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EXECUTIVE SUMMARY 

This thesis examines three interesting cases of the single vehicle routing problem with a 

predefined client sequence and two load replenishment depots. The cases studied vary with 

respect to the inventory availability at each depot. Given the location and demand of the clients, 

we seek the minimum cost route, which includes optimal load replenishment at the depots in 

order to fully satisfy the client demand. For each case, two solution approaches have been 

developed: i) A Dynamic Programming algorithm, which obtains the optimal solution for all 

cases, and ii) a Labeling Algorithm that obtains the optimal solution for the first two cases, and 

efficient solutions for the third, and most complex, one. The computational efficiency of the two 

algorithms is studied by solving a wide range of problem instances. 

Keywords 

Single Vehicle Routing; Multiple Depot Routing, Dynamic Programming for the VRP, Labeling Algorithm for the 

VRP 
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Chapter 1. Introduction 

The Vehicle Routing Problem (VRP) is a very well studied problem in the literature over a span 

of almost six decades. Its variations are closely related to transportation and distribution 

operations, telecommunication network operations, the airline industry, etc. (see Golden et al. 

(2008), Toth and Vigo, (2002), or Laporte, (1992)).For characteristic examples of exact, heuristic 

and metaheuristic solution algorithms see Laporte et al. (1985), Fisher et al., (1997), Clarke and 

Wright, (1964), Osman (1993),Kirkpatrick et al. (1983), Gendreau et al. (1994), Rego and 

Roucairol, (1996), and Reinmann and Doerner (2004). 

The (single) Vehicle Routing with Depot Returns Problem (VRDRP), as defined by Tsirimpas et 

al. (2008), considers the case of a single vehicle serving clients with a predefined visit sequence 

and known product demand. Due to load and capacity constraints, the vehicle must return one or 

more times to the depot for replenishment. The problem is to find the optimal visits to the depot 

so that the total distance traveled is the minimum possible and all clients are served. Tsirimpas et 

al. (2008) studied three cases of this problem and used dynamic programming to identify the 

optimal route for each case. Yang et al. (2000) and Tatarakis and Minis (2009) consider the case 

of the stochastic vehicle routing problem with predefined client order. In the first work, the 

authors investigate problems of a single and multiple-vehicle distributing a single product, and 

minimize the total routing cost and the probability of route failure. Bianchi et al. (2006) study the 

performance of metaheuristics for solving the Yang et al. problem. Tatarakis and Minis consider 

the delivery of multiple products by a single vehicle to clients with random demand and they 

developed dynamic programming algorithms to determine the minimum expected routing cost. 

In the present thesis we consider the case of two depots in three VRDRP variants of increasing 

complexity. In the first variant (UU) both depots have Unlimited product availability (inventory); 

in the second variant (UL), one depot has Unlimited product inventory and the other Limited 

inventory, while in the third variant (LL) both depots have Limited product inventory. In all 

three variants considered a single product is distributed. 

Note that in UU, after each visit to a client, the decision is whether to return -or not- to the 

nearest depot facility for a full replenishment. In LU or LL, since there exists at least one depot 

with limited inventory, the decisions to be made after each visit to a client are i) return -or not- to 
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a depot facility, ii) which depot facility to return to, and iii) how many product units will be 

loaded, in case the selected depot is the one with the limited inventory. 

Figure 1.1, demonstrates the LU variant of the VRDRP. In this simple example, we assume that 

the vehicle can carry up to two product units; depot	ܦଵ	has an inventory of two product units, 

depot 	ܦଶ	has unlimited inventory, and each client has a demand of 1 product unit. In Fig. 1.1.a 

the vehicle departs from its starting position, visits 	ܦଵ	and departs fully loaded (2 product units). 

Then, it serves two clients before visiting	ܦଶ. Subsequently, it departs from	ܦଶ, visits two more 

clients and, then, since it has exhausted its load, it should return to a depot facility for stock 

replenishment. However, in 	ܦଵ there is no stock left and, thus, the vehicle must travel a longer 

distance to	ܦଶ . Another solution is demonstrated in Fig. 1.1.b. The vehicle departs from its 

starting position, visits 	ܦଵ	and loads just 1 product unit (instead of the two available in	ܦଵ). 

After departing from 	ܦଵ it visits one client, visits	ܦଶ, serves two clients and returns to 	ܦଶ for a 

full replenishment of two product units. Subsequently, after serving one more client, it returns 

to	ܦଵ to load the one remaining product unit in that facility. Finally, the vehicle serves the last 

two clients. The two solutions in Figs 1.1.a, 1.1.b below illustrate that the quantity of the product 

units loaded at depotܦଵ (facility with limited availability), affects the total distance traveled by 

the vehicle. 

 

 

The problems addressed in this thesis have interesting applications. For instance, material 

handling systems in a manufacturing shop often operate along a fixed pathway that connects 

material warehouses with workcenters. Note that in addition to the main pathway connecting the 

workcenters in a predefined sequence, there are spurs connecting each workcenter with the 

material warehouses, allowing the direct return of the material handling device (e.g. AGV). 

 
૚ࡰ

 ૛ࡰ

 ૚ࡰ

 ૛ࡰ

a b

Figure 1.1: Example routes in the LU variant 
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Similar applications may be found in the healthcare industry concerning the transportation of 

meals, linen, and waste. Another example concerns the distribution of a single product (e.g. 

bottled water), and the case in which one of the delivery vehicles is incapacitated. In this case the 

vehicle which, in addition to its own delivery plan, will be assigned to complete the delivery plan 

of the incapacitated one, may use both the depot and the incapacitated vehicle as replenishment 

points (see LU problem above).Similar problems have been studied by Li et al. (2009 a, b), Mu 

et al. and Mamassis et al. (2010). 

In this thesis we model, solve and study the complexity of the three new problems (UU, LU and 

LL) described above. Our solution approaches are based on Dynamic Programming (DP). 

Furthermore, to deal with the increased complexity of problems LU and LL we also develop 

efficient labeling algorithms and compare the related computational times with those of the DP 

ones. 
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Chapter 2. Problem models 

Consider the following notation: 

- The vertices	in set	ܥ ൌ ሼ1, … , ݊ሽ correspond to the clients of the network 

- Vertex	0 corresponds to the starting position of the vehicle, and vertex	݊ ൅ 1 corresponds 

to the ending position of the vehicle.Note that, without loss of generality, we assume that 

the vehicle departs empty from its starting position, and, thus, it must visit one of the 

depots to load product, prior to serving any client 

- For modeling purposes, two virtual depots are defined for every client, as well as for the 

starting position. The set of these virtual depots is denoted as	ܦ ൌ ሼܦ௜
ଵ, ௜ܦ

ଶ: ݅ ∈ ܥ ∪ ሼ0ሽሽ. 

All virtual depots ܦ௜
ଵare located at the geographical point of Depot 1; similarly all virtual 

depots ܦ௜
ଶ	are located at the geographical point of Depot 2. The inventory level of each 

virtual depot is updated depending on the vehicle visits and the related quantities loaded 

onto the vehicle. 

Consider now the complete directed graph	ܩሺܸ, ܸ ሻ, whereܣ ൌ ܥ ∪ ܦ ∪ ሼ0, ݊ ൅ 1ሽ is the vertex 

set and ܣ ൌ ሼሺ݅, ݅ ൅ 1ሻ, ሺ݅, ௜ܦ
ଵሻ, ሺ݅, ௜ܦ

ଶሻ, ሺܦ௜
ଵ, ௜ܦ

ଶሻ ∶ ݅ ∈ ܸ ∪ ሼ݊ ൅ 1ሽሽ  is the arc set. The vehicle 

must serve all clients with a predefined sequence	1, … , ݊. Each client ݅ has a known positive 

demand	݀௜, ∀	݅ ∈ ܿ௜௝	and	,ܥ ൒ 0 denotes the cost (distance) of traversing arc	ሺ݅, ݆ሻ. The product 

availability in the virtual depots after serving client 	݅	 is denoted as 	 ௜ܲ
ଵ and ௜ܲ

ଶ,  respectively. 

Similarly, the initial product availability isߎଵ and 	,	ଶߎ	 respectively. The vehicle capacity 

is	ܳ	product units and the stock on the vehicle leaving client	݅ is denoted as	ݍ௜. 

The solution seeks a vehicle route serving all clients at the predefined sequence with minimal 

total distance. We present first the model for problem LL (in which both depots have limited 

inventory), since this is the most general of the three problems. 

