). For each anchor: 

a) the output of the classification layer provides the score for the anchor  containing 

an object and the score for the anchor containing just background; b) there are four 

outputs resulting from the adjustment layer 𝛥𝑥𝑐𝑒𝑛𝑡𝑒𝑟
, 𝛥𝑦𝑐𝑒𝑛𝑡𝑒𝑟

, 𝛥𝑤𝑖𝑑𝑡ℎ  and 𝛥ℎ𝑒𝑖𝑔ℎ𝑡 

that are applied to the anchors to better fit the objects they contain.  

 

Figure 4.9 RPN architecture, where the two parallel layers perform classification, and 
bounding box refinement. k is the number of anchors per point (tryolabs, 2020) 

 

The next step after RPN is to classify the identified object proposals into categories. A 

method to do this is to cut the convolutional feature map using each object proposal 

and then resize each piece to a fixed size tensor of dimensions 14 × 14 ×

𝑐𝑜𝑛𝑣𝑑𝑒𝑝𝑡ℎ using interpolation. Subsequently, max pooling is applied to this tensor 
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(corresponding to an object proposal) with a 2 × 2 kernel to obtain the final 7 × 7 ×

𝑐𝑜𝑛𝑣𝑑𝑒𝑝𝑡ℎ feature map for each object proposal. 

The final step of the Faster R-CNN architecture is to classify each object proposal.  This 

is performed by using a Region-based convolutional neural network (R-CNN) which  

 classifies the proposals into one of the predetermined classes as well as a 

background class for inferior suggestions 

 adjusts the bounding box of the proposed object based on the predicted class. 

This is performed by using two fully connected layers for each proposal, one for 

classification and the other for box size adjustment.  

Extension of 2D object recognition to 3D9 

An autonomous vehicle is required to understand the scene in 3D in order to be 

capable to safely cross its environment knowing where the pedestrians, vehicles lanes 

and signs are. For that reason, 2D object detectors should be extended to 3D. The 

typical method involved is to employ LiDAR point clouds. The 2D bounding box in a 

picture, the LiDAR point cloud, and the inverse of the camera projection matrix are 

used to project the corners of the bounding box as rays into the 3D space. This 

intersection of these lines is called a frustum and commonly include points in 3D that 

correspond to the object in the picture. Subsequently, a small neural network is used 

to predict the seven parameters required to define the bounding box in 3D.  

Another important issue in using 2D object detection in 3D is object tracking. Object 

tracking involves monitoring a sequence of detections of the same object and 

synthesizing a trajectory that determines the object motion over time. In addition, 

object tracking incorporates a predicted position commonly through known object 

dynamic models. Object tracking requires a set of assumptions limiting how fast a 

scene changes. For example, a key assumption is that the camera and tracked objects 

cannot move instantly to different locations in an unrealistically short time.  

                                                 
9 (Forsyth & Ponce, 2011) and (Qi, et al., 2018). 
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Based on these assumptions, the detected object in an image accompanied by 

appropriate speed vectors that are used to predict where the object will end up in 

subsequent images. Thus, the first step (prediction) is to define the position and speed 

in picture space. Every object will have a motion model that updates its state. For 

example, the constant speed motion model may be used to move each bounding box 

to the new locations. After this first step, every detection is correlated to the 

prediction by calculating the Intersection over Union (IoU) between all measurements 

and the prediction. Each measurement compares to the prediction, and the one with 

the highest IoU is assigned to the prediction. The final step consists of using a Kalman 

filter to merge the measurement and prediction updates. This filter updates the total 

object state, including speed and position, which can be used in a subsequent 

prediction step.  For further details on this complex process refer to (Barfoot, 2019) 

The traffic signs and signals should be detected from a long distance in order for the 

autonomous vehicle to react suitably. For that reason, the traffic signs and signals 

occupy a very limited number of pixels in the picture. Furthermore, traffic signs 

include multiple classes that should be identified (and thus classified). On the other 

hand, traffic lights change their state as the autonomous vehicle moves.  To detect 

traffic signs and lights, two stages are followed. The first one creates a special output 

class termed agnostic bounding boxes, which identifies all traffic signs in the picture 

without defining which class every bounding box belongs to. The second stage, 

processes the bounding boxes from the first stage and categorizes them into 

categories like stop signs, yellow, red and green signals etc.   

4.3 Visual perception for autonomous vehicles: Semantic segmentation and case 

study 

Having set the foundations for CNN and object recognition in Section 4.2, in this 

Section we focus on relevant tasks for autonomous vehicles.  First, we introduce the 

process of semantic segmentation, which is central to visual perception.  Secondly, we 

present a case study that concerns the visual perception of an autonomous vehicle.  

The case study uses the output of semantic segmentation to  

 Determine the drivable space of the autonomous vehicle 
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 Recognize the lanes 

 Recognize the valid objects 

 Estimate the distance of the valid objects from the autonomous vehicle  

This process permits the autonomous vehicle to recognize where it can move on the 

road, as well as what objects are into its view, thus supporting the vehicle’s decision 

making. Particularly, estimating the drivable space for an autonomous vehicle is 

important for safe operation.  

