

University of the Aegean

School of Engineering

Department of Financial and Management Engineering

Autonomous Vehicles: Basic Concepts in Motion Control and Visual

Perception

Georgios V. Tepteris

 Supervisor: Prof. Ioannis Minis

 Committee Members: Assistant Prof. Vasileios Zeimpekis

 Assistant Prof. Vasileios Koutras

Chios, June 2020

University of the Aegean Department of Financial and Management Engineering

[ii]

To my Family

University of the Aegean Department of Financial and Management Engineering

[iii]

Acknowledgments

First and foremost, I would like to pay my special regards to my supervisor Professor

Ioannis Minis for giving me the opportunity to write this exciting and interesting thesis.

From the beginning he encouraged me not only for the completion of the thesis but

has also given advises and shared interesting thoughts through all the years of my

studies. Furthermore, I would like to thank him for the continuous support, and for his

patience. His guidance helped me in all the time to the writing of this thesis.

Besides my advisor, I would like to express my deep gratitude to Dr. Vasileios

Zeimpekis, Assistant Professor of the University of the Aegean for our interesting

discussions and his advises. Moreover, I am grateful to Dr. Vasileios Koutras, Assistant

Professor of the University of the Aegean for his insightful comments and

encouragement. Also, I want to thank the members of DeOPSys Lab of Department of

Financial and Management Engineering.

Finally, I am indebted to all my professors during my studies who have contributed to

my educational and personal development.

Last but not the least, I would like to thank my family: my parents and my brothers for

supporting me spiritually throughout writing this thesis and my life in general. I am

also grateful to my partner who supported me throughout this venture.

University of the Aegean Department of Financial and Management Engineering

[iv]

University of the Aegean Department of Financial and Management Engineering

[v]

Abstract

This thesis focuses on two important aspects of autonomous vehicles: Control of the

vehicle’s longitudinal and lateral motion, and recognition of the objects in the vehicle’s

drivable space. In terms of vehicle control, we first drilled down to the existing

kinematic and dynamical models used to describe the motion of the vehicle.

Subsequently, we developed appropriate lateral and longitudinal controllers to be

used in the CARLA vehicle simulator. For longitudinal control we developed a PID

controller, while for lateral control we developed a Stanley controller, and we

implemented both in the Python language. The controllers generated brake, throttle

and accelerator commands to drive the vehicle dynamical model in the CARLA

environment. For longitudinal control, we tuned the gains of the PID controller to

achieve satisfactory performance. Τhe results indicated that a PD controller

appropriately tuned resulted in good performance. In terms of visual perception, we

drilled down on aspects of existing related methods and techniques and outlined how

they can be used to achieve this very complex task. Subsequently, we developed

Python routines to process the semantic segmentation output of a deep neural

network and perform relatively simple tasks, such as ground plane estimation, lane

marking identification, object recognition within predefined bounding boxes and

distance estimation between the recognized objects and the vehicle. Possibly the

most significant contribution of this thesis is the systematic presentation of existing

fundamental knowledge in the above two areas in a way that one can build upon to

develop new, improved concepts for vehicle control and visual perception.

University of the Aegean Department of Financial and Management Engineering

[vi]

Περίληψη

Η παρούσα διπλωματική εργασία εστιάζεται σε δύο σημαντικές πτυχές των

αυτόνομων οχημάτων: α) Στον έλεγχο του οχήματος σε διαμήκη και πλευρική κίνηση

και β) στην αναγνώριση του πεδίου οδήγησης του οχήματος.

Όσον αφορά στον έλεγχο του οχήματος, αρχικά εξετάσαμε τα υπάρχοντα κινητικά και

δυναμικά μοντέλα που χρησιμοποιήθηκαν για να περιγραφεί η κίνηση του οχήματος.

Στη συνέχεια, αναπτύξαμε κατάλληλους πλευρικούς και διαμήκεις κατευθυντές που

χρησιμοποιήθηκαν στον προσομοιωτή οχημάτων CARLA. Για το διαμήκη έλεγχο

αναπτύξαμε κατευθυντή PID, ενώ για τον πλευρικό έλεγχο αναπτύξαμε κατευθυντή

Stanley και υλοποιήσαμε και τους δύο κατευθυντές σε γλώσσα Python. Οι τελευταίοι

υπολογίζουν τις εντολές επιτάχυνσης και επιβράδυνσης (θέση των πεντάλ γκάζι και

φρένου) καθώς και κατεύθυνσης (γωνία τιμονιού) που δίδονται στο δυναμικό

μοντέλο του οχήματος στο περιβάλλον του CARLA. Για τον διαμήκη κατευθυντή,

επιλέξαμε τις παραμέτρους PID για να επιτευχθεί ικανοποιητική απόδοση. Σύμφωνα

με τα αποτελέσματα, ο κατευθυντής PD με κατάλληλες παραμέτρους οδηγεί σε καλή

απόδοση.

 Όσον αφορά στην οπτική αναγνώριση του πεδίου οδήγησης, εξετάσαμε τις πτυχές

βασικών υπαρχόντων σχετικών μεθόδων και τεχνικών και σκιαγραφήσαμε πώς

μπορούν να χρησιμοποιηθούν για την επίτευξη αυτού του πολύπλοκου στόχου. Στη

συνέχεια, αναπτύξαμε συναρτήσεις Python για την επεξεργασία της εξόδου από

υφιστάμενο νευρωνικό δίκτυο εννοιολογικής κατηγοριοποίησης (semantic

segmentation) και για να υλοποιήσουμε σχετικά απλές δράσεις, όπως η εκτίμηση του

επιπέδου του εδάφους, η αναγνώριση σήμανσης της λωρίδας, η αναγνώριση

αντικειμένων εντός προδιαγεγραμμένων πλαισίων οριοθέτησης και η εκτίμηση της

απόστασης μεταξύ των αντικειμένων αυτών και του οχήματος. Πιθανόν η πιο

σημαντική συνεισφορά της διπλωματικής αυτής εργασίας είναι η συστηματοποίηση

του υφιστάμενου γνωστικού υπόβαθρου στους παραπάνω δύο τομείς ώστε να

χρησιμοποιείται στην ανάπτυξη νέων βελτιωμένων προσεγγίσεων για τον έλεγχο του

οχήματος και την οπτική αναγνώριση πεδίου.

University of the Aegean Department of Financial and Management Engineering

[vii]

University of the Aegean Department of Financial and Management Engineering

[viii]

Table of Contents

Chapter 1 Introduction .. 1

Chapter 2 The need of autonomous vehicles ... 4

2.1 The impact of autonomous vehicles .. 4

2.2 Fundamental concepts of autonomous vehicles ... 6

2.3 Hardware and software architecture of autonomous vehicles 7

2.4 The planning hierarchy... 16

2.5 Safety concerns .. 20

Chapter 3 Vehicle control ... 29

3.1 Introduction to vehicle control .. 29

3.2 Lateral control .. 31

3.3 Longitudinal control ... 42

3.4 Experiments on longitudinal control.. 46

Chapter 4 Object detection in autonomous vehicles ... 62

4.1 Introduction to neural networks .. 62

4.2 Convolutional neural networks and object recognition 65

4.3 Visual perception for autonomous vehicles: Semantic segmentation and case

study ... 76

Chapter 5 Conclusion ... 95

References.. 97

Appendix A. Installing the CARLA simulator ... 100

Appendix B. Python code for the visual perception case study 103

University of the Aegean Department of Financial and Management Engineering

[ix]

Table of Figures

Figure 2.1 Typical sensors of an autonomous vehicle (Coursera(2019a)) 8

Figure 2.2 A typical camera with three camera lens (Autonomous vehicle

international (2019)) .. 9

Figure 2.3 A 3D map example (Coursera (2019a)) .. 10

Figure 2.4 Typical LIDAR sensors and examples of mounting on various vehicles

(Coursera (2019a)) ... 11

Figure 2.5 Radar detects other objects (Coursera (2019a)) .. 11

Figure 2.6 Self-driving car detects a free parking space with sonar (Coursera (2019a))

.. 12

Figure 2.7 Typical IMU sensors (Coursera (2019a)) ... 13

Figure 2.8 Software architecture of autonomous vehicles (Coursera, 2019a) 14

Figure 2.9 Turning left at an intersection: The vehicle should also stop just before the

pedestrian crossing. (Coursera 2019a) .. 17

Figure 2.10 Intersection, decelerate smoothly to the stop line (Coursera 2019a) 19

Figure 2.11 Crash of Waymo car with bus (Coursera (2019a)) 21

Figure 2.12 Uber’s autonomous vehicle crash (Coursera (2019a)) 22

Figure 2.13 Uber’s deadly crash with pedestrian (National Transportation Safety

Board, 2018) ... 23

Figure 2.14 Architecture safety levels of Waymo industry (Coursera (2019a) 26

Figure 2.15 Simulation tasting of Waymo’s industry (Coursera (2019a) 27

Figure 3.1 The strategy architecture of vehicle control (Coursera (2019a)) 30

Figure 3.2 Kinematics of bicycle model with respect to (𝑥𝑟, 𝑦𝑟) (Coursera (2019a)) . 32

Figure 3.3 Kinematics of bicycle model with respect to (𝑥𝑓, 𝑦𝑓) (Coursera (2019a)) 33

Figure 3.4 Kinematics of bicycle model with respect to (𝑥𝑐, 𝑦𝑐) (Coursera (2019a)) 34

Figure 3.5 Relationship between the speed 𝑣 and its component 𝑦 35

Figure 3.6 Lateral dynamic model with respect to cg (Coursera (2019a)) 36

Figure 3.7 Front tire sleep angle (Rajamani, 2012) ... 37

Figure 3.8 Connecting the reference point with target point (Coursera (2019a)) 39

Figure 3.9 Steering angle needs to follow the arc towards the target point (Coursera

(2019a)) .. 40

Figure 3.10 Geometry of the Stanley controller (Coursera (2019a)) 42

Figure 3.11 A typical vehicle on an inclined road (Coursera (2019a)) 42

Figure 3.12 Typical engine maps (Coursera (2019a)) .. 45

Figure 3.13 A longitudinal speed control feedback system .. 45

Figure 3.14 Low level controller .. 46

Figure 3.15 CARLA simulation environment (Screenshots from the DeOPSys Lab

system) ... 47

Figure 3.16 CARLA simulation graphs (Screenshots from the DeOPSys Lab system) . 47

Figure 3.17 CARLA simulation environment with sematic segmentation and depth

cameras (Screenshots from the DeOPSys Lab system) ... 49

Figure 3.18 CARLA simulation environment with semantic segmentation and depth

cameras (Screenshots from the DeOPSys Lab system) ... 49

file:///C:/Users/teptg/Desktop/Diploma%20Thesis%20Tepteris%20Georgios.docx%23_Toc42525402
file:///C:/Users/teptg/Desktop/Diploma%20Thesis%20Tepteris%20Georgios.docx%23_Toc42525402
file:///C:/Users/teptg/Desktop/Diploma%20Thesis%20Tepteris%20Georgios.docx%23_Toc42525403
file:///C:/Users/teptg/Desktop/Diploma%20Thesis%20Tepteris%20Georgios.docx%23_Toc42525404
file:///C:/Users/teptg/Desktop/Diploma%20Thesis%20Tepteris%20Georgios.docx%23_Toc42525404
file:///C:/Users/teptg/Desktop/Diploma%20Thesis%20Tepteris%20Georgios.docx%23_Toc42525405
file:///C:/Users/teptg/Desktop/Diploma%20Thesis%20Tepteris%20Georgios.docx%23_Toc42525405

University of the Aegean Department of Financial and Management Engineering

[x]

Figure 3.19 Geometry of Stanley Controller (Coursera (2019a)) 52

Figure 3.20 The reference route of the autonomous vehicle 53

Figure 3.21 The relationship between desired (orange) and actual (blue) speeds –

best case .. 55

Figure 3.22 The angle (pressure) of the throttle pedal – best case 55

Figure 3.23 The error between the desired and the actual speed – best case 56

Figure 3.24 The steering angle – best case .. 56

Figure 3.25 desired (orange) and actual (blue) speeds – worst case 56

Figure 3.26 The angle (pressure) of the throttle pedal – worst case 56

Figure 3.27 The steering angle - worst case .. 57

Figure 3.28 The error between the desired and the actual speed – worst case......... 57

Figure 3.29 MSE for the various 𝐾𝑃 values for all four controllers 58

Figure 3.30 The autonomous vehicle end position (Screenshot from DeOPSys Lab PC)

.. 60

Figure 3.31 The autonomous vehicle just before getting off course (Screenshot from

DeOPSys Lab PC) .. 60

Figure 3.32 The relationship between desired speed and actual speed 60

Figure 3.33 The pressure of the throttle pedal ... 60

Figure 3.34 The steering angle .. 61

Figure 3.35 The difference of the desired and the actual speed 61

Figure 4.1 A neural network with two layers .. 62

Figure 4.2 Four-layer feedforward neural network (Coursera (2019c)) 63

Figure 4.3 ReLU activation diagram ... 65

Figure 4.4 VGG 16 architecture (tryolabs, 2020) ... 66

Figure 4.5 Sparse connectivity between the nodes of CNN (Coursera(2019c)) 67

Figure 4.6 A 3×3 kernel (per channel) moves over the input to generate the output

(Coursera, 2019c) ... 69

Figure 4.7 Max pooling (Coursera, 2019c)... 71

Figure 4.8 Faster R-CNN architecture (tryolabs, 2020) ... 73

Figure 4.9 RPN architecture, where the two parallel layers perform classification, and

bounding box refinement. k is the number of anchors per point (tryolabs, 2020) 74

Figure 4.10 Basic architecture of semantic segmentation (Playment, 2018) 77

Figure 4.11 Upsampling layer .. 78

Figure 4.12 Semantic segmentation visualization colors .. 80

Figure 4.13 Pinhole camera model (Coursera (2019c)) ... 82

Figure 4.14 RANSAC pseudocode .. 85

Figure 4.15 Pseudocode for the algorithm that detects lines 86

Figure 4.16 Lane line estimation with purple color ... 87

Figure 4.17 Pseudocode of merge lines algorithm .. 89

Figure 4.18 Lane estimation for the space where it is legally allowed for the

autonomous vehicle to drive ... 89

Figure 4.19 Input image with bounding boxes .. 90

Figure 4.20 Filtering the bounding boxes algorithm ... 92

file:///C:/Users/teptg/Desktop/Diploma%20Thesis%20Tepteris%20Georgios.docx%23_Toc42525408
file:///C:/Users/teptg/Desktop/Diploma%20Thesis%20Tepteris%20Georgios.docx%23_Toc42525408
file:///C:/Users/teptg/Desktop/Diploma%20Thesis%20Tepteris%20Georgios.docx%23_Toc42525409
file:///C:/Users/teptg/Desktop/Diploma%20Thesis%20Tepteris%20Georgios.docx%23_Toc42525410
file:///C:/Users/teptg/Desktop/Diploma%20Thesis%20Tepteris%20Georgios.docx%23_Toc42525411
file:///C:/Users/teptg/Desktop/Diploma%20Thesis%20Tepteris%20Georgios.docx%23_Toc42525412
file:///C:/Users/teptg/Desktop/Diploma%20Thesis%20Tepteris%20Georgios.docx%23_Toc42525413
file:///C:/Users/teptg/Desktop/Diploma%20Thesis%20Tepteris%20Georgios.docx%23_Toc42525414
file:///C:/Users/teptg/Desktop/Diploma%20Thesis%20Tepteris%20Georgios.docx%23_Toc42525415
file:///C:/Users/teptg/Desktop/Diploma%20Thesis%20Tepteris%20Georgios.docx%23_Toc42525417
file:///C:/Users/teptg/Desktop/Diploma%20Thesis%20Tepteris%20Georgios.docx%23_Toc42525417
file:///C:/Users/teptg/Desktop/Diploma%20Thesis%20Tepteris%20Georgios.docx%23_Toc42525418
file:///C:/Users/teptg/Desktop/Diploma%20Thesis%20Tepteris%20Georgios.docx%23_Toc42525418
file:///C:/Users/teptg/Desktop/Diploma%20Thesis%20Tepteris%20Georgios.docx%23_Toc42525419
file:///C:/Users/teptg/Desktop/Diploma%20Thesis%20Tepteris%20Georgios.docx%23_Toc42525420
file:///C:/Users/teptg/Desktop/Diploma%20Thesis%20Tepteris%20Georgios.docx%23_Toc42525421
file:///C:/Users/teptg/Desktop/Diploma%20Thesis%20Tepteris%20Georgios.docx%23_Toc42525422
file:///C:/Users/teptg/Desktop/Diploma%20Thesis%20Tepteris%20Georgios.docx%23_Toc42525436
file:///C:/Users/teptg/Desktop/Diploma%20Thesis%20Tepteris%20Georgios.docx%23_Toc42525437
file:///C:/Users/teptg/Desktop/Diploma%20Thesis%20Tepteris%20Georgios.docx%23_Toc42525439
file:///C:/Users/teptg/Desktop/Diploma%20Thesis%20Tepteris%20Georgios.docx%23_Toc42525442

University of the Aegean Department of Financial and Management Engineering

[xi]

Figure 4.21 Visualizing the car in the picture with the bounding box 92

Figure 4.22 Find the minimum distance algorithm ... 93

Figure 4.23 The distance between the center of the camera and the car (8.52m) 94

Figure A. 1 Carla Environment...102

file:///C:/Users/teptg/Desktop/Diploma%20Thesis%20Tepteris%20Georgios.docx%23_Toc42525444

University of the Aegean Department of Financial and Management Engineering

[xii]

List of Tables

Table 3.1 The various controllers tested and the related gains 52

Table 3.2 MSE for various values of 𝐾𝑃 and all four controllers 55

Table 3.3 𝐾𝐼 and 𝐾𝐷 values ... 58

Table 3.4 MSE for the PD controller for different 𝐾𝐷 values 59

Table 3.5 MSE for the PI controller by different 𝐾𝐼 values .. 59

Table 4.1 Mapping indices and visualization colors ... 80

University of the Aegean Department of Financial and Management Engineering

[1]

Chapter 1 Introduction

In recent years, autonomous vehicles are becoming progressively important in the

automotive industry and oftentimes monopolize the interest of the media. In this

area, significant research is being conducted in both academia and industry.

Furthermore, several companies are testing models of autonomous vehicles on the

road such us Tesla1 and Waymo2.

It has been ascertained that the launch of autonomous vehicles will have many

positive effects. For example, accidents may decrease due to sophisticated safety

systems embedded in the vehicles and the absence of human errors. Passenger

convenience, less ecological impact and the more efficient use of road infrastructure

are also considerable advantages. However, there is a long way to go for the

commercial launch of autonomous vehicles, and much more research, development

and testing are needed.

Active areas of research and development include dynamic motion planning, control

of the motion of the vehicle, visual perception, safety concepts in urban areas, real

time decisions and others. The present thesis focuses on two such areas of self-driving

vehicles; dynamic control and visual perception. Both areas are complex, highly

promising, and fit the background of the students in the Financial and Management

Engineering Department of the University of the Aegean.

In dynamic vehicle control, the fundamentals include a solid analysis of the vehicle

longitudinal and lateral dynamics and the use of relevant approaches in control

systems. In visual perception, deep neural networks are used to detect the road

infrastructure such as lanes, obstacles, traffic signs and traffic signals, as well as

moving objects, such as other vehicles, bicycles, pedestrians.

