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SUMMARY (IN GREEK)

v wapovoa SO0KToPIKY dTppn depevvatal to TIpdpAnua Apopordoynong Oymudtwv
[ToAarmAwv Tlepiédwv (ITAOIIIT) pe Xpovikd IlapdBvpa (ITAOIIIXIT). Ztdyxoc ToOvL
TPOPANUATOG AVTOV €ivol 1 €AOYIGTONTOINGT TOL KOGTOVG dpopordYNoNg evidg opilovta
TPOYPOUUUOTIGHOD TOAAATA®Y TEPLOd®V (T.Y. MUEPDV), AOUPAVOVTOG VTOYT| TEPLOPIGLOVG
YPOVIKOV Topafipov Kol yopnTIKOTNTOG OYNUATOV, KoODC Kol Ypovik®v mopadvopmv
EPLOdmV. G ypovikd mapdbvpo mepLodmv TeEAdTN opileTar GHVOAD GUVEXDV TEPLOOWMV EVTHG
TV omoiwv o meAdtng emBupel va eEumnpetnBel. To Zynua I1.1, mapovsialet ta ITAOIII ta

01010 LEAETMVTOL GTNV TOPOoVCa SATPIPN Kot To 0010 EUTITTOVY GE dVO KOTNYOPIES:

e H npom xomyopio mepirapPavel to Pacikd TTAOIII, oto omoio 6Aot ot TEAATES EVTOC
tov opilovia mpoypaUHATICHOD TV emopevav P mepiddwv Bewpovvior yvootoi. To
TPOPANHa avtd pmopel va Bewpnbel wg pio €0k mepintwon tov IIpofAnuatog
[Teprodikng  Apopordynong Oynudtov  (IIIIAO). Zto televtaio, ot  meAdTeg
eEumnpetodvtol TOAMOTAEG QOPEC €vTOG YxpovikoDy opilovia TPoypoppatTicpuov P
TEPLOdV ovuemva pe embountd mAdvo eéumnpétmong (my. Asgvtépa — Tetdptn —
[Topaockeon).

e H oevtepn «atnyopia agopd to ITIAOIII Extetapévov Xpovikov Opilovrta
(ITAOIIIEXO), my. S mepodwv.. To mpoPinua  ovtd avtipetoniletor  pécw
TPOYPOUUUATIGHLOD KLAIOUEVOL YPOVIKOU 0pilovTo. ZOUQ®VO LLE 0T TNV TE(VIKY|, GE
kéOe mepiodo emiveror éva TTAOIIII yuo P < S mepiddovg  (yopig va givar yvootd to
GUVOAO TOV QTNUATOV €EVTNPETNONG €VTOS TOV 0pilovta TPOYPOUUATIGHOD TwV P
eplodmv). Me Baon m Avomn, viomoieitar m mpodtn mepiodog tov ITAOIIIT won m
Swdkacio eravarappdveral yio k60e endpevn mepiodo tov opilovta S . Meketdvtor dVo
OLOLPOPETIKES TEPWTAOGELS: (0) M MUI-OTOTIKY TEPIMTOON, GTNV Omoiol OAO TOL CUTHHOTOL
€VTOG TOV Ypovikov opilovta S Bewpodvtal yvootd, kot () n dvvaukn mepintwon 6mov

véa artnpata eppavifovrol og kébe mepiodo tov opilovia TPoypopUATIGHOD.

Mio maporriayn g OSvvoukng mepintwong tov TTAOIIMIEXO (AITAOIIIIEXO) éxet
ueietnOei amo tovg Angelelli et al. (2009) ka1 Wen et al. (2009) kot agopd v emimpdodetn
SVVOTOTNTO TPOTOTOINGTG TV EKTELOVUEV®V dpoporoyimv (dnA. oynudtomv mov Ppickovtot
kaB0dov) v va eEummpemnBovy véa duvopkd orthpoata. To mpoPAnuo avtd pmopei va
BewpnBet 0T avikel o Katnyopia twv [pofAnudrov Avvopikdv Apopoidynong Oyxnudtomv
(TTAAO).
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Summary (In Greek)

MMNAO MAONM | AMAOINM MAAO

Zymua I1.1: TIpoPAnqpata mov oyetilovion pe tepiPdAiovta TOAAATADY TEPLOSOV

H vootapevn Biproypagio oto topéa tov ITAOIIIT givon mepropiopévn, Ommg €xel TovioTel
ko a6 tovug Bostel et al. (2008) ka1 Wen et al. (2009). O ITivaxog I1.1 mapovcidlel ta
Baocwkd yopaxTploTikd TV  TPoPANUATOV oL  €yovv  dlepguvnbel  OTIG  OYETIKEG

ONUOGIEVCELS.

Table I1.1: TIpopAnpozo Apoporoynong Oynpdtov Iodlkomimv Ieptddmv

. . Hapdadvpa ,
Hokrlom)ua Xp ovia epréo v M£00d60g Emidvong ZTGBS? ¢
Opato  MopdBupa (# Meprédov) Apoporoyra
Teng et al. (2006) Evpetucy/
Avvapukn Anovpyio
Metapintov
Angelelli et al. (2007) 172 Evpetuc
Andreatta and Lulli (2008) 112 Markov Process
- ) Metevpeticn/
Tricoire (2006; 2007), v v 142 Avvayuich Anpovpyia
Bostel et al. (2008) MetoAnToy
Wen et al. (2010) v (21 58 ?(gulg) Evpeticn
Angelelli et al. (2009) v 192 BEupetikh
Athanasopoulos and Minis ,
v v v
(2010) 5 Evpetikn

Mo mv avipetdmon tov ITAOTIIXIT npoteivovpe Tpocéyyion axpifodc emidvong (exact)
mov ypnoiponotel T péBodo Avvapukng Anuovpyioag Metapintov (AAM) 1 Column
Generation (CG). Ipoteivovpe 600 KOWVOTOUES TEYVIKEG YIOL TNV EMTAYLVON TNG €OPEOTG
Kotdtotev opimv g Adong (lower bounds), oniadn ywr v emihvon G YPOLUIKAG
yorhdpwong tov TTAOIIIXII. Ot teyvikég avtég ekpetadiedovion To TEPPAAALOV TOAATADY
TEPLOO®V TOV TPOPANUATOS, KO YPNCUYLOTOOVY TIG OHOIOTNTEG UETAED TOV SLOUPOPETIKMV
VIOTPOPANUATOV NG HEBOd0LV AAM. 'L TV €0peon aképalwv ADGEDV YPNGLOTOOVUE dVO
dwapopetikég otpatnykég branch-and-price ot omoieg Aapfdavovv vadyn To YOPAKTNPIOTIKA
TV ToAamA®V Tteplodmv. Tlpoteivoupe, emiong anin gvpetikn péBodo, n omoio emiTaydvel
emmAEOV TNV dtodkacio emilvong pe apeAntén 010popOToinc Tov KOGTOVG TNG AVONG Ao

10 BEATIOTO KOGTOC.
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Ocov agopd to ITAOIIIXIT Extetouévov Xpovikov Opifovta (ITAOTIIXIIEXO),
OlEPELVOVIE TNV YPNON TN TEXVIKNG TPOYPOUUOTIOUOD KLMOUEVOL ypoviKoy opilovra.
Apywcd Tpoteivovtan Tpio Oe@pnpata To 0TToio TOPEXOVY CNUOVTIKEG TANPOPOPIES CYETIKA [UE
11§ Bacikég mapoapéTpoug g dtdikaciog exiAvong: Tov opilovta TpoypopupHaTIGHod Kot ToV
opilovta vAomoinong. Emumpocheta, pedetodvror onpaviikég tpomonomoels tov I[TAOIIITXIT
KOl TOV TPOTEWVOUEVOV HeBdOmV emilvong Tov pécm TV omoimv kabictator dvvatn 1
petdBeon g eSummpémong MEAUTOV GE EMITPENTEG TEPLOOOVG TEPAV TOL opilovia
TPOYPOUUUOTICHOD. XPNGIUOTOIDVTOS TIG TPOTOTOMUEVEG TPOGEYYIGELS, LEAETATOL 1] ETTALON
NG NUI-CTOTIKNG KO TO OLVOLIKNG TEPITT®ONS (Tov avapépnkoy Tapamdvem) Aappfavovtog
VITOYN SPOPETIKEG GLVONKEC, OTWG 1 YEMYPOUPIKN KOTAVOUN TOV TEAATOV KOl TO E0POG TV
YPOVIKOV TopabOpwv. H avdivon diepguva kot mpoteivel T katdAinAeg Tiuég tov opilovra

TPOYPOUUUATIGLOV Kot TOV 0pilovTa VAOTOINGNS Y10 TIG O1BPOPES TEPUTTAOGELC. .

Tehkd, peketdtor maporriayn tov mpoPAnuatog I[MAOIMIIXIIEXO mov mapovoidlet
onNuavTikd mpakTikd evowpépov. H mepimtoon ovt) oaeopd o vppdkd poviéAo
eEummpémong tov TeAaT®V Kot tepthapPdvet (o) un-gvédikteg Kot (B) evéAikteg mapayyeiieg
nelotav. [Ipoteivovtal ot amapoitnTeg TPOTOTOUMCELS TOV HOONUATIKOD HOVTEAOL KOOGS Kot
g peBodov emthvong kot peretdror 1 eniAvon Tov TPORAUATOS VIO OLOPOPETIKES CLVOTKEG
Onmg Kot TPoMYOLUEVMG 1 TEWPAUATIKY] ovOAVOT) evToTilel TIg KOTAAANAES TIES TOV opilovTa

TPOYPOUUUOTIGHOV Kot ToV opilovia VAOTOIMGNGS Yo TG S1APOPES TEPITTAOGELS.
MAGHMATIKO MONTEAO TOY HNAOIIIXII

Ailveton opilovtog mpoypappatiopod |P| mepodwv kot opiletar g p. = 0 1 tpéyovoa
nepiodog. Oewpovpe 0Tt OAOL o1 eAdteg mpémel va e&ummpetnBodv eviog TV endueveov P
ePLOdmV, dMNradn evtdg tov opilovta mpoypappaticpov [p. + 1, p. + P]. Or mapdperpot Tov

podnpoticov povtédov givor ol €ENG:
H Y0volo Tov P cuveyduevav meptodwv (opilovtag Tpoypoppaticpon)
N ={1,..,n} I'voortoi meldteg (1 mapayyelieg) katd tv Evapén g nepidodov 1

W=NU{0,n+1} Xbvoro xOuPov, copmeptlapfovoléveov G opYIKNg Kot TEAKNG
amoOfkng (depot). Kabe Ooynua exkkivel amd v opykn omodnkn
(k6puPoc 0) kou teppotiler ommv ek amobnkn (koufog n+ 1),
Emonuéveror o601t yio v amobnkn  ypnoipomorovvtar  dvo
drpopetikol KOUPOL MOTE Vo EMTPENETAL KATOLO OYNUOL Vo peivel

avevepyo (Cordeau et al., 2002)
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Summary (In Greek)

A={(,)):i,j EW} Zbvoko OA®V TOV SLVOTMOV OKUDOV OVOUESH GTOVG KOUPOLS TOL

ocvvorov W
I =[&,&7] Xpovikd mapdhvpo meptodwv tov meldn i; 6mov 1 < & < &7 < P
Cyj Koéotog didvvong g axung (i, ), {i,j € W}
tij Xpbdvog didvoong g akpng (i, ), {i,j € W}, counepirappovouévou

TOV YPOVOL €ELTNPETNONG TOV TEAATN i

d; Znqmon tov mehatn i, {i € N}

K, >Hvoro TV |Kp| dwbéoumv oynudtov ava tepiodo p, {p € H}
Q,f Xopntdmro Tov oynuatos k kotd myv nepiodo p

[a;, bi] Xpovikd mapdbupo eEummpétnong Tov TeAdT i, Koo Yo KaOe

nepiodo evtog Tov Tapadvpov meptodwv I;; I'a Tovg kOpPovg 0 ko
n+1, ovopitepog ypodvog ekkivnong kdbe oynpatog amd to
apagootdoto opileTol WG ag = Apyq, EVO O APYOTEPOS YPOVOS
EMGTPOPNGS KAOe oM uatog oty amodnkn. opiletor wg by = by 4.
OpiCovton 800 Srapopetikd covola petafintav: (o) H petaBint x;jp,, etvon ion pe éva (1)
edv 1o Oynua k dtavver v axun (i, ) evioc g mePLOdov p Kot Undév G€ oldNTOTE GAAN
nepintwon. (B) H petafint s a@opd 610 xpoévo €vaplng eGumnpétnong tov meldn
(k6pPov) i amd To dynuo k evrdg g meptddov p. Emonuaivetar 6Tt 10 Sipy 1000TON pE UNSEY
(0) edv 0 k6pPog i dev eEummpeteiton amd To Oynua k evtdg g TePLddoL p.
AVTIKEWPEVIKOG 0TOYOG TOL TPOPANUOTOC €lvol 1 EAN(IOTOTOINGT] TOV GLVOAKOD KOGTOVG
dpopoAdynons kaf’ 6o o €Vvpog Tov opilovio TPOYPAUUATICHOV Kol diveton omd Tnv

eklowon:

min(z) = Z z z CijXijpk (TL.1)

pEH keKy (i,])€A

Y71 tove mEPLopIoLlong

Z Z z Xijpk = 1 VieN (I.2)

PEI; kEKp JENU{n+1}
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Z Z Z Xijpie = 0 VieN (I.3)

pél; kEKy JENU{n+1}

Xojpr = 1 Vp € H,Vk €K, (T1.4)
jENU{n+1}
Z Xijpk — Z Xjirpk = 0 Vp € H,Vk € K,,,Vj EN (I1.5)
iENU{0} i'eNu{n+1}
Xjn+1pk = 1 Vp € H,Vk € K, (11.6)
jENU{0}
p
d; Z Xijpk < Q Vp € H,Vk €K, (I1.7)
iEN  jeNuU{n+1}
Sipk + tij - M(1 - xijpk) < Sjipk Vp € H,Vk € Kp,V(l,]) €A (H8)
a; Z Xijpk < Sipk < b; 2 Xijpk Vp € H,Vk €K, ViEN (T1.9)
jENU{n+1} JENU{n+1}
a; < Sipi < b; Vp € H,Vk €K,,i € {0,n+ 1} (I1.10)
Xijpk € {0,1} Vp € H,Vk €K, (i,j) EA (I1.11)

H avtikeypevikr] ovvaptnon (I1.1) apopd 610 cvvolkd kdoTog dpoporoynone. Mécm twv
nepropopmv (I1.2) ko (I1.3) kabe meldng mpémet va e&umnpetndei povo pia eopd (omd Eva
OyMua Kot eviog piog mePLddov) eviog Tov avtiotoryov mapadvpov meptddwv. Ot teploptopol
(I1.4) woun (I1.6) opilovv 6Tt KGOe Oynua avaympel Kot TEPUOTIlEL OTNV aPYIKN KOl TEAIKN
anobnkm, avtiotoya. Ov mepopiopoi (I1.5) avagépovior otn dwthpnon g pong Kabe
oynuotoc. Méocw tov nepropiopmv (I1.7) kabopiletor 6t 0 @optio kdbe oynpatog de Oa
Eemephioel T yopnTikdTTd Tov. Ot TEProptopoi (T1.8) kan (I1.9) kabopilovv 6Tt KGO TELGTNG
eEumnpeteitan vtog Tov Ypovikov moapabipov tov, eved ot meplopiopoi (I1.10) apopovv cto
xpoviKe mapdBupo ¢ amobnkne. Emonpaivetor 6t 10 M cvopPoriler éva peydro Beticd
apBud. Téhog, ov mepropopoi (I1.11) deopedovv Tig HETOPANTEG PONG OE SLOOIKEG
Tipéc {0, 13}

Emdbovpe g YpOUUIKY] «(oAdpmon» Tov avatépo mpoPAnuatog pécw g pebddov AAM
ywo. v evpeon katdtatov opiov (lower bounds). H AAM dwond (decomposes) to
yohapopévo poviého oe éva Kopiog [popinua (KIT) ko moAranhd YmorpopAnuata (YII).
o v edpeon aképatmv ADoemv ypnowomoteitoan n pébodog branch-and-price, kotd v

omoia 1 dradikacio AAM ypnowonoteitor og kdbe kKOUPO TOV GYETIKOD dEVOPOU.
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Summary (In Greek)

ATAXITAYH TOY MAOHMATIKOY MONTEAOY

Ymv moapodoa evotTnTo TOPOLGLALOLUIE TNV SLACTOCT) TOL HOONUATIKOD HOVTEAOL Yoo TN
vevikn mepintoon tov [TAOIIXII. Ztnv mepintoon avty, to KII neptrappdver povo tovg
TEPLOPIGILOVE AVAPOPIKA HE TO HEYEDOC TOV GTOAOV OYNUATOVY Kot Tovg advletovg (complex)
TEPLOPIGLOVE (oL apopodv OAeg TIC mEPOdOVG cuvdvaotikd). Ta YII meptlapfdvovy tovg
AOUToVC MEPLOPICUOVS AVOPOPIKA HE TNV €PIKTOTNTO TV Opoporoyimv. H ocvuykekpiuévn
poabnuotikny povtedomoinon yevikonotel to povtédo tov Bostel et al. (2008), kot pmopei va

ypnoonomBel og Pdon yio v avantuén mapaiiaydv tov I[TAOIIIL.

To IIpotervopevo Kvpimg Mpopinpa

Eoto 611, eivor 10 6Hvoro tov e@iktdv dpoporoyimv yio v mepiodo p. Ot cvuvieheoTés

alpr opilovton g e&ENg:

P 1 eov o meddng i meptiapPdvetar 6To SPoUorOYLO T TNG TEPLOOOL P
o = { , (I1.12)
i 0 aAwg
O petopintéc xF opiovton wg e&c:
P 1 av 10 dpopordylo 1 g mepLddov p meptAapuPdvetal otn Adon
P = { , (IL.13)
0 aAwg

Edv C? eivar 10 K6GTOC TOV SPOHOAOYIOV T yla TV TEPIOS0 P, 1| AVTIKEWEVIKY] GLVAPTHON

tov KIIT sivai:

P
min Z Z CPxP (11.14)

p=1r€efy

VO TOVS TEPLOPIGULOVG!

14
Z X < K Vp EP (I1.15)
reﬂp
P
ZZa xP >1 VieEN (11.16)
p=17€Ny
xF ={0,1} (11.17)

H avtikeipevikny ocvvaptnon (I1.14) agopd oto ovvolkd kdotog OSpopordynons. Ot
nepropopol (I1.15) apopodv 6to TANB0G TV 0OYNUATOV TOL PUTopoHV Vo ¥pNoLoronfodv ce
KkGOe mepiodo, evd ot meplopiopoi (I1.16) eivor ov mepropiopoi kKGAvyng cvvorov (Set

covering). Télog, ot mepropiopoi (I1.17) deopevovv Tig petaPfAnNTéc pong € OLOSIKEC

Xiv DeOPSys Lab
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Tipég {0, 1} ko M YoAGP®ON TOVG EMITPEMEL TV YPNON YVOOTOV HEBOI®V YPOUUIKOD

TPOYPOULLOTIGLOV.

210 avoTEP® MOVTELD £yovpe Bempnoel 0Tl Ta eQIkTd dpopordyta Yo kébe mepiodo (£, )
elvar yvootd a priori. Aedopévov, oumg, 0Tt 1 VEOBESN AVTH SEV EIVOL TPOYUOTOTOIGLUN
omv mpdén Adym tov mABovg TV Suvatdv cuvdvacudv meatdv, opifovue mg Oy Evol
vochvoro tov , . Kdabe Q) mepiéyer éva mepopiopévo manbog epiktdv dpoporoyiov g
nep1odov p. To avetépm poviéro to onoio apopd to chvolo Ly, avti Tov Ly, , opileTar wg

[Mepropiopévo Kvpiog IMpopinua (ITKIT) - Restricted Master Problem (RMP).

Ta Yrompofpata

To xdBe YII amotelel éva Lrowyeiddeg TIpoPAnua Xvvropudtepng Atadpoung pe Xpovikd
[MopaBvpa ko Ilepropiopog Xopnrikdmmrog (ZIMEAXIIIIX). Olot or evamopeivavteg
nepropopol petagpépovtor ota YII dote va dtocpoariletor ) epiktoOTTO TOV dpoporoyivv. H
avTikelleviky] ovvaptnon tov ZIIEAXIIIIX agopd oty €vpeon ToL Opoporoyiov HE TO
xopnAotepo ustwuévo kéotog (reduced cost) yio ke mepiodo p.

min Z Z CijXijp = Op (I1.18)

{EN,U{0} JEN,U{n+1}
6mov 10 60VorO N, amotelel T0 GUVOLO OAMV TOV EPIKTOV TEAUTAOV EVTOG TNG TEPLOGOL P, OL

OLVTEAEOTES €| j 1o00TOL [E Cjj — Ty, OMOL Ol GLVIEAEOTEG Tr; KOL Op EIVOL Ol OKIDOELS TIUES

(shadow prices), ot omoieg oyetilovtar pe Tovg meproptopovg (I1.14) ko (I1.15) avrtictoyo.
Emonpaiveror 6tt 10 ka0 YII emldetonr yuo kébe pio mepiodo p . Kaboétt 1o TIKII
nepapfPaver povo epiktd dpopordyia, ot mepropicpol (I1.4) éwc (I1.10) evtdocovron oto YII

™G KaOe TEPLodov, Aappavovtac vdyn to cHvora Ny, avi Tov cuvorov N.

Yvvovalovrag to Iepropiopévo Kuvpiog Ilpopinpa pe ta Yronpopinpata

To Zynpa I1.2 mapovoidler ™ dopn g pebBoddov AAM yo ta ITAOIII. Emiddovrag éva
[TKII, mapéyovtar ot GYETIKEG GKIDOEIS TYES, GE GLVOVAGUO LE TNV ADGT TOV TEPLOPIGUEVOD

poPfAuatog (k66Tog Kot oxeTikd dpopordyia). Ot oximoelg TéG petapépovror oto Y1 kot

4

XPMOILOTOLOVVTAL Y10 TOV VITOAOYIGHO TOVL KOGTOVG C;j, Yo KGOe akun (I,7). tov mivoko

KooTovG/anootdoewv Tov TIZAXIIIX ypnowomoodvion T ¢; j» OVTL TV KOVOVIKOV TGV
Kootovg. O okidoelg Tég 0, emiong meplauPdvoviar otov mivaKe KOGTOLG TOV

TpoPANaTOg TG KAOE TEPLOSOV, HEGH TNG TPOTOTOINGNS Cq j =Coj—0p, VP EP.
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Summary (In Greek)

Em\ovtog kdOe YII dnovpyeital €va ohvoro dpoporoyiov apvntikoh KOoTovs UElmoHG.
Kdabe éva amd avtd to dpopoAidyla tpomomoteiton oe popen katdAinin yw to IIKII, oto
0moi0  YPNOYOTOLOVVTOL Ol UETAPANTES afr . Emonpoiveror 61t xaBo6tt n aAiniovyio
eniokeyng TV melatadv dev dwutnpeitatl oto [IKII, n mAnpogopio avtr Tpémetl va drotnpeiton
yop1otd. Ta véa SpopoAdYLd TTOL TPOEKLY Y TTPOGTIOEVTOL GTO VPIGTAUEVO dPOLOAGYLN EVTOG
tov IIKIT to omoio emAidetan ek véov. H dwdikacio avt) teppatifer otav kovévo
ZITEAXIIIIX dev umopet vo dNpovpynoel ETALOV dPOUOAOYLO OPVNTIKOD KOGTOVG UELWOTHG.
Xmv mepintoon ovtn, 1o TIKIT emotpéper ™ PéAtiotn Avon pe 10 €Adyloto KOGTOG
OpoHOAOYNONG KOl TOL OYETIKA dpopoidyla. Emonpaivetal 6t n Adon vty ivon v yével un

OKEPOULOL.