4.3.1 Semantic segmentation 

Semantic segmentation is a picture (image) processing process that detects and 

recognizes objects at pixel level. The semantic segmentation problem identifies pixels 

belonging to predetermined categories, such as static objects e.g. sidewalks, roads, 

traffic lights and traffic signs, as well as dynamic objects e.g. vehicles, cyclists, and 

pedestrians. The semantic segmentation neural network accepts an image as input 

and examines each pixel separately; the output is a vector of class scores per pixel. A 

pixel becomes a part of the class with the highest score. For that reason, it is necessary 

for the estimator to assign the highest result to the correct class for each pixel in the 

picture. For example, a vehicle pixel should have a very high vehicle result and 

significantly lower results for other classes (Everingham, et al., 2009) (Badrinarayanan 

, et al., 2017).  

The semantic segmentation problem can be modeled as a function approximation 

problem and can be addressed by the architecture shown in Fig. 4.10. 

 

 

Figure 4.10 Basic architecture of semantic segmentation (Playment, 2018) 
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The input is the RGB image, and the output is the semantic segmentation, that is the 

classification of each pixel in the image in a pre-determined class (signified in the 

above example by a separate color).  The approach to obtain the output comprises 

three major stages.  The first stage generates the feature map from the RGB image.  

This may be done by the use of convolutional neural networks as the ones used in 

object detection, for example VGG 16. As discussed in Section 4.2, the feature map 

corresponds to the activation of different sections of the picture, where high 

activation means that a determined feature was found such as road, vehicle etc. (see 

Section 4.2). The dimensions of the feature map tensor may be 14x14x512 as 

discussed in Section 4.2. 

The second stage upsamples the downsampled feature map back to the original 

picture resolution. For upsampling, the nearest neighbor process is used on a 2𝑥2 

image patch of the downsample feature map as follows (the color of the image patch 

represents the different values of each pixel.)  

 The nearest neighbor upsampling produces an empty initial upsample mesh.  

 Every pixel in the upsample mesh is filled with the value of the nearest pixel in 

the original image patch (see Fig. 4.11).  

 This procedure is repeated until all the pixels in the unsample mesh are filled 

with values from the image patch.  

 

 

Figure 4.11 Upsampling layer 
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For better results many researchers use a procedure called feature decoder. This 

process is the opposite of the feature extractor process, which downsamples the 

resolution of the image. Instead, the feature decoder uses upsampling layers followed 

by convolutional layers (see Fig. 4.10).  The depth of the semantic segmentation neural 

network is controlled by how many filters are defined for both the feature extractor 

and feature decoder. Note that the upsampling convolution block is referred as 

deconvolution block.  

 In the first deconvolution block, the feature map is unsampled to twice the 

input resolution (28x28x512). The upsampling layer is followed by 

convolutional layers which are used to correct the features in the upsampled 

feature map with already existing data in which the neural network has been 

trained (learnable filter banks). These corrections very often determine the 

recommended smooth boundaries. 

 As the feature map passes through to the rest of the decoder the output 

feature map becomes of similar resolution to the input image.  

After, the processing of the feature extractor and feature decoder, the output passes 

through the third stage, the Softmax layer. The Softmax output layer is used more 

often as an output classifier to provide values as close to one as possible for the correct 

class and as close to zero as possible for the other classes for every pixel. The index of 

the maximum score is the recommended output representation: 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =  
exp (𝑧𝑖)

∑ exp (𝑧𝑗)𝑗
 (4.11) 

 

where 𝑧𝑖 is a vector transformed into a discrete probability distribution of the class 

and 𝑖 is the index of the class.  

The segmentation output includes a plot index for every pixel. To visualize the 

semantic segmentation output we define these mapping indices and their 

corresponding colors, as provided in the following table (see also Fig. 4.12). 
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Table 4.1 Mapping indices and visualization colors 

Category Mapping index Visualization color 

Background  0 Black 

Buildings  1 Red 

Pedestrians 4 Teal 

Poles 5 White 

Lane markings 6 Purple 

Roads 7 Blue 

Side walks 8 Yellow 

Vehicles 10 Green 

 

 

 

Figure 4.12 Semantic segmentation visualization colors 

 

4.3.2 Case study: Estimation of the drivable space 

As discussed above, the case study uses the output of semantic segmentation to  

 Determine the drivable space of the autonomous vehicle 

 Recognize the lanes 
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 Estimate the distance of objects from the autonomous vehicle using the 

filtered 2-D object detection. 

To determine the drivable space, we first identify the ground plane.  This is done using 

as inputs the semantic segmentation data to evaluate the equation of the ground 

plane (Forsyth & Ponce, 2011).  

Subsequently, the process of the case study estimates the lane boundaries using again 

the semantic segmentation output.  

Finally, an object detection neural network is used which recognizes the object class. 