1 https://waymo.com/
2 https://www.tesla.com/autopilot

https://waymo.com/
https://www.tesla.com/autopilot

University of the Aegean Department of Financial and Management Engineering

[2]

In order to gain the particular necessary knowledge in these areas, we followed

relevant Coursera courses3 in:

 Introduction to Self-Driving Cars (University of Toronto)

 State Estimation and Localization for Self-Driving Cars (University of Toronto)

 Visual Perception for Self-Driving Cars (University of Toronto)

 Machine learning (Stanford University)

We also used the open source autonomous vehicle simulator CARLA to conduct

relevant experiments (Dosovitskiy, et al., 2017).

This thesis

 presents and explains the basics of vehicle dynamics

 uses established control approaches to control these dynamics both in the

longitudinal and lateral sense. Simulation experiments are used to tune the

parameters of the longitudinal speed controller and draw interesting

conclusions

 presents and explains the basics of visual perception

 develops software using relevant available functions to perform visual

perception tasks, based on CARLA visual inputs.

This thesis contributes to the understanding of the complex technological background,

upon which the vehicle control and visual perception tasks are based. Furthermore,

it explores aspects of both areas and indicates how simulation and the related

software development environment may be used to develop and test important

concepts towards contributions in these areas.

The structure of the remainder of the thesis is as follows: Chapter 2 provides an

introduction to self-driving hardware and software architectures, discusses safety

assurance and overviews the need of sensors and computing power. Chapter 3

introduces the two types of vehicle control, lateral and longitudinal control.

Furthermore, it presents the implementation of an appropriate controller and the

3 https://www.coursera.org/

https://www.coursera.org/

University of the Aegean Department of Financial and Management Engineering

[3]

tuning of its parameters through simulation. In Chapter 4, convolutional neural

networks are described, and a case study is presented, involving three major tasks:

drivable space estimation, lane estimation and object detection. The conclusions of

the work are given in Chapter 5.

University of the Aegean Department of Financial and Management Engineering

[4]

Chapter 2 The need of autonomous vehicles

2.1 The impact of autonomous vehicles

The basic role of technology is to facilitate humanity with the necessary precondition

for respect to the environment. For several decades now, as technology evolves and

the planet's population has increased, the need to create new innovative ventures is

becoming more pressing. One of them is the creation of autonomous vehicles. To

achieve this, science and technology have to collaborate.

The presence of driverless vehicles will solve many everyday difficulties as well as will

improve universal problems such as global pollution. This will be achieved by removing

congestion, especially in urban centers, reducing accidents and pollution. Of course,

such an action requires hard and precise work as well as many experiments and

studies.

The software of autonomous vehicle must be precise, fast and perfectly programmed

to grasp the space in which it moves and to prevent or avoid the intentions of other

vehicles. It is clear that improper design of such a vehicle can be fatal for its user and

also for vehicle users.

Impact on traffic congestion

It is worth considering the hours everyone spends driving. A typical example is the

Americans who, according to the American Society of Civil Engineers, spend more than

6.9 billion hours per year on the road (American Society of Civil Engineers, 2017). Also,

various university studies report the so-called “phantom traffic jam”, in which drivers

create a "stop-and-go" traffic, regardless of lane changes, merges or other disruptions.

The key to resolve the above phenomenon is the communication between the self-

driving vehicles and their surroundings in order to be able to identify the ideal route.

Needless to say, the reduction of traffic congestion will lead to reduction of accidents

and traffic deaths. For the above reasons, the pace control of the autonomous vehicles

will smooth the flow of traffic for all cars.

University of the Aegean Department of Financial and Management Engineering

[5]

Impact on mobility

One of the main issues that arise during driving is the movement of highways and the

speed at which the vehicle will reach its destination as quickly as possible. Of course,

arrival requires the safety of all drivers. Research from time to time on the launch of

the autonomous vehicle in market has shown that driverless vehicles could increase

lane capacity (vehicles per lane per hour) on highways.

To begin with, the ability to monitor every single second surrounding traffic and

respond with finely tuned braking and acceleration adjustments should enable

autonomous vehicles to travel safely at higher speeds and with reduced headway

between each vehicle. Furthermore, autonomous vehicles will greatly facilitate people

who have difficulty to drive or cannot drive, such as seniors and people with

disabilities.

Impact on safety

One notable reason that urges researchers to study more and everything related to

self-driving cars is the plethora of accidents. Worldwide, 1.35 million people are killed

each year in car crashes and the majority of these accidents are due to fatal human

errors while driving (e.g. driver inattention, malaise, alcohol, cell phone use, speed

limit transgression) (WHO, 2018). A cooperative autonomous driving environment will

be incapable of preventing all accidents.

Autonomous vehicles will reduce traffic accidents, deaths and injuries especially those

that result from driver distraction. However, there are some risk factors that deserve

attention. First of all, passengers of AVs (Autonomous Vehicles) should not become

overtly sure of themselves and neglect to take elementary precautions, such as

fastening their seat belt. In addition to, pedestrians should cross streets carefully and

not have the mentality that AVs pose no threat to them. Last but not least, driverless

vehicles could be targeted by hackers or terrorists since their networks could become

a breeding ground for the distribution of ransom ware or malware. Therefore, a

foolproof system is needed which will be immune to such attacks.

University of the Aegean Department of Financial and Management Engineering

[6]

Impact on the environment

As the years go by, nature gives us more and more signs. Climate change is now a fact

and phenomena such as the greenhouse effect and deforestation need to be

controlled. Science and technology must collaborate and allow the planet to breathe.

Autonomous vehicle technology could reduce fuel emission by accelerating and

decelerating more smoothly than a human driver. Further improvements could be had

from reducing distance between vehicles and increasing roadway capacity enabling

lower peak speeds (improving fuel economy) but higher effective speeds (improving

travel time). Thus, by reducing exhaust emissions, both time and money savings are

achieved.

2.2 Fundamental concepts of autonomous vehicles

The Driving Task consists of three sub-tasks. The first one is perception, which pertains

to the necessary mapping and comprehension of key elements in the driving

environment, including the road, road signs, traffic signals, other vehicles, pedestrians

and other elements that constitute the world around the vehicle. In addition to

recognizing all moving objects of relevance, there is a need to predict their future

state. The second sub-task is motion planning, that allows the vehicle to move from

point A to point B successfully. For example, to travel from home to the university, the

route the vehicle will follow should be decided. Finally, the third sub task, is to control

the vehicle itself, that is control the vehicle’s position and speed through breaking,

steering and acceleration decisions. All these three sub-tasks of the driving task are

necessary in order to drive a vehicle successfully.

Another important aspect of vehicle automation is the Operational Design Domain or

ODD, which defines the operating conditions the vehicles are designed to operate.

ODD encompasses characteristics such as time of day, roadways and other

components upon which the self-driving car performance depends. It also affects the

level of autonomy of the vehicle.

Level 0: A human driver has full control of the vehicle, that is all driving sub-tasks:

perception, planning and control.

University of the Aegean Department of Financial and Management Engineering

[7]

Level 1: The vehicle’s systems help the driver through lateral or longitudinal control

tasks. A characteristic example of longitudinal control is the Adaptive Cruise Control

or ACC function, which controls the speed of the vehicle at a predefined level. An

example of lateral control is lane keeping assistance, which warns the driver when

s/he changes lane inadvertently.

Level 2: The vehicle’s systems exercise lateral and longitudinal control under special

driving scenarios. However, the driver is always needed to control the vehicle.

Level 3: The vehicle’s systems can operate partly Object and Event Detection. In this

case, on condition of malfunction, the driver should take control of the vehicle. In

contrast to Level 2, in Level 3 and under certain scenarios consideration of the driver

is not necessary.

Level 4: This is one step before full autonomy: The system may handle an emergency

situation when the driver doesn’t intercede quickly. In some cases, the system notifies

the driver to take control of the vehicle.

Level 5: Full autonomy, under which ODD is unlimited; that is the system can handle

any situation of the traffic environment. (U.S. Department of Transportation, 2017)

2.3 Hardware and software architecture of autonomous vehicles

To achieve vehicle autonomy above Level 2 up to Level 5, there are significant

interventions required to any vehicle both in hardware and software. In this Section,

we provide a descriptive introduction to both aspects. Later in this Thesis we drill

down on technical details as needed.

2.3.1 Major hardware of autonomous vehicles4

There are two hardware categories in autonomous vehicles: Sensors and Computing

Hardware. The latter perform certain important computations based on the inputs

provided by the former.

4 Inspired by (Bussemaker, 2014)

University of the Aegean Department of Financial and Management Engineering

[8]

Sensors

The sensors sense and measure objects in the environment of the vehicle, or detect

the alterations of dynamical objects in this environment.

Figure 2.1 Typical sensors of an autonomous vehicle (Coursera(2019a))

Typical sensors of an autonomous vehicle are shown in Fig. 2.1. The camera is the eyes

of the autonomous vehicle and is positioned on the upper part of the vehicle. For

example, on the roof (as in most autonomous vehicles) or in the middle of the

windshield. The Lidar sensor is placed at the highest level of the vehicle, since the plot

of the environment around the vehicle that Lidar produces should not be obstructed

by parts of the vehicle. The Radar sensor is placed at the front bumper and tracks the

position of other vehicles, which are nearby. The Ultrasonic sensors are placed

sideways in the front bumper and the rear bumper. They are used to measure objects

that are located very close to the vehicle, such us curbs or other vehicles which are

parked. The Wheel odometry sensor measures the number of wheels turns and

estimates the distance travelled by the vehicle. This sensor can combine with other

sensors, such as the GNSS/IMU antenna, in order to improve GPS information. The

GNSS/IMU sensor receives signals from the GPS satellites and combines the

measurements from tachometers, altimeters and gyroscope for accurate positioning

of the autonomous vehicle.

University of the Aegean Department of Financial and Management Engineering

[9]

The above sensors are classified into two types: Exteroceptive (or extero) sensors that

are used to identify objects in the vehicle’s environment, and proprioceptive sensors,

which sense ego properties, that is, properties of the vehicle of reference. These two

types are further examined below.

Exteroceptive Sensors

This sensor type includes cameras, that is passive, light-collecting sensors that capture

detailed visual information of the environment (see for example Fig. 2.2). A camera

uses three metrics: resolution, dynamic range and field of view. The resolution metric

is the number of pixels that create an image; the higher number of pixels, the better

the image quality. The dynamic range of a camera relates to the difference between

the darkest and the lightest tones in an image. For autonomous vehicles high dynamic

range is critical, due to the significant changes in lighting status, for example, at night.

The field of view is defined-by the horizontal and vertical angular extent that is visible

to the camera and can be varied through the lens selection and zoom.

Figure 2.2 A typical camera with three camera lens (Autonomous vehicle
international (2019))

The other important extero sensor is LIDAR (Light Detection and Ranging), which

implements a surveying method that measures the distance of objects by emitting

light beams, receiving the reflected return, and performing the necessary calculations

University of the Aegean Department of Financial and Management Engineering

[10]

involving the related time difference and the speed of light. It usually comprises a

spinning item that sends laser beams. The output is a three-dimensional point cloud

map (3-D Map), which is an approximation of the geometry of the environment. LIDAR

is not affected by environmental lighting. One important aspect of LIDAR is the

number of laser beams used, that is 8, 16, 32 or 64 beams. A second important aspect

is the number of points per second the sensor may collect and process. The faster

processing, the more accurate the 3D map. One more component is the rotation rate.

The higher the rate, the faster the 3D marks are updated. A fourth aspect is the

detection range and is guided by the power of the light source. Finally, like the camera,

LIDAR is characterized by the field of view, which is the angular expansion visible to it.

Figure 2.3 presents an example of a 3D map. Figure 2.4 presents examples of LIDAR

sensors.

Figure 2.3 A 3D map example (Coursera (2019a))

University of the Aegean Department of Financial and Management Engineering

[11]

Figure 2.4 Typical LIDAR sensors and examples of mounting on various vehicles
(Coursera (2019a))

A third important sensor is the RADAR (Radio Detection and Ranging) that can detect

larger objects in a shorter distance than LIDAR – see Fig. 2.5. RADAR has the distinct

advantage of not been affected by rain. The characteristics of the RADAR sensor

include detection range, field of view, position and speed measurement accuracy.

Also, RADAR may cover a wide angular field in short range, a narrow field a longer

range.

Figure 2.5 Radar detects other objects (Coursera (2019a))

University of the Aegean Department of Financial and Management Engineering

[12]

The final extero sensor is the ultrasonic sensor or SONAR (Sound Navigation and

Ranging), which measures the distance between the ego car and the car ahead or

behind or next to it, using sound waves. SONAR is used in short range applications; for

example, in parking scenarios in which the reference vehicle needs to manoeuvre

close to other vehicles (see Fig. 2.6). Its characteristics include maximum range and

the detection field of view.

Figure 2.6 Self-driving car detects a free parking space with sonar (Coursera (2019a))

Proprioceptive Sensors

The second category/ type of sensors includes proprioceptive sensors, which sense

ego properties, that is, properties of the reference vehicle. A key sensor is the GNSS

(Global Navigation Satellite Systems), such as GPS, which measures the ego position,

velocity and sometimes heading.

Another important proprioceptive sensor is the IMU (Inertial Measurement Unit) –

see Fig. 2.7. It measures the angular accelerations of the ego vehicle. The IMU

synthesizes the outputs of three gyroscopes and three accelerometers to monitor the

motion of the vehicle. The gyroscope is very accurate but generates noisy

measurements. It computes the angular rotation rate, actually taken from three

gyroscopes, that is the angular speed of the body structure relative to an inertial frame

of reference. The accelerometer measures body accelerations which are important in

University of the Aegean Department of Financial and Management Engineering

[13]

estimating the accurate position of the ego-car. All these sensor measurements

estimate the 3D orientation of the car, that is the vehicle’s, a most necessary variable

for vehicle control.

The last type of proprioceptive sensors includes the wheel odometry sensors, which

measure the wheel rotation rate. This sensor records the frequency of rotation, which

is used in estimating the speed and the rate of change of the autonomous vehicle’s

heading. It is also the sensor that calculates the range of kilometres of any vehicle.

Figure 2.7 Typical IMU sensors (Coursera (2019a))

Computing hardware

The central computer is shielded in the car body and it is connected with the sensors.

It analyses the sensor outputs in order to operate steering, acceleration and brake.

For example, Nvidia’s central computer is called Drive PX and Intel’s computer is called

Mobileye’s EyeQ. Computing hardware performs serial and parallel computations. For

example, the LIDAR and image processing used for segmentation mapping and object

detection would use GPUs, FPGAs, and custom ASICs, which are special hardware used

to perform complex computations, such as image processing.

University of the Aegean Department of Financial and Management Engineering

[14]

2.3.2 Software architecture of autonomous vehicles5

The software architecture of autonomous vehicles runs on the computing hardware

overviewed above. The main software modules of autonomous driving perform a)

environment perception, b) environment mapping, c) motion planning, d) vehicle

control and e) system supervision. All are essential for full vehicle autonomy.

Figure 2.8 Software architecture of autonomous vehicles (Coursera, 2019a)

Modules (a) and (b) are used to recognize the environment around the vehicle based

on the outputs of the appropriate sensors. Module (a) recognizes where the

autonomous vehicle is in space by detecting and categorizing necessary objects in the

environment. These objects could be other vehicles, pedestrians, road marking, road

signs, bikes, motorbikes and the road; that is everything that affects the driving

behaviour of a vehicle.

Module (b) constructs necessary maps to locate objects in the immediate

environment of the ego car. These maps are used for motion planning, tracking,

collision prevention, etc. There are three types of such maps:

 The occupancy grid map: It is used to capture objects in the vehicle’s

environment. The latter is mapped based on grid cells; a probability is

related to each grid cell to indicate whether the cell is occupied or not.

5 Inspired by Coursera (2019a)

University of the Aegean Department of Financial and Management Engineering

[15]

Certain objects are excluded from the grid map, such as the drivable

surface, and dynamic objects

 The localization map: It is used to track the exact position of the ego vehicle

within its environment by combining LIDAR or camera data with other

sensor data

 The detailed road map: It is a fusion of existing data and incoming static

data regarding the ego vehicle’s environment. Such important data include

line markings and road signs, which support motion planning.

Modules (a) and (b) interact; the static data about the environment of the ego vehicle

that are necessary to update the detailed road map are provided by the perception

module. The detailed road map is, in turn, used by the perception module in its object

detection task.

The motion planning module (c) uses the outputs of modules (a) and (b) to ensure that

the vehicle moves from its origin to its destination in a safe and effective way. Motion

planning comprises the following:

 long term planning of the entire driving task between the origin and

destination along the predefined route; the latter comprises the on the

best path synthesized by road segments

 behavioural planning, which accepts the above long-term plan as input

and constructs a short term plan, that is a set of actions and manoeuvres

to be followed along the path of the long term plan. For example, a lane

change may be allowed considering the behaviour of the surrounding

vehicles

 Immediate or reactive planning: It defines the route and the speed profile

to be followed, satisfying all the constraints of the ego vehicle’s

environment. The inputs used by this planning level include the output of

the behavioural planner, the occupancy grid, etc.

The controller (module d) uses as input the path of the motion planning module (c)

and executes it in the best possible way by controlling four variables: steering angle,

University of the Aegean Department of Financial and Management Engineering

[16]

brake pedal position, throttle pedal position, and gear settings. The module performs

two control actions:

 Longitudinal control: It regulated the break and throttle pedal positions,

and the gear settings to achieve the desired speed set by motion planning

 Lateral control: It regulates the steering angle to follow the planned path

also set by motion planning

The system supervisor (module e) ensures that all systems are functioning properly

and notifies the driver of any malfunctions or issues. It includes

 The hardware supervisor that monitors data from all ego vehicle’s

hardware. The data of each monitored piece of hardware are examined

whether they fall within the expected range for the environment in which

the ego vehicle operates

 The software supervisor monitors all software outputs and detects any

inappropriate values, actions, or dissimilarities between outputs of

different software modules

2.4 The planning hierarchy

In this Section, we discuss the decision making that is necessary to be carried out in

an autonomous vehicle. There are three types of related decisions a) long-term

planning b) short-term planning and c) immediate-term planning (Urmson, et al.,

2008). The first type concerns long-term planning and is responsible for the

autonomous vehicle to travel from the one point (origin) to another (destination). For

example, from Athens to Thessaloniki or from the university to home. It results in a

high-level plan for the entire driving task, including which roads to travel, which lanes,

which turns to make, etc.

The second type of decisions concerns short-term planning, including when the

autonomous vehicle must change lane with safety, when it should execute a right turn,

etc. These decisions involve control and trajectory planning and answer questions of

the type, how do I follow a lane on this curved road? What steering input should I

apply? Should I accelerate or brake? If so, by how much.

University of the Aegean Department of Financial and Management Engineering

[17]

To clarify the above two types of decisions, consider the following example. Let’s

assume that the vehicle will enter an intersection, and then turn left at this

intersection (see Figs. 2.9 and 2.10). This task falls in the short-term planning type as

the related decisions involve lane changes and stopping locations. Given that the

intersection is controlled by traffic lights, the vehicle should decide if it should change

lanes in order to turn left. Then, as it approaches the intersection it should choose to

slow down smoothly in order to respect passenger comfort.

Figure 2.9 Turning left at an intersection: The vehicle should also stop just before the
pedestrian crossing. (Coursera 2019a)

Moreover, there situations that may arise along the way. The decisions to address

these situations fall into the immediate decision type and require safe reactions from

the planning system. Object detection and event detection and response play a very

critical role here. What if another vehicle pulls into the turn lane in front? The ego

vehicle would need to stop earlier to make room for the other vehicle. What if the

stop lines weren't marked? In this case, the ego vehicle would have to approximately

University of the Aegean Department of Financial and Management Engineering

[18]

judge where the implied stop line is and stop before the pedestrian crossing. What if

there were other vehicles behind the ego vehicle or even stalled in the intersection?