Initial Feasible Solution

[ Sl el == Restricted Master Problem (RMP)

v - Lower bound of
v current RMP

> Shadow Prices

Sub-Problems -—-—

Create modified cost Create modified cost
matrix foipf‘-”')d 1 o matrix for period P
Solve subproblem for Solve subproblem for
period 1 period P

- There are not new -
Any negative- o routes to be added to o Any negative-
costroute ? ’ ’ ’ costroute ?
the RMP
Yes v

If no period generated
negative-costroutes,
TERMINATE

Transform generated
routes, Store Sequence
Information

Zymua I1.2: Mé8odog AAM yia ITAOIIIT
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AIIOAOTIKEX TEXNIKEX I'TA TON YIHOAOTI'IXMO TOY KATQTATOY OPIOY
(LOWER BOUND) TOY INAOHIIXII

Me Bdon v pnébodo AAM avoartdyOnkov 000 TEYVIKES Yo TNV EMTAYXVVGT TPOGOIOPIGLOV

oV Kat®totov opiov tov ITAOIIIXIT:

e H teyvikny Cloning (CLONE), 1 omoia ekpetaAlevetar v gveMéio tov melatdv vo
egummpemOodv  (dpoporoynbovv) o€  moAlamAEC  meptddovg  Tov  opilovia
npoypappoticpov. H  uébodog avt) petapépel  epiktd  Opopordyle To  omoio
onuovpyovvion amd Eva YII oe dAda YII e pebddov AAM kou otoyevel oty peiwon
TOV VIOAOYLIGTIKOV XPOVOL Omo@evyovTag TV emilvon 6Awv tov YII og kabe emavdinyn
™¢ nebodov AAM. TTapdpoteg teyvikég £xovv Tapovotaotel amd tovg Pirkwieser ka Raidl
(2009) ka1 Mourgaya kot Vanderbeck (2007) ywa to TIITAO.

e H teyvucny Unified (UNI) n omoio emivel éva kowvd YII yio 0leg Tig mepiddovg tov
opifovta mpoypappoticpuov. H epiktomta tov kébe dpoporoyiov evtdg piag meptddov
eréyyetar evidc tov kowov YII. H enilvon tov kowvod YII mapéyet OAa ta dpopoidyto

v OAeg TIC TEPLOSOVG TOL 0PIloVTa TPOYPOUUATIGHOV.

H amotedeopatikdtnto t@v Tpotevopevev uedddwv (ce oyxéon e TOV VIOAOYIGTIKO XPOVO)
peletnOnke ocvykpitikd a) pe v kKhacowkn tpocapuoyn (FULL) e AAM yio tepiBaiiovta
dpoporoynong molhamAdv mepddmv (PA. Zynqua I1.2), kabdc xor B) pe vAomoinom g
KAMGG1KN G nebodov o€ mepBaiiov TapaAAning epappoyng (PARA).

Hewpapatikn Atgpedvnon

Mo v mapandve mepapatikny depevvnon tov [TAOTIIXIT dnuovpynOnkay melpdpota e
50 mehdreg (mapayyehieg) Paoel tov mpofinudteav R1, C1 koar RC1 tov Solomon. T
UETOTPOTY] TOV TPOPANUATOV OVTOV GE KATOAANAN HOpON Yo TEPPAAAOV TOAAATADV

TEPLOdMV, TpooTEénKav Tapdbuvpa mepLOdV, wg eENG:

e O opilovrag mpoypapupaticpod opiotnke oe tévie (5) TePLOd0VG

e T kabe meipapo Tov Solomon, emdeyray ot TpdTol 50 TEAATEG KOl S0y ®PIoTNKAY GE
5 opddeg (10 meddteg avd opdoa). e kdbe pio amd T opddeg avorédnke éva
OLPOPETIKO TapBvPO TEPLOdMV

e Anuwovpyndnkav evvéa vmodetypato (potifa) mapabdpwv mEPLOO®YV, ®OTE VA
peretnBovv mepduoato pe OoPopeTikn gveMéion mEAATAOV OGOV aPOPA TIC EPIKTEG
neplodovg dpopordynons. ‘Etol, yio kdbe évo amd ta mepdauoto tov Solomon,

dNUovpYNONKAY EVVEQ SLAPOPETIKE TELPALOTA.
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Summary (In Greek)

Y10 Zynuo I1.3 mapovoidlovtal to evvéa dloopeTiKd vodeiypota. Or OKIOOUEVESG TEPLOYES

a(pOPOVV GTO TAPABLPO TEPLOOMV aVE LTOJETY LA KOl OUAO0 TEAATMV.

Yréosrypa 1 Yréoderypo 2 Yréoderypo 3
Iepiodog Iepiodog Iepiodog
123 45 1 2 3 45 1 2 3 4°5

;1

S 2

=

s 3

?§ 4

o 5
Ynéoerypa 4 Ynoderypa 5 Ynoderypa 6
Iepiodog Iepiodog Iepiodog
123 45 1 2 3 45 1 2 3 45

;1

Z 2

= 3

g 4

o 5
Ynéoerypa 7 Yno6derypa 8 Yno6derypa 9
IIepiodog ITepiodog ITepiodog
123 4 5 1 2 3 45 1 2 3 45

; 1

Z 2

= 3

Yg 4

o 5

Zymua I1.3: Yrodetypoto xpovikdv mapadopov meptodmv

Me Bdon 1o ovotépm vrodeiypata Ko to mepduata tov Solomon, dnpovpyndnkav 261

TEPapaTo o€ TEPIPAALOV TOAAATADY TEPLOd®V MG EENG:

o T xayopio R1: 12 mepdpota X 9 vrodeiypota = 108 meypapota ITAOTIITXIT

o T xayopia C1: 9 mepdpata X 9 vrodeiypata = 81 mepdapato ITAOIIIIXIT

o T ) kamyopio RC1: 8 mepdpata X 9 vrodeiypato = 72 mewpdpoto [TAOTIIIXIT
Ytov IMivaka I1.2 tapovoialovtat (o) 0 apBuog Tev Tepoudtov To onoio emAYONKaV Kot yio
ta omoia BpéOnie TO KATMOTATO OPLO EVTOG GLYKEKPLLEVOL DTOAOYIGTIKOD XPOVOL P0G DPOG
(1e xphon 8-mopnvov vroroyiot pe eneepyact 2GHz ko 2GB pviung RAM), kat (B) o

VTOAOYLGTIKOG XPOVOG OVA KATNYOPIO TEPAUATOV KOl TEYVIKT EMIALONG.

Mivakog I1.2: Yroloyiotikoi ypdvot avd katnyopio Tepoudtov (Opeg)

Katyopia Mewpdpata FULL CLONE UNI PARA
R1 105 7,76 3,99 4,22 5,36
C1 73 1,47 0,77 1,29 0,85
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Katnyopia ewpapato FULL CLONE UNI PARA
RC1 71 5,90 3,34 3,04 3,64
Tovoro 249 15,13 8,10 8,55 9,85

O evarraxtikég teyvikég (cloning and unified) emttuyydvouv peiwon tov VIOAOYIGTIKOD
YPOVOL GE GYEoM LE TIG dV0 AALEC neBddoVC, e e€aipeon oT TEPALATO LE OLLOOOTOILEVOVG
nehdteg (Clustered — C1). Xvykekpéva, yio tig mepumrtdocelg R1 ko C1, n teyviky CLONE
EMITUYYAVEL TOL KAADTEPO OMOTEAEGLOTO UE UEIMON TOV VTOAOYIGTIKOV ¥pdvov kotd ~50% o€
oyéon e | pébodo FULL. Ocov agopd otig mepmmtmoelg RC1, n teyvikn UNI gpoaviCeton
WG TO OMOTEAECUATIKTY, EMTVYXAVOVTOC, €MIONG, UEIMON TOL VITOAOYIGTIKOD YPOVOL KOTA
~50%, evdd ovvoiikd, 1 CLONE kot n PARA eupoavifovior g ot To OmoTEASGHOTIKEG

pébodot.

210 ZyMua 1.4 mopovcidlovtol ot HEGES TIES TMV VTOAOYIGTIKOV YpOvVeOV avd katnyopio
nepopdtov (R1, C1 kot RC1) kot vwodderypo ypovikod mapabipov meptodwv. Ta oxetikd

aroteAéopata cuvoyilovtat otov Iivaka I1.3.

250% 250%
2 8- CLONE UNI =>=PARA 2 48— CLONE UNI =>=PARA
© ©
€5 200% | = 5 200%
L) o
':‘f 150% '_,gf 150%
23 28
© 73
£4 LR
27 100% A 27 100% A
S = S=
$2 38
g8 s0% TR 50%
5 )

> >
< <

0% T T T T T T T T ] 0%

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
(a) (b)
300%
~—#— CLONE UNI =>e=PARA

250%

200%

150%

50% 3 :!-¢

0%

Average Computational Time Ratio
(% of the classical method)

©

Figure I1.4: Méoeg TG VITOAOYIOTIK®OV ¥PpOV®V ava DITOSELY O, YPOVIKOD Tapafhpov TePLOd®V Kol Katnyopio

nepapdtov (o) R1, (B) C1 ko (y) RCL.
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Summary (In Greek)

[o xdbe évo omd ta vmodeiypata ypovikav mapabdpwv mepiddowv, o Ilivakag I1.3
TaPOVGLALEL TOV HEGO VIOAOYIGTIKO Ypovo TG nebddov FULL, kabdc kot to péco Adoyo (%)

TOV VTOAOYIGTIKOD ¥POVOL TV AAA®V neBddwV oe oyéomn e ™ uébodo FULL.

Mivaxag I1.3: oykpion vworoyiotikod ¥povou

Yréderyma Méoog Xpovog Méoog Adyog vs. FULL (%)
FULL (oedevt) | ONE UNI PARA
1 4.2 97% 228% 130%
2 23.1 95% 169% 104%
3 53.4 83% 141% 77%
4 86.6 89% 132% 76%
5 108.8 89% 119% 78%
6 2835 65% 71% 61%
7 4345 60% 63% 55%
8 438.7 51% 50% 53%
9 525.9 40% 38% 51%

Onwc avapévovtav, kopio péEBod0g 0ev emTLYYAVEL OCNUAVTIKY UEIMGN TOV VITOAOYIGTIKOV
YPOVOL Y10 TIG TEPMTMOELS TOV 1O10{TEPO GTEVDOV TOPadUp®V TEPIOO®V. 26TOGO, CNUAVTIKN
LelmoT TapaTnpeital OTIG TEPMTMGELS EVPEMV TAPUBVPpOV TEPLOdWV (Vrodeiypata 6 £mg 9),
01 OTO1eG E1VOL KOl O1 TEPUTTAOGELS TOV OTOLTOVY TOLG LEYOADTEPOVS XPOVOLS VIOAOYIoHOV. H
UNI mapovoibler v mAéov mowkiAn coumepipopd ce oyéon pe 1o mopdbvpo ePIKTOV
TEPLOOMV, NTOL TAPOLGLACEL TN YOUNAOTEPT OMOTEAEGULOATIKOTNTO GOTIC TEPUITMOGELS GTEVMDV
TapaBupoV TEPLOd®V (LE YPOVOLS VTOAOYIGHOD UEXPL Kot 2 @OPEG UEYOADTEPOV ALTAOV TNG
pebdoov FULL yuo v mepintwon tov vrodeiypotog 1). Qotd660, Yo TIC TEPIMTDOCELS TOV
eupLTEPOV TTaPaBHP®V TEPLOOWV, VIEPEYEL TOV VITOAOITOV HEBOOWV emTLYYAVOVTOG HEIMOT

62% o€ oyéon pe ) pébodo FULL yia to vmdostypa 9.

EYPEXH AKEPAIQN AYXEQN

Onwg emonudvinke kot avotépo, oképaieg Avoelg oto TTAOIIIIXIT moapéyovior pécm
uebodov branch-and-price (B&P) 1 omoia givar katdAAnAn yio 10 mepBAAAOV TOALOTAGDY
TEPLOd®V. AvartOyOnkoav kot peAetnOnkay 600 GTPATNYIKEG Yo TV OLEPELVOT] TOV dEVOPOL
B&P: (a) n khacowr otpammywn (2br), katd v omoio yioo KGOe un oaképato Avon
dnpovpyovvrol 000 SlaPopeTikd «ikAadldy Kot (B) mapaiiayn n omoia Bewpel P + 1 khadid

AOUPBAVOVTOG LITOYT TO Y OPOKTNPLOTIKE TOAAATAMY TEPLOOMV TOV TPOPANUATOC.

Mo v perdém tov aképaiomv Acemv, cuykpivoope v pébodo B&P pe ) teyviky CLONE
og oyéon pe v B&P pe v teyvuey FULL. H emoyn g teyvikng CLONE évoavtt tg UNI
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Booiotnke oto 01t N PO (i) TOPOLSIALEL TOVG KAADTEPOVG GUVOAMKOVG VITOAOYIOTIKOVG
ypovovug ko (i) ivar cuvenéotepn oe oygon pe OAo To EVOAAAKTIKG VTTOdETYLOTO TOPABVP®V
TEPLOOMV KOl OAEC TIG OLPOPETIKEG YEMYPAPIKEG KOTOVOUES TEAAT®V. Xto Xynuo I1.5
TapovotalovTol ol HEGES TIUES TOV AOYOV TMOV VTOAOYICTIKAOV ¥povav g pedddov B&P,
ypnowonowwvrog v texvik CLONE oe oyéon pe myv FULL yo 6Aa ta evoAloktikd
vodetypato mTopabipwv TEPLOO®Y KOl OAEC TIG OLUPOPETIKEG YEWYPOUPIKES KATUVOUEG
neratov. To Zynua mapovstdlel dVo drapopeTikods Adyovc: (o) O Adyog IB avtictoyel ota
196 mepdpato yio To omoia kot ot 600 péBodot evidmicay aképaia Avon (gite PEATIOT €lte
vro-Bértio). (B) O Aoyog IC o omoiog Aappdvel vToYN TOL LOVO TO TEWPALOTO Y10 TOL OTTOLN

Bpédnke N PEXTIOTN AboN Kot amd TG dVO PEBASOVG.

120%

100% Hﬁ*.\
80%
60% ‘-\
40% H\-—
20%
0% : . . ; : : . . .

=i—|B IC

Average ratio of
comp. times

Period Window Pattern

Zynuo I1.5: Méoog Adyog vmoroyiotikov ypdvov (CLONE vs. FULL)

Me Baon 10 avotépo Zynqua, n pébodoc CLONE emituyydver peiwon tov vroloyiotikol
APOVOL YloL TOV TPOGOOPIGUE OKEPALOYV AVCE®MY, OGO SLELPVLVOVTOL T XPOVIKA TapdBupa
ePLodmv. Qotdco, N pelmon avt) UETPLaleTal Yoo TIG TEPUTTAOCELS EKEIVEG OTIC OmOiEg
npocolopiotnke M PEATIOTN AVoT £vTdg TOL TPOoKAHOPIGUEVOL YPOVIKOD 0piov LITOAOYIGLOV.
To yeyovég avtd pmopel va amodobel 610 OTL TO VTOAOYIGTIKO KEPAOG TO OO0 EMITLYYAVETOL
pe v puébBodo CLONE yio v edpeon tov katdtatov opiov (lower bound) petpialeton omd
TOV LIOAOYIoHO TV Aowmadv B&P kAdowv, otovg omoiovg onupiovpyeiton mepropiopévog
apOpoc kohovav (dpopordyla) kat, cvovenmc, 1 pEBodog CLONE dg dhvaton va amopépet

VIOAOYIOTIKO KEPSOC.

Evpetucn Teyvucn Anéppwyne Kradwv tov Aévopov B&P

o v edpeon «OmodOTIKOV»Y ADGE®V GE GLUVTOUOTEPO YPOVIKO OAoTNUA, TPOTEIVOLUE
pnéBodo katd TV omoia wavEL N TEPAUTEP® EMIALGT EKEVOV TV KOUPWV TOov dévdpov B&P,

Y. Tovg omoiovg to katdtToto Opro (lower bound) €yer pikpn amodxhon and 10 KAAHTEPO
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Summary (In Greek)

vevikd axéparo avatato opto (Global Upper Bound) mov £xet Bpebei £m¢ exeivn ) otryun.
Me tov TpOTO aVTd EMTLYYAVETAL 1] EVPECT TOLOTIKMV VTO-PBEATIOTOV ADGEMVY, OKOUO KOl G

TEPMTOGELS LLE EVPEQ TOPEOVPA TEPLOSWV.

H dwdikacio g mpotevopevng pnebddov €xet g e&ng: Me v enilvon evog kOpPov (éotm
0V KOpuPov n) tov dévdpov B&P Ppicketan t0 katdtato opto LB, . Emmpocheta, éva
avOTATO aKEPALO Opto Tov KOuPov n (éotw IB,,) vroloyiletan emAdovtag To TpoPAnua B&B
uovo pe to dpopordyta to omoia mepiEyovtal o oto tpéxov IKII (u€ow Tov vToAoY1oTIKOD
gpyareiov CPLEX). Agdopévng g koAvtepng yvootig aképamg Avong (éotw IUB) mov
elvar yvootn €mg eketvn tn otiyun, vwoAoyiletat yio kdOe kOUPo n 1 ToPaKAT® HETPIKN :

IUB — LB,

= —————— (T1.18)
IB, — LB,
Arnpovvtol Kot EmTAVOVTOL TEPUITEP® LOVO 01 KOWPOol ekelvOL YL TOVG OTOIOVG 1GYVEL OTL

M, > A yw 4 € [0,1].

Mo mv pedém g anotedecpatikotroag peboddov, eotialovpe oTIc 66 TEPIMTAOGELS Y1 TIG
omoieg 1 B&P olykiive oty Bértiomn Avomn evtdg Tov TPOKAOOPIGUEVOL YPOVIKOD Oopiov
vrohoyiopov. To Zynua I1.6 mopovcidler ta amoteléopata oe oyéon TOGO HE TOV
VIOAOYIOTIKO POVO OGO KOl LLE TNV ATOKAIOT) 0 TV BEATIOTN AVOT) Y10 SLUPOPETIKES TULES
™me mapapéTpov 4 ypnoomowwvrag v péBodo P +1. O vmoloyiotikdg ypdvog eivar
KOVOVIKOTOMUEVOG GE GYEOT e TOV Xpovo g pnebddov B&P pe 4 = 0. Emonpaiveron 611y
™V amokAloT amd ™ BEATIoT ADoN ypnowonomdnkay Hdvo ol TEPITTMOGELS Ol ONOieg Ogv

GUVEKALVOY GE OVTY).
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Zynua I1.6: Yroloyiotikol xpovot Kot amdkAion oo Ty PEATIOT) aképato ADGT Y10l SIUPOPETIKES TILES TNG
napapéTpov A (uébodog P + 1)
Ta amotehéopata tov Xy. 1.6 emPefoardvovv v amodotikdétnto TG HeBOdoL KabMG M
Bértiom axépata Avon emtvyybvetar yuu A > 0.5 oto 60% TOVL YPOVOL TOV OMOio OamantTel T
oloxkAnpopévn pébodog B&P. EmmpocOeta, m amdxhon amd v PEATioTn Avorm eivan
TEPLOPICUEVT KOl EAEYYOUEVT omd TNV TUN NG mopapétpov A. Emonuaivetal 0Tt akopa kot
vy A =1, amdkAion tov Koctoug sivar pkpdtepn tov 0.5%, evd 1 peimwon tov ypodvov

avépyetal og 94%.

INIEPIBAAAON KYAIOMENOY XPONIKOY OPIZONTA

2 ovvéyela peretnOnke to ITAOIIXII og extetapévo ypovikd opilovta Kot 1 eniAvon tov
UEC® TPOYPOUUATIGHOD KuAOpEVOL opilovta. Eotm 6t évac meldng (mapayyehio) i yiveton
YVOOTOG ™V TEPiodo t kor pmopel va gEummpetnBei evidg tov mapabdpov [&7, 7], omov
&’ > t. O ovvolkdg pokpoypoviog opilovtag tov mpofinuatos (MXO0) kabopiletar and v
uéyotn telMkn mepiodo, &7, wg v omoia pmopel va e&uanpetndel omoloodnnote TeEAITNG
i €N, kot opileton g S. Emonuaiveror 011 0o opifovtag S e€aptdror omd to cHVOLO TEAATOV

N, oAl Yo AMdyoug amAovoTtevong oev cvumepiiapfavetor 1o N 6to cOpuporo S.

‘Eoto NAOHNIXII(P,p, + 1) 10 oyetikd npofinuo eviog opilovta [p. + 1, p. + P] uixovg
P < S meprodwv. Ot meddteg ot omoiot meptlapfdvoviatr 6to Tpofinua avtd (chvoro meraTdV
N) givar avtoi Y10 Tovg 0moiovg To TapdbvPo EPIKTOY TEPLOdOV apyilel evtdg Tov opilovia

mpoypoppatiopod, Snr., N ={i € N:p. + 1 < & < p, + P}, kau (N S N).

H pébodog mpooéyyiong tov mpoPAnpotog éxel og eEng: Ot mehdteg avatifevtan oTig emOUEVES
P mep1d6dovg, dnA. otig meptddovg [p. + 1, p, + P| emidovtag to TAONIIXIT(P,p. + 1). To
unkog (P) tov opilovia mpoypoUUaTIGHOD EMAEYETOL MOTE VA TOPEYEL IKAVOTOMTIKEG AVGELS
«PBAéEmoOvVTOC) 6T0 PEALOV, OALG KOl OGTE VO UMV KOOIGTA amoyopeLTIKO TOV OOLTOVUEVO Y10l
Vv emiAvon  ToLv  TPOPANUATOS  LTOAOYIGTIKO Ypoévo. Me Pdon 1 Adon  tov
HAOINIXII(P,p. + 1), emAéyovion mpog eEumnpétnon ot meAdte ol omoiol avotédnkay otig
nepodovg [pe + 1, ...,p. + M], omov M < P . Ou evomopeivavteg meldteg (ol omoiot
avotéOnkav oto odotue [p. + M + 1,p. + M + P]) dpoporoyovvrarl Eava 6 GuvELOoUO
He Tovg véoug meAATES, TO Tapdbvpo mEPLOd®V TV onoimv apyilel evidg TV MEPLOd®V
Pe+1,...,p.+M. H xoldpevn avt O00dkocios Tpoypopiiaticiod TopovuctdleTar 6To

Zympa I1.7.
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New Orders
(feasiblein [pc+1,..., pc+P])

Routed in Periods
[pct1,..., pctM]

Unallocated Orders
from Periods
[pC-(P-M-l)/"'/ pC]
A

Routed in Periods
[pctM+1,...,p.+P]

Orders to be routed in the next planning
horizon [p+M+1,...,p +M+P]

ymua IL.7. Awdwacio Tpoypoppaticot

Me Bdaon 10 avapepduevo mePPAALOV KLAMOUEVOL YpovikoD opilovia, HEAETOVIOL OVO

TEPUTTACELG:

H nm-etatki) nepintwon, omv omoio 60l ot meAdteg £viog tov opilovia S Bewpovvan
yvootol. Xpnowonowwvtag opilovia TpoypoptlaTicpuoy punkovg P meplddmv kot opilovia
vAomoinong pnkovg M meptddwv, o KUKAOG emiAvong emavorapupdvetor kdbe M meplddovg.
Xmv mepintwon avty, ot emmpocHetor merdteg yio kdbe emnduevo TMAOIIIXIT eivon ot

neAdTeg TV TElevTainv M mepltddmv Tov aviictoryov (vEov) opilovta TpoypaULOTIGHOV.

H dvvapikn mepintwon, oty omoia oe kabe mepiodo gueavifovtar véor merdteg . XTnVv
nepintoon avth dev eivar yvootol 6Aotl ot meAdTeg vtog Tov opilovia TPOYPOUUATIGHOD.
[IMpng yvoon tov mehatdv vrdpyer pOvo ywoo v TpdTn 7Tepiodo Tov opilovra

TPOYPUUHOTIGHLOV.

OcopnTiki Aigpedviion

Mo v nu-otatikn mepimtwon, depevvnnke N enidpacmn dV0 PaCIKOV TOPAUETP®V TOL
TPOYPOUUUOTIGHOD KLAOPEVOL ypovikoh opilovta: O opilovtag viomoinong (M) xoi o

opilovtag mpoypappatiopov (P).

‘Eoto 6t [T (P, p. + 1) givon n Bértion Aoon tov TAOIIIXIT(P,p. + 1), kau C(P,p. + 1)
glvar 10 oyetikd PEATIOTO KOOTOC, TO OmMoio aPOPd G610 GLUVOAKO afpOoloTIKO KOGTOG
dpopordynong evidc tov meplddwv Tov opilovio mpoypappotiopod: C(P,p. + 1) =

Zmin (pc+P,S)
w=p;+1

C(P,w), 6mov C(P,w) &ivar 10 KOGTOG OPOUOAOYNONG TNG TEPLOSOV W .
Opilovpe ¢ Chyy T0 TEAMKO VAOTOMOEY KOGTOS SPOROAOYNONG TOV GUVOAKOD HOKPOYPOVIOV
opifovia S , 10 o0moOl0 TPOKVMTEL HECH TEXVIKNG KLAOHEVOL Ypovikoy opilovta
TPOYPUUHOTIGHOD UiKovg P kot opifovta vAomoinong pnkovg M meptodwv, avtiotorya. [a

Adyovg amhomoinong Bewpovpe 6t 10 P givar aképato moAranidcto tov M. Tote
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S
M M
Ciu = Z Z C(P,p*M+k) (IL19)

p=1k=1

‘Ectm, eniong, ocbVoro €PIKTOV TEAATOV €vTOG NG TEPLOS0L p Kot Bempodue 10 PéATIOTO
KOGTOC OPOHOAGYNONG Y. TNV €ELINPETNON TOV TEANTAOV OVTAOV. TNV TEPITTMOOTN 7OV
VILAPYOVY TOAAATAEG AVGELS pe To 1010 BEATIoTO KOGTOC, emléyetan pio Tvuyoaio. Opilovpe o
0y, 10 60voAo TV BEATIoTOV AMoE®V (GLUVOVLAGUO dpoporoYimV) Y10 Sla@opeTiKd VITOGHVOAL
TEAOTAOV, EPIKTOV VIO TNG TEPLOdoL p. Emonuaiveton 611 yia kdbe d10popetikd vwochHvoro

meAATOV povo pio Avon eumepiéxetal eviog wov O,

["o v nuotatikn tepintmon Kot pe Paomn Toug Topandve 0piopos EXOVUE OLOTLTMOCEL Kot

amodEi&eL TIG TOPAKAT® J1amIoTOOEIS.