This network is its high recall but low precision. Recall (sensitivity) is determined by 

the number of truly positive results divided by total sum of truly positive and false 

negative results.   On the other hand, precision (positive predictive value) focuses only 

on correct positive predictions. Consequently, this network provides some incorrect 

results. For this reason, the output of semantic segmentation is used again to filter out 

the errors from the object detection network 

To implement this case study, the Jupyter programming environment and pictures 

from the CARLA simulator were used. Jupyter allows to create documents that contain 

computer code, equations, visualizations etc. Also, supports over 40 programming 

languages including Python, R, and other. Furthermore, the neural network for object 

detection was VGG 16 which is mentioned at chapter 4.2. The output of this neural 

network is included to a NumPy (python library) array.  

Estimating the drivable space 

Estimating the drivable space is equivalent to estimating pixels belonging to the 

ground plane in the scene. To do so, firstly we estimated the 𝑥𝑐, 𝑦𝑐 , 𝑧𝑐 coordinates of 

every pixel in the picture. To calculate these coordinates, we used the following 

equations: 

𝑥𝑐 =
(𝑢 − 𝑐𝑢)𝑧

𝑓
 (4.12) 

𝑦𝑐 =
(𝑣 − 𝑐𝑣)𝑧

𝑓
 (4.13) 



University of the Aegean                          Department of Financial and Management Engineering 

 

 

[82] 

 

𝑧𝑐 = 𝑑𝑒𝑝𝑡ℎ (4.14) 

Where 𝑢, 𝑣 are the coordinates of each pixel in the picture, 𝑐𝑢, 𝑐𝑣 and 𝑓 are the 

intrinsic calibration parameters such as the camera geometry and the camera lens 

characteristics, as found in the camera calibration matrix 𝐾.  

𝐾 = (
𝑓 0 𝑢𝑐

0 𝑓 𝑣𝑐

0 0 1

) (4.15) 

 

 

Figure 4.13 Pinhole camera model (Coursera (2019c)) 

 

Using the pinhole camera model of Fig. 4.13: 

 The focal length 𝑓 is the distance between the camera center and the image 

plane 

 The piercing point (𝑐𝑢, 𝑐𝑣) are the coordinates of the camera frame center 

 The piercing point (𝑢𝑐, 𝑣𝑐) is the intersection of the optical axis with the image 

plane provided in pixel coordinates.  

 The 𝑧𝑐 coordinate is the optical axis of the camera (with points in front of the 

camera in the positive 𝑧𝑐 direction).  Depth is the distance, along the z axis, 

between the nearest and farthest objects in the image that appear acceptably 

in focus.  
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After estimating the coordinates of each pixel, we used the RANSAC (Random Sample 

Consensus) algorithm to estimate the ground plane (Forsyth & Ponce, 2011). The 

RANSAC algorithm is a general parameter estimation approach, for robust fitting of 

models in the presence of many data outliers. The algorithm comprises the following 

six steps: 

1. Choose randomly a minimum of 3 points and obtain their 𝑥𝑐, 𝑦𝑐, 𝑧𝑐 coordinates 

from Eqs. (4.12), (4.13), (4.14) 

2. Calculate the ground plane model using the 3 selected points with equation  

𝑎𝑥𝑐 + 𝑏𝑦𝑐 +  𝑐𝑧𝑐 + 𝑑 = 0 (4.16) 

 by using the function compute_plane() (Coursera (2019c)) 

3. Calculate for every pixel and its (𝑥𝑐, 𝑦𝑐, 𝑧𝑐) coordinates the distance of the 

respective point from the ground plane and with the help of function 

dist_to_palane (Coursera (2019c)) which computes the distance , and 

calculates the number of inliers based on a distance threshold.  This is the end 

of an iteration 

4. Check if the current number of inliers is larger than the calculated number of 

inliers in the previous iteration and keep the inlier set with the largest number 

of points 

5. Repeat this process for a thousand iterations or until the number of inliers is 

larger than the minimum number of outliers 

6. Recompute and return a plane model using all inliers in the final inlier set  

Function ransac_plane_fit(xyz_data) 

 Step 0: Set the thresholds of RANSAC  

maximum number of iterations 100 

minimum number of inliers  10,000 

maximum distance from point to plane for point to be considered 0.3  

maximum_inliers_counter 0 

maximum_inliers_set_indexNone 
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For each number of iterations do  

 Step 1: Choose a minimum of three points from xyz_data randomly  

index np.random.choice(range(xyz_data.shape[1]), 3, replace=False) 

 current_data xyz_data[:, index] 

 Step 2: Compute the plane model 

 plane_parametercompute_plane(Current data) 

 Step 3: Find the number of inliers 

distance_list  dist_to_palane(plane_parameter.T, xyz_data[0, :].T,… 

xyz_data[1, :].T, xyz_data[2, :].T) 

Step 4: Check if the current number of inliers is larger than the 

calculated number of inliers in the previous iteration and keep the inlier 

set with the largest number of points 

inliers_count  np.sum(distance_list < distance_threshold) 