How does the decision to execute a left turn change based on the many possible

scenarios that can rapidly arise in normal driving? The final result is an enormous list

of possible decisions that must be taken and evaluations that have to be made on

different timescales. In every scenario, there is a need to have a reliable set of choices

that can be evaluated in real time and be updated as new information comes in.

Furthermore, even a seemingly simple driving scenario requires three or four levels of

decisions and must then be executed with careful vehicle control. This example

illustrated the constant stream of decisions needed for motion planning.

To represent the immediate type decisions in the software of the autonomous vehicle

involves two methods. The first method is reactive planning. In this method we define

sets of rules that only consider the current state and not future predictions. These

rules take into account the current state of the ego vehicle and other objects in the

environment and produce immediate actions. An example of such rules would be, if

there is a pedestrian crossing the road, stop, or if the speed limit changes, you have

to adjust your speed to match it. In both examples, the system observes current

events and makes a decision based on immediately available information.

Another method of planning is predictive planning.

University of the Aegean Department of Financial and Management Engineering

[19]

Figure 2.10 Intersection, decelerate smoothly to the stop line (Coursera 2019a)

In predictive planning we make predictions on how other agents in the environment

will move over time, including vehicles and pedestrians. This prediction information

affects all involved decisions. This is a more natural way to generate decisions and

relates closely to how humans operate vehicles. An example of rules in predictive

planning is if the car has stopped for the last 10 seconds, then it's probably going to

stay stopped for the next few seconds. So, maybe there is a way that the ego vehicle

can move past it safely. Or consider a pedestrian jaywalking: the pedestrian will enter

the ego vehicle lane by the time it gets close to it. Then, the vehicle needs to slow

down and give the pedestrian a chance to cross the road ahead of the ego vehicle. The

system predicts where other objects on the road will be in the future before it makes

the needed decisions. Accurate predictions of the actions of the other actors in the

environment adds a significant layer of complexity to the perception tasks.

Nonetheless, the scenarios of a safe handling of self-driving vehicles, are expanded by

predictive planning.

University of the Aegean Department of Financial and Management Engineering

[20]

2.5 Safety concerns

Prior to the deployment of autonomous vehicles, Governments have been active in

setting safety rules to prevent accidents from hardware or software malfunctions.

Furthermore, the parties involved in developing autonomous vehicles are developing

and testing safety systems. Testing may involve creating traffic scenarios and testing

them in simulators and in a real environment. Developers should be considering all

the safety standards set by the National Highway Traffic Safety Administration

(NHTSA).

In this Section, we overview this critical topic.

2.5.1 Examples of safety incidents involving autonomous vehicles

Unfortunately, over the last five years several accidents have taken place during this

initial and limited deployment period of autonomous vehicles. A characteristic

example involved the autonomous vehicle of Waymo (Google), which in the Spring of

2016 ran into the side of a bus in order to avoid an obstacle. Specifically, a bus was

approaching the vehicle from the rear and intended to pass it, while the Waymo

vehicle was prepared to turn (see Fig. 2.11). As the distance between the two vehicles

was limited, the vehicle’s software estimated that the bus would not attempt to pass

it. It turns out that buses usually pass through smaller gaps than the software

anticipated in this case. By the time the software updated the bus location, it was too

late, and the conflict was inevitable. Figure 2.11 shows how the autonomous vehicle

perceived the environment. The path of the vehicle is indicated by a green background

and right next to it, the bus with purple attempting to pass the vehicle. The red circle

shows a piece of the autonomous vehicle wedged on the bus door.

University of the Aegean Department of Financial and Management Engineering

[21]

Figure 2.11 Crash of Waymo car with bus (Coursera (2019a))

A year later, an Uber self-driving vehicle overreacted during a minor collision caused

by another vehicle and ended up overturning (see Fig. 2.12). As it turned out, the

controller had not been tested for such a scenario and overreacted because the

dynamic models of the vehicle did not anticipate significant disturbance forces from

other vehicles acting on the car. The vehicle’s controller was faced with the following

dilemma; to crash into two cars in the adjacent lane or to collide with a motorcycle.

It's not clear what specific decision was made, since a lawsuit has buried the details of

the case.

In general, since decisions in self-driving vehicles are made by multiple agents, it is

very challenging to determine what the right action is in many unusual situations. The

above sample cases illustrate the need for robustness integrated into the control

systems of the vehicle, and for exploratory testing that covers as many foreseeable

events as possible.

University of the Aegean Department of Financial and Management Engineering

[22]

Figure 2.12 Uber’s autonomous vehicle crash (Coursera (2019a))

In 2018, Uber instituted an extensive program that involved safety drivers monitoring

the autonomy software of vehicles been tested in the region of Tempe Arizona. Within

this program, a fatal accident took place; that is, an autonomous vehicle travelling on

a wide multilane divided road at night collided with a person riding a bicycle (Fig. 2.13).

Several causes were found to be relevant to this unfortunate incident. First, the safety

driver did not perform proper checks. It is rumoured that the driver was watching

Hulu. However, Uber did not have a way to assess the driver’s carelessness. In such

testing programs, there is need to use a safety driver monitoring system, due to the

intrinsic difficulty of the driver to stay focused in monitoring the operation of the

autonomous drive system.

Second, there was significant confusion in the detection software system. During the

initial detection at six seconds to impact, the rider (and the bicycle) was first

considered as an unknown object. Then the rider was misclassified as a vehicle, and

then misclassified again as a bicycle. At the end, the decision made by the autonomy

software was to ignore the detections, since they were considered as untrustworthy

(National Transportation Safety Board, 2018).

University of the Aegean Department of Financial and Management Engineering

[23]

Finally, 1.3 seconds before impact, the Volvo emergency braking system detected the

rider and would have applied the brakes immediately to reduce the impact speed,

potentially saving the life of the victim. However, Uber had disabled the Volvo system

when in autonomous mode because it is unsafe to have multiple collision avoidance

systems operating simultaneously during testing. Eventually, the autonomous vehicle

did not react to the presence of the rider and the inattentive driver was unable to

react quickly enough to avoid the collision.

The combination of a) the failure of the perception system to correctly identify the

rider with a bicycle b) the failure of the planning control system to avoid the detected

object due to uncertainty, c) the human inattentiveness, and d) the disconnection of

the emergency braking backup system led to this fatal accident.

2.5.2 Safety and hazards in autonomous vehicles

From the above cases, it is evident that design, perception and control may all lead to

failures. Oftentimes the simultaneous operation and interaction of multiple systems

or multiple decision-makers can lead to unanticipated consequences.

Figure 2.13 Uber’s deadly crash with pedestrian (National Transportation Safety

Board, 2018)

In general, safety assurance is the process of avoiding unnecessary risk of harm to a

living being. For example, driving into an intersection when the traffic signal is red

would be unsafe as it leads to unreasonable risk of harm to pedestrians crossing the

University of the Aegean Department of Financial and Management Engineering

[24]

intersection, to the occupants of the vehicle and to those of other vehicles moving

through the intersection. Furthermore, a hazard is a potential source of unreasonable

risk of harm or a threat to safety.

The most common sources of hazards for autonomous vehicles include: a) typical

mechanical faults, such as incorrect assembly of a brake system causing a premature

failure; b) typical electrical faults, such as incorrect internal wiring leading to a loss of

indicator lighting; c) failure in computing hardware used in autonomous driving; d)

errors or bugs in software, or in bad or noisy sensor data, or in inaccurate perception;

e) incorrect planning or decision-making, inadvertently selecting hazardous actions ;

f) failures in the fallback interaction with a human driver, that is, not providing enough

warning to the driver to resume responsibility; g) hacking , whereby a self-driving car

is hacked by some malicious entity .

2.5.3 Emerging safety regulation and current approaches

The National Highway Traffic Safety Administration (NHTSA) of the US requires

industry to develop a complete strategy addressing twelve areas in order to make

autonomous vehicles safer (U.S. Department of Transportation, 2017). The first area

concerns the system design, which should provide the foundation for the entire safety

concept. Especially software design requires careful planning and control and any

existing SAE and ISO standards from aerospace and other industries related to

automotive should be applied.

The other 11 areas can be categorized in two large groups. The first group concerns

the autonomy design and the second group concerns testing of the autonomy function

and finding ways to decrease failure.

The first group of areas in the NHTSA framework promotes a precise practical design

that provides designers with a clear insight of errors and constraints of the system.

Also, it permits designers to determine supported safe cases before testing. Designers

should also secure the autonomous vehicle has a fallback mechanism that is friendly

to the driver and informs him for potential risks or the vehicle may return in the safety

mode. It is very important to note that the driver may not be attentive when the

vehicle turns to the safety mode. Thus, the designers should consider minimum risk

University of the Aegean Department of Financial and Management Engineering

[25]

settings, until the driver takes control of the vehicle. In addition to the above, the

driving system design should abide by all federal, state and local laws for traffic within

ODD. The NHTSA framework also encourages designers to consider cybersecurity

threats and the related solutions to protect the system from such threats. Finally, the

human machine interface should be paid attention to. As a result, the driver should

be fully aware at all times of the condition of the autonomous vehicle, for example if

the sensors are functional, the current route, the environmental factors that may

affect the state of the vehicle, etc.

The second group of areas in the NHTSA framework supports severe testing and the

development of exceptional assurance programs that are more stringent than any

other system. Simulation, close track testing and public road driving are the three

principal foundations of this part of the framework. Autonomy systems with special

components that reduce crash energy and guarantee passengers’ welfare like

restraints, airbags and crash worthiness should be widely adopted. An important issue

is the immediate transition of the vehicle after an accident to a safe state. All

autonomous vehicles must have a black box, much like aircraft which records all

necessarily data to provide information on what went wrong. Finally, the NHTSA

recommends that consumers must be mentality trained to operate an autonomous

vehicle.

University of the Aegean Department of Financial and Management Engineering

[26]

The work of Waymo provides good insights into the application of the NHTSA

framework. Waymo’s safety report (Waymo, 2018) covers all twelve areas of NHTSA

and classifies them in five safety levels shown in Fig. 2.14.

Figure 2.14 Architecture safety levels of Waymo industry (Coursera (2019a)

Firstly, the systems of Waymo safeguard the safety of behavioural driving under key

scenarios; for example when the traffic light goes from green to red what operations

should the autonomous vehicle software perform in order to stop the vehicle while

managing all traffic rules?. Secondly, the functional safety of the system includes

backups and redundancies; that is, if the primary system fails then the vehicle switches

to a secondary backup process to lead the vehicle towards a safe state.

In terms of non-collision safety, Waymo’s systems protect the passengers of the

vehicle in the event of a crash. Waymo has introduced a multiple back-up system

which includes collision avoidance systems. These systems slow down or stop the

vehicle in the infrequent occurrence that the primary system does not detect or

respond to objects in the route of the vehicle.

In terms of operational safety, the system lets the passengers assume partial control

of the vehicle, when it is in the safe mode. Finally, Waymo’s advanced non-collision

University of the Aegean Department of Financial and Management Engineering

[27]

safety system reduces risks that relate to the system in some way. For example, sensor

hazards or electrical system failures that could cause injuries to the passengers,

vehicle technicians, test drivers, etc. The Waymo team produced and tested many

hazard scenarios to analyse moderation strategies for each of these risks. They used a

range of methods to analyse these scenarios, such as fault trees that work from top

down in terms of dynamic driving tasks and bottom-up in terms of small subsystem

failures.

For securing the above requirements, Waymo developers use simulators to test all

changes in software (see Fig. 2.15); for example, each change or new scenario, is

tested by simulating operation during ten million miles in the simulation software.

During these tests, Waymo’s team performs methodical scenario investigation by

varying multiple parameters, such as speed and position of other cars and pedestrians

to test whether the ego-car behaves with safety.

Figure 2.15 Simulation tasting of Waymo’s industry (Coursera (2019a)

Post simulation, the team performs physical tests in closed tracks to confirm specific

goals in safety performance. The final step comprises tests in an actual traffic

environment to explore more challenging scenarios.

In 2017, Waymo in California drove 563,000 km and has encountered 63

disconnections (i.e. one disconnection every 9,000 km.) Disconnections or

University of the Aegean Department of Financial and Management Engineering

[28]

disengagements are the deactivations of the autonomous mode when failures are

detected in the autonomous software or hardware or when the safe operation

demands from the test driver of the autonomous vehicle to take control . General

Motors (GM) in California drove 210,000 km with 105 disconnections or

approximately one every 2,000 km. This performance is far away from the target of

both companies of 400,000 km between successive accidents or disconnections.

Considering that accidents are unique events, the report of DMV (Department of

Motor Vehicles, 2018) states that more than 8 billion miles would be required to verify

the safety case for an autonomous vehicle. With a fleet of 100 vehicles travelling 24

hours a day, seven days a week, it would take more than 400 years to launch the first

autonomous vehicle. For this reason, companies need to increase their fleets to earn

more experience with the autonomous systems on the road.

University of the Aegean Department of Financial and Management Engineering

[29]

Chapter 3 Vehicle control

3.1 Introduction to vehicle control

Vehicle control provides the actuation commands to drive the vehicle based on the

decisions made by the perception of the environment and short-term planning.

The architecture of vehicle control is shown in Fig. 3.1 This architecture comprises four

major parts/layers, which are interconnected. The first layer is perception and

recognizes the road and the environment around of the autonomous vehicle.

Perception is synthesized by the outputs of sensors and the perception intelligence

built-in the software of the autonomous vehicle. Perception provides input

information to the short-term planning layer.

This second layer generates the speed profile and the vehicle’s path, collectively called

the drive cycle. The latter comprises the short-term motion plan of the vehicle and

provides the critical inputs to the third layer, vehicle control. These inputs are the

reference velocity, and an array of consecutive coordinates that define the short-term

path of the vehicle (reference path).

The third layer controls the vehicle dynamics in order to execute these reference

inputs as best as possible. The third layer comprises the longitudinal and lateral

control, that regulate the longitudinal and lateral dynamics of the autonomous

vehicle, respectively. Longitudinal control aspires to achieve the reference speed, and

lateral control aspires to achieve the reference path. Both control tasks are necessary

to follow the short-term plan as accurately as possible by minimizing the errors

between the reference inputs and actual outputs. To do so the two control schemes

provide three control commands: Throttle angle, break position, and steering angle

(the same control settings as in any non-autonomous vehicle driven by a human

driver).

University of the Aegean Department of Financial and Management Engineering

[30]

The final layer of the architecture is the actuation layer, i.e. the vehicle

throttle/engine, break and steering systems, which receive the signals from the

control layer and implement these commands in the actual vehicle.

The lateral dynamics have an impact on the longitudinal dynamics and the reserve.

The coupling variable is the actual vehicle velocity. It affects the lateral dynamics of

the vehicle (due to centrifugal forces, etc.); the lateral dynamics, in turn, affect the

actual vehicle velocity and thus the longitudinal dynamics.

The vehicle dynamics, both longitudinal and lateral, are modelled by differential

equations, which regulate the state of the vehicle. The forward speed and

displacement are determined by the longitudinal forces. Lateral speed and

displacement are determined by lateral forces and moments. During vehicle control,

it is essential that the desired route and the desired speed be maintained stable.

Due to the importance of vehicle control in the focus of this thesis (and especially of

this chapter), we provide in Sections 3.2, and 3.3 an overview of longitudinal and

lateral dynamics and control based on (Rajamani, 2012). In Section 3.4 we focus on

the tuning of the longitudinal controller via a well-known simulation software of

autonomous vehicle operation.

Figure 3.1 The strategy architecture of vehicle control (Coursera (2019a))

University of the Aegean Department of Financial and Management Engineering

[31]

3.2 Lateral control6

Lateral control is responsible to execute the motion plan for a predetermined route.

This is done by adjusting the steering angle, also considering possible differences

between the actual and the planned routes (route errors). Lateral control selects a

strategy to eliminate these errors taking into account the dynamics of the vehicle, the

desired drive characteristics, as well the steering angle constraints

The planned route can be described in numerous ways. A simple description is through

a sequence of straight-line segments that connect a sequence of points along the

route. These points may be determined by the GPS from earlier runs of the route.

Another, improved, way to define the route is by using a sequence of continuous

parameterized curves, which can be identified from a fixed set of motion primitives.

To describe the lateral control strategies, in this section we present a simple model

for the kinematics of the vehicle, a related model for the vehicle dynamics, and the

controllers that drive the vehicle dynamics towards the desired state.

Vehicle kinematics: The bicycle model

In the bicycle model, the vehicle geometry is simplified as follows: The rear axle and

the two rear wheels are represented by a single wheel; a similar representation is used

for the front wheels and axle (see Fig. 3.2).

To analyze the kinematics of the bicycle model, three points may be used a) the centre

of the rear axle, b) the centre of the front axle and c) the centre of gravity of the

autonomous vehicle. Thus, to develop the kinematic equations, it is important to

define the reference point. More specifically, consider the coordinates of the center

of the rear axle to be 𝑥𝑟 and 𝑦𝑟, the heading angle of the bicycle model to be 𝜃 and

the distance between the rear axle and the front axle to be 𝐿 (see Fig. 3.2). The

steering angle is δ and the speed is 𝑣. Note that instantaneous centre of rotation (ICR)

is the intersection of the straight line of the rear axle with the perpendicular line of

the front wheel. In the absence of slip forces and considering the radius of rotation

from ICR to be 𝑅, then Eq. (3.1) holds.

6 Inspired by (Snider, 2009) and (Rajamani, 2012)

University of the Aegean Department of Financial and Management Engineering

[32]

𝜃̇ = 𝜔 =
𝑣

𝑅
 (3.1)

Considering the triangle of Fig. 3.2

tan 𝛿 =
𝐿

𝑅

(3.2)

Thus, Eq. (3.1) becomes

𝜃̇ = 𝜔 =
𝑣

𝑅
=

𝑣 tan 𝛿

𝐿
 (3.3)

Figure 3.2 Kinematics of bicycle model with respect to (𝑥𝑟 , 𝑦𝑟) (Coursera (2019a))

The equations of motion for the reference point (𝑥𝑟 , 𝑦𝑟) and the rotation angle 𝜃 are:

𝑥̇𝑟 = 𝑣 cos 𝜃 (3.4)

𝑦̇𝑟 = 𝑣 sin 𝜃 (3.5)

𝜃̇ =
𝑣 tan 𝛿

𝐿
 (3.6)

For the center of the front axle (𝑥𝑓 , 𝑦𝑓) these equations according to the triangle of

figure 3.2 become (refer also to Fig. 3.3)

University of the Aegean Department of Financial and Management Engineering

[33]

𝑥̇𝑓 = 𝑣 cos(𝜃 + 𝛿) (3.7)

𝑦̇𝑓 = 𝑣 sin(𝜃 + 𝛿) (3.8)

𝜃̇ =
𝑣 sin 𝛿

𝐿
 (3.9)

Figure 3.3 Kinematics of bicycle model with respect to (𝑥𝑓 , 𝑦𝑓) (Coursera (2019a))

The difference between Eq. (3.6) and (3.9) result from approximations of the radius of

rotation.