H 1" Miariotwon omodeikviel v amotedeopotikdmTo. ¢ HovoMOIKAc emilvong Tov
GLVOMKOV TTPOoPANHaTOG dpopoAdynong (Yo tov pakpoypovio opilovta S) o€ oyéon pe Kabe

AN mOavr Avon 1 ool AapPaveTon HEG® TS TEXVIKNG KOMAOUEVOL YpoviKoy opilovra.

H 2" Aariotwon oyetiCetar pe 10 pnkoc tov  opilovio Tpoypupuaticpod P mov
YPTOCLOTOLEITOL GTNV TEYVIKT] KUAOUEVOL YpOoviKoy opilovta. ATOJEIKVIETOL OTL EVPVTEPOL

opilovteg TPOYPAULATIGHOV OeV gival amapaitnto 0Tt Bo 00N YNCOVV Kot 6€ KOAVTEPES ADGELC.

Téhog, n 3" Awariorwon Seiyvel 6T1 évag cvvtopdtepog opilovtag vioroinong M dev odnyei

OVOYKOOTIKG 6€ KaADTEPT) TEMKT) AVOT) OPOLOAGYNOTG.

Tpomonoujoerg tov IMAOIIIXIT ywe t™v gpappoyn tov oe mepiffdriov Kvopevoo

Xpovikov Opilovra

[Noa v epoappoyn tov IMAOIIXIT oe mepfdriov kvAduevov ypovikod opilovra
OToTOVVTOL GUYKEKPLUEVEG TPOTOTOWGELS TOGO GTNV OVTIKEWEVIKT] GLVAPTNGT], OGO KOl GTN
puébodo emidvong. Ot Tpomomomaoelg oTEG aPopovyv otn dvvatdtnTa va ovoPdAietor m
eEumnpéton tov mtehat®v and tov £vo opilovta TPOYPOUUATIGHOD 6ToV €mOpevo. o tov

AOY0 awTO E16GyovpE KATAAANAES cuvapTioelg Tovdv (penalty functions).

Tpomomomoelc ThG AVIIKEIWWEVIKAC ZVVAPTNONG

‘Eotw mpopinue IMAOIIIXIT pe opilovta mpoypappoatiopod [1, P]. Opilovue g u, to
GUVOAO T®V Un dpoporoynfévimv evtog tov opilovta P mehatdv, To Tapabupa TEPIOO®V TV
omoimv Myovv v mepiodo 1, dni. & = 1, (vroypewtikoi TEAGTES) KOt ®G Ur 10 GOHVOLO TOV

un dpoporoyndéviev teratmv Ta mapdbvpa TEPLOdMV TV 0ToiwV dev Ayouv TV mtepiodo 1,
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A & > 1, (un vroypeotikoi TeAGTES). Me Bdom Ta oveTEP® TPOTEIVETAL 1) TPOTOTOINUEN

OVTIKELLEVIKT] GLVAPTNON.

P
min Z Z CPxP |+ Polue |+ Prluy | (I1.20)

p=1T€N,

6mov ov ocvvtedeotég P, ko Py efvor ot mowég yio kdbe un Spoporoynuévo meldn,
VIOYPEMTIKO 1 UM, avtiototya. EQv Yo TIg cLuyKEKPIUEVES TTOVEG OPIGTOVV TIUEG YOUNAOTEPES
on6 Cy,, 0mov G, elvan 0 k6oTOG TOL Hovadiaiov dpoporoyiov [Depot — i — Depot], t6te
VIAPYEL TOAVOTNTO T EIKOVIKA Opoporoyia (Kodmveg) eviog thg AAM ta onoio oyetiCovran
pe TIC mowég va €oéABouv ot teEMkN Paon g Avong oe Papog Ttwv povadiloimv
SdpopoAOYimV Kol pe avtd Tov TPOTOo Vo un dpoporoyndel o meddtng i. (Emonuaiveton 6t n
OHOdOTOINGT TOV TEAATMOV GE KOWA OPOLOAOYIO UTOPEL VO OOTPEYEL T GLYKEKPLUEVN

GLUTEPLPOPLEL).

PvOuifovrac tic IMowéc P. ko Pr wote va  diveton IIpotepondtnrta  otove YTOYPE®TIKOVC

[MeAdteg

Me Bdon tic TpoavapepBeiceg TOWEG OV YIveTal SIAKPIOT TOV LT VTOYPEDMTIKOV TEAAUTMV
avdroyo pe v mepiodo ANENG tov Kabevog (dNA. pe Baon v eyydtnta g Teptddov ANENG).
Me tov 1pomo avTd o1 PN VIoYpe®TIKOl TEAdTES Ol omoiot Ba dpoporoynBodv otny mepiodo 1
EMALYOVTOL OTOKAEIGTIKA HE PACN TO KOGTOG OPOUOAOYNONG, KOl GULVETMS EVOEYXETL
VIOYPEDTIKOL TEAATEG Vo HElVOVV €KTOG OPOUOAOYNONG, OONYDOVTOS GE UEWOUEVO aplOud
eEummperodpevov melatdv. o va emPePardoovpe 6Tt vag VITOXPE®TIKOG TEAITNS dev Bal

avTIKATAGTOOEL O £vav LN VTOYPEMTIKG, TPOTEIVOVLE TV TAPAKAT®O AVIGOHTNTOL

P, > Pr + AM, (I1.21)
Kor opiCovpe MV KoTIAANAN T 100 AM, ¢ ®GTE Vo €ELMPETOVVTIAL OLOL Ol VIOYPEWTIKOL

neldrteg (ue e€aipeon 660vg de PITOoPOLV Vo dPoporoynHovV AOY® TEPLOPIGUDY TOPWV:

N
AM, ;> 6 = Z Cr + (F = D max(Cp) +9 (I1.22)
i=1

Omov f eivar 0 apOpdc Tov (U SpoporoyndEvImV) un VIOYXPEMTIKOV TEAATOV Kat 9 ivon
évag pikpog Betikdg apBpoc. Av 1o § oplotel oe autiv TV TIUY, TOTE 0 OPOUOS TOV

VIOYPEDTIKOV TEAAT®V oL Oa e&ummpetnBovv Ba eivan o péyiotog dvvotdc.
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Mo vo peketnBobv SPOPETIKEG TEPIMTMGELS OLAKPIONG TOV U1 VIOYPEMTIKMOV TEAATMOV LE
Baon v gyyvtnto e ANENG Tov Tapadvpov TePLdd®V, Tpoteivovue TéEVTE (5) eVOALOKTIKEG
ocuvvoptioelg mowng (penalty functions). 'Etot, n mown Piy nov avotifetor og kdOe meAdTn i
gEaptarar omd v katodnktik nepiodo (67) kar T popen g cvvaptnongy. Lo Iyfiuo
I1.8 mapovcidlovior o1 mEVTE GUVAPTNOCELS TOWNGC. XPNOIUOTOIOVTAG TNV KOTAAANAN
oLVAPTNOT, UTOPOLLE Vo KatevBuvovue v pnéBodo emiAvong dote va divel TpotepatdTnTa
GTOVG VIOYPEMTIKOVG TEAATEG, KAOMDS Kol GTOVG TEAATES LLE TEPLOPIOUEVT] TTEPLOJIKT evEMEin

(OnA. Tepropropévo mAN00g d100EGIUOV TEPLOS®Y POUOLOYNONG).

Flat (y = 1) Step (y = 2)
Pe Pe—e
Pf—o— &+ P+ o o . .
1 2 P 1 2 P
Quad (y = 3) Square (y = 4)
Pe G PE L
.
. ..
* N
P . . = P; * -
1 2 P 1 2 P
Linear (y =5)
P, *
-
.
e
.
P; =
1 2 P

Yynua I1.8: Zuvaptioeig mowng (y =1, ..., 5)
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Summary (In Greek)

Mo v peEAET TG AmOdOTIKOTNTAS TOV JUPOPETIKOV GCUVAPTHCEWMV XPNGILOTOMONKAY 01

TOPAKAT® LETPIKEC:

e [locootd un dpoporoynuévev melotav: o kabe cvvovoaouod P katl y Bewpodue 10
GLVOMKO TANBOC Un OPOUOAOYNUEVOV TEAATMV GE GYECN HE TO GLVOMKO TANO0G
TEAATAOV.

o  Ko6o10C dpopordynone avd dpoporoynuévo meAdtn (AGyog KOGTovg dpOoroAdYNoNG):
A@opd 10 GLVOAMKO KOGTOG OPOUOAOYNONG dtapepévo pe Tov apliud (minbog) tov

OPOLOLOYNUEVOV TTEAATMV.
210 Zynuo I1.9 mapovsialerar o p€cog AOYOG Twv Un OPOLOAOYNUEVOV TEAATMV KOl O AOYOG
0V KOGTOVG dpopordynong ywo opilovieg mpoypoupaticpod P =1 €we 5, ko yo kébe

dtapopetikn ovvapton mowng (Y = 1; €wg 5).

7 15.50
T LN —
TR = [ 512
S8 - 1450 &8
5L 4 S 5
o E / - 1400 28
4 n =
g3 [ g5
S 3 - 1350 g ®
o 2 30
8 2 3
(] - 13.00 = ~
<

0 T T T T 1250

y=1 y=2 y=3 y=4 y=>5
==®=Unserved Customers == Cost/ Served Customer

Synua I1.9: Mn dpoporoynuévol TeEAGTEG Kot KOGTOG OpOpoAdyNonG (LEGES TILES) Y10 TIG 5 dOPOPETIKES
GUVOPTACELS TOWVNG
Onwg eaiveron and 1o Tynua I1.9, ot cvvapticeg y = 3,4 kar 5 emrvyydvovv adénon tov
OPOLOAOYNUEVOV TTEAATOV KOOOTL dTVOLV TPOTEPALOTNTO GTOVS VITOYPEMTIKOVS TEAATES OAALL
KOl 0TOVG TEAdTEG [e mepropiopévn gveléio meplddwv. [a Tig cuvaptioel owTég givor
AOYKO Vo avapévoupe avénon Tov k6GTovg dpopordynong . Emonuaivetal 6ti np cuvéptnon
y = 5 emoyydvel xyaumAdtepo KOGTOC dPOLOAOYNONG AVALEGH GTIC TPELS AVTEC CLUVOPTNOELS
kabdg emrpénel mepiocdTepn gveMéia Katd TV PEATIOTONOINGCT TOL KOGTOVS OPOUOAGYNONG.

IMa tov Ady0 avTd YPMNGIUOTTOLEITAL TN GLUVEXELN TG TOPOVCAG EPEVLVOC.
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Mepapatikn Agpedvnon Kvidpevov Xpovikov Opilovra

2Komog NG avdAvong sivor va edeyydei n enidpaocr tov opilovia TpoypatpaTicrod P kot Tov
opiCovta. viomoinong M oe oyéon pe o0Vo petpikéc amddoone: (o) Tov aplOud twv
dpoporoynuévov medatov, Kot () to Adyo KOGTOVS SPOUOAOYNONG. XTNV TEPOUUOTIKY
dtepehivnon ¥pNoOTOONKAY TEPAUATO IE OOPOPETIKES Yemypapikés katavouéc (R1, C1,
RC1) kou dtapopetikd €6pog ypovik®dv mapafdpwv. Ta yopoKTnpIoTIKE TOV TEPIMTOCEMY TOV

avaAOOMKaY Kot 6TIg 000 TEPMTMGELS, NUI-CTOTIKY KO SUVOUIKT), £X0VV OC EENG:

o Ye kd0Oe meipapa ypnowonoteital opiovroc 30 mep1ddwv ko 300 merdteg
e [ ta mapabupa TEPLOOWV YPNOIUOTOIEITOL TO VTOJEIYHO 3 KAOOTL TAPEYEL LETPLOCUEVT
ePLodkn eveMéia meAaTdV
e Avo (2) oyfuata Osmpndnkav mg dabéotua yio KaOe mepiodo
e T xéBe meipopa peietniov dVo dapopetikol opilovteg vAomoinong (M = 1 kot
M = 2) ko dvo opilovteg mpoypappatiopod (N = 3 kot N = 5)
e To [TAOIIIIXII gmAvETOL YPNOUOTOUDVTOS TIC TOPAKATED TAPAUETPOVG:
o To kotmtato 6po vwoAoyiletar pe v péBodo Cloning
o Xpnopomomnke N Ypappkn cuvaptnon towng (ni. y = 5)

o Ot axépateg AMOGELG LVITOAOYIGTNKOV UE TNV EVPETIKN péBodo pue A = 1.

[ewoapatikd Aroterécuata yio thv Hu-otatikn Iepintoon

O Ilivaxag I1.4 mapovcidlet yio ka0e meipapa, 10 TANO0C TV SPOLOAOYNUEVOV TEAATAOV,
kaBmOg Kol T0 pPEGo KOGTOG dpopoAdYNoNG ava TEATN Y T0 Guvolkd opilovia twv 30
eptodwv. Ot tipég avtég divovron yio P = 3 kon 5, kou M = 1 xon 2.

[Mivaxag I1.4: Zuykpitikd amoTeAEGUATA Y10, TV EXIAVOT] TNG NUI-CTUTIKNG TEPITTOONG IE SOPOPETIKOVG

opifovTteg TPOYPULUATIGHOD KOl VAOTOINGNG

Neipayia p Apopoloynuévol Meldreg Kootog ApopoAdynong/Mekdtn

M=1 M=2 M=1 M=2

L_r103 3 293 287 20.09 20.62
293 292 19.26 19.43

L_r106 3 299 298 19.54 20.03
5% 299 289 18.31 18.17

L_r109 3 299 294 19.77 20.13
299 293 17.62 18.27

L_c106 3 300 298 27.90 28.88
5% 300 296 25.78 25.32

L_c108 3 300 300 22.72 24.41
5% 300 297 21.68 21.59
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Neipapa p Apopoloynuévol Melarteg Kootog ApopoAdynong/MNekdtn
M=1 M=2 M=1 M=2
L_c102 3 299 296 26.64 27.22
299 298 24.40 24.52
L_rcl101 3* 283 240 28.86 31.98
5% 283 241 28.36 28.88
L_rcl105 3* 293 253 26.84 27.95
5% 294 267 25.52 27.28
L_rcl107 3 300 298 23.35 23.76
5 300 300 21.00 21.16
Méoog Opog 3 296.2 284.9 23.97 25.00
5 296.3 285.9 22.44 22.74
Xpovika Itevd 292.0 275.7 25.04 25.85
Napdabupa MétpLa 297.5 284.0 22.43 23.24
MeyaAa 299.3 296.5 22.13 22.51

* Tlepumtdoelg otig omoieg o opilovtag viomoinong M = 2 emtvyyavel YopunAotePo KOGTOG SPOUOAIYNONG OF
oyéon pe tov opifovra viomoinong M = 1.

O evpltepog opilovtag TPOYPOUUATICUOD EMITVYYXAVEL LEIMON TOV KOGTOVG dPOUOADYNGNG,
emPefordvoviag TV KATOAANAOTNTA TV mpotewdueveov pehdodwv. Ocov apopd otov
opiovta viomoinong M, givar cagég 0tL | mepintwon M = 1 gmrvyydvel vynAidtepo (1 ico)
aplOpd dpoLoOLOYNUEVODV TEAATMV GE OYEOOV OAEC TIG TEPMTAOGELS, MeE eEoipeon Tig
TEPMTOGELS OTIS omoieg M M = 2 g&ummpetel moAd Ayodtepovg meddtes. Ta amoteAéopato
OVTA TOPUUEVOVV GUVETY] Y10 SLOPOPETIKA YPOVIKA Tapabupa, KabmG Kol Yo, S10pOPETIKESG

YEDYPOPUKES KOTAVOUES TTEAUTMV.

[epopotikd Aroteréopata yio tnv Avvowkn Iepintoon

["a ta cvykekpyéva mepdpata ypnoyonomonke poévo n nepintwon M=1. Zrov Ilivaxa [1.5
apovctaloviatl 0 aplidg TOV SPOLOAOYNUEVOV TEAATMOV KOl TO LEGO KOGTOS OPOLOAGYNONG
avé meAldtn v tov opilovta tewv 30 mepddwv kol yw TG dvo TG TOoL Oopilovia

TPOYPOULUATIGLLOV.

Mivakog I1.5: Zuykprrikd anoteAéopata yio S1opopetikong opilovtes Tpoypappaticpoy (duvapkn repintoon)

Opigovtag NpoypappaTIoHoU

P=3 P=5
Neipapa Kéotog Kéotog
Apopoloynuévol ApopoAdynong/ Apopoloynuévol ApopoAdynong/

Neldrteg MeAdtn NeAdrteg NeAdtn
L_r103 295 18.80 294 19.14
L_r106 299 17.60 299 18.19
L_r109 299 17.91 299 17.91
L_c106 300 25.09 300 25.14
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Opifovtag NpoypappaTLiooU

P=3 P=5
Neipapa Kéotog Kéotog
Apopoloynpévol ApopoAdynoncg/ Apopoloynuévol ApopoAdynong/

Neldrteg NeAdtn NeAdrteg MNeAdtn
L_c108 300 24.68 300 24.98
L_c102 299 24.44 299 23.25
L_rc101 290 25.71 283 26.39
L_rc105 296 24.44 294 23.99
L_rc107 300 22.02 300 20.60

Oocov apopd oT0 ATOTEAEGUATO TOV AVTIGTOL(OVY GTOVG OVO OpPiloVTEC TPOYPUUUATIGHOV P,
Ogv Ol0KPIVETOL KATOWL OMUOVTIKY Opopd, TOGO GE GYECT LE TOVG OPOUOAOYNUEVOLG

neAdTeG, OGO KOl 6 GYEOT e TO AOYO TOL KOGTOVG SPOLOAOYNONG OvA TEAATY).

Mo vo peretnBel avaivtikotepa 1 enidpact tov opilovta TPOYPUUUATIGUOD, OLEVEPYCULE
pla oepd emmpocHetmv mepopdTmv Yo THég Tov opilovia TPoyPAUHOTIGHOL ontd 1 émg 7.
210 TEPAUOTO QVTE YpMoIonTombnke peyadhtepo €0pog mePLodikng eveM&iag (vmddetypa 7
nep1odmv). o kabe meipapo Bewpndnkov 360 meddteg pe pvOud aeiéng 12 medatdv ovd
nepiodo. Xto Zynua 1110 mopovcidlovror ot péceg TIHEG TGV OMOTEAEGUATOV
(Opoporoynpévol meAdTES Kot KOGTOG OPOUOAdYNOTG ove TEAdTN) Yo OAa To et (TOV

aPOPOVV OUPOPETIKEG YEDYPUPIKES KOTAVOUEG TEAUTMV KOl OLOPOPETIKO €VPOC YPOVIKMDV

Tapadvpmv).
30 360
z
w25 - - 355 B
£s %
35 2 —s | & 350 O
o = )
= 5 P
£0 15 345 3
o @ (o)
® o 10 340 §
g 8 o
> O 3
< 5 335 o
a
0 T T T T T T 330
1 2 3 4 5 6 7
Planning Horizon (P)
==§==Routing Cost per Served Customer == Served Customers

Tymua I1.10: ApOudc SpoporoynuéEVeV TEAUTMOV Kot KOGTOG OpooAdynon ava Teldtn yio Tuég tov opilovia
TPOYPOUUATICHOD ot P = 1, ..., 7 (uéoeg TWEC Y10l TO TEPAUATO SIUPOPETIKADV YEDYPUPIKDY KOTUVOUDY Kol

TIAV TOV EDPOVE YPOVIKADV TapabOpmV)
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Summary (In Greek)

Ocov apdpa atov opilovia Tpoypapupoticpov P, oe 6la ta mepdpato epeoviletor peimon
TOV KOGTOVG Opopordynong péxpt ™ Twng P = 4. 1 ovvéyewn, 10 HECO KOOTOG
dpopoAdYNoNg avé TEAATN TOPAUEVEL GYEOOV QUETAPANTO TTapovctdlovTag elappld avEnon
v Tig Tiég P = 6 and 7). Emiong, pe Baon to Zyfuo I1.10 dev mapatnpodviol onuovTiKeg

SL0LPOPOTOMGELS OGOV aPOpd 6TO TANOOG TOV SPOLOAOYNUEVOV TEAATMV.

MIA EIAIKH ITEPIIITQXEH ITPAKTIKHYE XHMAXIAX

2mv mapovoo SOaKTOpIKn StoTptP] peAetnOnke emiong 1 mEPITTOOTN OTNV OTOid GTOLOG

oynudtov eEumnpetet 600 €101 TELATOV 6€ TEPIPAAAOV TOAAATADV TEPLOOMV:

e To mpmd1o €id0g aPopd meELdTES 01 0TTOioL £Y0VV avoTeEDEL 101 GE GUYKEKPIUEVA O LOTOL
Kot TEPLOd0VG Tov Ypovikoy opilovta. Qotd60 N aAANAOVYI0 TOV EMCKEYEDV GTOVG
neAdteg awtovg Oev glivar mpokabopiopévn evidg e dadpoung Kabe oynuatog. Ot
wpokabopiopévol merdteg mokilovy and mepiodo g mePiodo.

e To devtepo €idog apopd meddteg ot omoiot mapovstalovy meplodikn gvedia, yivoviou
yvootol duvapkd oe kdbe mepiodo katl yapoaktnpifovior amnd ypovikd mopabvpa Kot

Tapdbupa TEPLOS®V.

2KOTOG TOV TPOPANLATOG Eival 1 ELAYIGTOTOINGT TOL GLVOAIKOL KOGTOVG dPOLOAOYNGNS TOV
agopd ota 6v0 £idn meratmdv. To TPOPANUE EMADETOUL HECH TEYVIKNG KVALOLEVOD YPOVIKOD

opilovta e oKOTO VO OVTILETOTIGTEL 1] SUVAUIKT APLEN TOV TEAATOV.
Anapaitntes Tpomomoujoelg

[Ma v enilvon Tov TPoPANUATOS AVTOV TPOTEIVOVE OMOPUITITES AVOYKAIES TPOTOTOUGELS

670 HOVTEAO Kat Tov TpOTo emidvong tov [TAOTTEXIL.

Tpomonmomoeic MobOnuotikov Moviélov

To padnuotikd poviédo tpomomoleiton dote vo TEPAEPEL TOLG TPOKAOOPIGUEVOVG TELATEG.
' Tov Adyo avtd opilovpe to shvoro N™ (cvvoro tov mpokafopiouévav tekatdv) kor N/
(cVvvolo TV YVOOTOV gVEMKTOV TEAaTOV). e Kabe mpokabopiopévo melatn i” avatibeton
napahopo mepiodov [E7,&7] = [pi, pi] Omov p; eivar M mepiodog otnv omoio mpémer va
e&ummpembel o mehdng i . Emmpdobeta, xébe medding i mpémel vo e&umnpenOel amnd

CUYKEKPUEVO  OYNUO T TOL OGVAKEL ©TO0 oLVOAO ToV dubécov oynuitov K, =

{kp, ..., kp, ...,kLKpl}. O1 mepropiopoi (IT1.2) tpomomolobvtat 6€ dHO JAKPLTOVG TEPLOPLGUOVG

o6 e&fg:
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Z Xijpiiep, = 1 Vi" € N, (T1.23)

jew

Z Z Z Xijpr = 1 Vi € N; (I1.24)

PEI; KEK, JEW

O mepropiopoi (I1.23) opilovv 611 kéBe mpokabopiouévog meddtng npémel va eEvmnpetnel
VTG NG GLYKEKPIUEVNG TEPIOSOV P; KL OO TO GUYKEKPIUEVO OyNpa Ky, EVE OL TEPLOPIGHOTL
(I1.24) opilovv 011 kGOe gvéMkTOg TEAATNG TpEmel va eEvmnpetnOel pia opd (amd Evo dynua

evtog piog Tep1odov tov mapadvpov meptddwv I;).