If inliers_count > maximum_inliers_count then 

 maximum_inliers_countinliers_count 

maximum_inliers_set_idx = np.where(distance_list  <… 

distance_threshold)[0] 

If inliers_count > minimum number of inliers OR i > maximum… 

number of iterations  

 Break 

 End For 

Step 6: Recompute and return a plane model using all inliers in the final 

inlier set  

final_data = xyz_data[:, max_inliers_set_idx] 

     output_plane = compute_plane(final_data) 
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 return output_plane 

End Function 

 

The pseudocode for the algorithm is provided in Fig. 4.14.  The code that implements 

this process is provided in Appendix B.  For the semantic segmentation input of Fig. 

4.12, the ground plane computed is given by the following array: 

𝐺𝑟𝑜𝑢𝑛𝑑 𝑃𝑙𝑎𝑛𝑒: [0.02, −1.00, 0.01, 1.4] (4.17) 

where 𝑎 = 0.02, 𝑏 = 1.00, 𝑐 = 0.01 and 𝑑 = 1.4 

Lane estimation 

For lane estimation, we used the output of semantic segmentation for the current lane 

the autonomous vehicle is using. For reliable implementation, this task was divided in 

two subtasks: lane line estimation and post-processing.  The latter subtask consists of 

horizontal line filtering and similar line merging for those lines that are not part of the 

drivable space of the autonomous vehicle. 

In the first subtask, we examine any line that is characterized as a lane boundary in 

the output of semantic segmentation. These lines are called ‘proposals’ and to 

examine them three steps were followed:  

1. Create a picture that includes the pixels corresponding to the lane boundaries 

(as characterized by semantic segmentation)  

2. Implement the edge detection process on the above lane boundary picture to 

derive the drivable space of the autonomous vehicle. To do so, firstly, we 

extract a binary mask of pixels which belong to classes that appear as lane 

separators. The binary mask defines a region of interest (ROI) of the original 

image. Mask pixel values of 0 nominate the image pixel that is part of the 

background and mask pixel values 1 nominate the image pixel that belongs to 

the region of interest (Jain, et al., 1995). Thus, these classes include lane 

marking lines as well as road rails (if any). Subsequently, using the binary mask 

we employ an edge detector. In this thesis we used the canny edge detector 

which is a multi-process algorithm that can detect edges in the presence of 

Figure 4.14 RANSAC pseudocode 
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noise (CANNY, 1986). A Gaussian filter is used to normalize the image to reduce 

the noise as well as any unwanted details and textures. In this way all the edge 

elements are kept, while most of the noise is eliminated. 

3. Implement the line estimation process using the output of the edge detection 

process. This output contains pixels classified as edges, which are used to 

estimate the lanes. To detect lines in the output edge map, we used the Hough 

transform line detection algorithm (Forsyth & Ponce, 2011),which is capable 

of detecting multiple lines in the edge map.  The Hough transform produces a 

set of lines that connect pixels which belong to edges in the edge map. The 

minimum length of the required lines can be set as a hyperparameter to force 

the algorithm to detect only lines that are very long to be part of lane markings. 

The pseudocode of the algorithm that implements this process is provided in Fig. 4.15 

below.  The code is provided in Appendix B   

For the semantic segmentation input of Fig. 4.12, the algorithm’s output consisted of 

1 line and is shown in Fig. 4.16. 

Function estimate_lanes_lines (segmentation_output) 

Step 1.1: segmentation==6 OR segmentation==8 

Step 1.2: Perform edge detection using cv2.Canny() 

Step 1.3: Perform line estimation using cv2.HoughLinesP() 

Return lines 

End function 

 Figure 4.15 Pseudocode for the algorithm that detects lines 
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Figure 4.16 Lane line estimation with purple color 

 

The second step, estimation of the lane boundary, merges lane lines and filters out 

any unnecessary horizontal line that is shown in the picture (see Fig. 4.16). This is 

performed by the following sub-steps: 

2.1 Define lines with slope lower than the limit that characterizes a horizontal line 

2.2 Cluster lines based on intercept and slope 

2.3 Merge all lines in each cluster using average slope and average intercept 

The pseudocode of the algorithm that implements this process is provided in Fig. 4.15. 

The related code is presented in Appendix B. 