For the centre of gravity 𝑐𝑔, with coordinates (𝑥𝑐, 𝑦𝑐), the slip angle 𝛽 needs to be

considered (see Fig. 3.4). Let 𝑙𝑟 be the distance between the centre of the rear axle

and the centre of gravity. From Fig. 3.4 and considering Eq. (3.2)

𝑡𝑎𝑛𝛽 =
𝑙𝑟
𝑅

⟹ 𝛽 = 𝑡𝑎𝑛−1(
𝑙𝑟
𝑅

) ⟹ 𝛽 = 𝑡𝑎𝑛−1(
𝑙𝑟
𝐿

𝑡𝑎𝑛𝛿) (3.10)

If there is no slip rate, then the kinematic equations with respect to the centre of

gravity become:

𝑥̇𝑐 = 𝑣 cos(𝜃 + 𝛽) (3.11)

𝑦̇𝑐 = 𝑣 sin(𝜃 + 𝛽) (3.12)

𝜃̇ =
𝑣 cos𝛽 tan 𝛿

𝐿
 (3.13)

Again the differences between Eq. (3.6) and (3.13) are due to the radius of rotation.

University of the Aegean Department of Financial and Management Engineering

[34]

Figure 3.4 Kinematics of bicycle model with respect to (𝑥𝑐, 𝑦𝑐) (Coursera (2019a))

The dynamics of the bicycle model

To describe the lateral dynamics of the bicycle model let’s make the following

simplifying assumptions:

 The forward speed is constant

 Other nonlinear effects, such as suspension movement, aerodynamic forces

and road inclination are assumed unimportant.

Consider the centre of gravity (𝑐𝑔) of the autonomous vehicle as the reference point.

With reference to Fig. 3.5, the total acceleration comprises the lateral acceleration 𝑦̈

and the centripetal acceleration from rotation of the vehicle.

𝑎𝑦 = 𝑦̈ + 𝜔2𝑅𝑐 (3.14)

Considering v to be the longitudinal speed of the vehicle

𝑣 = 𝜔𝑅𝑐 (3.15)

Under certain simplification assumptions, the rate of the heading angle 𝜃̇ can be

considered equal to the angular speed of vehicle.

𝜔 = 𝜃̇ (3.16)

University of the Aegean Department of Financial and Management Engineering

[35]

The vehicle sideslip angle 𝛽 may be defined through the triangle of Fig. 3.5. The

second relationship in Eq. (3.17) holds for small angles 𝛽..

Figure 3.5 Relationship between the speed 𝑣 and its component 𝑦̇

sin 𝛽 =
𝑦̇

𝑣
⟹ 𝛽 =

𝑦̇

𝑣
⟺ 𝑦̇ = 𝛽𝑣 (3.17)

Using Eqs. (3.15), (3.16) and (3.17) into Eq. (3.14), we obtain

𝑎𝑦 = 𝑣𝛽̇ + 𝑣𝜃̇ (3.18)

Thus, for the lateral dynamics we may write the second law of Newton as:

𝑚𝑉(𝛽̇ + 𝜃̇) = 𝐹𝑦𝑓 + 𝐹𝑦𝑟 (3.19)

where m is the mass of the vehicle, and 𝐹𝑦𝑓 𝐹𝑦𝑟 are the forces applied on the front and

the rear tires respectively (in the y direction of course).

The moments generated by the tire forces have opposite directions and the equation

becomes

𝐼𝑧𝜃̈ = 𝑙𝑓𝐹𝑦𝑓 − 𝑙𝑟𝐹𝑦𝑟 (3.20)

where 𝐼𝑧 is vehicle inertia term and 𝑙𝑓 and 𝑙𝑟 are the distances between the center of

gravity and the front and the rear tires respectively (See Fig 3.6).

University of the Aegean Department of Financial and Management Engineering

[36]

Figure 3.6 Lateral dynamic model with respect to cg (Coursera (2019a))

Forces 𝐹𝑦𝑓 and 𝐹𝑦𝑟 are given from:

𝐹𝑦𝑓 = 𝐶𝑓𝑎𝑓 = 𝐶𝑓(𝛿 − 𝛽 −
𝑙𝑓𝜃̇

𝑣
) (3.21)

where 𝐶𝑓 is the linearized cornering stiffness of the front wheel and 𝑎𝑓 is the slip angle

of front tire

𝑎𝑓 = 𝛿 − 𝜃𝑣𝑓 = 𝛿 − 𝛽 −
𝑙𝑓𝜃̇

𝑣
 (3.22)

where 𝜃𝑣𝑓 is the angle between the actual speed vector and the longitudinal axis of

the vehicle and δ is the front wheel steering angle (Rajamani, 2012) – see also Fig 3.6.

University of the Aegean Department of Financial and Management Engineering

[37]

Figure 3.7 Front tire sleep angle (Rajamani, 2012)

𝐹𝑦𝑟 = 𝐶𝑟𝑎𝑟 = 𝐶𝑟(−𝛽 +
𝑙𝑟𝜃̇

𝑣
) (3.23)

where 𝐶𝑟 is the linearized cornering stiffness of the rear wheel and 𝑎𝑟 is the slip angle

of the rear tire. The equation of 𝑎𝑟 is similar given by

𝑎𝑟 = −𝜃𝑉𝑟 = −𝛽 +
𝑙𝑟𝜃̇

𝑣
 (3.24)

Substituting the lateral forces 𝐹𝑦𝑓, 𝐹𝑦𝑟 into to the dynamic equations for the bicycle

model (3.21) and (3.23), we obtain the following state equations:

𝛽̇ =
−(𝐶𝑟 + 𝐶𝑓)

𝑚𝑣
𝛽 + (

𝐶𝑟𝑙𝑟 − 𝐶𝑓𝑙𝑓

𝑚𝑣2
− 1) 𝜃̇ +

𝐶𝑓

𝑚𝑣
𝛿 (3.25)

and

𝜃̈ =
(𝐶𝑟𝑙𝑟 + 𝐶𝑓𝑙𝑓)

𝐼𝑧
𝛽 +

𝐶𝑟𝑙𝑟
2 − 𝐶𝑓𝑙𝑓

2

𝐼𝑧𝑉
𝜃̇ +

𝐶𝑓𝑙𝑓

𝐼𝑧
𝛿 (3.26)

University of the Aegean Department of Financial and Management Engineering

[38]

Assuming that the states of the system are 𝑦, 𝛽, 𝜃 and 𝜃̇, the input is the steering angle

𝛿 and the outputs are, 𝑦 and θ,the system lateral dynamics (along the 𝑦 axis) is given

by Eq. (3.17) to (3.13), considering Eqs. (3.18), (3.25) and (3.26).:

𝑋̇𝑙𝑎𝑡 = 𝐴𝑙𝑎𝑡𝑋𝑙𝑎𝑡 + 𝐵𝑙𝑎𝑡𝛿 (3.27)

where

𝐴𝑙𝑎𝑡 =

[

0 𝑣 𝑣 0

0 −
𝐶𝑟 + 𝐶𝑓

𝑚𝑣
0

𝐶𝑟𝑙𝑟 − 𝐶𝑓𝑙𝑓

𝑚𝑣2
− 1

0 0 0 1

0
𝐶𝑟𝑙𝑟 − 𝐶𝑓𝑙𝑓

𝐼𝑧
0 −

𝐶𝑟𝑙𝑟
2 + 𝐶𝑓𝑙𝑓

2

𝐼𝑧𝑣]

 (3.28)

𝐵𝑙𝑎𝑡 =

[

0
𝐶𝑓

𝑚𝑣
0

𝐶𝑓𝑙𝑓

𝐼𝑧]

 (3.29)

𝑋𝑙𝑎𝑡 = [

𝑦
𝛽
𝜃
𝜃̇

] (3.30)

Controllers

Two types of lateral control are typically used in autonomous vehicles. The first type

comprises geometric controllers, which are based on the geometry and coordinates

of the desired route and the kinematic models of the vehicle. There are two sub-types

of geometric controllers: a) pure pursuit and b) Stanley controllers. The second type

of control concern dynamic controllers, such as the model predictive controller (MPC).

In this thesis we will discuss geometric controllers.

The main idea of pure pursuit control is that a reference point is defined in the vehicle

and a target point is set on the desired route (trajectory) at a fixed distance from the

reference point. The steering angle is then determined so that the vehicle turns

University of the Aegean Department of Financial and Management Engineering

[39]

smoothly towards the route. Typically, the center of the rear axle is used as the

reference point and is connected to the target point on the route ahead of the vehicle

with line of length (𝑙𝑑), which is defined as the look-ahead line. The angle between the

axis of the vehicle and the look-ahead line is 𝛼 (see Fig 3.8).

Figure 3.8 Connecting the reference point with target point (Coursera (2019a))

The target point on the route (trajectory), the instantaneous centre of rotation and

the centre of the rear axle form a triangle with two sides of length R and a third of

length 𝑙𝑑 (see Fig. 3.8). Using the law of sines for the triangle if Fig. 3.9, and after

some algebra

1

𝑅
=

2 sin 𝑎

𝑙𝑑
 (3.31)

where 𝑘 =
1

𝑅
 is the path curvature. Then, from the bicycle model, the steering angle

δ required for the vehicle to stay on route is calculated as (see Eq. 3.3)

𝛿 = tan−1
𝐿

𝑅

(3.32)

University of the Aegean Department of Financial and Management Engineering

[40]

where 𝐿 is the distance between the rear and front axles and

From Eqs. (3.27) and (3.28) we have

𝛿 = tan−1(
2𝐿 sin 𝑎

𝑙𝑑
) (3.33)

Figure 3.9 Steering angle needs to follow the arc towards the target point (Coursera

(2019a))

The Stanley controller is a geometric path tracking controller. The main idea is to

change the reference point. To do so, three modifications are required (see also Fig.

3.10):

 Change of the reference point from the centre of the rear axle to the centre of

the front axle.

 Do not consider the look ahead distance but take into consideration the

heading alignment and cross track errors. The heading alignment error is

shown as 𝜓(𝑡) in Fig. 3.10 where the heading relative to the trajectory is 𝜃(𝑡).

The cross-track error is shown as e.

This type of control strategy has the following advantages vs. the pursuit strategy:

 It directly eliminates the heading error relative to the route

University of the Aegean Department of Financial and Management Engineering

[41]

 The steering angle its set equal to the heading directly.

For cross-track error dynamics the following equation holds (see Fig. 3.10):

𝑒̇(𝑡) = −𝑣(𝑡) sin(𝜃(𝑡) − 𝛿(𝑡)) (3.34)

For the heading error dynamics, the following equation holds (see also Fig. 3.10):

𝜃̇(𝑡) =
−𝑣(𝑡) sin 𝛿(𝑡)

𝐿

(3.35)

To eliminate the heading error relative to the planned route, the steering angle should

be set equal to the heading

𝛿1(𝑡) = 𝜃(𝑡) (3.36)

To eliminate the cross-track error a proportional control is added. This is scaled by the

inverse of the forward speed (𝑣). If the the cross-track error is 𝑒 then the steering

angle is given by the following equation, where function 𝑡𝑎𝑛−1 maps the proportional

control signal to the angular range (−𝜋, 𝜋) and k is the gain of the proportional

controller

𝛿2(𝑡) = tan−1(
𝑘𝑒(𝑡)

𝑣(𝑡)
) (3.37)

Combining Eqs. (3.35), (3.36) and (3.37) the control law providing the steering angle

of the vehicle is as follows

𝛿(𝑡) = 𝜃(𝑡) + 𝑡𝑎𝑛−1(
𝑘𝑒(𝑡)

𝑣(𝑡)
), 𝛿(𝑡) ∈ [𝛿𝑚𝑖𝑛, 𝛿𝑚𝑎𝑥] (3.38)

For large cross-track error:

tan−1(
𝑘𝑒(𝑡)

𝑣(𝑡)
) ≈

𝜋

2
→ 𝛿(𝑡) ≈ 𝜃(𝑡) +

𝜋

2
 (3.39)

In this case the heading error increases in the opposite direction and the steering

command will drop to zero when the heading error achieves (−
𝜋

2
). Then the vehicle

continues to the route until the cross-track error becomes 0.

University of the Aegean Department of Financial and Management Engineering

[42]

Figure 3.10 Geometry of the Stanley controller (Coursera (2019a))

3.3 Longitudinal control

Longitudinal control generates the input commands, or the actuator signals, that drive

the vehicle, i.e. the throttle and the brake commands. Let us first review the vehicle

longitudinal dynamic model, which is responsible for generating the forward motion

of the vehicle.

Vehicle longitudinal dynamics7

Figure 3.11 A typical vehicle on an inclined road (Coursera (2019a))

7 Inspired by (Rajamani, 2012)

University of the Aegean Department of Financial and Management Engineering

[43]

According to Fig. 3.11, the forces acting on the vehicle are the following: the driving

force at the front wheels of the vehicle 𝐹𝑥𝑓, the driving force at the rear wheels of the

vehicle, 𝐹𝑥𝑟 (if any), the aerodynamic drug force 𝐹𝑎𝑒𝑟𝑜, gravity 𝑚𝑔𝑠𝑖𝑛𝑎, and finally the

rolling friction forces 𝑅𝑥𝑓 and the 𝑅𝑥𝑟. Based on Newton’s second law the longitudinal

dynamic equation is therefore

𝑚𝑥̈ = 𝐹𝑥𝑓 + 𝐹𝑥𝑟 − 𝐹𝑎𝑒𝑟𝑜 − 𝑅𝑥𝑓 − 𝑅𝑥𝑟 − 𝑚𝑔 sin 𝑎 (3.40)

By grouping the driving forces 𝐹𝑥 = 𝐹𝑥𝑓 + 𝐹𝑥𝑓 and the rolling resistance forces 𝑅𝑥 =

 𝑅𝑥𝑓 + 𝑅𝑥𝑓 Eq. (3.40) becomes

𝑚𝑥̈ = 𝐹𝑥 − 𝐹𝑎𝑒𝑟𝑜 − 𝑅𝑥 − 𝑚𝑔 sin 𝑎 (3.41)

Let

𝐹𝑙𝑜𝑎𝑑 = 𝐹𝑎𝑒𝑟𝑜 + 𝑅𝑥 + 𝑚𝑔 sin 𝑎 (3.42)

The aerodynamic resistance force is provided by

𝐹𝑎𝑒𝑟𝑜 =
1

2
𝐶𝑎𝜌𝛢𝑥̇2 = 𝑐𝑎𝑥̇2 (3.43)

where, 𝐶𝑎 is the aerodynamic drag coefficient, 𝜌 is the mass density of air, 𝛢 is the

frontal area of the vehicle, which is the projected area of vehicle in direction of travel,

and 𝑥̇ is the longitudinal speed.

The rolling resistance depends on the tire normal force on the rear tires and the

autonomous vehicle speed 𝑥̇:

𝑅𝑥 = 𝑁(𝑐̂𝑟,0 + 𝑐̂𝑟,1|𝑥̇| + 𝑐̂𝑟,2𝑥̇
2) ≈ 𝑐𝑟,1|𝑥̇| (3.44)

where 𝑐𝑟,1 is the linear rolling resistance factor.

Thus,

𝐹𝑙𝑜𝑎𝑑 = 𝑐𝑎𝑥̇2 + 𝑐𝑟,1|𝑥̇| + 𝑚𝑔 sin 𝑎 (3.45)

and Eq. (3.41) becomes

𝑚𝑥̈ = 𝐹𝑥 − 𝐹𝑙𝑜𝑎𝑑= 𝐹𝑥 − (𝑐𝑎𝑥̇2 + 𝑐𝑟,1|𝑥̇| + 𝑚𝑔 sin 𝑎) (3.46)

𝐹𝑥 is the driving or traction force that is generated by the power train. The power is

generated by the combustion of fuel in internal combustion engines or

University of the Aegean Department of Financial and Management Engineering

[44]

electrochemical reactions in batteries for electric vehicles. The engine torque is passed

to the automatic transmission system, which includes a torque converter placed

between the engine shaft and the gearbox. The gears in the gearbox change

accordingly to the desired speed. Thus, through the differential, the power generates

the wheel torque which finally generates the traction forces.

The relation between the engine speed and the wheel speed its modeled as a

kinematic constraint. The wheel rotation speed 𝜔𝑤 is the result of the engine angular

speed 𝜔𝑒 modulated by several gear ratios including those of the torque converter,

transmission and differential. If this combined gear ratio is symbolized as GR, the

equation of the wheel rotational speed 𝜔𝑤 is

𝜔𝑤 = GR𝜔𝑒 (3.47)

where 𝜔𝑒 is the engine angular speed. The vehicle longitudinal speed is provided by

𝑥̇ = 𝑟𝑒𝑓𝑓𝜔𝑤= 𝑟𝑒𝑓𝑓GR𝜔𝑒 (3.48)

where 𝑟𝑒𝑓𝑓 is the tire effective radius.

Considering now the practical power train inertia 𝐽𝑒 , we can write a dynamic equation

that balances the engine torque 𝑇𝑒with the total torque needed to generate the

engine acceleration and to overcome the momentum due to the load. Thus, the

engine dynamic model simplifies to

𝐽𝑒𝜔̇𝑒 = 𝑇𝑒 − (𝐺𝑅)(𝑟𝑒𝑓𝑓𝐹𝑙𝑜𝑎𝑑) (3.49)

The engine torque 𝑇𝑒 is a function of the accelerator pedal position, 𝑥𝜃 and the engine

speed 𝜔𝑒 (in RPM - revolutions per minute) as shown in Fig. 3.12. It may be

approximated by a second-order polynomial equation

𝑇𝑒(𝜔𝑒, 𝑥𝜃) ≈ 𝑥𝜃(𝐴0 + 𝐴1𝜔𝑒 + 𝐴2𝜔𝑒
2) (3.50)

where 𝐴0, 𝐴1, 𝐴2 are engine-dependent parameters. Thus,

𝐽𝑒𝜔̇𝑒 = 𝑥𝜃(𝐴0 + 𝐴1𝜔𝑒 + 𝐴2𝜔𝑒
2) − (𝐺𝑅)(𝑟𝑒𝑓𝑓𝐹𝑙𝑜𝑎𝑑) (3.51)

Equations (3.46), (3.48), (3.51) and (3.45) model the vehicle longitudinal dynamics,

where 𝑥𝜃 is the input.

University of the Aegean Department of Financial and Management Engineering

[45]

Figure 3.12 Typical engine maps (Coursera (2019a))

Longitudinal speed control system 8

The longitudinal speed control system receives as reference input the desired speed

from the navigation system and tries to minimize the error between the reference

speed and the actual speed. To do so, it uses the control architecture of Fig. 3.13. The

reference speed is compared to the actual speed, and the error is the input to the

controllers that set the throttle (and brake) positions. The latter are inputs to the

vehicle dynamics described above. The output is the actual speed.

Figure 3.13 A longitudinal speed control feedback system

8 Inspired by (Francis, 2015)

University of the Aegean Department of Financial and Management Engineering

[46]

The high level controller computes the difference between the set reference speed

and the autonomous vehicle actual speed to produce the required vehicle

acceleration from:

𝑥̈𝑑𝑒𝑠 = 𝐾𝑝(𝑥̇𝑟𝑒𝑓 − 𝑥̇) + 𝐾𝐼 ∫ (𝑥̇𝑟𝑒𝑓 − 𝑥̇)
𝑡

0

𝑑𝑡 + 𝐾𝐷

𝑑(𝑥̇𝑟𝑒𝑓 − 𝑥)̇

𝑑𝑡
 (3.51)

where 𝐾𝑝, 𝐾𝐼 , 𝐾𝐷 are the PID controller gains, 𝑥̇𝑟𝑒𝑓 is the reference speed and 𝑥̇ is the

vehicle velocity.

Based on the desired acceleration, the low level controller generates the throttle (or

braking) commands. Figure 3.14 explains the action of the lower level controller.