Problem LL 

The decision variables of the model are the following: 

,௜,௜ାଵݔ ,௜,஽೔భݔ ,௜,஽೔మݔ ,஽೔భ,஽೔మݔ ,஽೔మ,஽೔భݔ ,஽೔భ,௜ݔ ஽೔మ,௜ݔ ∈ ሼ0,1ሽ, ݅ ൌ 0,… , ݊ 
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Each of the above variables assumes the value 1 if the corresponding arc is traversed and 0 

otherwise. 

The variables: 

݀஽೔భ ∈ ሼ0,1, … , ௜ܲିଵ
ଵ ሽ, ݅ ൌ 0,… , ݊ 

and, 

݀஽೔మ ∈ ሼ0,1, … , ௜ܲିଵ
ଶ ሽ, ݅ ൌ 0,… , ݊ 

represent the quantity of products loaded onto the vehicle while it visits virtual depots ܦ௜
ଵandܦ௜

ଶ, 

respectively. 

The objective function of problem LL is defined as follows: 

ܥܶ݊݅݉ ൌ ෍ቀݔ௜,௜ାଵܿ௜,௜ାଵ ൅ ௜,஽೔భܿ௜,஽೔భݔ ൅ ஽೔భ,௜ାଵܿ஽೔భ,௜ାଵݔ ൅ ௜,஽೔మܿ௜,஽೔మݔ ൅ ஽೔మ,௜ାଵܿ஽೔మ,௜ାଵݔ ൅ ஽೔భ,஽೔మܿ஽೔భ,஽೔మݔ ൅ ஽೔మ,஽೔భܿ஽೔మ,஽೔భቁݔ ൅ ܿ௡,௡ାଵ

௡ିଵ

௜ୀ଴

 (2.1) 

Subject to: 

௜,௜ାଵݔ ൅ ௜,஽೔భݔ ൅ ௜,஽೔మݔ ൌ 1 , ݅ ൌ 0,… , ݊ (2.2)  

஽೔భ,௜ାଵݔ ൅ ஽೔మ,௜ାଵݔ ൌ ௜,஽೔భݔ ൅ , ௜,஽೔మݔ ݅ ൌ 0,… , ݊ (2.3)  

௜,஽೔భݔ ൅ ஽೔మ,஽೔భݔ ൌ ஽೔భ,௜ାଵݔ ൅ , ஽೔భ,஽೔మݔ ݅ ൌ 0,… , ݊ (2.4)  

஽೔భ,஽೔మݔ ൅ ஽೔మ,஽೔భݔ ൑ 1 , ݅ ൌ 0,… , ݊ (2.5)  

௜ݍ ൌ ௜ିଵݍ െ ݀௜ ൅ ൬ቀݔ௜ିଵ,஽೔షభభ ൅ ஽೔షభమݔ ,஽೔షభ
భ ቁ ൈ ݀஽೔షభభ ൰ ൅ ൬ቀݔ௜ିଵ,஽೔షభమ ൅ ஽೔షభభݔ ,஽೔షభ

మ ቁ ൈ ݀஽೔షభమ ൰	 , ݅ ൌ 0,… , ݊ (2.6)  

௜ݍ ൅ ݀௜ ൑ ܳ , ݅ ൌ 0,… , ݊ (2.7)  

଴ܲ
ଵ ൌ ଵߎ െ ቀݔ଴,஽బభ ൅ ஽బమ,஽బభቁݔ ൈ ݀஽బభ 	 (2.8)  

଴ܲ
ଶ ൌ ଶߎ െ ቀݔ଴,஽బమ ൅ ஽బభ,஽బమቁݔ ൈ ݀஽బమ 	 (2.9)  

௜ܲ
ଵ ൌ ௜ܲିଵ

ଵ െ ቀݔ௜,஽೔భ ൅ ஽೔మ,஽೔భቁݔ ൈ ݀஽೔భ , ݅ ൌ 1,… , ݊ (2.10) 

௜ܲ
ଶ ൌ ௜ܲିଵ

ଶ െ ቀݔ௜,஽೔మ ൅ ஽೔భ,஽೔మቁݔ ൈ ݀஽೔మ , ݅ ൌ 1,… , ݊ (2.11) 

௜ܲ
ଵ, ௜ܲ

ଶ, ௜ݍ ൒ 0 , ݅ ൌ 0,… , ݊ (2.12) 
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,௜,௜ାଵݔ ,௜,஽೔భݔ ,௜,஽೔మݔ ,஽೔భ,஽೔మݔ ,஽೔మ,஽೔భݔ ,஽೔భ,௜ݔ ஽೔మ,௜ݔ ∈ ሼ0,1ሽ , ݅ ൌ 0,… , ݊ (2.13) 

݀஽೔భ ∈ ሼ0,1, … , ௜ܲିଵ
ଵ ሽ , ݅ ൌ 0,… , ݊ (2.14) 

݀஽೔మ ∈ ሼ0,1, … , ௜ܲିଵ
ଶ ሽ , ݅ ൌ 0,… , ݊ (2.15) 

Equation (2.2) ensures that the vehicle departing from one client will be directed towards the 

next client, or towards depot 1, or depot 2. Equations (2.3) and (2.4) ensure that if the vehicle 

arrives at a depot, it will either travel to the other depot or to the next client in the sequence. 

Inequality (2.5) ensures that the vehicle can only travel once from one depot to the other (thus 

avoiding cyclical tours between depots). Equations (2.3) to (2.4) and inequality (2.5) also ensure 

that when the vehicle departs from one client, it will follow only one of the five possible paths to 

the next customer. Equation (2.6) ensures that upon visiting client	݅, the vehicle serves exactly its 

demand. Inequality (2.7) ensures that the vehicle capacity cannot be exceeded at any point along 

the route. Equations (2.8) and (2.9) define the initial inventory of the two depots. Equations 

(2.10) and (2.11) define the change in inventory each time a vehicle visits the depot facility. 

Inequality (2.12) ensures that that the product quantities (at the depots and those carried by the 

vehicle) cannot be negative at any point along the route. Constraint (2.13) states that the arc 

decision variables are binary. Finally, Constraints (2.14) and (2.15) specify the range of the 

decision variables related to the quantities loaded onto the vehicle from the depots. 

The above model can be simplified to describe problems UU and LU, as described below: 

Problem UU 

In this case the two depots have unlimited product availability (ߎଵ,ߎଶ → ∞ ) and hence, 

Constraints (2.8) to (2.12) are no longer needed. Note also that the vehicle will be fully loaded 

upon each visit to a depot facility. Hence,  

݀஽೔భ, ݀஽೔మ ൌ ܳ െ , ௜ିଵݍ ݅ ൌ 0,1, … , ݊ (2.16) 

Furthermore, visiting two depot facilities in sequence is not appropriate due to a) the fact that the 

necessary product quantity can always be loaded by any (single) depot facility, and b) the 

triangular inequality. 

In this case, therefore, the set of arcs can be redefined as follows: 
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′ܣ ൌ ሼሺ݅, ݅ ൅ 1ሻ, ሺ݅, ௜ܦ
ଵሻ, ሺ݅, ௜ܦ

ଶሻሽ ∶ ݅ ∈ ܸ ∪ ሼ0ሽሽ. 

Obviously, 

ᇱܣ ⊆  .ܣ

Consequently, the mathematical model for problem UU can be written as follows: 

ܥܶ݊݅݉ ൌ ෍ቀݔ௜,௜ାଵܿ௜,௜ାଵ ൅ ௜,஽೔భܿ௜,஽೔భݔ ൅ ஽೔భ,௜ାଵܿ஽೔భ,௜ାଵݔ ൅ ௜,஽೔మܿ௜,஽೔మݔ ൅ ஽೔మ,௜ାଵܿ஽೔మ,௜ାଵቁݔ ൅ ܿ௡,௡ାଵ

௡ିଵ

௜ୀ଴

 (2.17) 

Subject to:  

௜,௜ାଵݔ ൅ ௜,஽೔భݔ ൅ ௜,஽೔మݔ ൌ 1 , ݅ ൌ 0,… , ݊ (2.18) 

௜,஽೔భݔ ൌ , ஽೔భ,௜ାଵݔ ݅ ൌ 0,… , ݊ (2.19) 

௜,஽೔మݔ ൌ , ஽೔మ,௜ାଵݔ ݅ ൌ 0,… , ݊ (2.20) 

௜ݍ ൌ ௜ିଵݍ െ ݀௜ ൅ ሺݔ஽೔భ ൅ ஽೔మሻݔ ൈ ሺܳ െ ௜ିଵሻݍ , ݅ ൌ 0,… , ݊ (2.21) 

௜ݍ ൅ ݀௜ ൑ ܳ , ݅ ൌ 0,… , ݊ (2.22) 

௜ݍ ൒ 0 , ݅ ൌ 0,… , ݊ (2.23) 

,௜,௜ାଵݔ ,௜,஽೔భݔ ,௜,஽೔మݔ ,஽೔భ,௜ାଵݔ ஽೔మ,௜ାଵݔ ∈ ሼ0,1ሽ , ݅ ൌ 0,… , ݊ (2.24) 

Problem LU 

In this case we assume that the second depot (ܦଶ) is the one with the finite product inventory. 