For the input of Fig. 4.16, the algorithm’s output is shown in Fig. 4.18 

 

Function merge_lane_lines(lines) 

 Step 0: Define the thresholds  

 similarity threshold of slope  0.1 

 minimum threshold of slope  0.3 

 similarity threshold intercept 40 
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 Step 2.1: Get slope and intercept of lines 

 slopes, intercepts  get_slope_intecept(lines) 

 iterations  0 

cluster_lines  [] 

 current_index [] 

Step 2.2: Determine the lines with slope less than horizontal slope threshold 

filter_lines   lane_lines[absolute value(slopes) > minimum threshold of 

slope] 

 Step 2.3: Iterate over all remaining slopes and intercepts and cluster lines 

 For each slope, intercept in (zip(slopes, intercepts)) do 

existing_cluster_lines  np.array([iterations in current for each…  

current in current_inds]) 

  If not exists_in_clusters.any() then 

cluster_slope = np.logical_and(slopes < (slope + similarity_threshold  

..._of slope), slopes > (slope - similarity_threshold_of slope)) 

cluster_intercept  np.logical_and(intercepts < (intercept +  

...similarity_threshold_intercept), intercepts < (intercept – similarity_ 

...threshold intercept)) 

index  np.argwhere (cluster_slope & cluster_intercept & 

filter_lines).T 

If index.size then 

current_index.append(inds.flatten()) 

cluster_lines.append(lines[inds]) 

End If 
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   End If 

  iterations  iterations + 1 

 End For 

 Step 2.4: Merge all lines in clusters using mean average 

 filter_lines  [np.mean(cluster) for cluster in cluster_lines] 

 filter_lines  np.squeeze(np.array(filter_lines) 

 Return filter_lines 

End Function 

 

 

Figure 4.18 Lane estimation for the space where it is legally allowed for the 
autonomous vehicle to drive 

 

Object detection 

In image of Fig. 4.19, the bounding boxes are created by the VGG 16 neural network 

and our provided as inputs to the current analysis. More specifically, along with the 

output categories, we are given the limits of the bounding boxes, such as ‘vehicle’, and 

[𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛] and [𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥]. 

Figure 4.17 Pseudocode of merge lines algorithm 
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For object detection the convolutional neural network used has been developed at 

Stanford University to serve the purposes of Coursera course. The network results are 

saved in a NumPy array in class dataset_handler(). The function 

filter_detections_by_segmentation (see Fig. 4.20) takes as inputs a) the initial 

detections of neural network using the command detections = 

dataset_handler.object_detection (which is loaded before the execution of the 

function) (see Fig. 4.19) and b) the output of semantic segmentation (see- Fig. 4.12).  

 

Figure 4.19 Input image with bounding boxes 

Four steps were followed: 

 For each crafted bounding box in the input image, calculate how many pixels 

in the bounding box belong to the category predicted by semantic 

segmentation 

 Crop the segmentation output to pixels which are located inside of the 

bounding box 

 Divide the calculated number of pixels by the area of the bounding box. The 

number of pixels with the same category as the detection output is counted 

and then normalized by the number of total pixels in the bounding box area 

 If the ratio is larger than a lower limit, keep the detection. Else, remove the 

detection from the list of the detections.  In our case study, the bounding boxes 

are filtered out when the compute normalized count is less than a threshold of 
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0.3. This means that, if less than a 30% of the bounding box area is occupied 

by the predicted class pixels, the bounding box has to be eliminated.  

The pseudocode of the algorithm that implements this process is provided in Fig. 4.20.  

The related code is presented in Appendix B. 

For the input of Fig. 4.19, the algorithm’s output is shown in Fig. 4.21, i.e. only one car 

is detected. 

Function filter_detections_by_segmentation(detections, segmentation_output): 

 Filtered_detections [] 

 Ratio_threshold  0.3 

 For each detection in detections do 

Step 1: Compute the number of pixels which belong to the category  

for every detection 

Class_name, x_min, y_min, x_max, y_max, score detection 

x_min, y_min, x_max, y_max  np.asfarray(x_min), 

np.asfarray(y_min), np.asfarray(x_max), np.asfarray(y_max) 

 x_min, y_min, x_max, y_max  int(x_min), int(y_min), int(x_max), 

int(y_max) 

If class_name equal to car then 

 Class_sed_idx  10 

Elif class_name equal to pedestrian then 

 Class_sed_idx  4  

End If 

category_pixel_cnt  np.sum(segmentation_output[y_min:y_max, 

x_min:x_max] == class_sed_idx) 
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Step 2: Divide the computed number of pixels by the area of the 

bounding box (total number of pixels). 

category_ratio  category_pixel_cnt / ((x_max - x_min) * (y_max - 

y_min)) 

Step 3: If the ratio is greater than a threshold keep the detection. Else, 

remove the detection from the list of detections. 

If category_ratio > ratio_threshold then 

            filtered_detections.append(detection) 

End If 

End For 

return filtered_detections 

End Function 

 

 

 

Figure 4.21 Visualizing the car in the picture with the bounding box 

 

Figure 4.20 Filtering the bounding boxes algorithm 
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Finally, for estimating the distance to the objects in the significant bounding boxes of 

the picture, we calculated the minimum distance from the pixels of the bounding box 

to the camera center. To calculate this distance, we used Eqs. (4.12), (4.13) and (4.14) 

and (4.18) below. 

𝑑 = √𝑥2 + 𝑦2 + 𝑧2 (4.18) 

The pseudocode of the algorithm that implements this process is provided in Fig. 