Figure 3.14 Low level controller

Equation (3.49) can be re-written as

𝑇𝑒𝑛𝑔𝑖𝑛𝑒 =
𝐽𝑒

(𝑟𝑒𝑓𝑓)(𝐺𝑅)
𝑥̈𝑑𝑒𝑠 + 𝑇𝑙𝑜𝑎𝑑 (3.52)

The lower level controller uses the above equation to compute the required engine

torque from the desired acceleration provided by the upper level controller. It then

computes the throttle angle (opening) form the steady-state engine map of Fig. 3.12

based on the required torque and the engine angular speed in RPM. This is then the

input to the longitudinal vehicle dynamics discussed above.

3.4 Experiments on longitudinal control

3.4.1 The CARLA (Car – Like – To – Act) autonomous vehicle simulator

General description of CARLA

CARLA is an open source simulator for autonomous driving and has been produced by

a team from the Computer Vision Centre at the Autonomous University of Barcelona,

Intel and the Toyota Research Institute using the Unreal computer game engine.

University of the Aegean Department of Financial and Management Engineering

[47]

CARLA has been developed in order to render and simulate with flexibility and realism.

The simulation is applied as an open-source layer over the Unreal Engine 4 (UE4),

which makes possible future extensions by the community. State – of –the - art

rendering quality, realistic physics, standard NPC (non-player-character) logic, and an

ecosystem of interoperable plugins are supplied by the engine.

Thus, CARLA is designed as a server-client system, where the server runs the

simulation and depicts the scene (UE4) and the client is used to record data, control

the autonomous vehicle scenarios and send commands to the vehicle. The client API

regulates the interaction with the server via sockets and is developed in Python. It

sends commands and meta-commands to the server and then receives sensor

readings. The commands are used to control the vehicle and the meta – commands

regulate the behavior of the server. Steering, accelerating, and braking are considered

as commands. Meta-commands reset the simulation, modify the properties of the

environment, such as the weather conditions, the illumination and the density of the

cars and pedestrians.

The environment (see Fig. 3.15 and Fig. 3.17) includes 3D models of static objects

(buildings, vegetation, traffic signs, infrastructure) and of dynamic objects (vehicles

and pedestrians). All models are designed thoroughly in order to combine visual

quality and rendering speed.

Figure 3.16 CARLA simulation graphs
(Screenshots from the DeOPSys Lab

system)

Figure 3.15 CARLA simulation

environment (Screenshots from the

DeOPSys Lab system)

University of the Aegean Department of Financial and Management Engineering

[48]

The simulation graphs (see Fig. 3.16) includes the route of the autonomous vehicle

and the result graphs (forward speed, steering, throttle, brake, and the error between

the desired and the actual speed). All these graphs are shown the behavior of the

vehicle on the default route.

CARLA permits flexible configuration of the client’s (agent’s) sensor suite. Sensors are

limited to RGB cameras and to pseudo-sensors, which provide ground-truth depth and

semantic segmentation. The client determines the type, the position and the number

of the cameras. Thus, the user specifies the 3D location, the 3D orientation with

respect to the vehicle’s coordinate system, the field of view, and the depth of field.

Regarding pseudo-sensors, semantic segmentation is an image processing algorithm

that identifies objects from the camera pixels. It uses twelve sematic classes: road,

lane-marking, traffic sign, sidewalk, wall, building, vegetation, vehicle, pedestrian and

other. Thus, the pseudo-sensor displays the orientation and the position of static and

dynamic objects.

Except from the sensor and pseudo-sensor readings, CARLA provides a variety of

measurements related to the state of the client, such as the vehicle location, the speed

and the acceleration vector, the impact from collisions and the vehicle orientation.

CARLA also provides measurements of the traffic environment, including the state of

the traffic lights, the speed limit at the current location of the vehicle along with the

percentage of the vehicle’s footprint that overlaps with wrong-way lanes or sidewalks.

Last but not least, CARLA provides information about the exact locations and bounding

boxes of all dynamic objects in the environment. These signals are crucial when the

driving policies are assessed.

The simulation is performed in discrete steps. One-time step is referred as a frame

and the frequency rate is 30 frames per second.

University of the Aegean Department of Financial and Management Engineering

[49]

Figures 3.17 and 3.18 show the environment of the CARLA simulator. The top window

of the right corner of both pictures shows the semantic segmentation (right) pseudo-

sensor which includes the classes of lanes (light green colour), sidewalks (purple

colour), traffic lights (with yellow) and cars (light blue colour). The second pseudo-

sensor shown next on the semantic segmentation pseudo-sensor is the ground-truth

depth which is important in the initial supervised classification of an image.

CARLA client components used in this thesis

The autonomous vehicle in the CARLA simulator constantly receives steering, throttle

and brake commands. For the work in this thesis we provide the server with

appropriate settings. For example, for the control study, we have eliminated

pedestrians and other vehicles in order to investigate the intrinsic properties of the

longitudinal speed controller. We have also programmed the lateral and longitudinal

controllers in the client software (in Python). The controllers compute the current

position, the speed and the heading angle of the vehicle. Based on the control logic

implemented in the client, the controllers return the commands for the steering angle,

throttle and brake to the server. This is repeated every time frame.

The hardware used for the Carla simulator is as follows:

 CPU: Intel(R) Xeon(R) CPU E5-2620 0 @ 2.00GHz

 Ram: 32GB DDR3 1333MHz

Figure 3.18 CARLA simulation
environment with semantic

segmentation and depth cameras
(Screenshots from the DeOPSys Lab

system)

Figure 3.17 CARLA simulation
environment with sematic

segmentation and depth cameras
(Screenshots from the DeOPSys Lab

system)

University of the Aegean Department of Financial and Management Engineering

[50]

 Graphics card: GeForce GTX 1060 6GBF

 Hard drive: SSD 256GB and HDD 500GB

The above hardware specifications support efficient performance of the simulator.

The operational system used in this thesis is Ubuntu 16.04 with CUDA drivers and

python 3.6. For more information about to install CARLA simulator check in Appendix

A.

3.4.2 Experimental study of motion control

For this thesis, we used CARLA to develop and implement the longitudinal and lateral

controllers of the autonomous vehicle. The operation system used with the CARLA

simulator was Ubuntu 16.4. CUDA, which was also employed to improve the

performance of the simulator by enabling the hardware and software of the Graphics

Processor Unit (GPU) to achieve better and faster computing performance. Also, we

used Python version 3.6 to compile and run all client programs used by the CARLA

server. More information on the simulator installation steps are provided in Appendix

A.

Controller development in CARLA

For the longitudinal control we developed the code for the PID controller, which was

described in Section 3.3. The PID controller takes as reference inputs the desired

speed at the waypoints of the simulator, as well as the position that the vehicle should

attain. The waypoints provide both the vehicle’s trajectory and the speed that become

the reference signals for vehicle navigation along its trajectory and for the PID

controller.

This output of the controller is formed by the sum of three parts: The proportional

part that multiplies gain 𝐾𝑃 with speed error, the integral part with gain 𝐾𝐼, which

multiplies the accumulated past errors (error integral) in order to eliminate the steady

state error (deviation between the desired speed and the actual speed), and the

derivative part with gain 𝐾𝐷, which reduces the overshoot caused by the integration

(𝐾𝐼) term. The output of the PID controller constitutes the throttle and brake

University of the Aegean Department of Financial and Management Engineering

[51]

commands. Positive outputs correspond to appropriate throttle positions and

negative outputs correspond to appropriate brake positions.

For the lateral control that provides the steering angle we developed the Stanley

controller, which was described in Section 3.2. The reference signal is given at the

waypoint positions and the control routine computes the cross track and heading

errors. To do so it uses the current way point and the previous one to produce the

trajectory line that is expressed by the following equation (see Fig. 3.19).

𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 (3.53)

Based on this line, the cross-track error is computed from the following equation

𝑒 =
𝑎𝑥𝑐 + 𝑏𝑦𝑐 + 𝑐

√𝑎2 + 𝑏2
 (3.54)

This is the perpendicular distance between the reference trajectory and the front axle

point (see Fig. 3.19). Eq. (3.54) is proven by geometric arguments.

Then, using Eq. (3.37) of Section 3.2, the steering angle to eliminate the cross-track

error is provided by the following expression.

tan−1(
𝑘𝑒

𝑣
) (3.55)

where 𝑘 (for any 𝑘 > 0) is a proportional gain of proportional and 𝑣 is the forward

speed.

Τhe heading error 𝜓 is computed by

𝜓 = tan−1(
−𝑎

𝑏
) − 𝜃𝑐 (3.56)

where 𝑎 and 𝑏 are the coefficients of the trajectory line and 𝜃𝑐 is the heading angle.

By adding Eqs. (3.55) and (3.56), the steering angle is given as

𝛿 = 𝜓 + tan−1(
𝑘𝑒

𝑣
) (3.57)

The lateral controller provides the steering angle of the vehicle.

University of the Aegean Department of Financial and Management Engineering

[52]

Figure 3.19 Geometry of Stanley Controller (Coursera (2019a))

Experimental set up

We conducted experiments to investigate the effects of the gains 𝐾𝑃, 𝐾𝐼, 𝐾𝐷 of the

PID longitudinal controller of Section 3.3 on the vehicle speed and trajectory. In the

experiments we varied systematically the values of the gains and observed the

resulting effect. It is noted that when 𝐾𝐼 = 𝐾𝐷 = 0, then the PID controller becomes

a P controller. Similarly, when 𝐾𝐼 = 0 a PD controller is obtained and when 𝐾𝐷 = 0 a

PI controller is obtained (see Table 3.1). Overall, we performed twenty-two (22)

experiments.

Table 3.1 The various controllers tested and the related gains

PID PI PD P

𝐾𝑃 𝐾𝐼 𝐾𝐷 𝐾𝑃 𝐾𝐼 𝐾𝑃 𝐾𝐷 𝐾𝑃

The reference route of the autonomous vehicle is shown in Fig. 3.20. The

measurement unit used in the x-axis and y-axis is meters (m). The total distance

travelled by the autonomous vehicle is 1,755 m.

University of the Aegean Department of Financial and Management Engineering

[53]

Figure 3.20 The reference route of the autonomous vehicle

For the experiments we firstly set up Carla using the following parameters:

 Weather: sunny.

 Vehicle: Ford Mustang.

 The total runtime before simulation lasts 200sec.

Moreover, important libraries have been imported:

 Library math

 Library NumPy. This library accelerates the math operations used in the

simulation by performing array multiplications, fast linear algebra operations,

etc.

 Library matplotlib used for plotting all graphs (e.g. the graph for the forward

speed of the autonomous vehicle)

 Library Time it is used to handle the time-related tasks. For example, the steps

used to calculate the Frames per second (FPS). Also, it is used to compute

elapsed time, and for gathering timestamps to update the PID controller.

University of the Aegean Department of Financial and Management Engineering

[54]

Regarding the control commands steering, throttle and brake:

 The steering wheel angle is represented it by a real number between (-1,1),

where -1 corresponds to full left and 1 corresponds to full right

 The angle (pressure) of the throttle pedal is represented by a real number

between (0,1), where 1 corresponds to full pressure on the pedal and 0

corresponds to no action

 The brake pedal angle (pressure) is represented similarly to the throttle pedal.

All above parameters were provided to the main program module7.py which interacts

with the class controller2d.py.

The performance of the controller is assessed through the mean squared error (MSE)

provided in Eq. (3.58)

𝑀𝑆𝐸 =
1

𝑛
 ∑ (𝑣𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑣𝑎𝑐𝑡𝑢𝑎𝑙)

2𝑛
𝑖=1 =

1

𝑛
 ∑ 𝑣𝑒𝑟𝑟𝑜𝑟

2𝑛
𝑖=1 (3.58)

where n are the points crossed by the vehicle.

Experimental investigation and results

Case 1: Investigating the effect of the proportional gain 𝐾𝑃 on all four controller cases

The main goal of case 1 is to assess the performance of the autonomous vehicle under

the following values of the proportional gain 𝐾𝑃 = 0.1, 1, 5, and 10 in all four controller

variations (PID, PD, PI, P). In all cases in which 𝐾𝐷 and 𝐾𝐼 were not zero, these gains

assumed the values 𝐾𝐷 = 0.01 and 𝐾𝐼 = 0.2. Thus, we performed 16 experimental

runs (4 𝐾𝑃 values x 4 controllers).

Table 3 presents the MSE for each case. These results are also presented in Fig. 3.29.

From the results of the Table and the Figure, it is clear that

 The lowest value of the proportional gain 𝐾𝑃 = 0.1 corresponds to the most

inferior performance across all controllers

 The value of 𝐾𝑃 = 1 corresponds to the most superior performance across all

controllers

 As expected, the PID controller performs better than the other controllers,

since it offers a greater number of parameters for the designer to tune.

University of the Aegean Department of Financial and Management Engineering

[55]

Thus, the best performance is obtained by the PID controller with 𝐾𝑃 = 1 and the

worst by the P controller with 𝐾𝑃 = 0.1.

Table 3.2 MSE for various values of 𝐾𝑃 and all four controllers

𝐾𝑃

Mean Squared Error (MSE)

P PD PI PID

0.1 35.14 35.12 2.09 1.9

1 0.86 0.86 0.13 0.12

5 1.72 1.35 0.77 0.77

10 2.16 2.14 1.11 1.15

Figures 3.21 to 3.22 drill down on the performance of the best performing PID

controller with 𝐾𝑃 = 1. The x-axis of all graphs represents the waypoint number.

Figure 3.22 The angle
(pressure) of the throttle

pedal – best case

Figure 3.21 The relationship
between desired (orange)
and actual (blue) speeds –

best case

University of the Aegean Department of Financial and Management Engineering

[56]

From Fig. 3.21 it is evident that the actual speed follows the desired speed very closely.

This is validated by the very limited values of the speed error (in m/s) displayed in Fig.

3.23. At the start of the trajectory, the speed error is higher and, thus, the throttle

and the steering commands assume significant values until the transition is complete

(Figs. 3.22 and 3.24, respectively).

Figures 3.25 to 3.28 drill down on the performance of the worst performing P

controller with 𝐾𝑃 = 0.1. In this case as well, the x-axis of all graphs represents the

duration (in seconds).

Figure 3.23 The error between
the desired and the actual

speed – best case

Figure 3.26 The angle

(pressure) of the throttle pedal

– worst case

Figure 3.25 desired
(orange) and actual (blue)

speeds – worst case

Figure 3.24 The steering
angle – best case

University of the Aegean Department of Financial and Management Engineering

[57]

In Fig. 3.25 the desired speed and the actual speed have a significant difference,

although, the pattern of the forward actual speed follows almost the pattern of the

forward desired speed.

Figure 3.26 shows that the pressure on the throttle pedal is less than the previous case

(best case). That’s why the actual forward speed is in this case lower than the forward

desired speed.

Concerning the error (Fig-3.27) it is obvious that there is a large deference between

actual forward speed and the desired forward speed at any waypoint.

Figure 3.28 The error between
the desired and the actual

speed – worst case

Figure 3.27 The steering
angle - worst case

University of the Aegean Department of Financial and Management Engineering

[58]

Figure 3.29 MSE for the various 𝐾𝑃 values for all four controllers

From Fig. 3.29 it can be seen that the PID and PI controllers have similar performance.

One may think that this is possibly due to the small value of 𝐾𝐷 = 0.01 in the PID

controller. This is investigated further below.

Case 2: Investigating the controller gains 𝐾𝐷 and 𝐾𝐼 for the PD and PI controllers

The main goal of case 2 is to assess the performance of the autonomous vehicle under

various values of the gains 𝐾𝐼 and 𝐾𝐷 for the PI and PD controllers, respectively. The

values tested are those of Table 3.3 and in all cases 𝐾𝑃 assumed its nominal value of

1.

Table 3.3 𝐾𝐼 and 𝐾𝐷 values

𝐾𝐷 𝐾𝐼

0.001 0.02

0.05 1

0.1 2

Thus, the procedure for this case included six (6) experiments. Tables 3.4 and 3.5

present the MSE results for the two cases. From Table 3.4 it is clear that MSE remains

35.14 35.12

2.09 1.900.86 0.86 0.13 0.12
1.72 1.35 0.77 0.77

2.16 2.14 1.11 1.15

P PD PI PID

KP

0.1 1 5 10

University of the Aegean Department of Financial and Management Engineering

[59]

almost the same for each value of 𝐾𝐷. Thus, the suspicion that the low value of 𝐾𝐷 is

the cause of the PID and PI controllers displaying the same performance in Case 1

above, is not true.

In the PI controller case, the value 𝐾𝐼 = 2 leads to a very high value of MSE, indicating

instability. This is validated by the simulation results. In this case indeed the control

system entered instability, and the violent oscillation of the throttle, the steering, and

the speed resulted in the vehicle getting completely off course (see Figs 3.30 and 3.31).

Table 3.4 MSE for the PD controller for different 𝐾𝐷 values

𝐾𝐷

value

MSE

PD

0.001 0.90

0.05 0.88

0.1 0.87

Table 3.5 MSE for the PI controller by different 𝐾𝐼 values

𝐾𝐼

value

MSE

PI

0.02 0.29

1 0.16

2 217.75

University of the Aegean Department of Financial and Management Engineering

[60]

The variation of the various parameters in this interesting case is presented in Figs.

3.32 to 3.35

Figure 3.31 The autonomous
vehicle just before getting off

course (Screenshot from
DeOPSys Lab PC)

Figure 3.30 The autonomous
vehicle end position

(Screenshot from DeOPSys Lab
PC)

Figure 3.33 The pressure of
the throttle pedal

Figure 3.32 The relationship
between desired speed and

actual speed

University of the Aegean Department of Financial and Management Engineering

[61]

From Fig. 3.32 it is evident that the system becomes unstable, the amplitude of the

speed oscillation increases, and the speed goes to 0 after the vehicle stops off course.

The error of Fig. 3.35 presents similar characteristics.

This instability is evident from Figs. 3.33 and 3.34 (especially the latter one). In the

former Figure the throttle oscillates between its limits (0 and 1) and locks at 1 at the

end of the trip.

In Fig. 3.35, the steering angle oscillates between its limiting positions (-1 and 1) in a

fruitless attempt to keep the vehicle close to the desired path.

Major takeaways from the above experimental study include the following:

 in case 1, it is observed that the PID controller with proportional gain of 1 had

a superior error behavior. This leads to better vehicle behavior with respect to

longitudinal control

 in case 2, it is clear that MSE is similar for all examined values of the derivative

gain for the in PD controller. On the contrary, in the PI controller MSE is very

sensitive to the integral gain. High gain values may lead to instability.

Figure 3.35 The difference of
the desired and the actual

speed

Figure 3.34 The steering
angle

University of the Aegean Department of Financial and Management Engineering

[62]

Chapter 4 Object detection in autonomous vehicles

4.1 Introduction to neural networks

The main perception tasks in autonomous vehicle self-driving is to recognize static and

dynamic objects. To detect these objects most automakers investing in the

autonomous vehicles (AVs) use cameras. As already discussed in Section 2.3, the

camera is a passive sensor which provides detailed information regarding objects in

the environment. This visual information is useful to understand the scene by

performing tasks such as object detection, segmentation and identification. Through

such processes, an AV may detect traffic signs or signals, other vehicles, pedestrians,

driving lanes and other objects.

AV perception is based on artificial neural networks that comprise layers, or groups of

so-called neurons, which relate to other layers. The task of these layers is to convert

the input data to outputs; this is done by computing the weighted sum of inputs and

by normalizing using the activation functions that are allocated to the neurons (Mani,

2019).