This increases the complexity compared to the UU case. Again, all decision variables associated 

with ܦଵ  can be excluded from the model. However, the decision variables associated with 

quantity ݀஽೔మthat can be loaded from ܦଶ to the vehicle is retained. Similarly to the UU case the 

vehicle will never visit sequentially the two depots, thus the arc set for this case also is	ܣ′. 

ܥܶ݊݅݉ ൌ ෍ቀݔ௜,௜ାଵܿ௜,௜ାଵ ൅ ௜,஽೔భܿ௜,஽೔భݔ ൅ ஽೔భ,௜ାଵܿ஽೔భ,௜ାଵݔ ൅ ௜,஽೔మܿ௜,஽೔మݔ ൅ ஽೔మ,௜ାଵܿ஽೔మ,௜ାଵቁݔ ൅ ܿ௡,௡ାଵ

௡ିଵ

௜ୀ଴

 (2.25) 

Subject to:  
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௜,௜ାଵݔ ൅ ௜,஽೔భݔ ൅ ௜,஽೔మݔ ൌ 1 , ݅ ൌ 0,… , ݊ (2.26) 

௜,஽೔భݔ ൌ , ஽೔భ,௜ାଵݔ ݅ ൌ 0,… , ݊ (2.27) 

௜,஽೔మݔ ൌ , ஽೔మ,௜ାଵݔ ݅ ൌ 0,… , ݊ (2.28) 

௜ݍ ൌ ௜ିଵݍ െ ݀௜ ൅ ൬ݔ஽೔భ ൈ ሺܳ െ ௜ିଵሻ൰ݍ ൅ ቀݔ஽೔మ ൈ ݀஽೔మቁ , ݅ ൌ 0,… , ݊ (2.29) 

௜ݍ ൅ ݀௜ ൑ ܳ , ݅ ൌ 0,… , ݊ (2.30) 

଴ܲ
ଶ ൌ ଶߎ െ ஽బమݔ ൈ ݀஽బమ 	 (2.31) 

௜ܲ
ଶ ൌ ௜ܲିଵ

ଶ െ ஽೔మݔ ൈ ݀஽೔మ , ݅ ൌ 1,… , ݊ (2.32) 

௜ܲ
ଶ, ௜ݍ ൒ 0 , ݅ ൌ 0,… , ݊ (2.33) 

,௜,௜ାଵݔ ,௜,஽೔భݔ ,஽೔భ,௜ݔ ,௜,஽೔మݔ ஽೔మ,௜ݔ ∈ ሼ0,1ሽ , ݅ ൌ 0,… , ݊ (2.34) 
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Chapter 3. Solution Methods 

In this Chapter, we propose two alternative methods to solve the above problems: a) A Dynamic 

Programming algorithm (DP), which provides the optimal solution in all three problems. b) A 

Labeling Algorithm (LA), which solves them in more efficient computational times. 

3.1.  Problem UU 

Dynamic Programming (DP) algorithm 

Let’s assume that the minimum distance ܥ௜ሺݍ௜ሻ from client	݅ until the ending point (݊ ൅ 1) is a 

function of the load ݍ௜of the vehicle as it departs from client ݅ . Then the DP Equations are 

formulated as follows: 

If	݅ ൌ ݊, then:  

௜ሻݍ௜ሺܥ ൌ 	 ܿ௡,௡ାଵ , ௜ݍ ൌ 0,… , ܳ (3.1)  

For clients	݅ ൌ ݊ െ 1, ݊ െ 2, . . . ,1 and for vehicle load ݍ௜ ൌ 0,… , ܳ: 

௜ሻݍ௜ሺܥ ൌ 	݉݅݊ ൞

ܿ௜,௜ାଵ	 ൅ ௜ݍ௜ାଵሺܥ	 െ ݀௜ାଵሻ
ܿ௜,஽೔భ 	൅	ܿ஽೔భ,௜ାଵ ൅ ௜ାଵሺܳܥ	 െ ݀௜ାଵሻ

ܿ௜,஽೔మ 	൅	ܿ஽೔మ,௜ାଵ ൅ ௜ାଵሺܳܥ	 െ ݀௜ାଵሻ
 , ௜ݍ ൒ ݀௜ାଵ (3.2) (a)

௜ሻݍ௜ሺܥ ൌ 	݉݅݊ ቊ
ܿ௜,஽೔భ 	൅	ܿ஽೔భ,௜ାଵ ൅ ௜ାଵሺܳܥ	 െ ݀௜ାଵሻ

ܿ௜,஽೔మ 	൅	ܿ஽೔మ,௜ାଵ ൅ ௜ାଵሺܳܥ	 െ ݀௜ାଵሻ
 , ௜ݍ ൏ ݀௜ାଵ (3.2) (b)

For the starting position	݅ ൌ 0, and	ݍ଴ ൌ 0: 

଴ሻݍ଴ሺܥ ൌ 	݉݅݊ ቊ
ܿ଴,஽బభ ൅	ܿ஽బభ,ଵ ൅ ଵሺܳܥ	 െ ݀ଵሻ

ܿ଴,஽బమ ൅	ܿ஽బమ,ଵ ൅ ଵሺܳܥ	 െ ݀ଵሻ
  (3.3)  

Equation (3.2a) ensures that if the vehicle load is adequate to satisfy the demand of the next 

client, then	ܥ௜ሺݍ௜ሻ will be the minimum distance considering all three possible paths the vehicle 

may follow. In Eq. (3.2b), the path that represents the direct visit from client 	݅  to ݅ ൅ 1	 is 

excluded due to Eq. (2.23). The minimum distance ݉݅݊ܶܥ ൌ  .is provided by Eq. (3.3)	଴ሻݍ଴ሺܥ
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Labeling Algorithm (LA) 

The labeling algorithm creates partial paths iteratively; that is, paths that begin from the starting 

position and reach each client according to the predefined client sequence. Each partial path 

incident to a client ݅ can be extended to the next client ݅ ൅ 1 by: a) direct visit to the next client, 

b) visit through	ܦ௜
ଵ, or c) visit through	ܦ௜

ଶ. The algorithm extends all partial paths reaching each 

client, determines the quality of these paths, and discards those of inferior quality. The paths of 

inferior quality are identified by applying the, so called, dominance rules. The procedure 

continues until the ending positionn ൅ 1. The complete path (from the starting to the ending 

position) with the minimum total cost is selected as the optimal one.The labeling algorithm is an 

extension of the classic Dijkstra’s algorithm for the directed single-source shortest path problem 

(Dijkstra, 1959). It has been applied to a multitude of problems, such as the VRP with time 

windows (Desrocherset al., 1992), in the airline crew pairing Lavoie et al. (1988) and in flight 

crew scheduling Graves et al. (1993). More recent works for the Elementary Shortest Path 

Problem with Resource Constraints (ESPPRC) include Feillet et al. (2004) and Chabrier (2005); 

focus on the importance of the dominance rules. 

Let ܭ ൌ ሺ0,1,2,… , ݊ ൅ 1ሻ be the predefined sequence of serving the clients. Also let ܼ௜ be the 

path set that contains all partial paths reaching client (node)	݅ ∈ ݖ	Each partial path .ܭ ∈ ܼ௜is 

characterized by: 

 ̅ܥ௭: the total distance from the starting position ሺ0ሻ to client ݅, the last node of partial path 

 ݖ

 ݍത௭: the load of the vehicle after serving client ݅, the last node of partial path ݖ. 