Tpomormomceic Mgbodov Avvautkne Anutovpyiac Metopfintav (AAM)

Agdopévnc g apytkng avddeons Tov TpoKabopiopEVEOY TEAATAV, Ol UPYIKEG «KKOAMDVESY) TOV
[TKIT mpémel va teptAdfovv, TOLAXYIOTO, TOVS TEAATES 0VTOVS. Apyikomotovpe TNV uébodo pe
Abon g omoiag To apykd dpopordyla mEPAAUPAvVOLY HOVO TOVG TPOKAOOPIGLEVOLG

meAdTeG. L1 AOoM avTn o1 evéMKTOol TEAdTEG BEPOVVTOL OC 1) OPOLOAOYNUEVOL.

Kobng kabe dynuo deopevetor amd v dmapén tov tpokafoplopévav TeEAATOV, N ¥PNon
evog kool YII ywo kdéBe mepiodo Oev eivor €QiKTn.. XVVER®MG, OTNV MEPIMTOON LTI,

emiveton Eeymprotd YII yia kébe cuvdvacud meptdoov Kot oy UATOS.

Tpomomomoeic tov YII

Onwc avapépbnke mapamdvo, Kabe «kordvay (dpoporoylo) mpénet vo, TepAapuPdvel GAoVG
TOVG TTPOKAOOPIGUEVOVG TTELATEG TOV GLVOAOL Ny, dNA. TOL GUVOAOL TO OMOI0 APOPE TO
oynuo 7. ‘Etol, n etikéta (label) Ls; mov oyetiCetar pe 1o ovykekpipuévo dpoporoylo dev
EMTPEMETOL VO EMOTPEYEL 6T0 depot edv dev Exovv dpoporoyndei 6Aol ot medteg Tov Nyy,.
Emnpocheta, kabe «xolmvay mpémer va punv mepthapPavel mpokabopiopévovg TeAdTes ot
omoiot 0¢ oyetiCoviow pe to Omuo v . H televtaio amaitnon ovtipetomileTon
XPNOOTOLOVTOG HOVO TOVG £QikTovg Teddteg o€ kaOe YII yua kébe dynua ky, (SnA. Ny,). Ze
nepintoon mov €vag mehdng tov Ny, dev umopel vo e&umnpenbel €viOg TOL GYETIKOV

dpoporoyiov, TOTE 1 CYETIKN ETIKETA AMAAEIPETOL KOl OEV EMEKTEIVETOL TEPOULTEP .

H dmapén tov npokabopiopuévav meratdv evidg kdbe dpopoioyiov, amortel Tnv tpomomoinon
TV Kpumpiov kuplopyiog (dominance criteria) dote 60tov cuykpivetor 1 tapméda Lg; pe pio
A Lg,;va. Aappdvetor veoyn to tAnbog tov meAatdv ot omoiot £xovv NoN e&ummpetn el
and 1o oyetkd atelég (partial) dpopordylo §. ol To 6KOTO aVTO EVELVOUDVOVLE TO KPLTIPLOL

Kupapyiog, Tpochétoviag TV TaPAUETPO KOGTOVG Cs; (KdoTog 1o0dvvauiag). To televtaio
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AVTITPOCMOTEVEL Ave Op1o (XEIPLoTN TEPITTMOT]) TOV GLVOAIKOV KOGTOVE TOL OTOLTEITOL Y10 VL
e&umnpetnBovv 6A0t1 01 TPOoKaBOPIGUEVOL TEAATEG, O1 0TTO101 OEV £XOVV OKOUO GLUTEPIANPOEL
EVTOG TOL 0TEAOVG dpOLOAOYioL §.

Hewpapatikn Awepedvnon Kviopevov Xpovikov Opilovra pe Ipo-avaredeipévoug
IerdTec

2V dlepevvnon TG ToPoVcag TEPITTMONG YPNCLLOTOMONKAY TO TEWPAUATIKAE OES0UEVA TOV

neprypaenkov otnyv tponyovuevn Iapdypapo, rot:

e Xpnowomomdnkov tpio S1aPopeTKA VITOSElYHOTA TEPLOdWV (3, 5 Kot 7 TEPLOdWV) .

o Q¢ mpokabopiouévorl merdteg emiéyOnkav toyaio 180 meddrec. ' Tovg meAdTeg WTOVG
opioTnNKe T0 PHEYOADTEPO dLVATO YPOVIKO TapdOvpo

e  Opilomke puOuds ApiEng 6 duvapukdv tedat®dv o k0B Tepiodo

o  EmiéyOnkav tpia mepdpata, éva yuo ke yewypoeikn koatavour telatov (R1, C1 ot
RC1)

e Tékog, 000 oyfuata BewpnOnkav owbéoipwa oe kabBe mepiodo pe péyroto apOuod

npokafopiopévav teratadv avd dynua ico pe tpia.

O Ilivaxoag I1.6 mopovcidler ta amoteAéoUOTO OVE YEOYPAPIKN KATOVOUN TEANTAOV,
napdBupo mep1ddmv Kot opilovra mpoypappaticpod. Ta otoyeio mov mapovoidlovior GTov
[Tivaxa elvar ta €€nc: (o) O pécog aptBpdc SLVOUIKOV TEAATOV TOV OPOUOAOYNONKAY GTOV
paxpoypévio opilovta S. (B) To péoo emmpodcbero kdotog avd Svvapkd mehdrrn. To
emnpoceTo KOGTOG VTOAOYILETAL APAPOVTAS OO TO GUVOAKO KOGTOG OPOUOAOYNOoNG KAOE
EPLOOOL, TO aPYIKO KOGTOG OPOUOAOYNOTG TOV TPOKAOOPIGUEVOV TEAATMV.

Mivaxog I1.6: Méoec Tyég amotedesdt@v avd TOmo TPoPANHATOS, VIOSEY O TapaBVPOL TEPLOSMV KO

opilovta TPOYPAUUOTIGHLOD

Tunot NpoBARpatog (Fewypadikn Katavour)

R1 C1 RC1
Kéotog Koéotog Koéotog
Apopoloynuévor  ApopoAdynong/ Apopoloynuévor  ApopoAdynong/ ApopoAoynuévol  ApopoAdynong/
NeAdreg NeAdtn MeAdrteg NeAadtn NeAdrteg NeAdtn
Ynodetypa MNapadupou Mepodwv 3
176.0 13.8 180.0 19.6 162.3 12.0
177.0 8.2 180.0 9.5 164.3 11.0
177.0 7.0 180.0 8.0 163.0 10.2
Ynodewypa Napabupou Neplodwv 5
177.3 13.1 180.0 19.5 174.7 11.9
177.3 7.1 180.0 8.3 176.3 9.5
177.3 4.4 180.0 5.2 176.3 8.2
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Turot NpoBAnuatog (Fewypadikn Katavoun)

R1 C1 RC1

P Kdotog Kdotog Kootog
Apopoloynuévor  ApopoAoynong/ Apopoloynupévol  ApopoAdynong/ Apopoloynuévor  ApopoAdynonc/

NeAdreg NeAdtn NeAdreg NeAdtn NeAdrteg MeAdtn
4 177.3 4.1 180.0 4.1 176.0 5.7
5 177.3 4.1 180.0 4.2 175.7 6.4

Yrobetypa MNapadupou MepLtodwv 7

1 177.3 13.0 180.0 19.5 174.3 11.4
2 177.3 7.0 180.0 8.1 176.3 9.3
3 177.3 4.1 180.0 4.6 176.7 6.8
4 177.3 3.7 180.0 3.8 176.3 4.6
5 177.3 3.2 180.0 3.2 175.3 4.0
6 177.0 3.1 179.7 3.0 175.3 4.0
7 177.0 2.9 179.7 3.0 175.3 3.8

210 Zynuo I1.11 moapovcidletor evOEIKTIKA 0 HEGOG AGYOG TOL KOGTOVS OPOLOAOGYNONG ava
weEAdT) Yoo TOo vEOdEypo mopabhpov mEPOdWV 7 kol Yoo OAovg Toug opilovieg
wpoypoppotiopov. Ilapodpola omoteAéopoto eAn@Onoav kot ywoo ta GAAo vrodeiypoto

napafHpov TeP1ddmV (dnA. 3 kot 5).

25,0
.0
2 20,0 -
[ ‘
]
o
O 150
oo
(=]
S == R
<]
z 10,0
° == C
&
= RC
g 50
<

0,0 T T T T T T 1

1 2 3 4 5 6 7
Planning Horizon (P)

Yynuo I1.11: Méoo k6ot0g dpopordynong avd tomo tpofinuatog (R1, C1, RC1) ywa to voderypo 7

2g OA0VG TOVG TOTOVG TPOPANUATOV Kot EWOKOTEPA Yo TO. VILOdElyHaTo 5 Kot 7, T0 KOGTOG
OpOHOAOYNONG OVE TEAATN UEIDOVETAL CNUOVTIKA Yo TG apyikég TnéG Tov P. H peiwon avtn
enpavilel otabepomoinon petd amd cvykekpiuévn T tov P (m.y. v P = 4 610 vnddsrypa
7). Ocov agopd ctov tomo mpoPanuatog (R1, C1, RC1), n peimon avt givor o peovig yio
ta wpoPApato R1 kot ta Cl, evd ota mpofAnuata RC1 mapovsialeton petpracuévn tdon

peiwong Tov KOGTOC.
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Evéswtikd  Ilspouotikd Amotedéouota v tnv  Ilepimtowon Meydiov Apbuod Mn-

Apoporoynuévav Ielotdv

Atepegovinke, emiong, N omOTELECUATIKOTNTA TOV TPOTEWVOUEVOV HEBOOWV GE TEPUTTMOOELG
Omov UOVO €va TEPLOPICUEVO HEPOG TOV GLVOAOL T®V OLVOUIK®V TEANTOV WUTOPeEl va
dpoporoynfel AOyw owotnpdv mePLopiou®y Topwv. I'a Tov Adyo avtd ypnoipomodnke to
vodEYI TEPLOd®V 7 Kot avénnke o ypovog eEummpénong kdbe dvvoptkod mEAATN KATA
100%. Ot vndérowmeg MOPAUETPOL TOPOUUEVOLY ONMOG OTINV  TPONYOVUEVY] TEPOUATIKY|
dtepevvnon. MeietnOnkav SlPOPETIKEG GLVOPTNOCELS TOWNG, EMIMALOV TNG YPOUUIKNG
(¥ =5):y =1 (opotdpopen), ¥ = 2 (Pnuatikn), kar y = 3 (terpayovikn). To Zyquata I1.12
ko [1.13 mapovoidlovv to amoteAéopoTa Yoo TO HEGO AOYO KOGTOUG OPOUOAGYNONG Ova

opilovta TPOYPUULATIGLOV Kol TO HEGO 0PlOUO SPOUOAOYNUEV®V SUVOUIKOV TEAATOV.

75.0
2
2 70.0
o
B 650 i — - o—o—2
o e ——
go 60.0
§ 55.0 — O F—l(.
3
& 50.0
o
g 450
<
40.0 T T T T T T 1
1 2 3 4 5 6 7
Planning Horizon (P)
=fli=y=1 (flat) ==€=y=2(step) =—@=y=3(square) v=3 (linear)

Zympa I[1.12: Méoog Adyog k6oTous dpopoAdynong avd opilovia TpoypappaTIGoD Kot GUVAPTNOT TOhG (Yo

o\a ta TEpapaTa) — Ynodetypo 7
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145,0

140,0
135,0

130,0

125,0 -

120,0

Average Served Customers

115,0

110’0 T T T T T T 1

Planning Horizon (P)

=fl=y=1 (flat) ==€=y=2(step) =@=y=3(square) vy=3 (linear)

Tymua I1.12: Mécog aptOpog dpopoloynuévmy SuvopK®v TeEA0T®V avd opilovto TpoypapaTicod Kot
ouvaptNnon mowng (Yo 6o to mepdpata) — Yroderypao 7
H opowdpopen cvvaptnon y = 1, oty omoio. 6A0L 01 SuVOIKOT TEAATES £YOVV NG 1010 OV,
EMTLYYAVEL TA ELVOTKOTEPO AMOTEAEGHATA, OGOV APOPE GTO KOGTOG OPOUOAGYNOTG QAL Kot
otov apipd tov dpoporoynuévev telatmv. To amotélecua avtd amodideton ota eENg: (o)
H opotdpopen cvuvaptnon dev epumiéketan pe v dtadtkacio dpoporoynong un amodidovtag
EMAEKTIKT TPOTEPAOTNTA GE TEAATES, Kot (B) moAlol duvapukol meldtes 0 dpopoloyovvTol

o€ Kabe mepintwon.

Ocov agopd octov opilovto TPOYPAUUOTICHOD, Ol gvolduecol opilovteg emiTuyydvouv
Bedtiopéva omoTEAEGLOTO CXETIKA LE TO TANO0C TV OPOUOAOYNUEVOV TEAATMV, KOOGS Kot

nepopopévn Pertioon 6to k6GTOg OPOUOAGYNOTG.
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ABSTRACT

In this dissertation we investigate the Multi-Period Vehicle Routing Problem with Time
Windows (MPVRPTW), in which customer orders are related to a period window (a set of
service periods). Routing costs are minimized over a planning horizon, respecting period
window, time window, and capacity constraints. We present a general model and an exact
approach to solve this problem based on the column generation method. We also propose two
novel, efficient techniques to speed up the column generation method for obtaining lower
bounds. The proposed techniques exploit the multi-period setting in order to identify
similarities within the subproblems and, thus, avoid solving all subproblems at each iteration.
We evaluated the performance of the proposed methods systematically for various
parameters, such as customer geographical distribution and period window patterns. In most
cases, the new methods improve significantly the efficiency of convergence to the optimal
solution of the relaxed problem, especially in the computationally expensive test cases with

wide period windows.

Integer optimal solutions to the MPVRPTW are provided through a branch-and-price
implementation. We propose two different strategies that consider the multi-period
characteristics of the problem, in addition to a simple pruning heuristic that speeds up the

solution procedure and provides efficient results.

For solving the MPVRPTW in long-term horizons, we propose a rolling horizon framework.
Initially, we discuss three theoretical statements that provide insights on the effects of the
planning and implementation horizons in the final solutions. Subsequently, in order to apply
rolling horizon routing, we propose significant modifications to the model and the solution
approach for the MPVRP; these modifications concern the ability to postpone serving
customers for later periods. We investigate two rolling horizon settings (quasi-static and
dynamic) and we establish the recommended values for the planning and implementation
horizons, under a wide range of parameters, such as customer geographical distribution and

time window width.

Finally, we address a practical variation, which regards a hybrid service policy that includes
(@) inflexible (pre-assigned to specific vehicles) and (b) flexible customer orders. For this
case, we propose the necessary modifications to the MPVRP model and solution approach.
Extensive experiments show that significant cost savings can be achieved by considering

longer planning horizons in the planning process.
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Chapter 1: INTRODUCTION

During the last five decades, transportation and distribution of goods have received
considerable attention from both industry and academia. The major focus of this interest has
been to simultaneously minimize logistics costs and maximize service quality. In order to
obtain efficient solutions to related practical problems, the research community has used the
fundamentals of Operations Research (OR) to pose basic problems, construct robust models,
and develop effective approaches based on both heuristics and exact methods of integer

programming.

One of the initial problems that received considerable research interest is the Travelling
Salesman Problem (TSP), which has set the basis for significant subsequent work in this field.
In the TSP, a single vehicle (or salesperson) is tasked to visit a set of customers using the
minimum cost route. This problem has been shown to be NP-hard (Garey and Johnson, 1979);
however a wealth of solution procedures and methods has been developed to address it
effectively, based on network theory, linear programming and other approaches, such as

heuristics and metaheuristcs.

A second fundamental problem of equivalent contribution in the area is the so called Vehicle
Routing Problem (VRP), which targets the design of a set of minimum cost routes, each
served by a vehicle belonging to a fleet, starting and ending at a depot and serving a set of
customers with known demand and service costs. These routes are designed subject to several
constraints, such as limited total time of travel (route length), or limited vehicle capacity.
Numerous variations of this problem exist, using different objectives and constraints,

depending on the problem under investigation.

The majority of methods and systems used in practice for vehicle routing deal with single-
period problems under known demand; that is, orders of known demand are provided for a
certain period (e.g. day) and are serviced within this period. Although in various practical
cases this setting is appropriate, there are many other cases in which the orders can be served
within a period window, i.e., a consecutive set of periods (days). This simple alteration
complicates the routing procedure by adding another critical factor: The selection of
customers (orders) to be served in each period, in order to minimize the total cost (or

distance) for the entire time horizon.
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Related problems are faced in practice by appointment-based logistics systems, such as those
offering on-site repair/maintenance services, home delivery of products, or hybrid courier
services that perform both next day and bulk deliveries. These problems are typically dealt by
a two-phase procedure: In the first phase, the customer orders are allocated/assigned in a
specific period within the planning horizon using simple rules (e.g. First-Come-First-Serve or
geographical grouping) without considering the routing costs directly. In the second phase,
the vehicle routing problem is solved for each period of the horizon in order to minimize
routing costs. This practice, however, may lead to suboptimalities, since routing costs are not
considered simultaneously with the allocation of orders in the periods of the planning horizon.

This latter consideration is the focus of the Multi-Period Vehicle Routing Problem.
The Multi-Period Vehicle Routing Problem with Time Windows (MPVRPTW)

Consider a dedicated fleet of vehicles (of fixed capacity) that is available to serve customer
orders starting operations from a single depot. Each customer order is related to a period
window, which depends on the service level provided to that customer. The period window is
a set of consecutive periods. In addition to the period window, each order may be related to a
time window. The latter concerns the allowable time interval within each period for delivering
the service. Practical examples concerning the time window include the case in which it may
not be feasible to provide service to a customer outside typical working hours (i.e. early in the
morning or late at night), or the case in which individual customers are available for service
only after the end of a business day (e.g. after 17:00). In addition to the above characteristics,
the MPVRPTW addresses simultaneously a set of consecutive periods (planning horizon);
that is, all known customers with period window which starts or ends within the planning
horizon are considered for assignment in the appropriate period and vehicle, and are also
planned/ routed targeting efficiency.

In the current dissertation we study the above problem and propose two new exact strategies
to provide efficient lower bounds to the MPVRPTW. To do so we take advantage of the
special structure of the multi-period problem. We validate the efficiency gains by comparing
against benchmarks used by other approaches. Additionally, we develop schemes to obtain
the integer optimal solution, which are relevant to the multi-period setting. We also propose a
simple pruning heuristic in order to accelerate the solution procedure. The latter is suitable for
multi-period vehicle routing problems that are solved over long horizons using a rolling

horizon framework.
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Rolling horizon routing

We also address vehicle routing problems in long-term horizons (say of length S). For this
setting, we propose a rolling horizon framework in which the solution procedure of the
MPVRPTW is embedded. In this framework, initially we solve a single MPVRPTW in a
planning horizon of selected length (say P) by taking under consideration all known customer
orders with period window that starts or ends within this horizon. Based on the resulting
solution, the assignments and routes of the first M periods of the horizon are implemented.
The remaining customer orders, along with newly arriving ones, are considered for the next
planning horizon by solving again a new MPVRPTW. These steps are repeated until the long-

term horizon is exhausted.
Considering this rolling horizon framework, we address two distinct cases:

The quasi-static case, in which all customer orders within the long term planning horizon S
are considered to be known. When using a rolling horizon scheme with planning horizon of
length P and implementation horizon of length M, the solution cycle will be repeated every M
periods. In this case, each time we solve the MPVRPTW for P periods, the only new

customer orders considered are those of the last M periods of this planning horizon.

The dynamic case, in which new customer orders arrive during every period. In this case, not
all orders to be served within the planning horizon are known in advance. However, there is

full knowledge of the customer orders of the next period to be planned.

To apply rolling horizon routing, significant modifications are proposed to both the model and
the solution approach of the MPVRP; these modifications concern the ability to postpone
serving clients from one planning horizon to the next. Based on these modifications, the
current dissertation investigates in depth the effects of the two critical parameters of the
rolling horizon scheme: the implementation horizon (M) and the planning horizon (P).
Theoretical principles are established for the quasi-static case. These principles, and other
significant insights, are then studied through an extensive experimental investigation

conducted for both the quasi-static and the dynamic cases mentioned above.
A special case of practical significance

This dissertation also addresses a special case of rolling horizon routing, which we have
encountered in practice. In this case, some customer orders have been pre-assigned to periods

and vehicles (inflexible orders), while some others arrive dynamically and may be assigned to
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any period of the planning horizon, within, of course, their period window (flexible orders).
We propose the appropriate modifications to the MPVRP model and the solution approach.
Furthermore, an extensive experimental investigation is conducted in order to obtain
significant insights in the parameters of the rolling horizon scheme and in the solution

approach.
Structure of the Dissertation
The remainder of the dissertation is organized as follows:

Chapter 2 presents and discusses the related problems in the literature, such as the Vehicle
Routing Problem with Time Windows (VRPTW), the Periodic Vehicle Routing Problem
(PVRP), the Inventory Routing Problem (IRP) and the Multi-Period Vehicle Routing Problem
(MPVRP). The similarities and differences of these problems with respect to the problems
studied in this dissertation are discussed. Furthermore, Chapter 2 reviews significant literature
on the column generation method, identifies research gaps, and highlights the contributions of

this dissertation.

Chapter 3 describes the mathematical formulation of the MPVRPTW. It also presents the
remodeling of the problem into a framework amenable to column generation. Significant

background technical information regarding the column generation method is provided.

Chapter 4 explores new alternative column generation techniques that target improved
computational times by exploiting the multi-period structure of the problem. In order to
evaluate these techniques, new test instances have been developed based on the Solomon
benchmarks with different patterns regarding the period windows of the customer orders.

Conclusions are presented based on the analysis of the test results.

Chapter 5 presents the Branch and Price (B&P) framework for the MPVRPTW. Initially, the
generic B&P techniques for the VRPTW are presented. These techniques are extended in
order to take into consideration the multi-period aspect of the current problem. Two new B&P
techniques are presented along with a heuristic that provides solutions in an efficient manner

both in terms of the computational time and the value of the objective function.

Chapter 6 provides a formal description of the MPVRPTW within a rolling horizon
framework. It includes several enhancements developed to apply the MPVRPTW in cases
with limited resources. We study both the quasi-static and the dynamic MPVRP. For the first
case, we propose and discuss three theoretical statements concerning the implementation

horizon M and the planning horizon P. Subsequently, we investigate experimentally the
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effects of P and M on the quality of the solutions obtained for a large range of experimental

cases and input parameters.

Chapter 7 investigates the problem variation concerning the mix of flexible and inflexible
orders. This problem is solved on a rolling horizon using appropriate modifications in the
column generation scheme. The efficiency of the proposed method is validated through an
extensive experimental study, which indicates that significant cost savings can be achieved by

considering wider planning horizons in the planning process.

Finally, Chapter 8 presents the conclusions of this dissertation, the theoretical and practical

contributions, along with directions for further research.
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Chapter 2: THEORETICAL BACKGROUND

As already mentioned in Chapter 1, this dissertation focuses on long horizon routing
problems. These fall into the general category of vehicle routing problems (VRPs) and to
variations, such as the Periodic and the Inventory Routing Problems. The dissertation focuses
on two major classes of problems: (a) The multi-period routing problem, and b) long horizon
routing problems that are solved using the multi-period problem in a rolling horizon approach
(both in its quasi-static and dynamic form).

The related theoretical background is discussed in Section 2.1 below. Section 2.2 provides a
targeted discussion on the essentials of the basic techniques employed; i.e. column generation,
elementary shortest path with resource constraints and Branch-and-Price, respectively. These
techniques form the foundation of the new methods proposed to derive exact solutions for the
aforementioned problems. Finally, Section 2.3 highlights the contributions of the dissertation

in the area of multi-period routing problems.

2.1 RELATED PROBLEMS IN THE LITERATURE

The following review focuses on topics related to the current work: Section 2.1.1 overviews
the VRPTW which forms the basis of the multi-period routing problem. Section 2.1.2 presents
significant periodic routing problems found in the literature. Section 2.1.3 drills down into the
area of multi-period routing problems, which are highly related to the dissertation topic, and

highlights the related similarities and differences.

2.1.1 THE VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

The Vehicle Routing Problems (VRP) is one of the most studied problems in both Operational
Research and Logistics and it is related to many theoretical and practical transportation
problems (Clarke and Wright, 1964; Golden and Assad, 1998; Laporte and Osman, 1995).
The VRP falls into the general category of network optimization problems, and is a
generalization of the classic Traveling Salesman Problem (TSP) (Christofides, 1979;
Cornuejols and Nemhauser, 1978; Gendreau et al., 1997). Specifically, the VRP consists of
finding a set of routes to serve a number of geographically dispersed customers at minimum
cost. It was introduced by Dantzig and Ramser (1959), who proposed the mathematical
formulation and a solution approach for a practical problem of gasoline delivery to service
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stations. Since then, a large number of researchers have introduced various theoretical and

practical aspects into the related mathematical models.