4.20 The related code is presented in Appendix Β. 

 

Function find_min_detection(detections, x, y, z): 

 min_distances[] 

 For detection in detection: 

  Step 1: Compute the distance of each pixel in the detection bounds 

  Step 2: Find the minimum distance with the eq. (4.18) 

 End For 

 min_distances np.array(min_distances) 

    min_distances  min_distances.reshape([-1, 1]) 

   return min_distances 

End Function 

 

For the input of Fig. 4.19, the algorithm’s output is shown in Fig. 4.23, i.e. the 

calculated distance from the detected car is 8.52 m. 

Figure 4.22 Find the minimum distance algorithm 
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Figure 4.23 The distance between the center of the camera and the car (8.52m) 

 

To sum up, this case study uses the output of a (ready) semantic segmentation to 

perform four necessary tasks to: 

1. Determine the drivable space of the autonomous vehicle. This task is 

important for recognizing the whole road, including the wrong-way part  

2. Recognize the lanes. This task is important for recognizing the lanes along the 

road and, thus, the permissible driving space 

3. Recognize the objects (Object recognition). This task is important for 

recognizing the objects in the environment of the autonomous vehicle 

4. Estimate the distance of the recognized objects from the autonomous vehicle 

using the filtered 2-D object detection. This task is important for estimating the 

distance between ego-vehicle and other vehicles or objects. 
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Chapter 5 Conclusion 
 

 

 

This thesis focused on two interesting and critical topics of current research on 

autonomous vehicles:  Control of the vehicle dynamics and visual perception.  The 

intention has been to drill down on the technical background that is necessary in order 

to conduct research and development in these two areas, present the essentials of 

this background and conduct limited experiments to indicate how researchers in the 

DeOPSys lab may proceed in their work using the available knowledge and tools.  

In terms of vehicle dynamics control, we focused on speed control and steering 

control.  The system reference inputs are the desired speed and the desired trajectory, 

respectively.  The controller uses the current longitudinal speed, the driving direction, 

the current position of the vehicle from the IMU-sensor, GPS, and radar, the curvature 

of the path and the current yaw rate and steering angle. The outputs of the two 

schemes attempt to follow the reference inputs with as little deviation as possible.  

For both speed and lateral control, the corresponding controllers use appropriate 

dynamic models in order to generate the accelerator, brake or steering wheel 

commands.  In our experiments we used a typical PID controller for longitudinal 

control and a Stanley controller for lateral control.  We tested, through CARLA 

simulation, the effects of various values of the longitudinal PID controller parameters 

𝐾𝑃,  𝐾𝐷 and 𝐾𝐼 (including values of zero in order to test P, PD and PI controllers). PID 

controller has many advantages, some of these are a) zero steady state error, b) 

moderate peak overshoot and stability, and c) its use for controlling both fast and slow 

process variables. That’s why the results indicated that the vehicle tested had better 

performance using a PID controller than the other three (PD, PI, P controllers). 

Furthermore, high values of the integral gain 𝐾𝐼 result to violent oscillation of the 

throttle, steering and speed and to instability.   

In terms of visual perception, the inputs are camera images, and the system recognizes 

the different objects in the environment along its path. To do so, deep neural networks 
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are used. The steps for processing the camera images are several and highly complex. 

These steps have been overviewed systematically in this thesis.  Subsequently, four 

significant concepts were tested, ground plane estimation, lane marking 

identification, object recognition and object distance. In these tests we recognized the 

importance of semantic segmentation, which provided the essential inputs to all 

cases. Given the output of semantic segmentation, for all four cases we developed 

code in Python that leverages important functions to perform these operations in 

order to recognize where the autonomous vehicle can drive on the road as well as 

what obstacles are into its route.  

The two areas examined in this thesis, and the related experiments are supplemental 

and highly important in order to realize autonomy. Both tasks above require 

significant technical background, which both researchers and developers need to 

acquire. Furthermore, the CARLA simulation environment has been an invaluable tool, 

which can be used to develop new concepts in the PYTHON language and test them in 

a straightforward manner.  Thus, it is recommended that future researchers in our lab 

familiarize themselves with the advanced background required for autonomous 

vehicle work and use CARLA as an excellent tool to develop and test their concepts.  

Multiple areas exist for further investigation. For example, one possible improvement 

in visual perception should be the combination of the camera and LIDAR outputs to 

obtain improved results, using real time object recognition in the CARLA environment. 

As far as vehicle control, research in lower level control could be performed. In lateral 

control, instead of a Stanley controller, the advanced model predictive controller 

(MPC) could be tested. This could open new opportunities for improved vehicle 

behavior, especially under complex dynamic states.  
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Appendix A. Installing the CARLA simulator 
 

Technical aspects of Carla simulator - Hardware 

The hardware used for the Carla simulator is as follows: 

 CPU: Intel(R) Xeon(R) CPU E5-2620 0 @ 2.00GHz 

 Ram: 32GB DDR3 1333MHz 

 Graphics card: GeForce GTX 1060 6GBF 

 Hard drive: SSD 256GB and HDD 500GB 

The above hardware specifications support efficient performance of the simulator. 