The steps of the algorithm are as follows: 

Step 1: Start from first node of the sequence (݅ ൌ 0ሻ with the initial partial path ݖ ∈ ܼ଴ . 

where: 

௭ܥ̅ ൌ 0, ത௭ݍ ൌ 0, ݖ ∈ ܼ଴ 

Step 2: Set ݅ ൌ ݅ ൅ 1 

Step 3: [Partial path extension]: For each partial path ,ݖ	 ݖ ∈ ܼ௜ିଵ , connect node (client) 

݅ െ 1	 to 	݅ , by the three possible ways and create, if feasible, three new partial 

paths ,ଵ′ݖ	 ,ଶ′ݖ ଷ′ݖ ∈ ܼ௜ . Overall, 3 ൈ |ܼ௜ିଵ|  new paths will be created. Figure 3.1 
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shows an example for extending a partial path in ܼଶ. In case a partial path ݖ exists for 

which the load of the vehicle is adequate to satisfy all clients until the end of the 

client sequence, i.e. 	ݍഥ௭ ൒ 	∑ ݀௬
௡ାଵ
௬ୀ௜ , then only partial path ݖଵ

ᇱ is constructed by 

visiting node ݅ directly, since any visit to a depot would unnecessarily increase the 

distance travelled by the vehicle. 

Step 4: [Computation of the path variables]: For each new created partial path ݖ′ ∈ ܼ௜ the 

following are computed, based on the corresponding variables of the parent partial 

path ݖ ∈ ܼ௜ିଵ(note that the index k=1, 2, 3 of ݖ௞
ᇱ  has been dropped for convenience) 

i. The total distance: 

௭ᇱܥ̅ ൌ 	 ௭ܥ̅ ൅ ௜ିଵ,௜ܿ௜ିଵ,௜ݔ ൅ ௜ିଵ,஽೔షభభݔ ቀܿ௜ିଵ,஽೔షభభ ൅ ܿ஽೔షభభ 	,௜ቁ ൅ ௜ିଵ,஽೔షభమݔ ቀܿ௜ିଵ,஽೔షభమ ൅ ܿ஽೔షభమ 	,௜ቁ 

ii. The load ݍത௭ᇲof the vehicle after serving client	݅. This amount is calculated due to 

the visits of the vehicle to a depot as: 

ത௭ᇱݍ ൌ ቐ
ത௭ݍ െ ݀௜ , ௜ିଵ,஽೔షభభݔ ൅ ௜ିଵ,஽೔షభమݔ ൌ 0

Q െ ݀௜ , ௜ିଵ,஽೔షభభݔ ൅ ௜ିଵ,஽೔షభమݔ ൌ 1
 

(3.4) (a)

(3.4) (b)

Equation (3.4a) states that during the direct visit to client 	݅  the vehicle load is 

decreased by exactly the amount corresponding to the demand of client ݅. Equation 

(3.4b) states that when the vehicle visits a depot (ܦଵor ܦଶ), then it is loaded up to 

its capacity. 

Step 5: [Discarding of partial paths]: If any of the partial paths in set ܼ௜ is infeasible due to 

constraints (2.19) to (2.25), then it is discarded (pruned). For the remaining paths, we 

identify and discard those of inferior quality. For this, consider two paths ݖ′ଵ, ଶ′ݖ ∈

ܼ௜.	Then partial path ݖ′ଵ dominates partial path ݖ′ଶ, and ݖ′ଶ can be discarded if the 

following hold (simultaneously): 

i. ݍത௭ᇱభ ൒   ത௭ᇱమ (3.5)ݍ

ii. ̅ܥ௭ᇱభ ൑   ௭ᇱమ (3.6)ܥ̅

If Inequality (3.5) is satisfied, and if the vehicle traverses partial path ݖ′ଵ  after 

serving client	݅, it may return to a depot fewer -or at most the same- number of times 

for replenishment, and, thus, may travel a shorter (or at most equal) distance from 
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client ݅ to the end of the route. If Eq. (3.6) is satisfied as well, then at least one 

complete path created from partial path ݖ′ଵ will correspond to a lower-or at most 

equal- distance as compared to all complete paths created from partial path	ݖ′ଶ. Thus 

partial path ݖ′ଶ can be discarded safely. 

Step 6: Steps 2, 3,4 and 5 are repeated until ݅ ൌ ݊ ൅ 1 

Step 7: From the set of pathsܼ௡ାଵ, the one with the minimum distance is the optimal route to 

satisfy all clients with ݉݅݊ܶܥ ൌ min௭∈௓೙శభ	  .௭ܥ̅

 

 

3.2.  Problem LU 

Dynamic Programming (DP) algorithm 

The DP developed for this case starts from the last client (݅ ൌ ݊), and for each client	݅ under 

consideration it defines the minimum cost ܥ௜ሺݍ, ௜ܲ
ଶሻ	from this client to the ending position (n ൅

1) of the sequence. We assume that this cost depends on i) the vehicle’s load ݍ௜and ii) the 

inventory	 ௜ܲ
ଶof depot	ܦଶ (the depot with limited stock) after serving client	݅. 

If	݅ ൌ ݊, then:  

a ࡰ૛

૚ࡰ

b ࡰ૛

૚ࡰ

c ࡰ૛

૚ࡰ

d ࡰ૛

૚ࡰ

Figure 3.1: Partial path expansion example: (a) The initial partial path. (b), (c), (d) The partial path
extensions 
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,௜ݍ௜ሺܥ ௜ܲ
ଶሻ ൌ 	 ܿ௡,௡ାଵ , ∀ ௜ݍ ൌ 0,… , ܳ, ∀ ௜ܲ

ଶ ൌ 0,… ,   ଶ (3.7)ߎ

For	݅ ൌ ݊, ݊ െ 1, . . ௜ݍ,1, ൌ 0,1, … , ܳ, ௜ܲ
ଶ ൌ 0,1, … , Πଶ 

,௜ݍ௜ሺܥ ௜ܲ
ଶሻ ൌ 	݉݅݊

ە
ۖ
۔

ۖ
	௜,௜ାଵܿۓ ൅ ௜ݍ௜ାଵሺܥ	 െ ݀௜ାଵ, ௜ܲ

ଶሻ

ܿ௜,஽೔భ ൅ 	ܿ஽೔భ,௜ାଵ ൅ ௜ାଵሺܳܥ	 െ ݀௜ାଵ, ௜ܲ
ଶሻ

ܿ௜,஽೔మ ൅ 	ܿ஽೔మ,௜ାଵ ൅ min
଴ஸௗವ೔

మஸ୫୧୬	ሼ௉೔
మ,ொି௤೔ሽ

ሼܥ௡ ቀݍ௜ ൅ ݀஽೔మ െ ݀௜ାଵ, ௜ܲ
ଶ െ ݀஽೔మቁሽ

 , ௜ݍ ൒ ݀௜ାଵ (3.8) (a)

,௜ݍ௜ሺܥ ௜ܲ
ଶሻ ൌ 	݉݅݊ ቐ

ܿ௜,஽೔భ ൅	ܿ஽೔భ,௜ାଵ ൅ ௡ሺܳܥ	 െ ݀௜ାଵ, ௜ܲ
ଶሻ

ܿ௜,஽೔మ ൅	ܿ஽೔మ,௜ାଵ ൅ min
௤೔ାௗವ೔

మିௗ೔శభஸ	ௗವ೔
మஸ୫୧୬ ሼ௉೔

మ,ொି௤೔ሽ
ሼܥ௡ ቀݍ௜ ൅ ݀஽೔మ െ ݀௜ାଵ, ௜ܲ

ଶ െ ݀஽೔మቁሽ
 

, ௜ݍ ൏ ݀௜ାଵ, 

௜ݍ ൅ ௜ܲ
ଶ ൒ ݀௜ାଵ, 

(3.8) (b)

,௜ݍ௜ሺܥ ௜ܲ
ଶሻ ൌ 	 ܿ௜,஽೔భ ൅ 	ܿ஽೔భ,௜ାଵ ൅ ௡ሺܳܥ	 െ ݀௜ାଵ, ௜ܲ

ଶሻ 
, ௜ݍ ൏ ݀௜ାଵ, 

௜ݍ ൅ ௜ܲ
ଶ ൏ ݀௜ାଵ, 

(3.8) (c)

And for the starting position	݅ ൌ 0, ଴ܲ
ଶ ൌ ଴ݍ	ଶ andߎ ൌ 0: 