The VRP is an NP-hard problem (Lenstra and Kan, 1981) and, therefore, practical (large)
problem instances cannot be solved to optimality within reasonable time. An insightful survey
of significant results in VRP-related research is given by Toth and Vigo (2002). Additionally,
the latest advances in VRP research, problem variations, significant methodological
approaches, and practical applications are presented in Golden et al. (2008). It is noted that
the VRP usually refers to its most common variation, the Capacitated VRP (CVRP) (Toth and
Vigo, 2002). In CVRP the customer demand is deterministic, and the available fleet is
considered to be homogeneous with vehicles of a certain capacity. All vehicles start from the
same depot and each customer should be serviced within a single visit (i.e. multiple visits are
not allowed). The scope of the problem is to create the least cost routes that serve all
customers and respect capacity constraints. Other well-known variations of the VRP are the

following:

e VRP with Time Windows (Cordeau et al., 2002)

e VRP with Pickup and Delivery (Toth and Vigo, 2002; Daganzo and Hall, 1993)
e Distance Constrained VRP (Toth and Vigo, 2002)

e Multi-Depot VRP (Bianco et al., 1994; Carpaneto et al., 1989)

e Heterogeneous Capacitated VRP (Taillard, 1996)

¢ VRP with Backhauls (Toth and Vigo, 2002; Golden et al., 1988 )

e Periodic VRP (Tan and Beasley, 1984; Christofides and Beasley, 1984)

The Vehicle Routing Problem with Time Windows (VRPTW), in addition to the constraints
of the CVRP, requires that customers are served within a short time period (time window).
Note that usually only the start of the service is required to be included in the time window.
Furthermore, a maximum vehicle travel time is specified, which is an upper limit of the total

time each vehicle can operate. As stated in Larsen (2001):

"The VRPTW contains several NP-Hard optimization problems implying that
VRPTW is also NP-Hard. Among the NP-Hard problems contained as
special cases are TSP (Garey and Johnson, 1979; Lenstra and Kan, 1981),
Bin Packing (Garey and Johnson, 1979) and VRP (Lenstra and Kan, 1981)."

The seminal work by Cordeau et al. (2002) provides a comprehensive description of the
problem and of the related solution approaches. Since the VRPTW is the basis of the
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problems studied here, the related mathematical formulation by Cordeau et al. (2002) is

discussed subsequently.

Consider a directed graph ¢ = (V,A), a set of customers N = {1,2,...,n} and a fleet of
homogeneous vehicles V. The graph contains |N| + 2vertices, that is, |N| customers plus the
two starting and ending positions of the vehicle fleet; let vertices 0 and n + 1 denote these
positions, respectively. The entire set of vertices {0, 1, ...,n + 1} is denoted as C. The set of
arcs A represents the direct connections among all vertices, including the starting and ending
positions. Each arc (i,j), where i # j, has an associated cost c;; and a travel time t;;. All
vehicles have the same capacity g and each customer is associated with a demand d;. Each
customer i must be served within a certain time window [a;, b;]. In case a vehicle arrives
before the opening time of a time window, it must wait until a; to start serving the
corresponding customer, while service cannot be provided in case the vehicle arrives after the
ending time b;. Finally, each customer is associated with a deterministic service time st;,

which, for simplicity and without loss of generality, is incorporated in the traversing time ¢;;

of the corresponding arcs.

The model presented below contains two sets of decision variables, x and s. The variable s;,
for each vertex i denotes the time when vehicle k starts to serve customer i. For each

arc (i,j), where i # j,i # n+ 1,j # 0 and each vehicle k, the variables x; ;, are defined as:

1 ifvehicle k traverses arc (i, j)
xijk = { (21)

0 otherwise

The mathematical formulation of the VRPTW is:

min ZZZCU Xijk (2.2)

kev iec jec

s.t. Z injk =1 VieN (23)
kev jec
D xoje=1 vkev 24
Jec
Z Xink — thjk =0 VhEN,Vk €V (2.5)
ieC Jec
> Hinne =1 vkev 26)

iec
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Z dinijk <gq vk eV 2.7)

iEN jeC

sie +tij — M(1—xi%) < sk Vi,j EC,VkEV (2.8)
a; < sj < b; Vie(C,VkeV (2.9
x;jx € {0,1} Vi,jEC,VkEV (2.10)

The objective function (2.2) represents the actual cost of traversing the network's arcs by the
available vehicles V. Constraint (2.3) ensures that each customer is visited by a single vehicle
and exactly once. Constraints (2.4) and (2.6) state that each vehicle will start and end at the
depot. Constraint (2.5) is the flow conservation constraint, that is, if a vehicle serves a
customer, it is also required to depart from that customer. Constraint (2.7) relates to the
vehicles capacity q. Constraint (2.8) ensures that customer j is served after s;, + t;;. Note that
M represents a large number and it is used in order to linearize the non-linear constraint
xijk(Sik + tij) < XijkSjk, Vi,j € C,Vk € V. Inequalities (2.9) represent the time window

constraints, and relationship (2.10) represents the binary conditions for the problem variables.

The methods available to solve many types of the VRP can be grouped into three main classes
(Cordeau et al., 2002): (a) Heuristic algorithms, (b) metaheuristics, and (c) exact approaches.
Cordeau et al. (2002) present an extended review of the aforementioned classes, while
Gendreau et al. (2008) present a comprehensive review of metaheuristics for several VRP
variations including the VRPTW. Below we briefly review the most important solution
approaches for the VRPTW.

Heuristic Approaches

Due to the complexity of the VRPTW, heuristic approaches were initially used in order to
obtain feasible, but, in general, sub-optimal solutions. Heuristics still maintain an important
role: (a) in providing good, feasible initial solutions to other methods (e.g. metaheuristics) or,
(b) as embedded solution mechanisms in hybrid approaches and metaheuristics that provide
quick solutions or local improvements. There are four significant classes of heuristics for the
VRPTW:

1. Route construction heuristics start from an empty set of vehicles and a set of unrouted
customers and iteratively combine routes with customers. Usually they are based on
greedy procedures, in which the next best move is selected and implemented (Solomon,
1986; Solomon, 1987; Potvin and Rousseau, 1993).
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2. Route improvement heuristics start from an initial feasible solution and operate on
neighborhood solutions, i.e. solutions that are obtained by performing a single “move"
(i.e. node swapping, arc interchange, etc). The first related references are those of Russell
(1977), Cook and Russell (1978), and Baker and Schaffer (1986). Subsequently, several
authors developed a wide range of route improvement heuristics, including Solomon et al.
(1988), Savelsbergh (1985, 1990, 1992), Kindervater and Savelsbergh (1997), Cordone
and Calvo (1996), and Thompson and Psaraftis (1993).

3. Two — phase Heuristics: They are usually classified in two groups: (a) Cluster-first, route-
second, and (b) Route-first, cluster-second methods. In the former, the customers are first
grouped into clusters taking into consideration resource capabilities and limitations;
subsequently, a specific vehicle is assigned and routed for each cluster. In the latter case,
initially a single, large route is constructed (using other heuristic approaches) that includes
all customers and, then, it is divided into feasible vehicle routes.

4. Composite heuristics are combinations of route construction and improvement methods
(e.g., Kontoravdis and Bard, 1995; Russell, 1995; Cordone and Calvo, 1997).

Metaheuristics

Many authors have worked on avoiding the drawbacks of heuristic algorithms (e.g. reaching
local minima) by adding further intelligence. Metaheuristics may overcome local minima by,
for example, operating on large solution neighborhoods, exploring infeasible solutions,
“travelling” to solutions stochastically, etc. In general, metaheuristics can be classified in
three main classes (Toth and Vigo, 2002): (a) local search, i.e. simulated annealing (Chiang
and Russell, 1996; Tan et al., 2001), tabu search (Taillard et al., 1997; Tan et al., 2001), (b)
population search, i.e. genetic search (Mester et al., 2007; Homberger and Gehring, 2005),
and (c) learning mechanisms, i.e. ant colony systems (Gambardella et al., 1999). A
comprehensive literature review on metaheuristics developed for the VRPTW is provided in
Cordeau et al. (2002) and Toth and Vigo (2002), and has been further extended and updated
by Gendreau et al. (2008).

Exact Approaches

Exact approaches are based on network optimization and linear/integer/mixed programming.
There are three main research directions for exact approaches (as stated in Larsen, 2001):
Dynamic programming, Lagrangian relaxation, and column generation. Dynamic

programming has been used by Kolen et al. (1987) to solve problems of up to 15 customers.
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The other two methods are based on the decomposition principle, i.e. the main problem is
decomposed into two (or more) distinct problems exploiting the special structure of VRPTW.

The interested reader could find more information in Huisman et al. (2005).

In Lagrangian relaxation (Geofrion, 1974; Fisher, 1985) selected constraints are relaxed. That
is, these constraints are removed from the constraint set and are converted to terms of the
objective function, each multiplied by a penalty factor (the corresponding Langrangian
multiplier 1). In this case, the master problem consists of finding the values of the
Langrangian multipliers (as well as the objective solution). In the VRPTW case, the
subproblem is a shortest path problem with resource constraints (selected among the
remaining constraints and related to route feasibility). Lagrangian relaxation has been
addressed by Kohl (1995) and Kohl and Madsen (1997).

In column generation, the VRPTW is formulated through two dependent problem structures:
(@) The Master Problem (MP), which is usually formulated as a set partitioning or set
covering problem, and b) the sub-problem, which is a shortest path problem with time
windows and capacity constraints (SPPTWCC). The use of column generation in VRPTW is
overviewed in Kallehauge et al. (2005). The two problems interact by iteratively passing
solutions to each other until the optimum is reached. Specifically, the SPTWCC operates on a
modified cost matrix, which is based on the real costs combined with the dual prices obtained
from the MP. In turn, the MP incorporates the new feasible and negative-cost columns
(routes) generated by the SPPTWCC, and is re-solved. This procedure is repeated in an
iterative manner until no more feasible negative-cost columns are generated, and the optimum
linear bound is found. To obtain integer optimal solutions, the entire procedure is embedded

in a branch and bound scheme. A detailed description of the method is given in Section 2.2.1.

2.1.2 PERIODIC ROUTING PROBLEMS

In addition to single-period (single day) routing problems, increased attention has been given
to problems dealing with routing environments that incorporate several periods/days. The
most known classes of periodic problems in the literature include: (a) The Inventory Routing
Problem (IRP) (Dror et al., 1985; Campbell and Savelsbergh, 2004), and (b) The Periodic
Vehicle Routing Problem (PVRP) (Newman et al., 2005; Christofides and Beasley, 1984). In
these settings, the cost function concerns the overall horizon (several periods/days), and

decisions to be made include both the assignment of customers to certain periods and the
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routing of the customers within each period. In both the IRP and the PVRP, the frequency and

timing of visiting a customer has major impact on the total routing cost.
The Inventory Routing Problem

IRP combines inventory management with vehicle routing problems in a multi-period
environment. Products are consumed by the customers at certain consumption rates. Each
customer's storage capacity cannot be exceeded, and the fleet should serve all customers
efficiently without allowing stock outs. The objective of the problem is to create the
minimum-cost routes over the planning horizon, in order to replenish the customers
efficiently. Based on this, many different variations can be formulated by incorporating
different practical aspects such as inventory costs, stock out penalties, etc. Extended reviews
can be found in Campbell et al. (1998) and Nori (1999).

The recent work of Bertazzi et al. (2008) overviews "simple™ Inventory Routing Problems
that involve a single product, a finite planning horizon, and deterministic consumption rates.
Campbell and Savelsbergh (2004) present a two phase solution approach, in which customers
to be served are selected first, and then routes are being generated for each period. Jaillet et al.
(2002) address the IRP with satellite replenishment facilities, using a rolling horizon approach
to estimate the total expected annual cost. The customers have a variable consumption rate
and the cost of serving a customer is fixed (see Bard et al., 1998). Using a rolling horizon
framework, the authors estimate the cost for visiting customers in a repeated manner in order
to minimize the annual delivery cost. Bertazzi et al. (2005) test different customer delivery
policies as well as two different ways of decomposing the problem in order to minimize the
total delivery cost over the time horizon. Lau et al. (2000; 2002) deal with time windows; in
this case, the problem is decomposed into two sub-problems; the first defines the quantities to
be delivered to customers with respect to inventory related costs, while the second constructs

the routes for those customers selected by the first subproblem.

The presence of inventory and consumption considerations differentiates the IRP from the

topic of this dissertation. Additional basic differences include:

e In IRP each customer is served more than once based on the rate of consumption,
available capacity and routing aspects; in the problems discussed in this dissertation
each customer is visited exactly once

e IN IRP customers are known a priori; in our (dynamic) case only a limited number of

the customers are known (i.e. customers appear dynamically over time).
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The Period Vehicle Routing Problem

PVRP is a variation of VRP. The additional characteristics of PVRP are:

e The existence of a planning horizon P, i.e. a set of | P| consecutive periods (days)

e The existence of a set of alternative schedules (S), i.e. combinations of days, during
which a customer may be served.

e The frequency of service (f;) per customer i; that is, customers may require to be

served more than once within the planning horizon.

The above characteristics are discussed in Francis et al. (2008): The customers in PVRP are
served multiple times over a certain time horizon (several days). Each schedule of the set S of
possible schedules is defined by a vector of |P| elements, where each element ay, is defined

as:
1 If period p belongs to schedule s

= (2.11)
0 Otherwise

Note that when selecting a schedule s for a customer, then this customer will be visited in

Asp

each p for which az, = 1. Based on the frequency of service (f;), not all schedules are
compatible with customer i. That is, every customer i is compatible with a subset of
schedules, S; © Swhich satisfy the customer's frequency specifications. PVRP was introduced
by Beltrami and Bodin (1974) and most recent algorithmic advance has been achieved by
Baldacci et al. (2011). Several extensions have been proposed since, most of which embody
additional operational or practical issues, such as multiple depots (Cordeau et al., 1997;
Hadjiconstantinou and Baldacci, 1998), and intermediate facilities for replenishment
(Angelelli and Speranza, 2002). An interesting variation of the problem (PVRP with Service
Choice) was introduced by Francis et al. (2006), in which the frequency of visits is not fixed
but it is constrained to be no less than a lower service level limit; however visits may be

performed in excess of this limit (i.e. when providing better service).

Several solution methods have been proposed for the PVRP based on heuristics,
metaheuristics and mathematical programming techniques. Figure 2.1, from Francis et al.

(2008), overviews the evolution of PVRP models and solution methods.
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Problem Definition
Beltrami & Bodin (1974)

Formal Definitions /
Heuristic Solution Methods
Russelland Igo (1979)
Christofides & Beasley (1984)

Classical Heuristics Metaheuristics Math. Progr. based Methods
Tan and Beasley (1984) Chaoet al. (1995) Franciset al. (2006)
Russell & Gribbin (1991) Cordeauetal. (1997) Mourgaya & Vanderbeck (2006)

Gaudiosio & Paletta (1992) Drummond et al. (2001) Pirkwieser and Raidl (2009)

Figure 2.1: Evolution of models and solution methods for the PVRP (Francis et al., 2008)

For example, column generation has been used both in exact and heuristic approaches.
Pirkwieser and Raidl (2009) deal with the PVRP with time windows and provide the first
exact approach using column generation. In this implementation only the linear bound is
provided. Mourgaya and Vanderbeck (2007) use a column generation heuristic in order to
solve the PVRP. Their approach consists of three stages, where initially customers are
allocated to periods (days) to be serviced, then customers are assigned to the available
vehicles, and, finally, the routing sequence of each vehicle is optimized. The first two stages
consist of the tactical planning, and is the focus of the paper in order to minimize Euclidean
distances among the customers assigned to each vehicle (in favor of geographical clustering)
and to maintain a balanced workload among the vehicles. The third stage is not considered by

the authors. In this respect, customer sequencing is not an objective of the problem.

Although there are many similarities between PVRP and the class of problems studied in this
dissertation, including a) the assignment of customers to periods, b) the simultaneous solution
of multiple periods, and c) considering the cost over the entire multi-period horizon, there are

also distinct differences:

e In PVRP the customers can be visited more than once, while in our case each
customer is visited exactly once

e In PVRP the customers are scheduled based on a predefined frequency (service
patterns), while in our case each customer may be assigned to a certain set of
consecutive periods (period window)

e In PVRP all customers are known a priori in contrast to our (dynamic) case where
only a limited number of customers are known (i.e. customers appear dynamically

over time).
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Other Related Problems

Other problems in the literature that consider multi-period environments include those
addressing the combination of production and distribution. Gunnarsson and Rénnqvist (2008)
introduced and solved a planning and distribution problem in a rolling horizon framework;
Ravichandran (2007) proposes an ordering policy to optimize the expected operating profits
through several periods (weeks). The problem is solved through multi-period dynamic
programming. Zapfel and Bogl (2008) address and solve an integrated vehicle routing and
crew scheduling problem over a weekly horizon taking under consideration resource

constraints (both vehicle- and personnel-related).

2.1.3 MULTI-PERIOD ROUTING PROBLEMS

In this Section we focus on problems of the literature that are highly related to this
dissertation. We call these problems "multi-period routing problems™ and we distinguish them

from those overviewed in the previous Section.

Many researchers consider multi-period routing problems in which the customers become
known progressively, and they approach them in a rolling horizon framework. In Figure 2.2,

we classify multi-period vehicle routing problems in two different categories:

e The first category contains the MPVRP, in which all customers in the planning horizon of
the next P periods are known. This problem can be considered as a special case of the
PVRP.

e The second category is the Dynamic MPVRP, in which new customer requests arrive in
each period of the planning horizon. Thus, when approaching this problem by solving an
MPVRP for P periods in a rolling horizon framework, not all customers to be routed

within these P periods are known. For a formal description of both cases, see Chapter 6.

Note that in the literature, another dynamic multi-period case is reported which regards the
dynamic arrival of customers combined with the capability of modifying the schedule while
vehicles are en-route (Angelelli et al., 2009; Wen et al., 2009). This case is highly related to
the DVRP (Dynamic Vehicle Routing Problem); newly arrived customers can be either served
by the vehicles that are en route (current schedule) or can be postponed for next periods based

on their period window flexibility.
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PVRP MPVRP D-MPVRP DVRP

Figure 2.2; Related problems with the multi period routing problem

The existing literature in the field of multi-period routing problems is limited, as also stated
by Bostel et al. (2008) and Wen et al. (2009). This limited literature refers to both single and
multiple vehicle cases. Table 2.1 summarizes the main characteristics of the existing
references on the MPVRP.

Table 2.1: Multi-Period Vehicle Routing Problems

Multiple Time Period Window Solution Fixed
Vehicles Windows (# of periods) Procedure Routes
Teng et al. (2006) Heuristic/
1to3 .
Column Generation
Angelelli et al. (2007) lor2 Heuristic
Andreatta and Lulli (2008) lor2 Markov Process

Tricoire (2006; 2007), Metaheuristic/Column

v v
Bostel et al. (2008) Lor2 Generation
Wen et al. (2010) v (alvgo ;‘2_’) Heuristic
Angelelli et al. (2009) v lor2 Heuristic
Athanasopoulos and Minis v v 5 Heuristic v

(2010)

Teng et al. (2006) solved a single-vehicle multi-period routing problem that is based on the
travelling salesman subset-tour problem (Mittenhal and Noon, 1992). In this case, customers
are served once within certain predefined time periods. An additional profit is associated if
service occurs within the predefined time periods. A column generation procedure is proposed
and its efficiency is compared against heuristic methods.

Angelelli et al. (2007) considered a single-vehicle multi-period problem, and minimized the
cumulative distance (cost). In their setting, customer requests arrive at the beginning of each
period, and can be served in the next two consecutive periods. Different strategies for the
allocation of customers (i.e. as-soon-as-possible, as-late-as-possible, and more sophisticated

combinations) have been proposed and evaluated.

Andreatta and Lulli (2008) considered a special case of the multi-period routing problem with

stochastic demand. Service is provided by a single vehicle either the day following the arrival
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of the request (urgent service) or the subsequent day (regular service). The problem was

formulated and solved by an aggregate Markov model using rewards.

Tricoire (2006; 2007) and Bostel et al. (2008) have studied another case of the MPVRP in
which a certain number of customer requests are served over a horizon of P periods. Each
request is served within a period window and a certain time window. A limited number of
uncapacitated vehicles, starting from different locations (depots), are available for service. All
vehicles have to respect certain labor rules, such as break intervals and maximum shift time.
The problem is addressed both by a metaheuristic (memetic) algorithm and by an exact
column generation approach. In the latter, the problem is divided in smaller problems
(considering the next P periods) and is solved iteratively in a rolling horizon framework.
Although this problem presents many similarities with our case, there are also many
differences in the way the problem is approached and analyzed. Additionally, the current
work addresses the generic case of the multi-period routing problem, based on which we
investigate alternative column generation strategies for exploiting the special structure of

multi-period problems.

Angelelli et al. (2009) expanded their research in MPVRP to address a dynamic setting with
multiple vehicles, in which requests arrive as time unfolds and can be routed either in the
period received or in the following one. A variable neighborhood search heuristic (see
Mladenovic and Hansen, 1997) has been adapted with two different strategies: One that
considers only the first period, and one that considers the first and the subsequent periods.
Various objective functions have been proposed per strategy, which seek to maximize the

number of customers as well as routing efficiency.

Wen et al. (2010) also address the MPVRP in a multiple vehicle setting. The problem was
solved using the above variable neighborhood search heuristic along with a tabu search
procedure (see Cordeau et al., 1997). Alternative objective functions were addressed,

including distance minimization, customer satisfaction and/or workload balancing.

Athanasopoulos and Minis (2010) solved a special case of the MPVRP, in which mandatory
(inflexible) and flexible orders co-exist. The mandatory orders must be served within a certain
period, and the flexible ones must be served within the entire planning horizon. This problem
was addressed in two phases: Initially, predefined routes were constructed (to serve the
mandatory customers) and, then, flexible customers were allocated in these routes at the

appropriate periods of the planning horizon.
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2.2 BRANCH AND PRICE THROUGH COLUMN GENERATION

In the present Section we describe the Branch-and-Price method, an exact solution approach
for vehicle routing problems, which is based on the column generation method combined with
Branch-and-Bound. Section 2.2.1 reviews significant references for employing the column
generation method to solve vehicle routing problems. Section 2.2.2 presents related references
for the subproblem embedded within the column generation method (i.e. the shortest path
problem with resource constraints). Finally, Section 2.2.3 presents the overall Branch-and-
Price procedure that combines the aforementioned methods and provides integer optimal
solutions to the routing problem. Note that these methods are further elaborated upon in
Chapter 3 (column generation and shortest path problem with resource constraints), and
Chapter 5 (Branch-and-Price).

2.2.1 COLUMN GENERATION

A formal historical review of the column generation method is provided by Desrosiers and
Lubbecke (2005). Ford and Fulkerson (1958) were the first to point out the advantages of
decomposing the structure of linear programming problems. Later, Dantzig and Wolfe (1960)
formalized their well-known decomposition scheme which, basically, generalized the column
generation method. The first practical application using Column Generation was addressed by
Gilmore and Gomory (1961; 1963) for the cutting stock problem. They provided a strategy to
deal with a large linear program by splitting it into a master problem and several sub-
problems; in this scheme, information to the master problem is added in a repetitive manner
by solving the subproblems. Luenberger (1989), Bradley et al. (1977) and Desaulniers et al.
(2005) discuss the theoretical background of the decomposition and column generation
methods. Additionally, Desaulniers et al. (2005) present research directions, as well as many

applications of the column generation method.

Column generation is regarded as one of the most promising exact methods for addressing
vehicle routing problems and, thus, it has attracted considerable attention by the related
community. Desrosiers et al. (1984) and Agarwal et al. (1989) dealt with the VRPTW without
capacity constraints, and the VRP, respectively. Desrochers et al. (1992) were the first to deal
with the VRPTW. Since then a large number of references on the subject can be found (Kohl,
1995; Larsen, 2001; Feillet et al., 2006; Chabrier, 2006). A survey on the applications of
column generation for the VRPTW is provided in Kallehauge et al. (2005). A formal and
analytical description of the column generation for the MPVRPTW is presented in Chapter 3.
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2.2.2 SHORTEST PATH PROBLEM WITH TIME WINDOWS AND CAPACITY
CONSTRAINTS (SPPTWCC)

In vehicle routing problems, the SPPTWCC is typically the subproblem in the column
generation framework, and, in general, it controls the efficiency of the method. The most
common approaches to deal with the Elementary SPPTWCC are based either on Dijkstra
(1959) algorithm (label setting), or on the Bellman-Ford algorithm (label correcting). While
label correcting approaches create labels by processing nodes in an iterative manner, label
setting algorithms select the next node to expand based on the lowest resource consumption.
A label setting algorithm has been used by Larsen (2001) and Kohl (1995) in order to
generate feasible routes (proposed ones) to be passed to the master problem. Note that in this
case the master problem selects the best combination of routes among those proposed by the
subproblem, in the context of column generation. Feillet et al. (2004) and Chabrier (2006)
utilize a label correcting algorithm based on Desrochers et al. (1988; 1992) in order to
generate proposed routes for the master problem. Both sets of authors have proposed

modifications in order to include elementarity into the Desrochers et al. (1992) algorithm.