Figure 4.1 A neural network with two layers

University of the Aegean Department of Financial and Management Engineering

[63]

Feedforward neural networks

A feedforward neural network (FNN) is a basic model of deep learning. The main goal

of an FNN is to approximate some function 𝑓. Thus, it defines a mapping from input 𝑥

to output 𝑦 through a function of 𝑥 and 𝜃

𝑦 = 𝑓(𝑥; 𝜃) (4.1)

For example, an FNN may receive an image as an input (𝑥) and then using the network

connectivity and the parameters 𝜃 may classify the image to a category 𝑦 (i.e. car,

pedestrian, etc.).

Figure 4.2 Four-layer feedforward neural network (Coursera (2019c))

In the four-layer feedforward neural network of Fig. 4.2 the input x can be a vector or

a tensor, such as one that comprises the pixels of a photo image. Then, the input is

processed by the first layer of FNN through with function 𝑓(1)(𝑥). Likewise, the

second hidden layer takes as an input the output of the first hidden layer and operates

on this output through function 𝑓(2)(𝑥); similarly, the output of the second layer

passes through at the third hidden layer and function 𝑓(3)(𝑥). The final layer obtains

the output of the last hidden layer and converts it to the output 𝑦. This model is a

Forward NN since the input data 𝑥 are processed by the intermediate computations

University of the Aegean Department of Financial and Management Engineering

[64]

(using the related functions 𝑓) to obtain the output 𝑦 without feedback connections.

Thus, the four-layer feedforward neural network may be represented by

𝑓(𝑥; 𝜃) = 𝑓(4) (𝑓(3) (𝑓(2) (𝑓(1)(𝑥)))) (4.2)

where x is the input layer 𝑓(1), 𝑓(2), 𝑓(3) are the functions of the hidden layers and

𝑓(4) is the function of the output layer.

During the training process, the function of the neural network 𝑓(𝑥; 𝜃) should be

tuned in order to represent the true function 𝑓∗(𝑥) by estimating the parameters of

𝜃. The hidden layers of the neural network are the most important ones. Each of these

layers transform the output of the previous layer ℎ𝑛−1 using a non-linear function 𝑔,

which called activation function, as well as multiplicative weight matrix 𝑊 and the bias

𝑏:

ℎ𝑛 = 𝑔(𝑊𝑇ℎ𝑛−1 + 𝑏) (4.3)

These weights and bias values are the learning parameters 𝜃 of the neural network.

The activation function 𝑔 may be one of ReLU, sigmoid, tan, Maxout Unit. For example,

ReLU (Rectified Linear Unit) is used often as an activation function for FNN (see Eq. 4.4

and Fig. 4.1).

𝑔(𝑧) = max (0, 𝑥) (4.4)

University of the Aegean Department of Financial and Management Engineering

[65]

Figure 4.3 ReLU activation diagram

Feedforward neural networks are used for perception tasks associated with

autonomous vehicle applications such as object classification; this process identifies

with labels or bounding boxes objects in the picture. Furthermore, the object

detection estimates the location as well as the objects in the area. The other task is

the depth estimation, which called pixel-wise task. This task helps the autonomous

vehicle to determine where the objects are by estimate the depth value for each pixel

in the picture. However, the semantic segmentation specifies which class each pixel

of picture belongs to.

4.2 Convolutional neural networks and object recognition

Convolutional Neural Networks (CNN) execute a great number of perception tasks for

autonomous vehicles. A CNN is a special type of neural network suitable for

processing data such as 1D time series, 2D pictures as well as 3D videos. For the

purpose of this thesis we will discuss the two-dimensional case, which is central to

image processing and object recognition (see Section 4.3).

Network architecture

The two main types of layers in a CNN are the convolutional layers and the pooling

layers. For example, VGG 16, which is a CNN for classification and detection, receives

University of the Aegean Department of Financial and Management Engineering

[66]

a picture as input and processes it through a set of convolutional layers, then through

a pooling layer and this process continues until the fully connected layers FC(i) and the

Softmax output layer (see the two equivalent representations of Fig. 4.4).

Figure 4.4 VGG 16 architecture (tryolabs, 2020)

For 2D object recognition the input picture is firstly processed using the VGG feature

extractor which is built by alternate convolutional layers and pooling layers. VGG 16

accepts a 256x256x3 pixel image (3 representing the 3 RGB colors) and includes two

convolutional layers with 64 filters each (for the meaning of a filter see next

paragraph) followed by a pooling layer, where pooling is applied on a 2x2 pixel window

with a stride of 2, thus reducing the height and width of the image by a factor of 2 (see

also below for all these terms). Subsequently, the architecture includes two more

convolutional layers with 128 filters followed by a pooling layer of the same

functionality, and so on, till a set of fully connected layers (FC1, FC2, FC3 see Fig. 4.4).

The output of the concatenation of the convolutional and pooling layers is a feature

map that contains the features of the image. The fully connected layers perform

classification of the significant features contained in each bounding box of the image

(for the bounding boxes see the sub-section on object recognition below). Finally, for

University of the Aegean Department of Financial and Management Engineering

[67]

the final detection the Softmax output layer is used which is a vector with a single

score per class. The highest score usually defines the class of the contents of each

bounding box.

Figure 4.5 Sparse connectivity between the nodes of CNN (Coursera(2019c))

Convolution and pooling operations

Consider a picture (image) inserted to the CNN that comprises pixels in a matrix form

of 𝑀 × 𝑁 × 3 array of pixels. Every pixel represents the projection of a 3D point into

the 2D picture plane. The width of the input picture is in the horizontal dimension,

the height is its vertical dimension and the depth is the number of channels. When

the input is a colored one, it relates to three channels: Red, Green and Blue. In a

grayscale picture the data is a matrix of dimension 𝑀 × 𝑁. At the boarder of the

picture zero pixels are added, an operation called padding, which is important to

preserve the picture’s form in order to execute the convolution operations. The zero

padding helps the information at the borders not be lost after each convolutional

layer.

The convolutional layers use cross-correlation much as a linear operator. In this case

there is sparse connectivity between the nodes of previous and the next layer (see Fig.

4.5). Each convolution operation uses convolutional filters or kernels. The filters

(kernels), which are set during initialization and cannot be modified afterwards, act as

University of the Aegean Department of Financial and Management Engineering

[68]

feature detectors taking values during the training process. For example, a kernel

could recognize the horizontal edges in an image. The resulting array is called feature

map.

The kernel is a matrix which scans (or slides) across the picture and multiplies the

matrix of the input picture. A typical choice is to keep the kernel size at 3 × 3 or 5 ×

5. In our case we choose three 3 × 3 Kernels, each corresponding to a channel RGB

(Red, Green, Blue).

Every kernel includes a set of weights and a single bias. The cross-correlation

operation is given by the following equation

(𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑∑𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)𝐾(𝑚, 𝑛)

𝑛𝑚

 (4.5)

where I is the input matrix (the 2D picture), 𝐾 is the kernel, 𝑖, 𝑗 are the pixel indices on

which the convolution is applied, and m and n are the width and the height of the

kernel (Ian Goodfellow, 2016).

In the case of the 2D- colored picture with three input channels, each one of them is

convoluted with the corresponding kernel; in this case Eq. (4.5) is executed three

times, one for the red channel, one for the green channel and one for the blue

channel.

University of the Aegean Department of Financial and Management Engineering

[69]

Figure 4.6 A 3×3 kernel (per channel) moves over the input to generate the output
(Coursera, 2019c)

Referring to Fig. 4.6, the padding is represented by the zeroes at the edges of the

matrix of each channel. The first operation that involves the red channel and the

corresponding kernel is

(0𝑥0) + (0𝑥(−1)) + (0𝑥1) + (0𝑥(−1)) + (0𝑥(−1)) + 0𝑥(−1))

+ (0𝑥0) + (0𝑥(−1)) + (2𝑥1) = 2

(4.6)

Similarly, the first operation involving the green channel with its kernel is

(0𝑥1) + (0𝑥0) + (0𝑥(−1)) + (0𝑥(−1)) + (0𝑥(−1)) + (1𝑥(−1))

+ (0𝑥0) + (1𝑥1) + (0𝑥0) = 0

(4.7)

University of the Aegean Department of Financial and Management Engineering

[70]

Finally, the first operation involving the blue channel with its kernel is

(0𝑥0) + (0𝑥1) + (0𝑥0) + (0𝑥(−1)) + (2𝑥1) + (1𝑥1)

+ (0𝑥(−1)) + (0𝑥1) + (1𝑥1) = 4

(4.8)

The bias is 1.

Adding the results of the three operations with the bias, the output result is 7. To find

the other outputs, the dark blue box moves by a stride of 2 pixels horizontally,

vertically, and horizontally again (for each color).

In the VGG 16 convolutional network, each convolutional layer includes a large

number of kernels (filters) e.g. 64 filter (sets of three) in the first convolutional layer

of Fig. 4.4.

The other structural element of convolutional networks is the pooling layer, which is

important for object recognition. Max pooling is the most common pooling method

for convolutional networks. It summarizes the output using the max function. A

similar process as the one described above is used. In the case of Fig. 4.6 a 2 × 2 max

filter is used and a stride of two. Therefore, the output is an array 2 × 2.

University of the Aegean Department of Financial and Management Engineering

[71]

Figure 4.7 Max pooling (Coursera, 2019c)

In the first 2 × 2 part of the image the max function is max (21, 8, 12, 19) so the max

of these four number is the 21. Thus, 21 goes at the first element of the output and

the same process continues in the next three outputs.

In the VGG 16 convolutional network, pooling is performed as above; i.e. in a 2x2 pixel

sliding window with a stride of 2. Thus, the dimensions of the image are reduced by

2 after each pooling step.

In VGG 16, the three fully connected layers (FC1, FC2 and FC3) have different depths:

The first two have 4096 channels each and the third executes classification and

includes 1000 channels (one for each class). Finally, the Softmax layer produces the

output by applying the Softmax function as activation function (see Eq. 4.11 in Section

4.3). The Softmax function is a form of logistic regression which normalizes the input

value into a vector of values that follows the probability distribution between zero and

one. The output of the Softmax function is equivalent to a categorical distribution,

which is the probability that any of the classes are true.

University of the Aegean Department of Financial and Management Engineering

[72]

Training the network

For training the network, first we define the input picture as 𝑥 and 𝑓∗(𝑥) the bounding

box locations and class (for the bounding boxes see below). The first step to be done

is to evaluate a loss function 𝐿 = 𝐿(𝑓(𝑥; 𝜃), 𝑦) that quantifies the similarity between

the predicted bounding boxes and the ground truth bounding boxes (see also the

object detection paragraph below). The result of the loss function is provided to the

optimizer which outputs a new set of parameters 𝜃. In order to adjust the parameters

of the convolutional network the most common method used is the gradient decent.

Gradient decent it is an iterative optimization procedure which uses the first order

derivative to improve the parameters 𝜃. Once the iterative process begins the

algorithm calculates the gradient of the loss function with respect to theta from the

Eq. (4.9). The gradient decent of the training loss function with respect to parameter

vector 𝜃 can be written as

∇𝜃𝐽(𝜃) = ∇𝜃[
1

𝑛
∑𝐿[𝑓(𝑥𝑖; 𝜃), 𝑓∗(𝑥𝑖)]] =

1

𝑛
∑∇𝜃𝐿[𝑓(𝑥𝑖; 𝜃), 𝑓∗(𝑥𝑖)]

𝑛

𝑖=1

𝑛

𝑖=1

 (4.9)

The parameters 𝜃 are updated based on the computed gradient from

𝜃 ← 𝜃 − 𝜀∇𝜃𝐿(𝑓(𝑥; 𝜃), 𝑦) (4.10)

where the learning rate 𝜀 is set in an appropriate a way to avoid taking too large or

too small steps in the parameters space. For example, a large learning rate 𝜀 may

cause the process to diverge and a small rate may cause slow convergence. To

terminate the algorithm of gradient decent, a stopping criterion is defined, and the

algorithm returns the last set of parameters.

Object recognition

This operation identifies objects such as signs, traffic lights etc. in a picture. It usually

detects objects independently in each picture. In this sub-section we will describe the

Faster R-CNN approach, an efficient object recognition method/architecture shown in

Fig. 4.8.

University of the Aegean Department of Financial and Management Engineering

[73]

Figure 4.8 Faster R-CNN architecture (tryolabs, 2020)

After insertion, the picture is processed using a feature extractor (orange shape in Fig.

4.8). This extractor is the most expensive part of a 2D object detector. The output of

the extractor commonly has much lower width and height than the input image but

much greater depth. Typical feature extractors include VGG, ResNet and Inception. In

this discussion, the feature extractor is based on at the convolutional and pooling

layers of the VGG 16 classification network discussed above. Note that each

convolutional layer of VGG 16 generates abstractions of the layer’s input. Thus, each

layer focuses on different shapes. The output of the convolutional and pooling layers

is a feature map that has encoded the information (features) of the image along its

depth. The location of the features is maintained with respect to the original image.

Note that Faster R-CNNs use an intermediate output of VGG 16; for example, the

14x14x512 tensor of Fig. 4.4. This is because VGG 16 is used only for feature extraction

in Faster R-CNN and not for final classification. The fully connected layers and the

Softmax functionality of VGG 16 (see Fig. 4.4) are not used in Faster R-CNN.

The next step in the architecture of Fig 4.8 concerns the identification of regions of

interest in the image in order to classify these regions. This is done by identifying

appropriate bounding boxes of rectangular shape in the image that contain features;

bounding boxes are inevitably of different sizes and aspect ratios. This process starts

by centering at each point of the (14x14 point) layer of the feature map a set of anchor

boxes of different sizes and aspect ratios (several different anchor boxes are centered

at each point). Usually the anchor boxes are defined by their size (e.g. 64, 128px and

256 pixels) and the aspect ratios (e.g. 0.5, 1 and 1.5). The anchor boxes reference the

original image (picture). In the case of the 14x14x512 feature map of VGG 16, the

University of the Aegean Department of Financial and Management Engineering

[74]

spacing of the centers of anchor boxes in the original image will be 16 pixels, since

14x16=256, the width and height of the original image.

The feature map augmented by the bounding (anchor) boxes is the input to the Region

Proposal Network (RPN) which is used to identify proposed objects. To do so, it

 determines the probability of each anchor box to contain an object or not (i.e.

object or background)

 adjusts the shape and size of each anchor box that contains an object to better

fit that object

RPN comprises three convolutional layers: a layer with 512 channels and 3 × 3 kernel

size and two parallel convolutional layers the channel number of which depends on

the number of anchors k per point and an 1 × 1 kernel (see Fig. 4.9). For each anchor:

a) the output of the classification layer provides the score for the anchor containing

an object and the score for the anchor containing just background; b) there are four

outputs resulting from the adjustment layer 𝛥𝑥𝑐𝑒𝑛𝑡𝑒𝑟
, 𝛥𝑦𝑐𝑒𝑛𝑡𝑒𝑟

, 𝛥𝑤𝑖𝑑𝑡ℎ and 𝛥ℎ𝑒𝑖𝑔ℎ𝑡

that are applied to the anchors to better fit the objects they contain.

Figure 4.9 RPN architecture, where the two parallel layers perform classification, and
bounding box refinement. k is the number of anchors per point (tryolabs, 2020)

The next step after RPN is to classify the identified object proposals into categories. A

method to do this is to cut the convolutional feature map using each object proposal

and then resize each piece to a fixed size tensor of dimensions 14 × 14 ×

𝑐𝑜𝑛𝑣𝑑𝑒𝑝𝑡ℎ using interpolation. Subsequently, max pooling is applied to this tensor

University of the Aegean Department of Financial and Management Engineering

[75]

(corresponding to an object proposal) with a 2 × 2 kernel to obtain the final 7 × 7 ×

𝑐𝑜𝑛𝑣𝑑𝑒𝑝𝑡ℎ feature map for each object proposal.

The final step of the Faster R-CNN architecture is to classify each object proposal. This

is performed by using a Region-based convolutional neural network (R-CNN) which

 classifies the proposals into one of the predetermined classes as well as a

background class for inferior suggestions

 adjusts the bounding box of the proposed object based on the predicted class.

This is performed by using two fully connected layers for each proposal, one for

classification and the other for box size adjustment.

Extension of 2D object recognition to 3D9

An autonomous vehicle is required to understand the scene in 3D in order to be

capable to safely cross its environment knowing where the pedestrians, vehicles lanes

and signs are. For that reason, 2D object detectors should be extended to 3D. The

typical method involved is to employ LiDAR point clouds. The 2D bounding box in a

picture, the LiDAR point cloud, and the inverse of the camera projection matrix are

used to project the corners of the bounding box as rays into the 3D space. This

intersection of these lines is called a frustum and commonly include points in 3D that

correspond to the object in the picture. Subsequently, a small neural network is used

to predict the seven parameters required to define the bounding box in 3D.

Another important issue in using 2D object detection in 3D is object tracking. Object

tracking involves monitoring a sequence of detections of the same object and

synthesizing a trajectory that determines the object motion over time. In addition,

object tracking incorporates a predicted position commonly through known object

dynamic models. Object tracking requires a set of assumptions limiting how fast a

scene changes. For example, a key assumption is that the camera and tracked objects

cannot move instantly to different locations in an unrealistically short time.

9 (Forsyth & Ponce, 2011) and (Qi, et al., 2018).

University of the Aegean Department of Financial and Management Engineering

[76]

Based on these assumptions, the detected object in an image accompanied by

appropriate speed vectors that are used to predict where the object will end up in

subsequent images. Thus, the first step (prediction) is to define the position and speed

in picture space. Every object will have a motion model that updates its state. For

example, the constant speed motion model may be used to move each bounding box

to the new locations. After this first step, every detection is correlated to the

prediction by calculating the Intersection over Union (IoU) between all measurements

and the prediction. Each measurement compares to the prediction, and the one with

the highest IoU is assigned to the prediction. The final step consists of using a Kalman

filter to merge the measurement and prediction updates. This filter updates the total

object state, including speed and position, which can be used in a subsequent

prediction step. For further details on this complex process refer to (Barfoot, 2019)

The traffic signs and signals should be detected from a long distance in order for the

autonomous vehicle to react suitably. For that reason, the traffic signs and signals

occupy a very limited number of pixels in the picture. Furthermore, traffic signs

include multiple classes that should be identified (and thus classified). On the other

hand, traffic lights change their state as the autonomous vehicle moves. To detect

traffic signs and lights, two stages are followed. The first one creates a special output

class termed agnostic bounding boxes, which identifies all traffic signs in the picture

without defining which class every bounding box belongs to. The second stage,

processes the bounding boxes from the first stage and categorizes them into

categories like stop signs, yellow, red and green signals etc.

4.3 Visual perception for autonomous vehicles: Semantic segmentation and case

study

Having set the foundations for CNN and object recognition in Section 4.2, in this

Section we focus on relevant tasks for autonomous vehicles. First, we introduce the

process of semantic segmentation, which is central to visual perception. Secondly, we

present a case study that concerns the visual perception of an autonomous vehicle.

The case study uses the output of semantic segmentation to

 Determine the drivable space of the autonomous vehicle

University of the Aegean Department of Financial and Management Engineering

[77]

 Recognize the lanes

 Recognize the valid objects

 Estimate the distance of the valid objects from the autonomous vehicle

This process permits the autonomous vehicle to recognize where it can move on the

road, as well as what objects are into its view, thus supporting the vehicle’s decision

making. Particularly, estimating the drivable space for an autonomous vehicle is

important for safe operation.