,଴ሺ0ܥ ଴ܲ
ଶሻ ൌ 	݉݅݊ ቐ

ܿ଴,஽బభ ൅	ܿ஽బభ,ଵ ൅ ଵሺܳܥ	 െ ݀ଵ, ଴ܲ
ଶሻ

ܿ଴,஽బమ ൅	ܿ஽బమ,ଵ ൅ min
ௗವబ

మୀ଴,..,୫୧୬	ሼ௽మ,ொሽ
ሼ ଵܥ ൫݀஽బమ െ ݀ଵ, ଴ܲ

ଶ െ ݀஽బమ൯ሽ
  (3.9)  

Equation (3.8a) ensures that if the vehicle’s load is adequate to satisfy the demand of the next 

client, then the minimum cost ܥ௜ሺݍ௜, ௜ܲ
ଶሻwill be the minimum distance of the three possible paths 

in this Equation. In Eq. (3.8b) the path that represents the direct transition from client	݅ to ݅ ൅ 1 is 

excluded due to Eq. (2.33). Equation (3.8c) includes only the case in which the vehicle visits ܦଵ 

to satisfy the demand of client	݅ ൅ 1, since there is not enough combined stock on board the 

vehicle and in ܦଶ. The optimal distance from the starting position is the lowest distance to serve 

all clients, ݉݅݊ܶܥ ൌ ,଴ݍ଴ሺܥ ଴ܲ
ଶሻ.	

Labeling Algorithm (LA) 

The LA for the UL problem is an extension of the LA for the UU problem. As in the previous 

case, let ܼ௜ be the set of all partial paths reaching client (node)	݅ ∈  As before, each partial .ܭ

path	ݖ ∈ ܼ௜	is characterized by	̅ܥ௭,	and	ݍഥ௭; additionally it is also characterized by the inventory 

level of the depot with limited inventory, that is: 

 തܲ௭ଶ: the inventory in ܦଶ after serving the last client of partial path ݖ 

At each visit toܦଶ, the appropriate product quantity ݀஽೔మ should be loaded onto the vehicle (note 

that ݀஽೔మ is a decision variable of problem LU). Note that this quantity is not known at the time of 
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the visit to ܦଶ. This difficulty is handled in DP by examining all possible values of the load 

quantity݀஽೔మ  in order to obtain the optimal solution. In LA, in order to reduce the number of 

paths, we first consider that the maximum feasible quantity of products is loaded onto the vehicle 

when it visits the ܦଶ.As the path(s) extend downstream we update this quantity as well as the 

inventory of ܦଶ by returning any unused quantity back to it. Each time after the visit to ܦଶ, the 

vehicle visits ܦଵ(obviously after serving some intermediate clients), no extra load is needed on 

the vehicle upon the visit to ܦଵ, since it can load up to capacity in ܦଵ. Thus, any extra load 

remaining should be returned to ܦଶ by updating its inventory. 

In addition, we use the following ancillary variable in the dominance criteria: 

 	ܪ௭ଶ: the maximum possible inventory in ܦଶ after serving the last client of partial path ݖ 

This quantity is updated at each expansion of a partial path to the next client by computing the 

exact required quantity that should be loaded onto the vehicle during its last visit to ܦଶ to satisfy 

all clients until the last one served. 

The steps of the algorithm are similar to the steps of LA for problem UU. The differences are 

summarized as follows: 

1. In step 1, quantity ܪ௭ଶ is set to: ܪ௭ଶ ൌ ,ଶߎ ݖ ∈ ܼ଴ 

2. In step 4, തܲ௭ଶ	and	ܪ௭ଶ are updated as discussed above: 

i. The remaining inventory തܲ௭ᇱଶ in ܦଶafter serving client	݅is computed according to the 

previous visits of the vehicle to the depots. Consider the last visit to ܦଶfor stock 

replenishment just prior to client	݅. Let ݆ be the client after which this visit occurred. 

Also let ݌௝be the remaining inventory in ܦଶ after serving client	݆ by path ݖ ∈ ܼ௜ିଵ. 

Then, തܲ௭ᇱଶ (ݖᇱ ∈ ܼ௜ is the extension of ݖ) is calculated as follows: 
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തܲ௭ᇱଶ ൌ 	

ە
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۓ
തܲ௭ଶ െ min	ሼ തܲ௭ଶ, ܳ െ ത௭ሽݍ , ௜ିଵ,஽೔షభమݔ ൌ 1

തܲ௭ଶ , ௜ିଵ,஽೔షభభݔ ൅ ௜ିଵ,஽೔షభమݔ ൌ 0

min	ሼ݌௝, തܲ௭ଶ ൅ ത௭ሽݍ , ௝,஽ೕమݔ ൈ ௜ିଵ,஽೔షభభݔ ൈ ቌ1 െmin	 ቐ1, ෍ ൫ݔ௠,஽೘
భ ൅ ௠,஽೘ݔ

మ ൯

௜ିଶ

௠ୀ௝ାଵ

ቑቍ ൌ 1

തܲ௭ଶ , ௝,஽ೕభݔ ൈ ௜ିଵ,஽೔షభభݔ ൈ ቌ1 െmin ቐ1, ෍ ൫ݔ௠,஽೘
భ ൅ ௠,஽೘ݔ

మ ൯

௜ିଶ

௠ୀ௝ାଵ

ቑቍ ൌ 1

 

(3.10) (a) 

(3.10) (b) 

(3.10) (c) 

(3.10) (d) 

 

Equation (3.10a) provides the remaining inventory in ܦଶ in the case in which the 

vehicle reached client	݅ from	݅ െ 1	through	ܦଶ. In this case, the maximum possible 

quantity is loaded onto the vehicle. Equation (3.10b) states that if the vehicle does 

not visit any depot between clients	݅ െ 1	and	݅, there is no change in the inventory 

of ܦଶ. In Eq.(3.10c),p the inventory level of ܦଶ is updatedby adding the quantity of 

products on board (ݍത௭), while ensuring that the updated inventory level of ܦଶ will 

not exceed the inventory level before the last visit to it, that is ݌௝.Equation (3.10d) 

states that between two sequential visits to ܦଵ there is no change to the inventory 

of	ܦଶ. 

ii. The maximum inventory level in ܦଶafter serving client ݅ by partial path ݖᇱ(ݖᇱ ∈

ܼ௜and is the extension of ݖ ∈ ܼ௜ିଵ) is calculated as follows: 

ഥ௭ᇱܪ ൌ 	

ە
ۖ
۔

ۖ
,݆݌ሼ	minۓ തܲ௭

ଶ ൅ qത୸ሽ , 2݆ܦ,݆ݔ ൈ ൭1 െ min ൝1, ෍ ൫1݉ܦ,݉ݔ ൅ 2݉ܦ,݉ݔ ൯

݅െ1

݉ൌ݆൅1

ൡ൱ ൌ 1

ഥ௭ଶܪ , 1݆ܦ,݆ݔ ൈ ൭1 െ min	 ൝1, ෍ ൫1݉ܦ,݉ݔ ൅ 2݉ܦ,݉ݔ ൯

݅െ1

݉ൌ݆൅1

ൡ൱ ൌ 1

 

(3.11) a) 

(3.11) (b)

In Eq. (3.11a) the maximum inventory level is defined as in Equation (3.10c), by 

adding (returning) the remaining quantity of products on-board, but not exceeding 

the previous inventory level (݌௝) ofܦଶ.Equation (3.11b) states that between two 

sequential visits to ܦଵ there is no change to the maximum inventory level of ܦଶ. 

3. In step 4, ݍത௭ᇱ	is updated as follows: 
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ത௭ᇱݍ ൌ 	

ە
ۖ
۔

ۖ
ۓ
ത௭ݍ ൅ min	ሼ തܲ௭ଶ, ܳ െ ത௭ሽݍ , ௜ିଵ,஽೔షభమݔ ൌ 1

ത௭ݍ െ ݀௜ , ௜ିଵ,஽೔షభభݔ ൅ ௜ିଵ,஽೔షభమݔ ൌ 0

Q െ ݀௜ , ௜ିଵ,஽೔షభభݔ ൌ 1

 

(3.12) (a)

(3.12) (b)

(3.12) (c)

Equation 3.12(a) states that when the vehicle visits ܦଶ , then it loads the maximum 

feasible quantity of products. Equation (3.12b) states that during the direct visit to client	݅ 

the vehicle load is decreased by exactly the amount corresponding to the demand of client 

݅ . Equation (3.12a) states that when the vehicle visits ܦଵ , then it is loaded up to its 

capacity. 