Non-Elementary Shortest Path with Time Windows and Capacity Constraints
(SPPTWCC)

Due to the complexity of the ESPPTWCC, many researchers have studied the relaxed version
of the problem, which results from eliminating the elementary constraints and, thus, allowing
cyclic paths. Note that infinite cycling is anyway prohibited due to time and capacity
constraints. This relaxation has been addressed by pseudo-polynomial solution algorithms
(Desrochers et al., 1992; Desrosiers et al., 1995). Since then, a number of researchers used the
SPPTWCC formulation to develop column generation algorithms for the VRPTW (Kohl,
1995; Larsen, 2001). In such formulations, the lower bound obtained was usually weaker that
the lower bound obtained from elementary formulations. Thus, to improve the lower bounds,
many researchers tried to deal with cycling using k-cycle elimination. 2-cycle elimination was
initially developed by Houck et al. (1980) and Kolen et al. (1987). Their methods were
embedded in the formulations of Desrochers et al. (1992), Kohl (1995), and Larsen (2001).
Irnich (2001) and Irnich and Villeneuve (2003) developed the idea of k-cycle elimination.
They also showed that by eliminating longer cycles, the lower bound obtained by the column
generation process was drastically improved. k-cycle elimination is further discussed in
Ziegelmann (2001), and Irnich and Desaulniers (2005).
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Elementary Shortest Path with Time Windows and Capacity Constraints (ESPPTWCC)

The elementary version of the SPPTWCC problem does not allow cycling, and, therefore, (a)
no closed loops can be generated, and (b) no customers can be served more than once within
the same trip. The problem has been proven to be NP-hard (Dror, 1994; Kohl, 1995) due to
existence of the negative arc costs (see below) and the resource consumption property. The

problem was initially solved by Beasley and Christofides (1989).

Based on the efficiency of the results obtained in the k-cycle elimination studies, Chabrier et
al. (2002), Chabrier (2006), Feillet et al. (2004) and Feillet et al. (2005) have studied the
elementary version of the SPPTWCC in order to obtain better lower bounds. Since
computational complexity prevents the solution of large-scale problems (large number of
customers, wide time windows, etc), attention has been paid to the development of intelligent
dominance criteria, which reduce the search space without sacrificing optimality.

Boland et al. (2006) and Righini and Salani (2005) merged the non-elementary with the
elementary SPPTWCC in order to utilize the strong features of each method; they proposed to
solve the SPPTWCC and add elementary constraints to certain customer nodes as the solution
procedure progresses. Some of the most promising approaches to-date for the VRPTW have
been provided using the partial elementarity principle (Desaulniers et al., 2006) or full
elementarity (Feillet, 2005).

Related references to our multi-period setting include the following: In Pirkwieser and Raidl
(2009) new columns, which are generated by each subproblem, are transferred to all other
subproblems without solving each subproblem separately. Note that the authors do not
elaborate more on the strategy and whether or not some columns may be eliminated for some
periods due to infeasibilities in schedule and/or visit frequency. Mourgaya and Vanderbeck
(2007) propose a "cyclic generation strategy", in which one subproblem is solved and the
generated columns are provided to the other subproblems. Note that in both references, the
subproblems to be solved generate feasible columns to all periods, which is not the case in our

problem.

2.2.3 BRANCH AND PRICE

When solving the relaxed Multi-Period Routing Problem with Resource Constraints (e.g. time
windows and capacity constraints), the methods described in Chapter 3 and 4 provide a lower

bound (LB) of the solution. In case this LB corresponds to an integer solution, the optimal
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solution to the problem has been found and no further exploration of the solution space is
necessary. In case the LB corresponds to a fractional solution, then it is a bound of the
minimum cost of the optimal solution, and further investigation of the solution space is
necessary to obtain the integer optimum.

Branch and Bound (B&B) is a simple generic algorithm that explores the solution space in
order to provide integer solutions. In the problems related to this dissertation, B&B
guarantees that the optimal integer solution will be obtained if all the columns (routes) are
known. In the case of Column Generation (CG), in which only a small portion of the total
feasible columns (routes) is available, B&B cannot guarantee optimality. A straightforward
implementation of the B&B procedure on the final optimal (lower bound) solution does not
guarantee that the optimal integer solution will be found, since only a subset of the feasible
routes (columns) has been generated by the subproblem. Thus, in order to be able to obtain
the optimal integer solution, the column generation method should be applied to each node of
the B&B tree, allowing new columns (routes) to be created. This procedure is called Branch
and Price (Barnhart et al., 1998; Desrosiers et al., 1995; Soumis, 1997; Danna and Le Pape,
2005) and was initially proposed by Desrosiers et al. (1984) for the VRPTW. In addition to
the exact B&P approach many researchers have proposed mixed approaches in order to speed
up the solution procedure. Danna and Le Pape (2005) proposed a mixed scheme, which uses
B&P, an MIP heuristic solver and a metaheuristic, while Jepsen et al. (2008) used the Chvatal
rank-1 cuts (subset row inequalities) in order to obtain better lower bounds through a branch-
and-cut-and-price algorithm. A more detailed description of the technical background of B&P

is provided in Chapter 5.

2.3 RESEARCH CONTRIBUTION

Our contribution to the study of multi-period routing problems provides insights in the
mathematical formulation, the exact column generation approach, the multi-period related
acceleration techniques, the theoretical understanding of the multi period setting, as well as
into significant practical aspects of the problem (limited resources, predefined routes).
Although elements of this problem have been investigated in the literature, the dissertation
addresses new aspects of the problem and makes the following contributions:
1. We propose a decomposed mathematical formulation for the generic case of the multi-
period routing problem. This formulation generalizes the one presented in Bostel et al.
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(2008), and, as such, can be used as the basis for describing several variations of multi-
period routing problems.

By understanding and taking advantage of the special structure of the multi-period
problem, i.e. (a) the independence of the column generation subproblems per period and
(b) the flexibility of customers to be routed in several alternative periods, we developed
two different strategies to solve the subproblems, the most "costly" part of the column
generation method. These strategies are: (i) one subproblem is solved, and the generated
columns are transferred to the others; (ii) a single, unified subproblem is solved,
considering all periods simultaneously. All required modifications to the classical column
generation approach for solving multi-period problems are studied and discussed.

. We compare these two strategies with two existing approaches, whereby each subproblem
is solved separately and sequentially, or in parallel. Specific instances, which address
different patterns of period flexibility, were created in order to benchmark the
aforementioned strategies. We show that significant computational savings can be
achieved by using the proposed strategies, especially in cases in which customers have
increased period flexibility. These savings are relevant to both determining the lower
bound, and the optimal integer solution. This result has been obtained through extensive
experimental investigation that uses Solomon benchmarks (and their extended versions),
in order to generate appropriate test cases for large numbers of consecutive periods and
different customer period window patterns.

. Additionally, a simple pruning heuristic is proposed in order to accelerate the solution
procedure. The performance of this heuristic, with respect to the efficiency of both the
final solution and the required computational time, indicates its suitability for solving
multi-period vehicle routing problems in long horizons using a rolling horizon framework.
. As far as the rolling horizon framework is concerned, we focused on two arrival patterns
of customer requests: (a) the quasi-static (MPVRP), and (b) the Dynamic MPVRP. For the
first case, we propose and discuss three theoretical statements concerning the
implementation horizon (M) and the planning horizon (P), which are key parameters in
the rolling horizon implementation. These statements establish the principles of applying
the proposed methods to solve routing problems in long-term time horizons.

In order to address significant practical aspects, we modify the MPVRPTW model to take
into consideration cases in which not all customer orders can be served within the
planning horizon (e.g., the number of the consecutive periods that are simultaneously
considered in each MPVRPTW). This new modification is achieved by introducing
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appropriate penalty functions for the unserved customers taking into account their period
flexibility. Five such penalty functions are proposed, analyzed and compared.

Significant experimental results were obtained considering both cases: (a) the quasi-static
(MPVRP), and (b) the Dynamic MPVRP. For these cases, larger planning horizons result
in lower routing costs, validating the appropriateness and the efficiency of the proposed
methods. The experimental results follow the same pattern for different time windows, as
well as for different geographical distribution of customer orders. The above conclusions
are also validated through appropriate statistical analysis.

We also apply our multi-period approach to the case of the multi-period routing problem
with pre-assigned customers, which has significant practical applications. A new solution
approach is provided, based on a modified version of the column generation procedure
proposed for the general MPVRPTW. Extensive experimental investigation indicates that
significant cost savings can be achieved by considering wider planning horizons in the

planning process.
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Chapter 3: ~ THE MULTI-PERIOD VEHICLE ROUTING

PROBLEM WITH TIME WINDOWS

The problem addressed here is related to environments in which a fleet of vehicles serves a set
of customers over a multiple-period (planning) horizon. In this environment, every
assignment has some time-related flexibility, i.e. it can be assigned/routed to one or more
periods within the planning horizon. The challenge that arises is to simultaneously assign
customers to periods (days) and route the vehicles to serve these customers. The objective of
the problem is to minimize the total cumulative routing cost throughout the planning horizon.

The described problem is related to the well-known VRP and PVRP cases. However, VRP
requires that each customer is served within a single period, while PVRP has a predefined
periodic visit pattern for every customer. The problem has been formulated here as the general
Multi-Period Vehicle Routing Problem with Time Windows (MPVRPTW). Versions of the
MPVRP with or without time windows have been addressed in the literature by Angelelli et
al. (2007), Tricoire (2006) and Wen et al. (2010). In this dissertation we present alternative
exact solution methods that use column generation and exploit the special multi period
structure of the problem (see Chapter 4).

This chapter has dual purpose, that is: (a) To define the general mathematical model of the
MPVRPTW and (b) to present the basic column generation solution method that that forms
the foundation of the novel alternative approaches discussed in Chapter 4. In the remainder of
this Chapter, Section 3.1 presents the mathematical model of MPVRPTW and Section 3.2
describes the basic column generation method for solving the MPVRPTW. Section 3.3
presents the solution mechanism for the Elementary Shortest Path Problem with Time
Windows and Resource Constraints (ESPPTWCC), which is the core component of the
column generation framework in our case. Finally, Section 3.4 presents a conceptual synthesis

of the overall column generation method for the MPVRPTW.

3.1 MATHEMATICAL FORMULATION

Our formulation for the MPVRPTW is based upon the formulation of the VRPTW presented
by Cordeau et al. (2002) and by Wen et al. (2010) for the MPVRP. Cordeau et al. (2002)
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model is further expanded to accommodate: (a) the multiple periods, and (b) the period

window constraints of the customers.

Consider a planning horizon of |P| periods and let p. be the current period. Also assume that
all customers should be served over the next P periods, that is in the planning horizon
[pc + 1,p. + P]. For simplicity, and without loss of generality, the current period (planning
period) is set to p. = 0 and, the planning horizon is simplified to [1, P]. The basic notation of

the problem is given below.
H Set of P consecutive periods (planning horizon)
N ={1,..,n} Available customers (orders) at the beginning of period 1

W =NuU{0,n+ 1} Set of vertices, including the starting and ending depot. Every vehicle
route starts from the starting depot (node 0) and finishes at the ending
depot (node n + 1). Two nodes are used for the depot in order to
allow a vehicle to remain inactive within a period, i.e. establish a

(0,n + 1) connection (see Cordeau et al., 2002)
A={(ij):i,j e W} Setofarcs connecting all vertices (nodes) in W

I, = [&],¢7] Period window of customer i; where 1 <&} < &7 < P. Note that

when a customer requests service within [¢7, &7'], where &' > P, this

customer’s period window will be reduced to [¢7, P]?
Cij Cost for traversing arc (i,j),{i,j € W}

tij Time for traversing arc (i, j), {i,j € W} including the service time of

customer i. For nodes 0 and n + 1 the service time equals zero.

d; Demand of customer i, {i € N}

K, Set of |K, | available vehicles per each period p, {p € H}

Qr Capacity of vehicle k during period p

[a;, b;] Time window of customer i, same for each period within I;; for nodes

0Oandn + 1, ay = a,44 is the earliest time each vehicle can leave the

! In Chapter 6 the more generic case, where &¢ > P, is discussed along with alternative solution procedures.
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depot, and by = b,,,4 is the latest time each vehicle can return to the

depot.

Two sets of variables are used for the model: x;,, equals one if route k of period p traverses

arc (i,j) and zero otherwise; s;,, represents the start of service for customer (node) i by

vehicle k within period p. s, is set to zero if node i is not served by a vehicle (say k) within

a period (say p).

The problem’s objective is to minimize the total cumulative routing cost over the planning

horizon, and is given by:

min(z) = Z Z Z CijXijpk

PEH K€Ky (i,))€A

Constraints

Xijpre = 1
pEl; kEKp jJENU{n+1}

DI

pél; kEKp JENU{n+1}

xojpk =1
JjENU{n+1}

Xijpk = Xjirpk = 0
iENU{0} i"eNU{n+1}

Xin+1pk = 1
jENU{0}

Zdi z Xijpk < QF

IEN  JENU{n+1}
Sipre + tij = M(1 = Xijpic) < Sjpi

a; Z xijpk < Sipk < bi

jENU{n+1} jENU{n+1}

a; < Sipk < bi

xl-jpk € {O, 1}

Xijpk

(3.1)
VieN (3.2
VieEN (3.3)
Vp € H,Vk €K, (3.4)
Vp € H,Vk €K, Vj EN (3.5)
Vp € H,Vk €K, (3.6)
Vp € H,Vk €K, (3.7
Vp € H,Vk € K,,V(i,j) EA (3.8)
Vp € H,Vk €K, Vi €N (3.9
Vp € H,Vk € K,,i € {0,n+ 1} (3.10)
Vp € HVk €Ky, (i,j) EA (3.12)

Objective function (3.1) expresses the total routing cost over the entire planning horizon.

Constraints (3.2) and (3.3) specify that each customer will be visited once (one route and

during one period only) within the corresponding period window for that customer.
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Constraints (3.4) and (3.6) specify that each vehicle departs from the starting depot (0) and
ends at the ending depot (n + 1). Constraints (3.5) are the flow conservation constraints for
every route. Constraint (3.7) secures that the capacity of each vehicle is not violated. Note that
subtour elimination constraints are not needed in this model, due to the time windows and the
variables s;,,. Constraints (3.8), (3.9) and (3.10) ensure that each customer is served within
its time window. Note that M represents a large number, which should be larger than M;; =
max (b; + t;; — a;,0) for each arc (i, ). Finally, Constraints (3.11) force the flow variables

to assume the binary values {0, 1}.

The solution procedure that is described in the present dissertation is based on the Column
Generation (CG) method which decomposes the linear relaxation of the above problem to a
Master Problem (MP) and several subproblems (SP). Since MP integrality constraints have
been relaxed, the latter is solvable using linear programming techniques; integer solutions are
provided through a Branch and Price framework based on the lower bound provided by the
CG method (See Chapter 5). Also note that, although the decomposition of problem (3.1)-
(3.12) into a Master Problem and the relevant subproblems, is fundamentally based on the
Dantzig-Wolfe decomposition (Dantzig and Wolfe, 1960), a more straightforward approach

will be used following the approach of Desrochers et al. (1992) and Desaulniers et al. (2005).

3.2 LOWER BOUNDS THROUGH COLUMN GENERATION

This section discusses the essential features of the MPVRPTW within a column generation
framework. This decomposition is inspired by related approaches proposed by some authors
to address the VRPTW (Desrochers et al., 1992; Larsen, 2001; Feillet et al., 2005, Chabrier,
2006), the PVRP (Mourgaya and Vanderbeck, 2007; Pirkwieser and Raidl, 2009) and the
MPVRPTW (Tricoire, 2006; Tricoire, 2007; Bostel et al., 2008).

3.2.1 THE PROPOSED MASTER PROBLEM

In the decomposed model, the Master Problem (MP) includes linking Constraints (3.2) and
(3.8), which cannot be treated independently by the subproblems. The reason is that these
constraints cannot be separated either per period p € P or per vehicle k € K,,, since each is
expressed as a sum over all periods and vehicles. It is also noted that in the model of Eqgs
(3.1)-(3.12) the vehicle constraints are not defined explicitly as a separate set of constraints

but are rather implied by the existence of the set K,, for each period. That is, the objective
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function, as well as the constraints, are defined for a limited set of vehicles per period p, of

size |K,|.

The MP is a Set Partitioning Problem, since every customer should be serviced exactly once.
Desrochers et al. (1992) recommended the Set Covering formulation for the VRPTW, which
allows visiting each customer more than once. This modification was later adopted by many
researchers (Feillet et al., 2005) and allows for simpler initial solutions to the linear relaxation
of problem. In addition, as stated in Feillet et al. (2005) the set covering formulation is also
preferable with respect to convergence, since the shadow prices related to Constraint (3.16)
are always non-negative, which is not true in the Set Partitioning formulation. The latter
property stabilizes the solution process (i.e. providing for smoother convergence of the
shadow prices to their optimal values), thus leading to more efficient computations of the

shadow prices.

Note also that the Set Covering formulation Problem is optimal with respect to the Set
Partitioning Problem. Although Set Covering allows customers to be assigned to more than
one vehicle, it is straightforward to show that in the optimal solution every customer will
participate only once. For example, consider a solution that includes two routes that contain a
common customer. There is always a better solution (with lower routing cost) in which the
common customer has been eliminated from one of the former two routes. This property
holds when the triangular inequality holds. Based on this fact, even if the linear programming
solution procedure travels through solutions with multiple visits to customers, finally it will

conclude to a solution that visits each customer just once (Feillet et al., 2005).

For the reasons stated above, in this work we adopt the Set Covering formulation.

Let p =1, ..., P denote the periods of the planning horizon and Q, the set of all feasible

routes for period p. Coefficients a’. are defined as:

1 if customer i is included in route r in period p

P = 3.12
%ir {0 otherwise (312)
Variables x? are defined as:
p_ {1 if route r of period p is used in the solution (3.13)
" L0 otherwise '

If C? denotes the cost of route r of period p, then the objective function of the Master

Problem is of the following form:
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P
min Z Z CPxt (3.14)

p=1T€NQ,
xP <K
= Vp EP (3.15)
r€fNp
P
Z Z . x> 1 VieN (3.16)
p=1T€fy
x? = {0,1} 317)

The objective function (3.14) minimizes the total cumulative routing cost. Constraints (3.15)
restrict the number of vehicles to be used in each period to the available fleet, and Constraints
(3.16) are the set covering constraints. Eliminating binary Constraints (3.17) relaxes the

problem and permits it to be solved using well known linear programming techniques.

In the aforementioned formulation, we have assumed that all feasible routes for every period
(©2,, ) are known a priori. Given, however, that the Q,, sets will not be known in their entirety,
we denote as (., a subset of Q,, . Every set Q, for every period p contains feasible routes for
this period. Additionally, the initial collection of sets (., should contain a feasible initial
solution. Note that, in our case, due to the limitation on the number of vehicles (Constraints
3.16) the use of the trivial initial solution that comprises one route per customer (i.e., depot —
[ — depot) is not feasible. The problem involving the Q,, instead of the Q,, , sets is called the
Restricted Master Problem (RMP).

In order to better explain the definition of the MP and its relationship to the RMP, an
illustrative example is given in Fig. 3.1; the figure shows the form of the coefficient matrix of
the linear model along with the Right Hand Side (RHS) vector. Note that each element of the
first p elements (Vp) of the RHS represent the number of available vehicles per period p. The
first |[P| rows represent the period constraints (3.15), while the next |N| rows represent the
set-partitioning constraints. Thus, each column comprises a vector of |P| + |[N| elements. The
first | P| elements of every column are all zeros except from one element that is related to each
period and is equal to one. For example, for period 3, the vector of the |P| elements is
[0010..0]". The remaining |N| elements represent the actual route as described in (3.12).
Dark areas are the known routes per period, forming the RMP constraint set. The latter
contains only a limited number of the spectrum of feasible routes per period (blue plus grey
areas, MP).
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Restricted Mastelr Problem (RMP)

» 1111111 . 111 Vi
o
T 2 V2
o =
p 111111 .. 111 VP
o 1 1
E 2 1
5 1
Q. 1
n = 1
1
1
N 1

I Master Problem (MP) |

Figure 3.1: Master Problem (MP) and Restricted Master Problem (RMP). Set partitioning formulation.

In order to reach optimality for the MP by solving the RMP, we should be able to generate
good quality columns that are not known (from the grey areas), include them to the current
RMP (blue areas) and solve the new updated RMP. This could be done iteratively until the
optimal solution is obtained. The role of the subproblems is precisely the generation of these
new columns (routes per each period), as discussed in Section 3.2.2. This can be repeated
until no new columns (routes) with negative reduced cost can be provided by the

subproblems. Then the optimal lower bound has been obtained.

It is noted that solving the subproblem is equivalent to selecting a new basic variable in a
classic simplex procedure. The termination criterion is also equivalent; that is, all reduced
costs are non-negative or no new columns with negative shadow prices can be generated by
the subproblems. This will be further explained in Section 3.2.2. Luckily, and as practice has
shown, only a portion (hopefully restricted) of the total feasible routes of Q,s will be

generated prior to reaching optimality.

Bostel et al. (2008) and Tricoire (2007) have proposed a similar decomposed formulation for
a special case of the multi-period routing problem with multiple depots. In their model a
different constraint on the vehicle availability is proposed: Instead of defining a set of
available vehicles per period, they define a (larger) set of "resource-days". Each "resource-
day" represents a combination of periods and vehicles, i.e. the availability of one vehicle

during one period. In their formulation, one subproblem is solved per each resource-day. That
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IS, given p periods and K vehicles (same number of vehicles per period) a total number of
p X K subproblems need to be solved. This increases significantly the complexity of the

formulation and, indeed, of the solution algorithm in relation to the one proposed above.

3.2.2 THE SUBPROBLEMS

As already discussed, the MP and the RMP consider only the linking constraints. All the
remaining problem constraints are transferred to the subproblem(s) and they form the
Elementary Shortest Path Problem with Time Windows and Capacity Constraints
(ESPPTWCC).

Note that the solution provided by the current RMP is optimal with respect, of course, to the
columns (routes) that are contained in the Q;, sets. In order to check if this solution is globally
optimal for the MP, we should calculate the reduced costs (c‘f) of each non-basic route
7 € Q, of each period p (note that ,, contains also the routes that do not yet exist in the
current RMP). The reduced cost for each column related to route r and period p is given by
the following equation:

c? =cf - Z ahm; — o, vr € 2, Vp €P (3.18)

iEN

where m; and o, are the shadow (dual) prices related to customer Constraints (3.17) and
period Constraints (3.16), respectively. The calculation of Eq. (3.18) for every route contained

in the current RMP is straightforward, since all elements are known.

In the classical simplex procedure, having calculated all reduced costs, and in order to insert a
route 7 in the basic solution (i.e. make a non-basic variable, basic), its reduced cost (%)
should be negative. It is already known that the reduced cost c‘f, of each non-basic route
r' € Q,, in every period p (routes in the blue area of Fig. 3.1) is non-negative, and, therefore,
should not be considered for inclusion in the basis of the current RMP. Thus, routes 7 & Q,,
that have not yet been included in the RMP (grey areas of Fig. 3.1) should be generated, along
with their reduced costs. To do so, for each period p a minimization problem (subproblem) is

solved, in which the route 7,; with the minimum reduced cost (Ef*) is derived, that is:

_p . _p
Ca = min (Ck
7 TE{%\%}( ¥) Vp €P (3.19)

Then, the overall minimum reduced cost Z'f*, over all periods is calculated:
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ch. = rgl(gi;l(ff*) (3.20)

Note that thus far, this procedure resembles a typical iteration of the classical simplex
procedure. The twist is that the routes  (i.e. columns) are not known. Consider the following
reformulation of the routing cost of route r in period p with respect to the arc cost

coefficients:

cy = Z ap.cij jEit,Vren,VpeP (3.21)
iEN

where j € i denotes that customer j is the next customer to be visited after customer i in

route r of period p, and c;; is the cost traversing arc (i, j). Combining Eq. (3.21) and Eq.

(3.18) we obtain:

C—g:Zagcij_zagni_gpzgag(cij—ni)—ap (3.22)

iEN iEN iEN
Thus, Eq. (3.19) for the subproblem per period p becomes:

k. = min() ab.c; - 0,) (3.23)

Cost factors c;; are the modified costs coefficients of each arc (i, j), which can be negative.