Technical aspects of Carla simulator - Software 

The operational system used in this thesis is Ubuntu 16.04. Before installing the 

simulator, a certain process should be followed. The first step concerns the terminal 

of ubuntu and testing the firewall status for allowing Carla to have default access to 

ports 2000, 2001 and 2002 (TCP and UDP). The command in the terminal is:  

$ sudo ufw status 

 After running this command the response of the system should be  

Status: inactive 

For the graphics card drivers, OpenGL 3.3 or above is required. The Carla Python client 

runs on Python 3.5.x or Python 3.6.x (where x is any number).  The installed version of 

pip for the Python client needs to be checked. When both python3 and pip versions 

are available, the NumPy library should be installed. NumPy is the fundamental 

package for scientific computing in Python, which facilitates all array  operations, 

including mathematical shape manipulation, logical, discrete Fourier transforms and 

much more. The library for package NumPy can be installed with the following 

command: 

$ pip3 install numpy  

Download and Extract the CARLA Simulator10 

Download the CARLA simulator ( CarlaUE4Ubuntu.tar.gz ) from Coursera (Introduction 

to self-driving cars, week 7) 

Extract the contents of CarlaUE4Ubuntu.tar.gz to any working directory. 

Install Python Dependencies for Client 

The CARLA Simulator client files require additional modules to be installed, which are 

detailed inside the $HOME /opt/CarlaSimulator/requirements.txt file. 

                                                 
10 The version of CARLA simulator is 0.8.4  
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$ python3 -m pip install -r $HOME /opt/CarlaSimulator/requirements.txt --user 

Loading the Simulator with the race track map 

After completing the above and in order to load the simulator with the race truck map 

(server mode) used in this thesis, the following command needs to be entered with 

the terminal in window mode: 

$ cd $HOME /opt/CarlaSimulator  

The above command locates the Carla simulator on the system.  The next step is to 

enter 

$ ./CarlaUE4.sh /Game/Maps/RaceTrack -windowed -carla-server -benchmark -fps=30 

The above command opens the racetrack map (server) with thirty (30) frames per 

second (fps). The fps argument is used to tune the simulator for a given frame-per-

second rate. Upon entering this command, the simulator waits for a Python client code 

to respond. Subsequently, editing or writing a file to the Python client in the terminal 

of Ubuntu the following command is used: 

$ nano name_of_program.py 

where name_of_program can be changed by user. For example, 

$ nano module_7.py 

In another terminal, the user should run the Python client program using the 

following command, which calls the server that is motioned above: 

$ python3 manual_control.py 

If the Python client successfully connects, a new pygame window should appear (see 

Fig. A.1) 
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Figure A. 1 Carla Environment 
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Appendix B. Python code for the visual perception case study 
 

The Python code and functions used in the case study of visual perception of Section 

4.3 are provided below: 

 

To import the results of the semantic segmentation network should be loaded the 

below dataset (2 lines) 

 colored_segmentation = dataset_handler.vis_segmentation(segmentation) 

plt.imshow(colored_segmentation) 

1. For drivable space estimation  

def xy_from_depth(depth, k): 

    # Get the shape of the depth tensor 

    M, N = depth.shape 

    # Grab required parameters from the K matrix 

    f = k[0, 0] 

    c_u = k[0, 2] 

    c_v = k[1, 2] 

    # Generate a grid of coordinates corresponding to the shape of the depth  

map 

    u_mtx, v_mtx = np.meshgrid(np.arange(N), np.arange(M)) 

    # Compute x and y coordinates 

    x = (u_mtx - c_u) * depth / f 

    y = (v_mtx - c_v) * depth / f     

    return x, y 

 

For estimating the ground plane with the RANSAC algorithm 

def ransac_plane_fit(xyz_data): 

    # Set thresholds: 

    num_itr = 100  # RANSAC maximum number of iterations 

    min_num_inliers = 10000  # RANSAC minimum number of inliers 



University of the Aegean                          Department of Financial and Management Engineering 

 

 

[104] 

 

    distance_threshold = 0.3  

    max_inliers_cnt = 0 

    max_inliers_set_idx = None 

    for i in range(num_itr): 

        # Step 1: Choose a minimum of 3 points from xyz_data at random. 

        idx = np.random.choice(range(xyz_data.shape[1]), 3, replace=False) 

        curr_data = xyz_data[:, idx] 

        # Step 2: Compute plane model 

        plane_param = compute_plane(curr_data) # (1, 4) 

        # Step 3: Find number of inliers 

distance_list = dist_to_plane(plane_param.T, xyz_data[0, :].T, xyz_data[1, 

:].T,     xyz_data[2, :].T) 

# Step 4: Check if the current number of inliers is greater than all previous  

iterations and keep the inlier set with the largest number of points. 