4. In step 6, consider the two paths ݖଵ, ଶݖ ∈ ܼ௜. Then partial path ݖଵ dominates partial path 

 if the following holds additionally to Eqs. (3.5) and (ଶ can be discardedݖ	,and, thus) ଶݖ

(3.6): 

ഥ௭భܪ ൒   ഥ௭మ (3.13)ܪ

If Eq. (3.13) is satisfied, then in case of the partial path ݖଵthe inventory level in	ܦଶ,is 

equal or higher, and, thus, the vehicle may return more (or the same number of) times 

to	ܦଶ,for replenishment (instead of 	ܦଵሻ, if appropriate in order to minimize the total 

distance travelled. As a result, partial path ݖଶcan be discarded without further extending 

it. 

3.3.  Problem LL 

This is the most complex among the three VRDRP variants studied in this thesis. The DP 

algorithm developed for this case initiates from the last client (݅ ൌ ݊); for each client	݅ under 

consideration it defines the minimum cost ܥ௜ሺݍ, ௜ܲ
ଵ, ௜ܲ

ଶሻfrom this client to the ending position 

(n ൅ 1) of the sequence. We assume that ܥ௜this cost depends on i) the vehicle’s load	ݍ௜, ii) the 

inventory ௜ܲ
ଵof 	ܦଵ,	and iii) the inventory ௜ܲ

ଶof	ܦଶ. 

Dynamic Programming (DP) algorithm 

For	݅ ൌ ݊, ௜ݍ ൌ 0,1, … , ܳ, ௜ܲ
ଵ ൌ 0,1, … , Πଵ, ௜ܲ

ଶ ൌ 0,1, … , Πଶ: 
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,௜ݍ௜ሺܥ ௜ܲ
ଵ, ௜ܲ

ଶሻ ൌ ܿ௜,௡ାଵ , ௜ݍ ൌ 0,… , ܳ, ௜ܲ
ଵ ൌ 0,… , ,ଵߎ ௜ܲ

ଶ ൌ 0,… ,   ଶ (3.16)ߎ

For	݅ ൌ ݊ െ 1. . ௜ݍ,1, ൌ 0,1, … , ܳ, ௜ܲ
ଵ ൌ 0,1, … , Πଵ, ௜ܲ

ଶ ൌ 0,1, … , Πଶ 

,௜ݍ௜ሺܥ ௜ܲ
ଵ, ௜ܲ

ଶሻ ൌ 	݉݅݊

ە
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۓ
ܿ௜,௜ାଵ	 ൅ ௜ݍ௜ାଵሺܥ	 െ ݀௜ାଵ, ௜ܲ

ଵ, ௜ܲ
ଶሻ

ܿ௜,஽భ ൅	ܿ஽భ,௜ାଵ ൅ min
଴ஸௗವ೔

భஸ௠௜௡൛௉೔
భ,ொି௤೔ൟ

௜ାଵܥ ቀݍ௜ ൅ ݀஽೔భ െ ݀௜ାଵ, ௜ܲ
ଵ െ ݀஽೔భ, ௜ܲ

ଶቁ

ܿ௜,஽మ ൅	ܿ஽మ,௜ାଵ ൅ min
଴ஸௗವ೔

మஸ௠௜௡൛௉೔
మ,ொି௤೔ൟ

௜ାଵܥ ቀݍ௜ ൅ ݀஽೔మ െ ݀௜ାଵ, ௜ܲ
ଵ, ௜ܲ

ଶ െ ݀஽೔మቁ

݉݅݊ ൜
ܿ௜,஽భ ൅ 	ܿ஽భ,஽మ ൅ ܿ஽మ,௜ାଵ
ܿ௜,஽మ ൅ 	ܿ஽మ,஽భ ൅ ܿ஽భ,௜ାଵ

൅ min
଴ஸௗವ೔

మஸ௠௜௡൛௉೔
మ,ொି௤೔ൟ

଴ஸௗವ೔
భஸ௠௜௡൛௉೔

భ,ொି௤೔ൟ

଴ஸௗವ೔
భାௗವ೔

మஸொି௤೔

௜ାଵܥ ቀݍ௜ ൅ ݀஽೔భ ൅ ݀஽೔మ െ ݀௜ାଵ, ௜ܲ
ଵ െ ݀஽೔భ, ௜ܲ

ଶ െ ݀஽೔మቁ

 , ௜ݍ ൒ ݀௜ାଵ (3.17) (a)

,௜ݍ௜ሺܥ ௜ܲ
ଵ, ௜ܲ

ଶሻ ൌ 	݉݅݊ ൜
ܿ௜,஽భ ൅	ܿ஽భ,஽మ ൅ ܿ஽మ,௜ାଵ
ܿ௜,஽మ ൅	ܿ஽మ,஽భ ൅ ܿ஽భ,௜ାଵ

൅ min
଴ஸௗವ೔

మஸ௠௜௡൛௉೔
మ,ொି௤೔ൟ

଴ஸௗವ೔
భஸ௠௜௡൛௉೔

భ,ொି௤೔ൟ

ௗ೔శభି௤೔ஸௗವ೔
భାௗವ೔

మஸொି௤೔

௜ାଵܥ ቀݍ௜ ൅ ݀஽೔భ ൅ ݀஽೔మ െ ݀௜ାଵ, ௜ܲ
ଵ െ ݀஽೔భ, ௜ܲ

ଶ െ ݀஽೔మቁ , ௜ݍ ൏ ݀௜ାଵ, 

௜ݍ ൅ ௜ܲ
ଵ ൏ ݀௜ାଵ, 

௜ݍ ൅ ௜ܲ
ଶ ൏ ݀௜ାଵ

 

(3.17) (b)

,௜ݍ௜ሺܥ ௜ܲ
ଵ, ௜ܲ

ଶሻ

ൌ 	݉݅݊

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۓ ܿ௜,஽భ ൅	ܿ஽భ,௜ାଵ ൅ min

଴ஸௗವ೔
భஸ௠௜௡൛௉೔

భ,ொି௤೔ൟ
௜ାଵܥ ቀݍ௜ ൅ ݀஽೔భ െ ݀௜ାଵ, ௜ܲ

ଵ െ ݀஽೔భ, ௜ܲ
ଶቁ

ܿ௜,஽మ ൅	ܿ஽మ,௜ାଵ ൅ min
଴ஸௗವ೔

మஸ௠௜௡൛௉೔
మ,ொି௤೔ൟ

௜ାଵܥ ቀݍ௜ ൅ ݀஽೔మ െ ݀௜ାଵ, ௜ܲ
ଵ, ௜ܲ

ଶ െ ݀஽೔మቁ

݉݅݊ ൜
ܿ௜,஽భ ൅	ܿ஽భ,஽మ ൅ ܿ஽మ,௜ାଵ
ܿ௜,஽మ ൅	ܿ஽మ,஽భ ൅ ܿ஽భ,௜ାଵ

൅ min
଴ஸௗವ೔

మஸ௠௜௡൛௉೔
మ,ொି௤೔ൟ

଴ஸௗವ೔
భஸ௠௜௡൛௉೔

భ,ொି௤೔ൟ

ௗ೔శభି௤೔ஸௗವ೔
భାௗವ೔

మஸொି௤೔

௜ାଵܥ ቀݍ௜ ൅ ݀஽೔భ ൅ ݀஽೔మ െ ݀௜ାଵ, ௜ܲ
ଵ െ ݀஽೔భ, ௜ܲ

ଶ െ ݀஽೔మቁ
 

, ௜ݍ ൏ ݀௜ାଵ, 

௜ݍ ൅ ௜ܲ
ଵ ൒ ݀௜ାଵ, 

௜ݍ ൅ ௜ܲ
ଶ ൒ ݀௜ାଵ 

(3.17) (c)

,௜ݍ௜ሺܥ ௜ܲ
ଵ, ௜ܲ

ଶሻ

ൌ 	݉݅݊

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ
ܿ௜,௜ାଵ	 ൅ ௜ݍ௜ାଵሺܥ	 െ ݀௜ାଵ, ௜ܲ