Cij_T[i VlEN\{O,n'i'l},]:FO
, Cij i=0,j+0
C.. — .
ij 400 i=n+1 (3.24)
+0oo j=0

Note that the coefficients al in Eq. (3.23) are not known. The scope of each subproblem is to
define the values of coefficients afr\ that minimize the subproblem, i.e. the minimal (shortest)

path, and the relevant reduced cost.

In order to further transform Eq. (3.23) into a double-index mathematical formulation,
coefficients al. are substituted by the arc variables x;j. Consider for example, a route that
visits customers 2, 4 and 6 from a set of six customers, that isr = [D 2 4 6 D], where D
represents the depot, and the route’s related cost C,.. The equivalent representation of this
route, in terms of the coefficients afr is[010101]7. Note that the depot is not represented
in the afr coefficients. This route is also defined by the arc variables x;,, x,4, x4 and x4, and

the relevant route cost (C, = c1, + Ca4 + €46 + C41). Note that the subscript (k) for vehicle is
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dropped for each subproblem, since the vehicles are identical and the relevant constraints
remain in the RMP. Then, Eq. (3.23) takes the following form:

min Z Z cijx
{ENLU{0} jEN,Un+1}

ijp ~ % (3.25)

Note that Eqg. (3.25) is solved per each period p. Initially and in order to respect period
windows, in the subproblem of each period p -Eq. (3.25)- only the feasible customers (i.e.
customers that are allowed to be routed in period p) are included. The set of the feasible
customers per each period is represented as N,,. Based on that, there is no need to include
additional constraints for period window feasibility. Of course, a customer will participate in
as many subproblems as the periods in its period window. Additionally, the cost, modified

4

cost and time matrix consisting of coefficients c;;, ¢;; and t;; are defined independently vp

and contain only the links among the customer set N, U {0,n + 1}.

In the RMP only feasible routes are allowed to be inserted, and thus Eq. (3.25) should be
restricted to generate only feasible routes. For that, Constraints (3.26) to (3.32) are added to
each subproblem (see below). Note that these constraints secure the feasibility of a single path
(route), are derived from the original problem formulation (3.1) - (3.12), and are defined for

each period p € P.

Z Xojp =1 (3.26)

jen

Xijp — z Xjirp =0 Vj €N, (3.27)
i€EN,U{0} i'eNpu{n+1}
in,n+1.p =1 (3.28)
IEN
Sip + tij - K(l - xl-jp) < Sjp Vl,] € Np U {O,Tl + 1} (329)
a; < Sip < bi Vi € Np U {O,Tl + 1} (330)

Z d; Z Xijp < Q (3.31)

IENp,  jENLU{On+1}
xl-]-p € {0,1} Vl,] (S Np (332)
Also note that, without loss of generality, we can drop subscript (p) from variables x; ;,, since

every subproblem regards a specific period p.

The objective function of (3.25) expresses the route with the minimum modified cost for

period p. Constraints (3.26) and (3.28) specify that the route starts and ends at the depot.
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Constraints (3.27) are the flow conservation constraints. Constraints (3.29) and (3.30) ensure
that every customer will be served within its time window. Constraint (3.31) respects the
capacity of the vehicle assigned to the route. Finally, Constraint (3.32) forces the flow

variables to assume binary values {0, 1}.
Note

By observing the original problem formulation (3.1) to (3.12), subproblem independence can
be defined both per period and per vehicle. For problems for which identical vehicles are
considered, only one subproblem needs to be solved per period, as in the case of VRPTW
(Kallehauge et al., 2005, Larsen, 2001, Desrochers et al., 1992), where only one period is
considered. This is also the case in the current problem, in which the subproblem per period p
is different only with respect to the customers available to be routed. The solution of each
subproblem will provide candidate routes that can be assigned to every available vehicle in

the related period.

3.3 THE ESPPTWCC — SOLUTION PROCEDURE

The subproblem described above is an Elementary Shortest Path Problem with Time
Windows and Capacity Constraints (ESPPTWCC). Thus, existing, efficient algorithms for the
ESPPTWCC can be utilized. The method that has been implemented in the present research is
based on the label correcting algorithm of Feillet et al. (2004). The column generation

scheme, which comprises the RMP and the subproblems, has two significant characteristics.

e It is guaranteed to converge to the optimal solution (optimal lower bound)
e Since each subproblem is NP-hard, practical convergence of the column generation
scheme to the optimal solution depends on the speed (efficiency) of solving the

subproblems.
Note on complexity

Although the shortest path problem (SPP) is polynomial [e.qg. it can be solved in O(nm) by the
Bellman-Ford algorithm], the inclusion of the time-window and capacity constraints turns
ESPPTWCC into an NP-Hard problem. By relaxing the elementarity constraints, i.e.
SPPTWCC, the problem remains NP-hard, but can be solved in a pseudo-polynomial time. A
detailed description of the complexity of the ESPPTWCC is provided in Larsen (2001).
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Therefore, in practice, optimality depends strongly on the computational efficiency of solving
ESPPTWCC. As a consequence, our effort in this part of the research has focused on ways to
improve the efficiency of the algorithm to solve ESPPTWCC in order to be able to solve to
optimality problems of practical importance. To do so, we have enhanced the algorithm

considerably by:

e Incorporating successful improvements from a wide spectrum of work from the
literature (discussed below), and
e Developing novel improved column generation structures, based on the intrinsic

characteristics of the multi-period problem in hand (see Chapter 4)

The label correcting algorithm of Feillet et al. (2004; 2005) adopted as the basis of the
solution algorithm, along with several other improvements incorporated in our work, are

described below.
Solution Procedure

Each partial path (§) ending at node i is associated with a label Ls; = [Csi, tsi, dsi]
representing the accumulated reduced cost, time, and demand between the origin and the last
node (i) of partial path §. Note that in (E)SPPTWCC, in contrast to the generic single-source,
single-destination shortest path problem (Cormen et al., 2003), each node is associated with
more than one labels, due to the resource consumption (time, demand) limitations. The
existence of multiple labels is the major reason for the high complexity of the problem. In

order to reduce the number of these labels, we use dominance criteria.

Initially the method starts from label L, = [0, 0, 0], corresponding to the origin node, and
extends to all other graph nodes (except to node n+ 1). When extending label Ls; =
[Csi, tsi dsi], to @ node j, then the new label Ls ; representing partial path 5" ending at node j

is given by the following equations:

Cs1j = Cory + (cij) (3.33)
tS’j = max {ta’i + tij' aj} (3_34)
ds'j =dg; + d; (3.35)

In order for this label to be created, it has to be feasible, i.e.:
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ds'j < Q (3.37)
In label correcting algorithms, labels are extended based on a procedure which scans all nodes
iteratively. Each label ( Lgs;) is extended to all other nodes and checked for feasibility. If not
feasible, the new label is discarded. When a label Lg; has already been extended to all its
feasible successor nodes, then it is considered as processed and can be deleted (or
characterized as processed and kept for supporting dominance criteria, see below). The label
extension procedure is repeated until there are no more unprocessed labels. Note that we have
not yet considered the constraint to not re-visit the same vertex. This means that cycles are
allowed and, therefore, the algorithm, so far, solves the non-elementary case. Infinite cycling

is prohibited from the accumulation of resources (time and distance constraints).

When a partial path is extended to the ending node (n+1) then a full feasible path has been
generated. This path is a potential solution to the minimization problem. The minimum cost

path among all feasible paths is the optimal solution.

Table 3.1 lists all the improvement procedures employed in our work, and identifies the
relevant references in the literature. Note that the techniques mentioned in the following
references constitute common improvement techniques that are employed by several authors,

including Feillet et al. (2005). These improvement procedures are described below.

Table 3.1: Improvement Procedures for (E)SPPTWCC

Improvement Procedure Source
Elementarity Feillet et al. (2004), Chabrier (2006)
Buckets/Storing Processed Labels Larsen (2001), Chabrier (2006)
Dominance Criteria Dumas and Desrosiers (1986), Desrochers (1988), Feillet
et al. (2004), Chabrier (2006)
Limited Discrepancy Search (LDS) Feillet et al. (2005)
Preprocessing Kontoravdis and Bard (1995), Desrochers et al. (1992)
Early Termination Criterion Larsen (2001), Chabrier (2006)

Elementarity

In order to extend labels strictly to nodes that have not yet been visited (elementary paths),
Beasley and Christofides (1989) initially proposed the use of some additional elements in the
labels. Feillet et al. (2004) were the first to implement this idea. Consider a vector Rg;,
containing |N| binary elements (where |N| is the size of all nodes excluding the starting and
ending ones), that represent partial route 6 ending at node i. All elements of Rg; initially are

set to zero.
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The new labels, proposed by Feillet et al. (2004), are Ls; = [Cs;, tsi» dsi» Rsi]- When a label

Ls; is extended to node j, the R/ ; vector of the new label L i is equal to Rg; except from the

j*" element of Rs; which is set to 1. That is the case if j is visited for the first time in the

partial path. In order to avoid re-visiting the same customers (elementarity), an additional
feasibility check related to Eqgs. (3.36) and (3.37) is included. That is, if node j has already
been visited in the partial path § (i.e. the j* element of Rg; is equal to 1), then label Lg; is not

extended to node j (i.e. the new label L4 ; is not created).

Buckets (expand labels per each node)

For each customer (node) i, there exists a set of non-processed labels, B (i), which is called

the bucket of node i. Every label in B(i) corresponds to a partial route that ends at node i.

Initially, only the set corresponding to the depot, B(0), is hon empty, containing one label,
Lo. Then this label is extended to every node i creating partial paths (0 — i). Thus, one label
per node i is created and inserted in the corresponding B (i). As mentioned above, labels that
have been extended are characterized as processed and can be discarded. All newly created
labels are tagged as non-processed. This is repeated for every B(i) in an iterative procedure
until all labels have been processed. When there are no more unprocessed labels in all buckets
the operation is terminated. Note that for node n + 1, all labels created are directly inserted in

B(n + 1) if they satisfy the criterion of negative reduced cost, otherwise they are rejected.
Storing of Processed Labels

In our algorithm we have followed the work of Chabrier (2006), in which labels that have
been extended to all successors are kept in the set of processed labels P (i), separately for each
node i. Storing the labels in P(i) supports the solution process since these labels are (a)
considered in the dominance checks, and (b) are useful in the LDS procedure discussed

below.
Dominance Criteria

Since the ESPPTWCC is NP-hard, many authors have developed dominance criteria that
discard labels. Discarding labels improves the computational, as well as the memory,
efficiency of the problem solved. The simplest dominance criterion is used by Dijkstra's
algorithm for the solution of the single-source, single-destination SPP with positive arc costs.

A label Lg; dominates another label Lg; ending at the same node i, through different partial
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paths 8’ and 8", respectively, when ¢y, < ¢gir;. This process has proven to provide the
optimal solution. In the present case and due to the additional resource consumption
characteristics, this straightforward dominance criterion requires extension. Dominance
criteria for the SPPTWCC were developed initially by Dumas and Desrosiers (1986), and
Desrochers (1988) who proposed the following:

Cyr; < Cyrr; (3.38)
b1y = s (3.39)
dgr; < dgn; (3.40)

All three should be satisfied simultaneously and there should be at least one strict inequality.
Although these criteria are appropriate for the SPPTWCC case, they are not sufficient for the
elementary case, i.e. they do not guarantee optimality. Desrochers (1988), Feillet et al. (2004)
and Chabrier (2006) have suggested an additional criterion for the case of the ESPPTWCC.

Rgi; € Rgn, (3.41)
The basic idea is that a label that has visited or includes more nodes cannot dominate another
label with fewer nodes, since the latter may lead to a better solution by visiting the customers
that have already been included in the former. This additional dominance makes it harder for
a label to dominate another, leads into maintaining numerous labels in each node, and, thus,
increases complexity. Separately, Feillet et al. (2004) and Chabrier (2006) proposed
modifications in order to reduce the search space (discard more labels) without sacrificing

optimality.

In their procedure, the binary vector Rs; was modified in order to contain the non-feasible
nodes (i.e. those that cannot be extended due to feasibility) in addition to the already visited

nodes. Both these types of nodes are characterized as unreachable for the associated label Lg;.

The inclusion of the non-feasible nodes in the vector Rs provides a more robust
implementation by discarding more unnecessary labels from the search space. That is, a label
can discard another label, even if they have not visited the same customers, but both labels
have the same successors. More robust dominance criteria related to Eq. (3.43) are provided
by Chabrier (2006).
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Limited Discrepancy Search

Limited Discrepancy Search (LDS) was initially developed for Constraint Programming by
Harvey and Ginsberg (1995). Feillet et al. (2005) successfully incorporated LDS into the
solution procedure for the ESPPTWCC and, also, managed to solve several problem instances

related to the Solomon benchmarks (1987) that were not solved previously.

Given a problem of |N| customers, a number of the m closest neighbors is defined, i.e.
neighbors with the minimum modified arc cost (c;;). The m closest customers to each node i
are included in set G (i). Note that the depot is always considered as a good neighbor. Also,
for node 0 (i.e. the starting depot) m = |N|. Every label in B(i) and, thus, every partial route
&, is characterized by a cumulative penalty. Extending a label to a node [ that is not included

in G (i) imposes a penalty (y;;) equal to 1, otherwise the penalty equals zero.

Initially, the allowable cumulative penalty (CP) for a partial route 8 that corresponds to a label
L;, is set to zero and therefore labels are extended only to good neighbors. That is
Yi.jer ¥ij=0 and therefore only arcs with y;; = 0 are selected. After extending all labels, and
if there are routes with negative costs, the ESPPTWCC terminates and passes these routes to
the RMP. If there are no routes with negative cost, CP is increased by 1 and labels with
Yijer Yij = 1are also allowed. An upper limit (CPyy,;.) is defined, up to which CP can be
increased. If the CPy;p,ic has been reached by CP, and the subproblems have not generated any

negative cost routes, then the operation terminates.
Preprocessing

Large time windows increase the complexity of the problem, since more customers can be
served by a single route and the possible combinations increase dramatically. For this reason,
many researchers have suggested to use preprocessing procedures prior to starting the solution
process in order to narrow the time windows of customers (without sacrificing feasibility),

and, therefore, tighten the solution space.

Kontovardis and Bard (1995) proposed a simple criterion, in which each time window [a;, b;]
of node i can be replaced by [max (aq + to;, a;), min (byi1 — t;n41,b;)], Where t;; is the
travel time between customers i and j, and [ay, by, +1] 1S the time window of the depot. That is,
the starting time of a time window is set to the earliest time that a vehicle can reach the
corresponding customer directly from the depot, and the ending time is set to latest time a

vehicle can depart from the customer in order to arrive to the depot on time.
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Desrochers et al. (1992) proposed an iterative procedure in order to further tighten the time
windows. The procedure includes 4 rules. Given the time window [a;, b;] of customer [, and
considering customers i and j as the predecessor and successor nodes of [, define the

following:

e Minimal arrival time from the predecessors of node [:
a; = max {a;, min{b;, min;{a; + t;;3}}

e Minimal arrival time to successors:
a; = max {al,min{bl,minj{aj + tlj}}}

e Maximal departure time from predecessors:
b, = min{b;, max{a;, max;{b; + t;;3}}

e Maximal departure time to successors:

b, = min {bl,max{al,maxj{bj - tlj}}}

These four rules are applied iteratively until there exist no more adjustments of the time
windows. The second and third rules were also derived by Cyrus (1998). Note that these
operations are feasible when the triangular inequality holds. This is the case here, since time

is always increasing when customers are added to routes.
Early Termination Criterion

Many researchers have proposed to terminate the subproblem solution procedure when a
certain number of negative cost routes has been reached. Note that although this termination
does not guarantee that the optimal solution to the subproblem has been reached, optimality of
the global decomposition algorithm is still maintained. This is because: (a) the global
algorithm iterates between RMP and the subproblems, and, eventually, the global optimum
can be achieved, and (b) reaching the optimal solutions of the subproblems in each iteration is

computational expensive.

Early termination is used by the majority of researchers dealing with the column generation
procedure. Note that the efficiency of the early termination criterion with respect to different
numbers of generated negative cost routes have been studied in Larsen (2001) for VRPTW

instances.
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3.4 CoMBINING RMP wWITH THE SUBPROBLEMS

Figure 3.2 illustrates the structure of the global column generation algorithm for the multi
period routing problem. When solving an RMP, the associated shadow prices are generated,
in addition to the actual solution (cost and relevant routes). These shadow prices are passed to

the P subproblems, and are used to compute the modified costs c;;, Vi,j € N.

These costs are the elements of the cost matrix in the ESPPTWCC. Shadow prices g, are also
incorporated in the cost matrix, through the starting depot's modified costs, thus cy; = co; —

Op, VD € P.

On the other hand, solving each subproblem generates a set of negative cost routes. Each of
these routes is translated to a column, i.e. the equivalent representation of the route when
variables al. variables are used. Note that the customer sequence of these routes has to be
maintained separately. These routes are provided to the RMP and added to the existing routes
— columns of the problem. The solution process terminates when no more routes with
negative cost can be generated by any subproblem, which mirrors the classical termination
procedure for the simplex method. In this case, the minimum cost solution from the last RMP

IS returned as optimal.
Notes on Complexity

The following should be noted regarding the complexity of the solution algorithm for the
MPVRPTW:

e The Simplex method used for the RMP has an exponential worst-case complexity,
although in practice performs efficiently for several cases (Papadimitriou and
Steiglitz, 1998).

e As stated in Chapter 2, the ESPPTWC is NP-Hard (Dror, 1994; Kohl, 1995).

e As noted by Kallehauge et al. (2005), the “behavior of the dual variables plays a
pivotal role in the overall performance”; Which in accordance with the number of
columns generated at each iteration of the Column Generation (Larsen, 2001), affects
the coordination of the RMP and the ESPPTWCCs, and also the number of iterations.

e The Branch & Price method (see Chapter 5), although in practice performs better that
exhaustive search, it has an exponential worst case complexity that is driven by the
problem size.

From the above references, it is concluded that the complexity of the algorithm for the
MPVRPTW is of exponential worst case complexity.

42 DeOPSys Lab



The MPVRP and Its Applications

Initial Feasible Solution

P> Shadow Prices

e Restricted Master Problem (RMP) 1
1 |
1 |
Lower bound of

1 h 4 — 1
1 current RMP 1
; » Solve RMP :
1 |
1 |
1 |

|

Sub-Problems = -—

Create modified cost Create modified cost
matrix for period 1 e matrix for period P
Y h 4
Solve subproblem for Solve subproblem for
period 1 period P

Any negative-

, There are not new
Any negative- Mo Mo
cost route ? routes to be added to
the RMP
Y

cost route 7
Ves

If no period generated
negative-costroutes,
TERMINATE

Transform generated
routes, Store Sequence
Information

Figure 3.2: Column generation procedure for multi-period problems
Optimality of Lower Bound

The Column Generation procedure solves the relaxed multi period routing problem optimally.
Indeed, the solution procedure to the ESPPTWCC (See Section 3.3) provides optimal
solutions to the subproblems and, thus, returns the columns (routes) with the minimum
negative reduced cost. In case an optimal solution to the current RMP has been reached, the
subproblems will not be able to return columns with negative reduced cost. Thus, there is no

column (route) that exists in any £2,, that can further improve the lower bound.

Note that since the column generation procedure operates on the relaxed RMP, integer
optimality is not guaranteed. In order to obtain the optimal integer solution, the column

generation procedure is embedded in a Branch and Price framework of Chapter 5.
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Chapter 4: ACCELERATING TECHNIQUES FOR THE
MPVRPTW

In this Chapter, we propose alternative solution methods for the ESPPTWCC subproblems,
exploiting the structure of the multi-period setting. As such, we focus on improving the
solution framework presented in recent work to address different, but related, problems in the
literature. The techniques presented in this Chapter improve the computation of the lower
bound. In Chapter 5 we present enhancements regarding the evaluation of the optimal integer

solution.

Considering the lower bound, two novel variations of the column generation method are
developed targeting improved computational times and, thus, solutions of higher quality
within a certain computational time period. In addition, the classical solution approach of
Chapter 3 has been implemented in a parallel algorithm. All methods (i.e. the classical
method, the two variations, as well as the parallel version) are compared in terms of

computational times.

The proposed variations explore the solution space of the ESPPTWCC subproblems taking
advantage of two major characteristics of these problems:

(@) Flexibility of customers; customers are allowed to be routed in different periods. This may
lead to routes that are common in different periods

(b) Subproblem independence; each subproblem provides solutions that do not affect the
other subproblems.

In order to illustrate the possible extend of common routes among periods, consider a problem
with N customers and 2 periods. From these N customers, let the subset (N;) contain all
customers that can be routed in period 1, and the subset N, contain all customers that can be
routed in period 2. The common customers in these two subsets, which can be routed in both
periods are noted as Ny, = N; N N,. Additionally let maxc be the upper bound of the
number of customers that can be inserted in any route due to feasibility constraints. The

number of common routes R, in the two periods is given by the following equation:

maxc maxc Noool
N. 1]2°
Rp= Y (M) =y e 4
=1 ( c ) =1 (N1|2 —C)'C'
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Note that Eq. (4.1) does not consider the visiting sequence of customers, thus route [D-1-2-D]
is the same as [D-2-1-D].

Figure 4.1 presents the ratio RR%Z of the sets N; and Ny, for 1 to 10 customers, taking maxc to

be equal to the maximum number of customers per customer set. For example, for |[N;| = 3
and |Ny ;| = 2, the ratio is:

|
Zmaxc N1|2'

LT A, 21
Ri2 (N1|2 —c)! C' <=12-c)lc! 3 439
= === 0
R, Zmaxc N;! 3 3! 7
(N, —o)!c! ¢=1(N; — c)!c!

Although, ratio Ry;/Rq is below 25% in the most of the example cases, the proposed
accelerating methods succeed in significant computational time reductions.

Ni=1 INJ=2 INI=3 [N|=4 [N, =6 INJ=7 IN,I=8 IN,|=9 IN|=10
100% —& / / / —

0% T T | — T T T T T T T 1

Common Routes Ratio

N2

Figure 4.1: Common routes ratio for different sizes of set Ny and Ny,

Using the proposed methods we are trying to identify and exploit the common routes that are
created among different periods, thus eliminating the computational effort needed to generate

the same routes per period.

Below, each one of the proposed methods is presented highlighting its differences with the

classical solution procedure (Chapter 3).

4.1 UNIFIED SUBPROBLEM METHOD

This acceleration method replaces the P subproblems of the classical solution method

(Chapter 3) with a single (multi period) subproblem. The latter provides the necessary
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columns (routes) to the RMP for all periods of the planning horizon. The idea behind this
approach is that many of the partial paths, as well as final routes, that are generated during the
solution of each subproblem (ESPPTWCC) are feasible in more than one periods. Thus,
instead of solving separate subproblems to generate routes per period, we generate those by
solving one common subproblem. The single subproblem is artificially constructed to take
into consideration all customers within the planning horizon. Furthermore, it maintains
additional information regarding the feasibility of the partial paths (or full routes) in the
available periods of the planning horizon.

Note that the reduced cost of Eq. (3.21) includes the shadow price (a;,) which is relevant to

period p. Since the subproblem is common for all periods, inclusion of the shadow prices (a,,)

of each period p in the objective function is not possible. Thus, these shadow prices are

eliminated from Eq. (3.21), forming the relaxed version of it:

é = Z afrc{j 4.2)
iEN

Below we discuss all modifications to the standard approach that are proposed in order to

implement the unified method.
Modification of Labels

In order to consider period feasibility, each label Lg; of a partial path § ending at node i is
modified by the addition of new elements. The new  modified
labelLs; = [Csi, tsi» dsi» Rsi» Psi] includes an additional vector @g; of P binary elements (<p§’i).
Each of these elements is equal to 1 if label Lg; is feasible for period p, or O otherwise. The
starting label L, is feasible for all periods and, thus, [¢3, ..., &1 = [1, ...,1]. When extending
label Ls; to a node j, vector @4 ; for the new label L ; is given by the following equation:

o7 = {min(qofé’i, 1) ifpel&&]
5

0 else (4.3)

where [¢7,¢7] is the period window of customer i. Thus, each label is associated to the
periods comprising the period window of each customer.
Label Feasibility (for partial paths)

In the Unified method feasibility considers vector @s;. A label is feasible if Egs. (3.36) to
(3.37) hold and, additionally if the corresponding path (&) can be routed in at least one period.