        inliers_cnt = np.sum(distance_list < distance_threshold) 

        if inliers_cnt > max_inliers_cnt: 

            max_inliers_cnt = inliers_cnt 

            max_inliers_set_idx = np.where(distance_list < distance_threshold)[0] 

        # Step 5: Check if stopping criterion is satisfied and break.          

        if inliers_cnt > 10000 or i > num_itr: 

            break 

    # Step 6: Recompute the model parameters using largest inlier set.          

    final_data = xyz_data[:, max_inliers_set_idx] 

    output_plane = compute_plane(final_data) 

    return output_plane 

 

For the lane estimation 

def estimate_lane_lines(segmentation_output): 

# Step 1: Create an image with pixels belonging to lane boundary 

categories from the output of semantic segmentation 



University of the Aegean                          Department of Financial and Management Engineering 

 

 

[105] 

 

    road_mask = (segmentation==6) | (segmentation==8).astype(np.uint8) 

 

    # Step 2: Perform Edge Detection using cv2.Canny() 

    mask_canny = cv2.Canny(road_mask * 255, 50, 100) 

 

    # Step 3: Perform Line estimation using cv2.HoughLinesP() 

    lines = cv2.HoughLinesP(mask_canny, rho=10, theta=np.pi/180*1, 

threshold=100, … minLineLength=200, maxLineGap=100) 

    lines = lines.reshape([-1, 4]) 

    return lines 

 

For merging the estimated lines 

 def merge_lane_lines(lines): 

similarity_threshold_of_slope = 0.1 

minimum_threshold_of_slope = 0.3 

similarity_threshold_of_ intercept = 40 

Step 2.1: Get slope and intercept of lines 

slopes, intercepts = get_slope_intecept(lines) 

iterations = 0 

cluster_lines = [] 

 current_index = [] 

Step 2.2: Determine the lines with slope less than horizontal slope 

threshold 

filter_lines =  lane_lines[abs(slopes) > min_slope_threshold] 

        for slope, intercepts in (zip(slopes, intercepts)): 
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existing_cluster_lines = np.array([iterations in current for current in 

current_index]) 

     if not existing_cluster_lines.any(): 

cluster_slope = np.logical_and(slopes < (slopes + 

similarity_threshold_of_slope), slopes > (slopes - 

similarity_threshold_of_slope)) 

intercept_cluster = np.logical_and(intercepts < (intercept + 

similarity_threshold_of_ intercept), intercepts < (intercept - 

similarity_threshold_of_ intercept)) 

index = np.argwhere (cluster_slope & cluster_intercept & 

filter_lines).T 

if index.size then 

current_index.append(index.flatten()) 

cluster_lines.append(lines[inds])  

 iterations = iterations + 1 

     Step 2.4: Merge all lines in clusters using mean average 

filter_line = [np.mean(cluster) for cluster in cluster_lines] 

filter_line = np.squeeze(np.array(filter_line) 

return filter_line 

 

For object detection 

def filter_detections_by_segmentation(detections, segmentation_output): 

     ratio_threshold = 0.3   

    for detection in detections: 
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# Step 1: Compute number of pixels belonging to the category for 

every detection. 

         class_name, x_min, y_min, x_max, y_max, score = detection 

         x_min, y_min, x_max, y_max = np.asfarray(x_min), 

np.asfarray(y_min), np.asfarray(x_max), np.asfarray(y_max) 

x_min, y_min, x_max, y_max = int(x_min), int(y_min), int(x_max), 

int(y_max) 

       if class_name=="Car": 

            class_sed_idx = 10 

       elif class_name=="Pedestrian": 

            class_sed_idx = 4 

       category_pixel_cnt = np.sum(segmentation_output[y_min:y_max, 

x_min:x_max] == class_sed_idx) 

# Step 2: Devide the computed number of pixels by the area of the 

bounding box (total number of pixels). 

        category_ratio = category_pixel_cnt / ((x_max - x_min) * (y_max 

y_min)) 

# Step 3: If the ratio is greater than a threshold keep the detection. 

Else, remove the detection from the list of detections. 

        if category_ratio > ratio_threshold: 

            filtered_detections.append(detection) 

return filtered_detections 

For estimating the distance of detected objects  

 def find_min_distance_to_detection(detections, x, y, z): 

    min_distances = [] 
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    for detection in detections: 

        # Step 1: Compute distance of every pixel in the detection 

bounds 

        class_name, x_min, y_min, x_max, y_max, score = detection 

        x_min, y_min, x_max, y_max = np.asfarray(x_min), 

np.asfarray(y_min), np.asfarray(x_max), np.asfarray(y_max) 

        x_min, y_min, x_max, y_max = int(x_min), int(y_min), 

int(x_max), int(y_max) 

        # Step 2: Find minimum distance 

        mtx_dist = np.sqrt(x**2 + y**2 + z**2 

        min_distances.append(np.min(mtx_dist[y_min:y_max, 

x_min:x_max])) 

    min_distances = np.array(min_distances) 

    min_distances = min_distances.reshape([-1, 1]) 

    return min_distances 

 