ଵ, ௜ܲ
ଶሻ

ܿ௜,஽భ ൅	ܿ஽భ,௜ାଵ ൅ min
ௗ೔శభି௤೔ஸௗವ೔

భஸ௠௜௡൛௉೔
భ,ொି௤೔ൟ

௜ାଵܥ ቀݍ௜ ൅ ݀஽೔భ െ ݀௜ାଵ, ௜ܲ
ଵ െ ݀஽೔భ, ௜ܲ

ଶቁ

݉݅݊ ൜
ܿ௜,஽భ ൅	ܿ஽భ,஽మ ൅ ܿ஽మ,௜ାଵ
ܿ௜,஽మ ൅	ܿ஽మ,஽భ ൅ ܿ஽భ,௜ାଵ

൅ min
଴ஸௗವ೔

మஸ௠௜௡൛௉೔
మ,ொି௤೔ൟ

଴ஸௗವ೔
భஸ௠௜௡൛௉೔

భ,ொି௤೔ൟ

ௗ೔శభି௤೔ஸௗವ೔
భାௗವ೔

మஸொି௤೔

௜ାଵܥ ቀݍ௜ ൅ ݀஽೔భ ൅ ݀஽೔మ െ ݀௜ାଵ, ௜ܲ
ଵ െ ݀஽೔భ, ௜ܲ

ଶ െ ݀஽೔మቁ
 

, ௜ݍ ൏ ݀௜ାଵ, 

௜ݍ ൅ ௜ܲ
ଵ ൒ ݀௜ାଵ, 

௜ݍ ൅ ௜ܲ
ଶ ൏ ݀௜ାଵ

(3.17) (d)

,௜ݍ௜ሺܥ ௜ܲ
ଵ, ௜ܲ

ଶሻ

ൌ 	݉݅݊

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ
ܿ௜,௜ାଵ	 ൅ ௜ݍ௜ାଵሺܥ	 െ ݀௜ାଵ, ௜ܲ

ଵ, ௜ܲ
ଶሻ

ܿ௜,஽మ ൅	ܿ஽మ,௜ାଵ ൅ min
ௗ೔శభି௤೔ஸௗವ೔

మஸ௠௜௡൛௉೔
మ,ொି௤೔ൟ

௜ାଵܥ ቀݍ௜ ൅ ݀஽೔మ െ ݀௜ାଵ, ௜ܲ
ଵ, ௜ܲ

ଶ െ ݀஽೔మቁ

݉݅݊ ൜
ܿ௜,஽భ ൅	ܿ஽భ,஽మ ൅ ܿ஽మ,௜ାଵ
ܿ௜,஽మ ൅	ܿ஽మ,஽భ ൅ ܿ஽భ,௜ାଵ

൅ min
଴ஸௗವ೔

మஸ௠௜௡൛௉೔
మ,ொି௤೔ൟ

଴ஸௗವ೔
భஸ௠௜௡൛௉೔

భ,ொି௤೔ൟ

ௗ೔శభି௤೔ஸௗವ೔
భାௗವ೔

మஸொି௤೔

௜ାଵܥ ቀݍ௜ ൅ ݀஽೔భ ൅ ݀஽೔మ െ ݀௜ାଵ, ௜ܲ
ଵ െ ݀஽೔భ, ௜ܲ

ଶ െ ݀஽೔మቁ
 

, ௜ݍ ൏ ݀௜ାଵ, 

௜ݍ ൅ ௜ܲ
ଵ ൏ ݀௜ାଵ, 

௜ݍ ൅ ௜ܲ
ଶ ൒ ݀௜ାଵ

(3.17) (e)

 

And for the staring position	݅ ൌ 0,	 ଴ܲ
ଵ ൌ 	,ଵߎ ଴ܲ

ଶ ൌ ଴ݍ	and	ଶߎ ൌ 0: 
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,଴ሺ0ܥ ଴ܲ
ଵ, ଴ܲ

ଶሻ ൌ 	݉݅݊

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۓ ܿ଴,஽భ ൅ 	ܿ஽భ,ଵ ൅ min

଴ஸௗವ೔
భஸ௠௜௡൛௉೔

భ,ொൟ
ଵ൫݀஽బభܥ െ ݀ଵ, ଴ܲ

ଵ െ ݀஽బభ, ଴ܲ
ଶ൯

ܿ଴,஽మ ൅	ܿ஽మ,ଵ ൅ min
଴ஸௗವబ

మஸ௠௜௡൛௉బ
మ,ொൟ

ଵܥ ൫݀஽బమ െ ݀ଵ, ଴ܲ
ଵ, ଴ܲ

ଶ െ ݀஽బమ൯

݉݅݊ ൜
ܿ଴,஽భ ൅	ܿ஽భ,஽మ ൅ ܿ஽మ,ଵ
ܿ଴,஽మ ൅	ܿ஽మ,஽భ ൅ ܿ஽భ,ଵ

൅ min
଴ஸௗವబ

మஸ௠௜௡൛௉బ
మ,ொൟ

଴ஸௗವబ
భஸ௠௜௡൛௉బ

భ,ொൟ

଴ஸௗವబ
భାௗವబ

మஸொ

ଵ൫݀஽బభܥ ൅ ݀஽బమ െ ݀ଵ, ଴ܲ
ଵ െ ݀஽బభ, ଴ܲ

ଶ െ ݀஽బమ൯
  (3.18)  

Equation (3.17a) ensures that if the load of the vehicle is adequate to satisfy the demand of the 

next client, then ܥ௜ሺݍ௜, ௜ܲ
ଵ, ௜ܲ

ଶሻwill be the minimum distance among the five possible paths 

connecting clients ݅ െ 1and ݅.Equation (3.17b) refers to the case in which the vehicle visits both 

depots sequentially in order to satisfy the demand of client	݅ ൅ 1, since there is not enough load 

or stock in ܦଵor ܦଶ. In Eq. (3.17c) the path that represents the direct transition from client	݅ to 

݅ ൅ 1 is excluded due to Eq. (2.12). In Eqs. (3.17d) and (3.17e), if the vehicle load plus the 

inventory available at one depot is not adequate to satisfy the demand of the next client ݅ ൅ 1,the 

path that involves only that depot is not considered. The optimal distance from the starting 

position is the lowest distance to serve all clients, ݉݅݊ܶܥ ൌ ,଴ݍ଴ሺܥ ଴ܲ
ଵ, ଴ܲ

ଶሻ. 

Labeling Algorithm (LA) 

The Labeling Algorithm for the LL problem is again an extension of the algorithm developed for 

the UU problem. In this case, though, LA does not guarantee optimality. As in the previous 

cases, let ܼ௜ be the set of all partial paths reaching client (node)	݅ ∈ ݖ	Each partial path .ܭ ∈ ܼ௜is 

characterized by̅ܥ௭,	andݍത௭ and, since in this case both depots have limited inventory, തܲ௭ଵ, തܲ௭ଶare 

the inventory levels of ܦଵ andܦଶ,	respectively, after serving the last client of partial path ݖ. In 

this case, the variables ܪ௭௜  for the maximum dept inventory level are not used nor defined. 

The differences from the Labeling Algorithms of the previous cases are summarized as follows: 

1. In step 3each partial path incident to a client ݅ can be extended to the next client ݅ ൅ 1 by: 

a) Direct trip to the next client, b) trip through	ܦ௜
ଵ, c) trip through	ܦ௜

ଶ, and d) trip through 

both depots. In this case as well, the appropriate quantity to be loaded onto the vehicle 

during a depot visit is not known at the time of extending the path. Thus, in all depot visit 

cases, the vehicle (initially) receives the maximum possible load (up to its capacity, or up 

to the available inventory). 
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2. A significant variation is necessary for cases (b) and (c) if a different depot was visited 

prior to the current visit; i.e. ௜ܦ	
ଶ for (b) and ௜ܦ	

ଵ for (c). In such an event, two path 

extensions are created, differing only by the inventory level of the depots. In the first 

extension, it is considered that the maximum possible quantity was loaded onto the 

vehicle during its previous visit to the depot. In the second extension, it is considered that 

the vehicle was loaded just to satisfy the demand of the clients between the previous and 

the current visit; during the current visit the maximum possible quantity is assumed to be 

loaded onto the vehicle. In both extensions during the current visit the vehicle receives 

the maximum possible load. This variation is necessary because of the importance of the 

inventory level in depots. By creating the two extensions differing only by the inventory 

level of the depots, as described, it is ensured that in both depots (in one depot per 

extension) the maximum inventory will be available, in case of a future visit. Either case 

may result in the lower distance travelled by the vehicle in the future. 