4.3.1 Semantic segmentation

Semantic segmentation is a picture (image) processing process that detects and

recognizes objects at pixel level. The semantic segmentation problem identifies pixels

belonging to predetermined categories, such as static objects e.g. sidewalks, roads,

traffic lights and traffic signs, as well as dynamic objects e.g. vehicles, cyclists, and

pedestrians. The semantic segmentation neural network accepts an image as input

and examines each pixel separately; the output is a vector of class scores per pixel. A

pixel becomes a part of the class with the highest score. For that reason, it is necessary

for the estimator to assign the highest result to the correct class for each pixel in the

picture. For example, a vehicle pixel should have a very high vehicle result and

significantly lower results for other classes (Everingham, et al., 2009) (Badrinarayanan

, et al., 2017).

The semantic segmentation problem can be modeled as a function approximation

problem and can be addressed by the architecture shown in Fig. 4.10.

Figure 4.10 Basic architecture of semantic segmentation (Playment, 2018)

University of the Aegean Department of Financial and Management Engineering

[78]

The input is the RGB image, and the output is the semantic segmentation, that is the

classification of each pixel in the image in a pre-determined class (signified in the

above example by a separate color). The approach to obtain the output comprises

three major stages. The first stage generates the feature map from the RGB image.

This may be done by the use of convolutional neural networks as the ones used in

object detection, for example VGG 16. As discussed in Section 4.2, the feature map

corresponds to the activation of different sections of the picture, where high

activation means that a determined feature was found such as road, vehicle etc. (see

Section 4.2). The dimensions of the feature map tensor may be 14x14x512 as

discussed in Section 4.2.

The second stage upsamples the downsampled feature map back to the original

picture resolution. For upsampling, the nearest neighbor process is used on a 2𝑥2

image patch of the downsample feature map as follows (the color of the image patch

represents the different values of each pixel.)

 The nearest neighbor upsampling produces an empty initial upsample mesh.

 Every pixel in the upsample mesh is filled with the value of the nearest pixel in

the original image patch (see Fig. 4.11).

 This procedure is repeated until all the pixels in the unsample mesh are filled

with values from the image patch.

Figure 4.11 Upsampling layer

University of the Aegean Department of Financial and Management Engineering

[79]

For better results many researchers use a procedure called feature decoder. This

process is the opposite of the feature extractor process, which downsamples the

resolution of the image. Instead, the feature decoder uses upsampling layers followed

by convolutional layers (see Fig. 4.10). The depth of the semantic segmentation neural

network is controlled by how many filters are defined for both the feature extractor

and feature decoder. Note that the upsampling convolution block is referred as

deconvolution block.

 In the first deconvolution block, the feature map is unsampled to twice the

input resolution (28x28x512). The upsampling layer is followed by

convolutional layers which are used to correct the features in the upsampled

feature map with already existing data in which the neural network has been

trained (learnable filter banks). These corrections very often determine the

recommended smooth boundaries.

 As the feature map passes through to the rest of the decoder the output

feature map becomes of similar resolution to the input image.

After, the processing of the feature extractor and feature decoder, the output passes

through the third stage, the Softmax layer. The Softmax output layer is used more

often as an output classifier to provide values as close to one as possible for the correct

class and as close to zero as possible for the other classes for every pixel. The index of

the maximum score is the recommended output representation:

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
exp (𝑧𝑖)

∑ exp (𝑧𝑗)𝑗
 (4.11)

where 𝑧𝑖 is a vector transformed into a discrete probability distribution of the class

and 𝑖 is the index of the class.

The segmentation output includes a plot index for every pixel. To visualize the

semantic segmentation output we define these mapping indices and their

corresponding colors, as provided in the following table (see also Fig. 4.12).

University of the Aegean Department of Financial and Management Engineering

[80]

Table 4.1 Mapping indices and visualization colors

Category Mapping index Visualization color

Background 0 Black

Buildings 1 Red

Pedestrians 4 Teal

Poles 5 White

Lane markings 6 Purple

Roads 7 Blue

Side walks 8 Yellow

Vehicles 10 Green

Figure 4.12 Semantic segmentation visualization colors

4.3.2 Case study: Estimation of the drivable space

As discussed above, the case study uses the output of semantic segmentation to

 Determine the drivable space of the autonomous vehicle

 Recognize the lanes

University of the Aegean Department of Financial and Management Engineering

[81]

 Estimate the distance of objects from the autonomous vehicle using the

filtered 2-D object detection.

To determine the drivable space, we first identify the ground plane. This is done using

as inputs the semantic segmentation data to evaluate the equation of the ground

plane (Forsyth & Ponce, 2011).

Subsequently, the process of the case study estimates the lane boundaries using again

the semantic segmentation output.

Finally, an object detection neural network is used which recognizes the object class.

This network is its high recall but low precision. Recall (sensitivity) is determined by

the number of truly positive results divided by total sum of truly positive and false

negative results. On the other hand, precision (positive predictive value) focuses only

on correct positive predictions. Consequently, this network provides some incorrect

results. For this reason, the output of semantic segmentation is used again to filter out

the errors from the object detection network

To implement this case study, the Jupyter programming environment and pictures

from the CARLA simulator were used. Jupyter allows to create documents that contain

computer code, equations, visualizations etc. Also, supports over 40 programming

languages including Python, R, and other. Furthermore, the neural network for object

detection was VGG 16 which is mentioned at chapter 4.2. The output of this neural

network is included to a NumPy (python library) array.

Estimating the drivable space

Estimating the drivable space is equivalent to estimating pixels belonging to the

ground plane in the scene. To do so, firstly we estimated the 𝑥𝑐, 𝑦𝑐 , 𝑧𝑐 coordinates of

every pixel in the picture. To calculate these coordinates, we used the following

equations:

𝑥𝑐 =
(𝑢 − 𝑐𝑢)𝑧

𝑓
 (4.12)

𝑦𝑐 =
(𝑣 − 𝑐𝑣)𝑧

𝑓
 (4.13)

University of the Aegean Department of Financial and Management Engineering

[82]

𝑧𝑐 = 𝑑𝑒𝑝𝑡ℎ (4.14)

Where 𝑢, 𝑣 are the coordinates of each pixel in the picture, 𝑐𝑢, 𝑐𝑣 and 𝑓 are the

intrinsic calibration parameters such as the camera geometry and the camera lens

characteristics, as found in the camera calibration matrix 𝐾.

𝐾 = (
𝑓 0 𝑢𝑐

0 𝑓 𝑣𝑐

0 0 1

) (4.15)

Figure 4.13 Pinhole camera model (Coursera (2019c))

Using the pinhole camera model of Fig. 4.13:

 The focal length 𝑓 is the distance between the camera center and the image

plane

 The piercing point (𝑐𝑢, 𝑐𝑣) are the coordinates of the camera frame center

 The piercing point (𝑢𝑐, 𝑣𝑐) is the intersection of the optical axis with the image

plane provided in pixel coordinates.

 The 𝑧𝑐 coordinate is the optical axis of the camera (with points in front of the

camera in the positive 𝑧𝑐 direction). Depth is the distance, along the z axis,

between the nearest and farthest objects in the image that appear acceptably

in focus.

University of the Aegean Department of Financial and Management Engineering

[83]

After estimating the coordinates of each pixel, we used the RANSAC (Random Sample

Consensus) algorithm to estimate the ground plane (Forsyth & Ponce, 2011). The

RANSAC algorithm is a general parameter estimation approach, for robust fitting of

models in the presence of many data outliers. The algorithm comprises the following

six steps:

1. Choose randomly a minimum of 3 points and obtain their 𝑥𝑐, 𝑦𝑐, 𝑧𝑐 coordinates

from Eqs. (4.12), (4.13), (4.14)

2. Calculate the ground plane model using the 3 selected points with equation

𝑎𝑥𝑐 + 𝑏𝑦𝑐 + 𝑐𝑧𝑐 + 𝑑 = 0 (4.16)

 by using the function compute_plane() (Coursera (2019c))

3. Calculate for every pixel and its (𝑥𝑐, 𝑦𝑐, 𝑧𝑐) coordinates the distance of the

respective point from the ground plane and with the help of function

dist_to_palane (Coursera (2019c)) which computes the distance , and

calculates the number of inliers based on a distance threshold. This is the end

of an iteration

4. Check if the current number of inliers is larger than the calculated number of

inliers in the previous iteration and keep the inlier set with the largest number

of points

5. Repeat this process for a thousand iterations or until the number of inliers is

larger than the minimum number of outliers

6. Recompute and return a plane model using all inliers in the final inlier set

Function ransac_plane_fit(xyz_data)

 Step 0: Set the thresholds of RANSAC

maximum number of iterations 100

minimum number of inliers  10,000

maximum distance from point to plane for point to be considered 0.3

maximum_inliers_counter 0

maximum_inliers_set_indexNone

University of the Aegean Department of Financial and Management Engineering

[84]

For each number of iterations do

 Step 1: Choose a minimum of three points from xyz_data randomly

index np.random.choice(range(xyz_data.shape[1]), 3, replace=False)

 current_data xyz_data[:, index]

 Step 2: Compute the plane model

 plane_parametercompute_plane(Current data)

 Step 3: Find the number of inliers

distance_list  dist_to_palane(plane_parameter.T, xyz_data[0, :].T,…

xyz_data[1, :].T, xyz_data[2, :].T)

Step 4: Check if the current number of inliers is larger than the

calculated number of inliers in the previous iteration and keep the inlier

set with the largest number of points

inliers_count  np.sum(distance_list < distance_threshold)

If inliers_count > maximum_inliers_count then

 maximum_inliers_countinliers_count

maximum_inliers_set_idx = np.where(distance_list <…

distance_threshold)[0]

If inliers_count > minimum number of inliers OR i > maximum…

number of iterations

 Break

 End For

Step 6: Recompute and return a plane model using all inliers in the final

inlier set

final_data = xyz_data[:, max_inliers_set_idx]

 output_plane = compute_plane(final_data)

University of the Aegean Department of Financial and Management Engineering

[85]

 return output_plane

End Function

The pseudocode for the algorithm is provided in Fig. 4.14. The code that implements

this process is provided in Appendix B. For the semantic segmentation input of Fig.

4.12, the ground plane computed is given by the following array:

𝐺𝑟𝑜𝑢𝑛𝑑 𝑃𝑙𝑎𝑛𝑒: [0.02, −1.00, 0.01, 1.4] (4.17)

where 𝑎 = 0.02, 𝑏 = 1.00, 𝑐 = 0.01 and 𝑑 = 1.4

Lane estimation

For lane estimation, we used the output of semantic segmentation for the current lane

the autonomous vehicle is using. For reliable implementation, this task was divided in

two subtasks: lane line estimation and post-processing. The latter subtask consists of

horizontal line filtering and similar line merging for those lines that are not part of the

drivable space of the autonomous vehicle.

In the first subtask, we examine any line that is characterized as a lane boundary in

the output of semantic segmentation. These lines are called ‘proposals’ and to

examine them three steps were followed:

1. Create a picture that includes the pixels corresponding to the lane boundaries

(as characterized by semantic segmentation)

2. Implement the edge detection process on the above lane boundary picture to

derive the drivable space of the autonomous vehicle. To do so, firstly, we

extract a binary mask of pixels which belong to classes that appear as lane

separators. The binary mask defines a region of interest (ROI) of the original

image. Mask pixel values of 0 nominate the image pixel that is part of the

background and mask pixel values 1 nominate the image pixel that belongs to

the region of interest (Jain, et al., 1995). Thus, these classes include lane

marking lines as well as road rails (if any). Subsequently, using the binary mask

we employ an edge detector. In this thesis we used the canny edge detector

which is a multi-process algorithm that can detect edges in the presence of

Figure 4.14 RANSAC pseudocode

University of the Aegean Department of Financial and Management Engineering

[86]

noise (CANNY, 1986). A Gaussian filter is used to normalize the image to reduce

the noise as well as any unwanted details and textures. In this way all the edge

elements are kept, while most of the noise is eliminated.

3. Implement the line estimation process using the output of the edge detection

process. This output contains pixels classified as edges, which are used to

estimate the lanes. To detect lines in the output edge map, we used the Hough

transform line detection algorithm (Forsyth & Ponce, 2011),which is capable

of detecting multiple lines in the edge map. The Hough transform produces a

set of lines that connect pixels which belong to edges in the edge map. The

minimum length of the required lines can be set as a hyperparameter to force

the algorithm to detect only lines that are very long to be part of lane markings.

The pseudocode of the algorithm that implements this process is provided in Fig. 4.15

below. The code is provided in Appendix B

For the semantic segmentation input of Fig. 4.12, the algorithm’s output consisted of

1 line and is shown in Fig. 4.16.

Function estimate_lanes_lines (segmentation_output)

Step 1.1: segmentation==6 OR segmentation==8

Step 1.2: Perform edge detection using cv2.Canny()

Step 1.3: Perform line estimation using cv2.HoughLinesP()

Return lines

End function

 Figure 4.15 Pseudocode for the algorithm that detects lines

University of the Aegean Department of Financial and Management Engineering

[87]

Figure 4.16 Lane line estimation with purple color

The second step, estimation of the lane boundary, merges lane lines and filters out

any unnecessary horizontal line that is shown in the picture (see Fig. 4.16). This is

performed by the following sub-steps:

2.1 Define lines with slope lower than the limit that characterizes a horizontal line

2.2 Cluster lines based on intercept and slope

2.3 Merge all lines in each cluster using average slope and average intercept

The pseudocode of the algorithm that implements this process is provided in Fig. 4.15.

The related code is presented in Appendix B.

For the input of Fig. 4.16, the algorithm’s output is shown in Fig. 4.18

Function merge_lane_lines(lines)

 Step 0: Define the thresholds

 similarity threshold of slope  0.1

 minimum threshold of slope  0.3

 similarity threshold intercept 40

University of the Aegean Department of Financial and Management Engineering

[88]

 Step 2.1: Get slope and intercept of lines

 slopes, intercepts  get_slope_intecept(lines)

 iterations  0

cluster_lines  []

 current_index []

Step 2.2: Determine the lines with slope less than horizontal slope threshold

filter_lines  lane_lines[absolute value(slopes) > minimum threshold of

slope]

 Step 2.3: Iterate over all remaining slopes and intercepts and cluster lines

 For each slope, intercept in (zip(slopes, intercepts)) do

existing_cluster_lines  np.array([iterations in current for each…

current in current_inds])

 If not exists_in_clusters.any() then

cluster_slope = np.logical_and(slopes < (slope + similarity_threshold

..._of slope), slopes > (slope - similarity_threshold_of slope))

cluster_intercept  np.logical_and(intercepts < (intercept +

...similarity_threshold_intercept), intercepts < (intercept – similarity_

...threshold intercept))

index  np.argwhere (cluster_slope & cluster_intercept &

filter_lines).T

If index.size then

current_index.append(inds.flatten())

cluster_lines.append(lines[inds])

End If

University of the Aegean Department of Financial and Management Engineering

[89]

 End If

 iterations  iterations + 1

 End For

 Step 2.4: Merge all lines in clusters using mean average

 filter_lines  [np.mean(cluster) for cluster in cluster_lines]

 filter_lines  np.squeeze(np.array(filter_lines)

 Return filter_lines

End Function

Figure 4.18 Lane estimation for the space where it is legally allowed for the
autonomous vehicle to drive

Object detection

In image of Fig. 4.19, the bounding boxes are created by the VGG 16 neural network

and our provided as inputs to the current analysis. More specifically, along with the

output categories, we are given the limits of the bounding boxes, such as ‘vehicle’, and

[𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛] and [𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥].

Figure 4.17 Pseudocode of merge lines algorithm

University of the Aegean Department of Financial and Management Engineering

[90]

For object detection the convolutional neural network used has been developed at

Stanford University to serve the purposes of Coursera course. The network results are

saved in a NumPy array in class dataset_handler(). The function

filter_detections_by_segmentation (see Fig. 4.20) takes as inputs a) the initial

detections of neural network using the command detections =

dataset_handler.object_detection (which is loaded before the execution of the

function) (see Fig. 4.19) and b) the output of semantic segmentation (see- Fig. 4.12).

Figure 4.19 Input image with bounding boxes

Four steps were followed:

 For each crafted bounding box in the input image, calculate how many pixels

in the bounding box belong to the category predicted by semantic

segmentation

 Crop the segmentation output to pixels which are located inside of the

bounding box

 Divide the calculated number of pixels by the area of the bounding box. The

number of pixels with the same category as the detection output is counted

and then normalized by the number of total pixels in the bounding box area

 If the ratio is larger than a lower limit, keep the detection. Else, remove the

detection from the list of the detections. In our case study, the bounding boxes

are filtered out when the compute normalized count is less than a threshold of

University of the Aegean Department of Financial and Management Engineering

[91]

0.3. This means that, if less than a 30% of the bounding box area is occupied

by the predicted class pixels, the bounding box has to be eliminated.

The pseudocode of the algorithm that implements this process is provided in Fig. 4.20.

The related code is presented in Appendix B.

For the input of Fig. 4.19, the algorithm’s output is shown in Fig. 4.21, i.e. only one car

is detected.

Function filter_detections_by_segmentation(detections, segmentation_output):

 Filtered_detections []

 Ratio_threshold  0.3

 For each detection in detections do

Step 1: Compute the number of pixels which belong to the category

for every detection

Class_name, x_min, y_min, x_max, y_max, score detection

x_min, y_min, x_max, y_max  np.asfarray(x_min),

np.asfarray(y_min), np.asfarray(x_max), np.asfarray(y_max)

 x_min, y_min, x_max, y_max  int(x_min), int(y_min), int(x_max),

int(y_max)

If class_name equal to car then

 Class_sed_idx  10

Elif class_name equal to pedestrian then

 Class_sed_idx  4

End If

category_pixel_cnt  np.sum(segmentation_output[y_min:y_max,

x_min:x_max] == class_sed_idx)

University of the Aegean Department of Financial and Management Engineering

[92]

Step 2: Divide the computed number of pixels by the area of the

bounding box (total number of pixels).

category_ratio  category_pixel_cnt / ((x_max - x_min) * (y_max -

y_min))

Step 3: If the ratio is greater than a threshold keep the detection. Else,

remove the detection from the list of detections.

If category_ratio > ratio_threshold then

 filtered_detections.append(detection)

End If

End For

return filtered_detections

End Function

Figure 4.21 Visualizing the car in the picture with the bounding box

Figure 4.20 Filtering the bounding boxes algorithm

University of the Aegean Department of Financial and Management Engineering

[93]

Finally, for estimating the distance to the objects in the significant bounding boxes of

the picture, we calculated the minimum distance from the pixels of the bounding box

to the camera center. To calculate this distance, we used Eqs. (4.12), (4.13) and (4.14)

and (4.18) below.

𝑑 = √𝑥2 + 𝑦2 + 𝑧2 (4.18)

The pseudocode of the algorithm that implements this process is provided in Fig.

4.20 The related code is presented in Appendix Β.

Function find_min_detection(detections, x, y, z):

 min_distances[]

 For detection in detection:

 Step 1: Compute the distance of each pixel in the detection bounds

 Step 2: Find the minimum distance with the eq. (4.18)

 End For

 min_distances np.array(min_distances)

 min_distances  min_distances.reshape([-1, 1])

 return min_distances

End Function

For the input of Fig. 4.19, the algorithm’s output is shown in Fig. 4.23, i.e. the

calculated distance from the detected car is 8.52 m.

Figure 4.22 Find the minimum distance algorithm

University of the Aegean Department of Financial and Management Engineering

[94]

Figure 4.23 The distance between the center of the camera and the car (8.52m)

To sum up, this case study uses the output of a (ready) semantic segmentation to

perform four necessary tasks to:

1. Determine the drivable space of the autonomous vehicle. This task is

important for recognizing the whole road, including the wrong-way part

2. Recognize the lanes. This task is important for recognizing the lanes along the

road and, thus, the permissible driving space

3. Recognize the objects (Object recognition). This task is important for

recognizing the objects in the environment of the autonomous vehicle

4. Estimate the distance of the recognized objects from the autonomous vehicle

using the filtered 2-D object detection. This task is important for estimating the

distance between ego-vehicle and other vehicles or objects.

University of the Aegean Department of Financial and Management Engineering

[95]

Chapter 5 Conclusion

This thesis focused on two interesting and critical topics of current research on

autonomous vehicles: Control of the vehicle dynamics and visual perception. The

intention has been to drill down on the technical background that is necessary in order

to conduct research and development in these two areas, present the essentials of

this background and conduct limited experiments to indicate how researchers in the

DeOPSys lab may proceed in their work using the available knowledge and tools.

In terms of vehicle dynamics control, we focused on speed control and steering

control. The system reference inputs are the desired speed and the desired trajectory,

respectively. The controller uses the current longitudinal speed, the driving direction,

the current position of the vehicle from the IMU-sensor, GPS, and radar, the curvature

of the path and the current yaw rate and steering angle. The outputs of the two

schemes attempt to follow the reference inputs with as little deviation as possible.

For both speed and lateral control, the corresponding controllers use appropriate

dynamic models in order to generate the accelerator, brake or steering wheel

commands. In our experiments we used a typical PID controller for longitudinal

control and a Stanley controller for lateral control. We tested, through CARLA

simulation, the effects of various values of the longitudinal PID controller parameters

𝐾𝑃, 𝐾𝐷 and 𝐾𝐼 (including values of zero in order to test P, PD and PI controllers). PID

controller has many advantages, some of these are a) zero steady state error, b)

moderate peak overshoot and stability, and c) its use for controlling both fast and slow

process variables. That’s why the results indicated that the vehicle tested had better

performance using a PID controller than the other three (PD, PI, P controllers).

Furthermore, high values of the integral gain 𝐾𝐼 result to violent oscillation of the

throttle, steering and speed and to instability.

In terms of visual perception, the inputs are camera images, and the system recognizes

the different objects in the environment along its path. To do so, deep neural networks

University of the Aegean Department of Financial and Management Engineering

[96]

are used. The steps for processing the camera images are several and highly complex.

These steps have been overviewed systematically in this thesis. Subsequently, four

significant concepts were tested, ground plane estimation, lane marking

identification, object recognition and object distance. In these tests we recognized the

importance of semantic segmentation, which provided the essential inputs to all

cases. Given the output of semantic segmentation, for all four cases we developed

code in Python that leverages important functions to perform these operations in

order to recognize where the autonomous vehicle can drive on the road as well as

what obstacles are into its route.

The two areas examined in this thesis, and the related experiments are supplemental

and highly important in order to realize autonomy. Both tasks above require

significant technical background, which both researchers and developers need to

acquire. Furthermore, the CARLA simulation environment has been an invaluable tool,

which can be used to develop new concepts in the PYTHON language and test them in

a straightforward manner. Thus, it is recommended that future researchers in our lab

familiarize themselves with the advanced background required for autonomous

vehicle work and use CARLA as an excellent tool to develop and test their concepts.

Multiple areas exist for further investigation. For example, one possible improvement

in visual perception should be the combination of the camera and LIDAR outputs to

obtain improved results, using real time object recognition in the CARLA environment.

As far as vehicle control, research in lower level control could be performed. In lateral

control, instead of a Stanley controller, the advanced model predictive controller

(MPC) could be tested. This could open new opportunities for improved vehicle

behavior, especially under complex dynamic states.

University of the Aegean Department of Financial and Management Engineering

[97]

References

American Society of Civil Engineers, 2017. Conditions & Capacity, s.l.: American

Society of Civil Engineers.

Badrinarayanan, V., Kendall, A. & Cipolla, R., 2017. SegNet: A Deep Convolutional

Encoder-Decoder Architecture for Image Segmentation. IEEE TRANSACTIONS ON

PATTERN ANALYSIS AND MACHINE INTELLIGENCE, December, pp. 2481-2495.

Barfoot, T. D., 2019. STATE ESTIMATION FOR. s.l.:Cambridge University Press.

Bender, P., Ziegler, J. & Stiller, C., 2014. Lanelets: Efficient Map Representation for

Autonomous Driving. Intelligent Vehicles Symposium, 8-11 June, pp. 420-425.

Billington, J., 2018. ZF and Mobileye jointly develop ADAS camera technology.

[Online]

Available at: https://www.autonomousvehicleinternational.com/news/adas/zf-and-

mobileye.html

[Accessed 21 September 2019].

Bussemaker, K., 2014. Sensing requirements for an automated vehicle for highway

and rural environments, Delft: Delft University of Technology.

CANNY, J., 1986. A computational approach to edge detection. IEEE Trans. Pattern

Analysis and Machine Intelligence, p. 679–698.

Department of Motor Vehicles, 2018. Autonomous Vehicle Disengagement Reports,

California: Department of Motor Vehicles.

Dosovitskiy, A. et al., 2017. CARLA: An Open Urban Driving Simulator.

Proceedings of the 1st Annual Conference on Robot Learning, pp. 1-16.

Everingham, M. et al., 2009. The PASCAL Visual Object Classes (VOC) Challenge.

International Journal of Computer Vision 88, 9 Septemper, pp. 303-338.

Falcone, P. et al., 2007. Predictive Active Steering Control for Autonomous. IEEE

TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, May, pp. 566-580.

Forsyth, D. A. & Ponce, J., 2011. Computer Vision A Modern Approach. Second

Edition ed. s.l.:Pearson Education, Inc..

Francis, B. A., 2015. Classical Control. s.l.:University of Toronto.

G. Neuhold, T. O. S. R. B. a. P. K., 2017. The Mapillary Vistas Dataset for Semantic

Understanding of Street Scenes. 2017 IEEE International Conference on Computer

Vision (ICCV), pp. 5000-5009.

General Motors, , 2018. SELF-DRIIVING SAFETY REPORT, s.l.: General Motors.

University of the Aegean Department of Financial and Management Engineering

[98]

Ian Goodfellow, Y. B. A. C., 2016. Deep Learning. Vol. 1 ed. s.l.:MIT press.

Jain, R., Kasturi, R. & Schunck, B. G., 1995. MACHINE VISION. s.l.:McGraw-Hill.

Jiang, J. & Astolfi, A., 2018. Lateral Control of an Autonomous Vehicle. IEEE

TRANSACTIONS ON INTELLIGENT VEHICLES, June, pp. 228-237.

Kelly, J. & Waslander, S., n.d. State Estimation and Localization for Self-Driving

Cars, Toronto: Coursera.

Lin, X., Sánchez-Escobedo, D., Casas, J. R. C. R. & Pardàs, M., 2019. Depth

Estimation and Semantic Segmentation from a Single RGB Image Using a Hybrid

Convolutional Neural Network. 15 April.

Liu, W. et al., 2016. SSD: Single Shot MultiBox Detector, s.l.: s.n.

Mani, K., 2019. Medium. [Online]

Available at: https://medium.com/datadriveninvestor/what-is-a-neural-network-

9ca88b29f7cb

[Accessed 3 March 2020].

Martínez-Díaz, M. & Soriguera, F., 2018. Autonomous vehicles: theoretical and

practical challenges. Transportation Research Procedia, pp. 275-282.

Mashadi, B. & Crolla, D., 2012. Vehicle Powertrain Systems. 1st Edition ed. s.l.:John

Wiley & Sons, Ltd.

National Transportation Safety Board, 2018. PRELIMINARY REPORT, s.l.: National

Transportation Safety Board.

Qi, C. R. et al., 2018. Frustum PointNets for 3D Object Detection from RGB-D Data.

Salt Lake city, Conference on Computer Vision and Pattern Recognition.

Rajamani, R., 2012. LATERAL VEHICLE DYNAMICS. In: Vehicle Dynamics and

Control. s.l.:Springer US, p. 498.

Rey, J., 2020. Faster R-CNN: Down the rabbit hole of modern object detection.

[Online]

Available at: https://tryolabs.com/blog/2018/01/18/faster-r-cnn-down-the-rabbit-hole-

of-modern-object-detection/

[Accessed 16 April 2020].

Snider, J. M., 2009. Automatic Steering Methods for Autonomous Automobile Path

Tracking. Pittsburgh, Pennsylvania: Carnegie Mellon University.

Szeliski, R., 2010. Computer Vision: Algorithms and Applications. s.l.:Springer.

U.S. Departement of Transportation, 2017. NHTSA. [Online]

Available at: https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/13069a-

University of the Aegean Department of Financial and Management Engineering

[99]

ads2.0_090617_v9a_tag.pdf

[Accessed 15 September 2019].

U.S. Department of Transportation, 2016. 2015 Motor Vehicle Crashes: Overview.

TRAFFIC SAFETY FACTS, August.

U.S. Department of Transportation, 2017. Automated driving systems: A vision for

safety, s.l.: U.S. Department of Transportation.

Urmson, C. et al., 2008. Autonomous Driving in UrbanEnvironments: Boss and the

Urban Challenge. Journal of Field Robotics, 22 February, pp. 425-466.

Waslander, S. & Kelly, J., n.d. Introduction to Self-Driving Cars, Toronto: Coursera.

Waslander, S. & Kelly, J., n.d. Visual Perception for Self-Driving Cars, Toronto:

Coursera.

Waymo, 2018. On the Road to Fully Self-Driving, s.l.: Waymo.

WHO, 2018. Global status report on road safety 2018: Summary, Geneva: World

Health Organization.

University of the Aegean Department of Financial and Management Engineering

[100]

Appendix A. Installing the CARLA simulator

Technical aspects of Carla simulator - Hardware

The hardware used for the Carla simulator is as follows:

 CPU: Intel(R) Xeon(R) CPU E5-2620 0 @ 2.00GHz

 Ram: 32GB DDR3 1333MHz

 Graphics card: GeForce GTX 1060 6GBF

 Hard drive: SSD 256GB and HDD 500GB

The above hardware specifications support efficient performance of the simulator.

Technical aspects of Carla simulator - Software

The operational system used in this thesis is Ubuntu 16.04. Before installing the

simulator, a certain process should be followed. The first step concerns the terminal

of ubuntu and testing the firewall status for allowing Carla to have default access to

ports 2000, 2001 and 2002 (TCP and UDP). The command in the terminal is:

$ sudo ufw status

 After running this command the response of the system should be

Status: inactive

For the graphics card drivers, OpenGL 3.3 or above is required. The Carla Python client

runs on Python 3.5.x or Python 3.6.x (where x is any number). The installed version of

pip for the Python client needs to be checked. When both python3 and pip versions

are available, the NumPy library should be installed. NumPy is the fundamental

package for scientific computing in Python, which facilitates all array operations,

including mathematical shape manipulation, logical, discrete Fourier transforms and

much more. The library for package NumPy can be installed with the following

command:

$ pip3 install numpy

Download and Extract the CARLA Simulator10

Download the CARLA simulator (CarlaUE4Ubuntu.tar.gz) from Coursera (Introduction

to self-driving cars, week 7)

Extract the contents of CarlaUE4Ubuntu.tar.gz to any working directory.

Install Python Dependencies for Client

The CARLA Simulator client files require additional modules to be installed, which are

detailed inside the $HOME /opt/CarlaSimulator/requirements.txt file.

10 The version of CARLA simulator is 0.8.4

University of the Aegean Department of Financial and Management Engineering

[101]

$ python3 -m pip install -r $HOME /opt/CarlaSimulator/requirements.txt --user

Loading the Simulator with the race track map

After completing the above and in order to load the simulator with the race truck map

(server mode) used in this thesis, the following command needs to be entered with

the terminal in window mode:

$ cd $HOME /opt/CarlaSimulator

The above command locates the Carla simulator on the system. The next step is to

enter

$./CarlaUE4.sh /Game/Maps/RaceTrack -windowed -carla-server -benchmark -fps=30

The above command opens the racetrack map (server) with thirty (30) frames per

second (fps). The fps argument is used to tune the simulator for a given frame-per-

second rate. Upon entering this command, the simulator waits for a Python client code

to respond. Subsequently, editing or writing a file to the Python client in the terminal

of Ubuntu the following command is used:

$ nano name_of_program.py

where name_of_program can be changed by user. For example,

$ nano module_7.py

In another terminal, the user should run the Python client program using the

following command, which calls the server that is motioned above:

$ python3 manual_control.py

If the Python client successfully connects, a new pygame window should appear (see

Fig. A.1)

University of the Aegean Department of Financial and Management Engineering

[102]

Figure A. 1 Carla Environment

University of the Aegean Department of Financial and Management Engineering

[103]

Appendix B. Python code for the visual perception case study

The Python code and functions used in the case study of visual perception of Section

4.3 are provided below:

To import the results of the semantic segmentation network should be loaded the

below dataset (2 lines)

 colored_segmentation = dataset_handler.vis_segmentation(segmentation)

plt.imshow(colored_segmentation)

1. For drivable space estimation

def xy_from_depth(depth, k):

 # Get the shape of the depth tensor

 M, N = depth.shape

 # Grab required parameters from the K matrix

 f = k[0, 0]

 c_u = k[0, 2]

 c_v = k[1, 2]

 # Generate a grid of coordinates corresponding to the shape of the depth

map

 u_mtx, v_mtx = np.meshgrid(np.arange(N), np.arange(M))

 # Compute x and y coordinates

 x = (u_mtx - c_u) * depth / f

 y = (v_mtx - c_v) * depth / f

 return x, y

For estimating the ground plane with the RANSAC algorithm

def ransac_plane_fit(xyz_data):

 # Set thresholds:

 num_itr = 100 # RANSAC maximum number of iterations

 min_num_inliers = 10000 # RANSAC minimum number of inliers

University of the Aegean Department of Financial and Management Engineering

[104]

 distance_threshold = 0.3

 max_inliers_cnt = 0

 max_inliers_set_idx = None

 for i in range(num_itr):

 # Step 1: Choose a minimum of 3 points from xyz_data at random.

 idx = np.random.choice(range(xyz_data.shape[1]), 3, replace=False)

 curr_data = xyz_data[:, idx]

 # Step 2: Compute plane model

 plane_param = compute_plane(curr_data) # (1, 4)

 # Step 3: Find number of inliers

distance_list = dist_to_plane(plane_param.T, xyz_data[0, :].T, xyz_data[1,

:].T, xyz_data[2, :].T)

Step 4: Check if the current number of inliers is greater than all previous

iterations and keep the inlier set with the largest number of points.

 inliers_cnt = np.sum(distance_list < distance_threshold)

 if inliers_cnt > max_inliers_cnt:

 max_inliers_cnt = inliers_cnt

 max_inliers_set_idx = np.where(distance_list < distance_threshold)[0]

 # Step 5: Check if stopping criterion is satisfied and break.

 if inliers_cnt > 10000 or i > num_itr:

 break

 # Step 6: Recompute the model parameters using largest inlier set.

 final_data = xyz_data[:, max_inliers_set_idx]

 output_plane = compute_plane(final_data)

 return output_plane

For the lane estimation

def estimate_lane_lines(segmentation_output):

Step 1: Create an image with pixels belonging to lane boundary

categories from the output of semantic segmentation

University of the Aegean Department of Financial and Management Engineering

[105]

 road_mask = (segmentation==6) | (segmentation==8).astype(np.uint8)

 # Step 2: Perform Edge Detection using cv2.Canny()

 mask_canny = cv2.Canny(road_mask * 255, 50, 100)

 # Step 3: Perform Line estimation using cv2.HoughLinesP()

 lines = cv2.HoughLinesP(mask_canny, rho=10, theta=np.pi/180*1,

threshold=100, … minLineLength=200, maxLineGap=100)

 lines = lines.reshape([-1, 4])

 return lines

For merging the estimated lines

 def merge_lane_lines(lines):

similarity_threshold_of_slope = 0.1

minimum_threshold_of_slope = 0.3

similarity_threshold_of_ intercept = 40

Step 2.1: Get slope and intercept of lines

slopes, intercepts = get_slope_intecept(lines)

iterations = 0

cluster_lines = []

 current_index = []

Step 2.2: Determine the lines with slope less than horizontal slope

threshold

filter_lines = lane_lines[abs(slopes) > min_slope_threshold]

 for slope, intercepts in (zip(slopes, intercepts)):

University of the Aegean Department of Financial and Management Engineering

[106]

existing_cluster_lines = np.array([iterations in current for current in

current_index])

 if not existing_cluster_lines.any():

cluster_slope = np.logical_and(slopes < (slopes +

similarity_threshold_of_slope), slopes > (slopes -

similarity_threshold_of_slope))

intercept_cluster = np.logical_and(intercepts < (intercept +

similarity_threshold_of_ intercept), intercepts < (intercept -

similarity_threshold_of_ intercept))

index = np.argwhere (cluster_slope & cluster_intercept &

filter_lines).T

if index.size then

current_index.append(index.flatten())

cluster_lines.append(lines[inds])

 iterations = iterations + 1

 Step 2.4: Merge all lines in clusters using mean average

filter_line = [np.mean(cluster) for cluster in cluster_lines]

filter_line = np.squeeze(np.array(filter_line)

return filter_line

For object detection

def filter_detections_by_segmentation(detections, segmentation_output):

 ratio_threshold = 0.3

 for detection in detections:

University of the Aegean Department of Financial and Management Engineering

[107]

Step 1: Compute number of pixels belonging to the category for

every detection.

 class_name, x_min, y_min, x_max, y_max, score = detection

 x_min, y_min, x_max, y_max = np.asfarray(x_min),

np.asfarray(y_min), np.asfarray(x_max), np.asfarray(y_max)

x_min, y_min, x_max, y_max = int(x_min), int(y_min), int(x_max),

int(y_max)

 if class_name=="Car":

 class_sed_idx = 10

 elif class_name=="Pedestrian":

 class_sed_idx = 4

 category_pixel_cnt = np.sum(segmentation_output[y_min:y_max,

x_min:x_max] == class_sed_idx)

Step 2: Devide the computed number of pixels by the area of the

bounding box (total number of pixels).

 category_ratio = category_pixel_cnt / ((x_max - x_min) * (y_max

y_min))

Step 3: If the ratio is greater than a threshold keep the detection.

Else, remove the detection from the list of detections.

 if category_ratio > ratio_threshold:

 filtered_detections.append(detection)

return filtered_detections

For estimating the distance of detected objects

 def find_min_distance_to_detection(detections, x, y, z):

 min_distances = []

University of the Aegean Department of Financial and Management Engineering

[108]

 for detection in detections:

 # Step 1: Compute distance of every pixel in the detection

bounds

 class_name, x_min, y_min, x_max, y_max, score = detection

 x_min, y_min, x_max, y_max = np.asfarray(x_min),

np.asfarray(y_min), np.asfarray(x_max), np.asfarray(y_max)

 x_min, y_min, x_max, y_max = int(x_min), int(y_min),

int(x_max), int(y_max)

 # Step 2: Find minimum distance

 mtx_dist = np.sqrt(x**2 + y**2 + z**2

 min_distances.append(np.min(mtx_dist[y_min:y_max,

x_min:x_max]))

 min_distances = np.array(min_distances)

 min_distances = min_distances.reshape([-1, 1])

 return min_distances