 

3. Case (d), is considered only if there is not adequate quantity of products in one depot to 

load the vehicle up to its capacity; in that case it is necessary to create one more 

extension, in which the vehicle also visits the other depot before serving the next client. 

Again, this case may eventually lead to a minimum cost route. Overall, at most 5 ൈ

|ܼ௜ିଵ| new paths will be created. 

4. In step 4, ௭ܲ
ଵ, ௭ܲ

ଶ, ௭ᇱݍ  are updated as discussed above and according to Eqs. (3.10a)-

(3.10.d) and (3.12a)-(3.12c), respectively. 

5. In step 6, the dominance rules of the LA for problem UU are applied, by relaxing the 

second criteria Eq. (3.6) to Eq. (3.19).  

௭ᇱభܥ̅ ൏   ௭ᇱమ (3.19)ܥ̅

Equation (3.19) secures that the two extensions created, as described in 1 above, will not 

be discarded immediately. Note that these dominance criteria are stringent, and, 

therefore, some good quality paths may be discarded. As a consequence, the optimal 

solution of the problem is not guaranteed. Figure 3.2 displays an example for extending a 

partial path for the LL problem. The extensions shown in Figure 3.2 (b and c) are those 

that are extended twice. 
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a ࡰ૛

૚ࡰ

b ࡰ૛

૚ࡰ

c ࡰ૛

૚ࡰ

d ࡰ૛

૚ࡰ

e ࡰ૛

૚ࡰ

Figure 3.2: Partial path expansion example: (a) The initial partial path. (b), (c), (d), (e) The partial path
extensions 
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Chapter 4. Computational Analysis 

A wide range of experiments were conducted in order to evaluate the efficiency of the methods 

developed to solve the above three VRDRP variants. All methods were implemented in 

Mathworks’ Matlab R2010a and run on a PC equipped with an Intel Core i7 - Q720 CPU, and 4 

GB of RAM. 

A random problem generator was used to uniformly distribute ݊ ൅ 4 points in a 24 ൈ 24 square 

space. The first ݊	points represent the locations of the clients to be served; the next two points 

represent the starting and ending positions of the vehicle, while the last two points represent the 

locations of the two depots. The capacity of the vehicle is set to	ܳ. The demand of all clients is 

equal to ݉ ൌ ܳ/3 product units. It has been assumed that the availability of the depots is either 

unlimited or equal to half the cumulative demand of all clients (ߎ ൌ ݊ ൈ݉
2ൗ ). In all problems 

the vehicle departs empty from the starting position (ݍ଴ ൌ 0). 

For all experiments (UU, LU, and LL), the following procedure is applied for various values 

of݊	and ܳ: 

Step 1: The number of clients is set to n 

Step 2: The vehicle capacity is set to ܳ(and thus the client demand to	݉ ൌ ொ

ଷ
) 

Step 3: Ten(10) problem instances are generated for each pair ሺ݊, ܳሻ 
Step 4:  The 10 problem instances are solved using both DP and LA 
Step 5: Log computational time and total cost. 
This procedure is repeated for increasing values of ݊and for different values of	ܳ. 

4.1.  Problem UU 

As mentioned in Section 3.1 both the DP and LA algorithms solve the UU problem to optimality. 

In terms of computational efficiency, Figure 4.1 displays the average computational time of DP 

over the 10 problem instances for the number of clients ݊, increasing from 10 to 500 by a step of 

10. Each line corresponds to a different value of	ܳ ൌ 	12, 24, 48, 96, 192. It is clear that the 

computational time of DP increases as the number of clients and the capacity of the vehicle 

increase. This is expected, since DP computes the optimal distance to the destination point for all 

possible loads, and, thus, the upper bound of the DP complexity in this case is	ܱሺ݊ ൈ ܳሻ ≅

ܱሺ݊ଶሻ. 
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Figure 4.1: Problem UU - Computational time as a function of the number of clients ࢔	for five values of the capacity ࡽ 

Figure 4.2 displays the average computational time required to solve the same problem instances 

as in Fig. 4.1 by the Labeling Algorithm. Again, the computational time increases with the 

number of clients ݊, butit appears to be independent of	ܳ, since in this case paths that correspond 

to unfavorable loads are pruned early in the algorithm. Furthermore, since the ratio 
ொ

௠
 is constant 

the same number of partial paths are expected to be created by the algorithm. 

 

Figure 4.2: Computational time of the labeling algorithm for problem UU 
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Figure 4.3 presents the ratio ݎ of the average computational times of DP over LA. The Figure 

validates that LA is more efficient than DP; for example, ifܳ ൌ 96orܳ ൌ 192, LA is more than 

one order of magnitude faster than DP. 

 

Figure 4.3: Problem UU: The ratio of the average computational times of DP over LA 

4.2.  Problem LU 

In this case as well, both the DP and LA algorithms solve the LU problem to optimality. In terms 

of computational efficiency, Figure 4.4 shows the average computational time of DP over the 10 
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the quantity of products loaded onto the vehicle while it visits Depot 2. Hence, the upper bound 
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Figure 4.4: Computational time of the dynamic algorithm for problem LU 

Figure 4.5 shows the average computational time over the ten instances for LA, and for the same 

problem instances as in Fig. 4.4. Again, the computational time increases with the number of 

clients ݊ but, in this case, it appears to be independent of 	ܳ. This is because at most three new 

partial paths are created for any partial path reaching a customer regardless the amount that can 
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dominance criteria. 

.  
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Figure 4.6 presents the ratio ݎ of the average computational times of DP over LA. In this case 

LA is much more efficient than DP; for instance, in the casesܳ ൌ 24 and ܳ ൌ 48, LA is more 

than two orders of magnitude faster than DP. 

 

Figure 4.6: The ratio of the average computational times of DP over LA 
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Figure 4.7: Problem UL: Average computational time of LA applying optimal vs. suboptimal dominance criteria 

4.3.  Problem LL 

In this much more complex problem, the DP algorithm reaches the optimal solution, while the 

LA provides close to optimal solutions in a much more efficient manner. Note that the 

complexity of DP is even higher (ܱሺ݊଺ሻ), since the computational time increases with: a) the 
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the DP complexity isܱሺ݊ ൈ ܳ ൈ ௜ܲ
ଵ ൈ ݀௜

ଵ
௜ܲ
ଶ ൈ ݀௜

ଶሻ~ܱሺ݊଺ሻ. 

The experimental investigation for LL used the following test parameters: 	݊ ∈ ሾ10, 100ሿand 

ܳ ൌ 6.In terms of the quality of the solutions obtained, the optimal solution is found in 18% of 

the cases while in all other cases the average deviation from the optimal solution was found to be 

1.85%.In terms of computational complexity, Figure 4.9 shows the average computational times 

of DP and LA over the 10 problem instances, as well as their ratio ݎ, with increasing number of 

clients ݊. From these test results, it is clear that LA is much more efficient that DP; the ratio 

 is almost steady over the range of ݊, and LA is almost three orders of magnitude (DP vs. LA)ݎ
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Figure 4.8: Computational times of dynamic of the DP and LA algorithms for problem LL, and their ratio ࢘ 
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Chapter 5. Conclusions 

In this thesis we investigated the single vehicle routing problem with a predefined customer 

sequence and two replenishment depots. Three problems were modeled, solved and analyzed, 

depending on the inventory levels of the two depots. For each problem, two solution approaches 

were developed: A Dynamic Programming (DP) algorithm and a Labeling algorithm (LA).Both 

were evaluated through a large number of randomly generated problem instances. DP solves all 

three problems to optimality, while LA solves the first two (unlimited inventory in both depots -

UU, and limited inventory in one depot unlimited in the other -LU), while it provides 

suboptimal, but good, solutions for the third (limited inventory in both depots -LL).In terms of 

computational time, the LA algorithm proved to be significantly more efficient than DP 

computational time for all cases; that is,1-3 orders of magnitude faster in problems UU to LL, 

respectively. 

An interesting topic of future research is to study the efficiency of the LA algorithm to problems 

with stochastic client demand. Furthermore, since the studied problem is a partitioning problem, 

the proposed algorithm can be applied to other partitioning problems outside the field of vehicle 

routing, such as the database allocation problem (see Wang and Jea, 2009), in which the optimal 

data partition must be determined to minimize the access time.  
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