That is, if at least one element ¢}, = 1. If %, = 0,Vp € P then the associated label Ls; can
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be eliminated, since it is infeasible for every period and cannot be extended to other feasible

labels. In that case, label Ls; can be fully discarded.
Solution Feasibility (for final routes)

Keeping a label Ls .1 for a route that reached the ending depot is not as straightforward as in
the classical solution procedure (Section 3.2), due to the exclusion of the shadow prices (a;,)

from the relaxed reduced cost equation. As mentioned above, shadow prices o, have not been
considered in the relaxed reduced cost (¢ ,,,1) of a label Ly ,,,;, which has been accumulated
up to node n + 1. Note also that based on these shadow prices, a feasible label L, with
negative relaxed reduced cost (¢ ,4,), may not be of negative (actual) reduced cost (Cg ,,+1)

for every period p. In this case, for each label Ls ,,,,, P different reduced costs are calculated,
one per period. Each of these reduced costs considers the shadow price o, of the relevant

period p:
c_gnﬂ =Csn+1 — Op Vp € P (4.9)
These reduced costs Eg,n +1 are stored separately. For every p € P and for each label Ly, 4

for which ¢j,,,, = 0, the relevant ¢f, ., is updated to 0, in order to exclude it from the

feasible routes of period p.

Based on the above formulation, each label Lg ,,,, with ¢5 .., = 0 is discarded immediately,
since it will remain positive for every p € P (note that g, < 0, Vp € P). A stricter bound is to
eliminate labels Lg,,, for which the following holds (this bound is used in our
implementation):

Cosnt1 — mlglx(ap) =0 (4.5)

Dominance Criteria

For the Unified method, in addition to the dominance criteria (presented in Section 3), the
following should also hold, in order for a label Ls/; to dominate another label Lg; ending at
the same node i:

o’ =g =1 Vp €P (4.6)

That is, labels can be checked for dominance only for the periods for which both labels been

compared are feasible. Note that Eq. (4.6) should be checked for every period p € P. That is,
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for each label pair, P dominance checks are performed. If a label Ls/; dominates another label
Lgr; for a period p, then, instead of eliminating Lg;, the element <p§,,l. relevant to period p is

set to zero. Thus, label Lg; is maintained for all other periods, while it will not be extended

for period p.
The following property is significant in the Unified method.

The dominance criteria of Eq. (3.38) are valid when using the relaxed reduced costs without

considering the relevant periods and the associated shadow prices.

Proof: In order for a label Lg/; to dominate another label Lg/; for period p, Eq. (3.38) should
hold. That is,

~p ~p ~! ~11 ~! ~I11
Csr; SCsn; =6 —0p<C; —0p=>C <C; (4.7)

Thus, since the shadow prices have been eliminated from the equation, it holds Vp € P and,

therefore the dominance criteria using the relaxed reduced costs are applicable.
Limited Discrepancy Search (LDS)

Working with a single subproblem, instead of P independent ones, affects also the
implementation of LDS. In the classical implementation, for every customer i the m closest
customers are selected and set as "good neighbors”, GN (i) for every p € P. This allows a
directed search to be implemented over the node graph of the most promising arcs. Since the
concept of different periods is not present in the Unified method, sets GN (i) are defined over

a different customer set.

Consider a case in which customers i and j are close but cannot be routed in the same period.
Since in the Unified strategy all customers are considered jointly, LDS would have included
customer j into GN (i), thus creating an infeasible connection. In order to avoid this, GN (i) is
defined to include only the customers that can be routed in the periods in which customer i is

feasible, i.e. periods [¢7, &7].

For example, consider customers i,j and k with period windows [1,2],[2,3] and [3,4],
respectively (see Fig. 4.2). If only one good neighbor is allowed per customer, then in the case
of G(j), this allowable neighbor will be selected among customers i and k in the Unified
strategy. In contrast, in the classical method the good neighbors of customer j will be defined
per period (i.e. per subproblem) and, thus, for period 2, the good neighbor would be customer

i and for period 3 it would be customer k.
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Figure 4.2: Feasible periods per Customer
Termination Criteria

We terminate the solution procedure of the Unified method when at least 500 feasible
columns (routes) with negative reduced cost have been determined for any of the periods.
Note that at any point during the solution procedure, vector @5, holds the information
regarding period feasibility of each label L ,.,. The calculation of the number of the final

negative cost solutions per period is performed using the information in these vectors.

4.2 CLONING METHOD

The Cloning method exploits further the customer flexibility intrinsic to this problem, i.e. the
flexibility of customers to be routed in alternative periods of the planning horizon. Similar
techniques to the Cloning method have been mentioned by Pirkwieser and Raidl (2009) and
Mourgaya and Vanderbeck (2007) for the PVRP.

The key idea is to select and solve only a subset of the subproblems, called hereafter the
parent subproblems, and transfer a selected feasible part of their solution (e.g.
columns/routes) to the remaining subproblems (hereafter called the linked subproblems).
More specifically, consider P subproblems, one for each period. We select P'(S P)
subproblems to solve. To each parent subproblem p’ € P’, there is a set of linked subproblems
LP,, such as P’ U (U;ep\pr LP;) = P. Routes generated by each p’ € P' are considered for
inclusion in their linked subproblems LP,,. Note that these routes are feasible in terms of time
windows, capacity, elementarity, etc. but they may contain customers not allowed to be
included in the linked subproblems. If the solution of a parent subproblem p’ € P’ generates at
least one feasible column (route) for a subproblem p” from the subset LP,,, then the latter is
considered as solved, i.e. it is not solved separately. These columns are also included in the
RMP for period p". Thus, the explicit solution of every subproblem is avoided. It is noted,
however, that in the last iteration of the method, all subproblems will be solved separately in

order to secure optimality.
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Finally, note that since only a subset of the subproblems are solved explicitly, different or
fewer columns are returned for the linked subproblems. Therefore, this method traverses
through different extreme solutions of the RMP's convex hull as compared to the classical
approach.

Significant issues of the Cloning method are discussed below.
Cloning routes to other subproblems

Consider two periods, p; and p, with shadow prices a,,, and o,,,, respectively, where the
following holds: o,,, < g,,, < 0. Note that o, < 0,Vp € P. Solving the subproblem for period
p1 generates a set of feasible columns (routes) for this period. In order to determine if these
routes can be included in period p,, in addition to feasibility their reduced cost should be
negative. This is checked by recalculating their reduced costs as follows:

o =c'f1+ap1—ap2:c'f2 =6f2—ap2 (4.8)
Only the routes with negative reduced cost (¢£? < 0) and which are feasible in period p, are
maintained and included in the RMP for period p,.

Optimality

Not solving explicitly all subproblems may lead to suboptimal solutions. There are two main

considerations that should be investigated concerning optimality:

Consideration 1: Solution of all subproblems in the final iteration

The parent subproblems may not generate feasible columns (routes) for all linked
subproblems. Thus, it is necessary to solve each subproblem explicitly in the final iteration.

Justification: Continuing the previous example, every generated solution will have reduced

cost equal to ¢t = &P — a,, Where ¢, is the relaxed reduced cost (as described in Section
4.1). Considering only the negative cost solutions and given that c* < 0 = éF* < 0p,; that is,
the generated routes have relaxed reduced cost (¢£*) lower than oy, - However, if the shadow
price o,, of a linked subproblem is larger (o, < 0,,), then those feasible routes of
subproblem p, with negative-cost in the interval (o,,,0,,) will not be generated by the
solution of subproblem p,. This is illustrated in Fig. 4.3, in which the costs of all columns
(routes) generated by the subproblem of period p, are located in interval A. Routes with costs
inside interval B will be ignored by this subproblem as non negative. Interval C contains

routes with positive reduced cost for both periods (subproblems).
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Figure 4.3: Illustrative example of the Cloning strategy suboptimality

Thus, in case a parent subproblem does not generate any feasible route for a linked
subproblem, this linked subproblem should be solved independently in order to guarantee
optimality.

It is noted that maintaining all routes with reduced cost less than o,, would have included all

feasible solutions of period 2, but would also have increased considerably the computational

time for solving the subproblem of period 1.

Consideration 2: Dominance Criteria Validation

The dominance criteria are valid for the routes of both the parent and the linked subproblems.
Thus, (a) additional criteria are not needed, and (b) all feasible routes related to the linked

subproblems (with reduced cost less than o, , as discussed above) will be generated.

Justification: Consider two labels, Lg/; and Lgr;, ending at the same node i, and two periods:
Period p' related to the parent subproblem, and period p”’ related to the linked one. Consider

the following two cases:

(a) Label Lg; is feasible only in period p’ and label Lg; is feasible in periods p’ and p"'.
In order for the former label to dominate the latter, Eq. (3.41) should hold, that is
Rs; © Rgr;. Since label Lgr; is feasible only in period p’, it includes at least one
customer that cannot be serviced in period p”, thus, Eq. (3.41) is not valid and label

Lgr; will not be discarded.

(b) Both labels are feasible in periods p’ and p”. In this case, both labels can lead to
feasible solutions to the linked subproblem. If label Lgv; is dominated, then it can be
discarded since its successor labels will always be dominated by the successors of

label Ls/;. That is also valid if the linked subproblem was solved explicitly.

Thus, all feasible solutions to a linked subproblem, with reduced cost less than op, , may be

generated by its parent subproblem.
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4.3 IMPLEMENTATION OF PARALLEL SOLUTION

In this case we solve the P subproblems of the classical solution procedure (Section 3.2) in
parallel. Consider Fig. 4.4 which presents the sequential and the parallel procedures. In both
cases, if there are negative-cost columns generated by any of the subproblems, then the RMP

and the subproblems are solved again.

For the parallel implementation we used an 8-core Windows XP machine (with 8 matlab
workers, i.e. parallel processors). Since in our case the number of parallel processors is
greater than the maximum number of periods (P =5), it is possible to distribute all
subproblems to the independent processors. The minimum computational time to solve the
subproblems lies between max, (t,) and Z§=1tp (of the sequential case), where t, is the
computational time to solve the subproblem of period p. Note that in practice the minimum
computational times cannot be reached due to computational overheads (such as distributing,

collecting and merging variables and data to/from the processors).
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Figure 4.4: Sequential procedure of the classical column generation and the parallel approaches for the Multi-

period problem.

4.4 COMPUTATIONAL TECHNIQUES FOR SOLVING THE SUBPROBLEMS

Vectorization of looping procedures (3D vertices)

In order to (a) fully exploit the strength of the Matlab® software, i.e. to use vectorized

operations, and (b) avoid its weaknesses, i.e. loop procedures (such as for, while, etc), we
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used matrix operations to expand each bucket B(i), i.e. the set of all labels ending at customer
i. Note that matrices in Matlab® are stored as vectors in continuous memory space and can

efficiently be managed as vectors.

A common (but expensive) approach to expand each label in a bucket would be to proceed

with two embedded for-loops, as shown in Fig. 4.5:

for each label in B(i)
for each node j
if feasibility constraints are satisfied (i.e., j # i, j has not been visited, etc)
expand label to node j
end
end

end

Figure 4.5: Pseudocode for label extension using looping procedures

In order to vectorize the label extension code, each set B(i) is represented by a two-
dimensional matrix that includes the information related to all non-processed labels. Every
row of B(i) corresponds to a label Ls; and contains all information pertinent to this label (Fig.
4.6). Thus, the matrix of set B(i) is of size QxM, where Q is the number of the labels

contained in B(i) and M is the number of items that are stored in each label.

L% = i ly1 Iz
q

Li = 1 luq v
Q _ .

LL = i s po s lMQ

Figure 4.6: Set B(i) representation in a 2-D matrix.

Each label is extended to all other nodes. The newly created labels are kept in a three-

dimensional matrix, S(i), of size M X Q x N, where N is the size of the customer set.
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Figure 4.7 presents an illustrative example of S(i). Note that each label from set B(i), when
extended, creates labels that are stored in the M x N part (grey area) of S(i). Infeasible labels
are not loaded to the related buckets B(i). Feasibility takes under consideration elementarity,

time windows, capacity and the unreachable nodes.
Successors

A drawback of the vectorized loop procedures is that all matrices should be compatible in size
in order to perform classical algebraic operations. Therefore, we cannot reduce the size of
S(i) based on the feasible successor list per each label, in order to achieve faster
computational times and less memory utilization. A successors list of a label L; contains all
other customers that this label can be extended to, that is, all customers for which vector R; is

equal to zero (i.e. is not unreachable).

¥

M

Figure 4.7: Set S(i) representation in a 2-D matrix.

For example, let B(i) contain only two labels, Lg/; and Lg;. Suppose also that Lgs; cannot be
extended to customer j and Lg; cannot be extended to customers j’ and j' (for feasibility
reasons). Since customer j is unreachable (note that the information is kept in the unreachable
nodes vector Rg/; ) from label Lg;, there is no need to extend label Lg/; to customer j. Thus,

the dimension N of S(i) could be reduced by 1. Following the same argument for label Lg;,
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N could be reduced by 2. However, this would result in a conflict regarding the size of S(i).
To address this issue, a different approach is used in order to create a common successor list
for all labels in each B(i).

Based on the information maintained in the vector of unreachable nodes, if a node j is
unreachable for all labels of B(i), then node j can be discarded from the label extension
process. As a result, dimension N is reduced by one. Considering all common unreachable
nodes of B(i), size N is reduced accordingly. This operation leads to less memory utilization

and faster matrix operations.
Dominance Criteria

Newly created labels are checked using dominance criteria in a two-stage procedure. Consider
a newly created label Ls; in B(i). This is compared against (a) the remaining non-processed
labels in B(i), and (b) the processed labels in P(i). A circular process is used as follows:
Initially a label Lg; is checked if it dominates, or is dominated by, other labels within bucket
B(i). If label Lg; is not dominated by any label within bucket B(i), it is checked if it

dominates, or is dominated by, labels within the bucket P (7).

In this process a new label can eliminate labels from sets B(i) and P (i), and can also be
eliminated by the labels in these sets. When a non-processed label Lg; is eliminated by a label
within P(i), then label Ls; is not extended further, contributing to computational time
reduction. If every label was only checked with the non-processed labels (i.e. set B(i)) at
every iteration, then numerous labels would have been extended that are not needed.
Maintaining sets P (i) eliminates these labels. Eliminating labels from B (i), using either the
labels within B(i) or within P (i), minimizes the number of labels to be extended and,

therefore, reduces computational time of the dominance procedure.

Matrix operations were also used for the implementation of the dominance criteria. In these
operations, it is possible to reduce dimension M of B(i) or P(i), as in the label extension
process (see vectorization of loop procedures), by eliminating the common unreachable nodes
of all labels within B (i) (or P(i)). Unfortunately, the frequent iterative call of the dominance
procedure may lead to the opposite results. The calculation of the common unreachable
nodes, in each iteration, consumes more computational time than the time savings coming
from the computational operations with reduced matrix sizes. In our implementation, these
buckets are reduced based only on the unreachable nodes that stem from the preprocessing
phase (See Chapter 3.3).
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4.5 TEST INSTANCES AND BENCHMARK RESULTS

The aforementioned methods were tested and compared to the classical column generation
method. For this purpose, a number of original test instances for the MPVRP were generated
and are described below. In the following, the results of each method are labeled as follows:
Classical column generation procedure (FULL), Unified method (UNI), Cloning method
(CLONE), and Parallel method (PARA).

4.5.1 TEST INSTANCES

The Solomon Benchmarks

The original test instances for the MPVRP were created based on the Solomon Benchmarks.
The latter comprise 6 problem sets (R1, C1, RC1, R2, C2, RC2), with each letter representing
a different geographical distribution of customers (R: random, C: Clustered, RC: mixed).
Each problem set comprises multiple problem instances; for example, the R1, C1 and RC1
problem sets comprise 12, 9 and 8 test instances, respectively. Furthermore, in each problem
set, significant characteristics of the test instances, i.e. the number of clients (100), the
customer coordinates, the demand, and the service times are identical. The difference between
the instances in a set is the “tightness” of the customer time windows. For the R1 set, Figures

4.8 and 4.9 illustrate the different time windows per test instance.

Problem: r101 tmax: 230 Problem: r102 tmax: 230

: : : : :
100 150 200 250 100 150 200 250

r c
100 150 200 250 50 100 150 200 250
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Problem: r105 tmax: 230

Problem: r106 tmax: 230

Figure 4.8: Time windows of R101 — R106 instances

Problem: r107 tmax: 230

Figure 4.9: Time windows of the R107 —
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The example above shows that the various instances correspond to different time window
patterns, ranging from narrow to wide time windows for most customers. In all cases,
however, there are customers with time windows that extend to almost the entire time period.
Instances R101 to R104 contain customers with narrow time windows, mixed with customers
with wide time windows in different proportions. Instances R105 to R108 present the same
pattern but with larger time windows. Instances R109 to R111 include customers with almost
equal time windows. R112 presents a special case of large time windows. In this case, the
majority of the time windows are placed in the middle of the available time period.

The average length of the time windows of all customers included in each problem instance of
sets R1, C1 and RC1 are presented in Table 4.1, both in absolute units and as a percentage
(%) of the maximum allowable time period.

Table 4.1: Average time windows per test instance (maximum allowable time: 230, 1236 and 240 for the R1, C1

and RC1 instances, respectively)

o, e Ao o, fvmse oy e o
R101 10,00 4% C101 60,76 5% RC101 30,00 12%
R102 57,39 25% C102 325,69 26% RC102 71.08 30%
R103 102,99 45% C103 588,49 48% RC103 109.80 45%
R104 148,31 64% C104 852,94 69% RC104 156.54 65%
R105 30,00 13% C105 121,61 10% RC105 56.38 23%
R106 72,39 31% C106 156,15 13% RC106 60.00 25%
R107 112,99 49% C107 180,00 15% RC107 88.10 37%
R108 153,31 67% C108 243,28 20% RC108 111.62 47%
R109 58,89 26% C109 360,00 29%

R110 86,50 38%

R111 93,10 40%

R112 117,64 51%

Generation of MPVRP benchmarks

Multi-period benchmark test instances with 50 customers were created based on the R1, C1
and RC1 Solomon benchmarks. In order to transform the latter to multi-period problems, we

have introduced a period-window for each customer as follows:

e The planning horizon is set to five (5) consecutive periods
e For each Solomon instance, the first 50 customers were selected and separated into 5
groups (10 customers per group in a sequential manner). Each of these groups was

assigned a different period-window.
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Nine period-window patterns were developed in order to simulate different multi-period

situations. Thus, for each Solomon test instance, nine different instances for the MPVRP

were generated.

Table 4.2 presents the period windows per pattern for each group of ten customers.

Table 4.2: Period-window patterns

Pattern
Group  Customers 2 3 4 5 6 7 8 9
1 1to 10 [1,1] [v1] [1,1] [1,1]  [1L1]  [L2] [L3] [L4] [1,5]
2 11t0 20 [22] [12] [12] [12] [1L2] [12] [13] [L4] [1,5]
3 21to0 30 3,31 [23] [13] [1,3] [13] [13] [13] [L14] [1,5]
4 31to 40 [4,4] [34] [24] [14] [14] [14] [14] [14] [1,5]
5 41 to 50 [55] [45] [3,55] [25] [1,5] [1,5] [15] [1,5] [1,5]

Figure 4.10 illustrates the differences among the nine patterns. In this Figure, the grey areas

represent the period windows per pattern and per customer group.

Cust. Group Cust. Group

Cust. Group

GO wWN P O wWNPE

GO b~ wWN -

Pattern 1 Pattern 2 Pattern 3
Period Period Period
123 45 1 2 3 4 5 1 2 3 4 5
Pattern 4 Pattern 5 Pattern 6
Period Period Period
123 45 1 2 3 45 1 2 3 4 5
Pattern 7 Pattern 8 Pattern 9
Period Period Period
123 45 1 2 3 4 5 1 2 3 4 5

Figure 4.10: Period window patterns

These patterns represent different degrees of customers' flexibility. Patterns 1 and 9 can be

considered as extreme cases for the multi-period problem: Pattern 1 allows no flexibility (the
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period window length equals one period), while Pattern 5 allows full flexibility (period

window length covers all periods). Thus,

e Pattern 1 can be solved by five independent VRPTWs, and

e Pattern 9 can be solved either using one single subproblem (in this case the P
subproblems are identical), or by solving a VRPTW with available vehicles equal to
the sum of the vehicles per period [i.e. solving a VRPTW with K = ¥,,,cp(K},)]. In this
way, the final solution will result in a number of routes which can be distributed
arbitrarily to periods, since all customers are feasible to all periods. Of course, none of

the other patterns can be directly solved using the VRPTW formulation.

Taking into account the nine MVPVRP instances for each Solomon instance, 261 multi-

period test instances are defined as follows:

e From the R1 set: 12 test instances x 9 patterns = 108 MPVRP instances
e From the C1 set: 9 test instances x 9 patterns = 81 MPVRP instances

e From the RC1 set: 8 ten instances x 9 patterns = 72 MPVRP instances

All solution methods were applied to each of the 261 instances to obtain the optimal solution
of the relaxed problem (lower bound). For each problem, the optimal solution was found by
each method spending, of course, different computational effort (time). Thus, the analysis of
the results concerns the efficiency (in computational time) of the alternative solution methods
with respect to the following characteristics: (a) customer geographical distribution, (b) time

window duration, and (c) period window pattern.

4.5.2 INITIAL SOLUTION

Although an initial feasible solution is not necessary in the set-covering formulation, we
provide one here, since it (a) helps the column generation procedure to converge faster, and
(b) provides initial values of the shadow prices that are closer to their final optimal values.
Note that in the case of unlimited fleet, a trivial initial solution can be used (e.g. one route per
customer). In our case of limited number of vehicles, however, a solution needs to be
constructed to respect the maximum number of vehicles. This initial feasible solution was
generated based on the classical insertion algorithm suitably enhanced to accommodate the

periodic characteristics of our problem, i.e.
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1. All customers are sorted based on their period flexibility; i.e. customers with period
windows that expire sooner are placed on top of the list. Customers with the same
expiration period are sorted in descending order based on their distance from the depot

2. For every customer i a single visit route (r; = D — i — D) is defined along with its cost
S¢;.

3. Starting with the most urgent and furthest from depot customer i (that is the customer on
top of the list), the first actual route (r) is defined for the first feasible period in the
planning horizon (note that the customers are sorted based on their period window). The
next customer say (1) in the list is selected and entered into route r between the customers

that define arc (i, j) with the lowest cost increase, that is:

({f}?é(r{cij — (cq +cij) +sc} = (Ef]l.giéir{cij — (e + c1j) + (cor + o)} (4.9)

4. When a route can no longer accommodate a customer [* from the list, due to the time
constraint, a new single visit route (r") is created using step (3) with the remaining
unassigned customers

5. This process continues until the maximum number of available vehicles for the selected
period has been reached, or all customers have been assigned to routes. If there are
unassigned customers that cannot be served within the next periods, the procedure
terminates without a feasible initial solution. Otherwise,

6. The next period is selected. Steps (3) to (5) are repeated for the selected period

7. The process terminates when either all customers have been assigned to periods and
routes, or when there are unassigned customers that cannot be served (infeasible

solution). In the latter case the operation terminates with no solution.

4.5.3 TEST RESULTS

The instances were solved using an 8-core Windows-XP machine. As already mentioned, the
Parallel method used the default Matlab® parallel procedure (with 8 matlab workers, i.e.

parallel processors).

With respect to the early termination criterion of the subproblems (Section 3.3), the maximum
number of negative cost columns to be generated by each subproblem was set equal to 500.
Analytical results are presented in Appendix A. Note that in the Unified method, termination

occurs when at least 500 feasible columns have been found for any period.
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In the Cloning method, the subproblem of the first period is solved initially. If it generates
feasible columns to the subproblems of any following period, then these subproblems are not
solved explicitly. In case there are no feasible columns for a period, then the subproblem of
this period is solved and the generated columns are considered for possible linked
subproblems. For every subproblem of period p, the subproblems of periods [p + 1, P] are

considered as the linked subproblems.

In LDS: Parameter m, which defines the good neighbors was set equal to 10. Furthermore, the
cumulative penalty (CPjimi:) Was set equal to [10% X Cpuqx |, Where Cp,qy 1S @an upper bound
on the maximum number of customers that can serviced by a route. C,,,, IS equal to

min{C%.,., Ct.ax}, Where (Feillet et al., 2005):

e (&, is the maximum number of customers that can be served by a vehicle without

violating the vehicle capacity constraint. Defining as N every subset of N:

Clhax = IN' l:maxd > dip <0
N

ien’
o L4y is given by a similar formula with respect to the service time of each customer.

Factor Analysis I: Time Windows, Period Window Patterns, Methods

Tests were conducted in order to evaluate the efficiency of each alternative solution method
with respect to (a) the size of the time windows and (b) the different period window patterns.
The test instances were separated into three categories based on the average time window
length (see Table 4.1): Small (10% to 30% of the available time), medium (30% to 50%) and
large (50% to 70%).

The results for each TW category (small, medium or large) are presented in Fig. 4.11. This
figure presents, for each method, the cumulative computational time for all problems ina TW
category. Note that, this cumulative time value refers to all problem sets (R1, C1, RC1) and

all patterns.
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Figure 4.11: Cumulative computational time per method and TW category

As expected, instances with larger time windows result in increased computational times. In

addition to this obvious observation, and as shown in Fig. 4.12, for all three TW categories

the methods present similar behavior. That is:

The classical solution method has the highest cumulative computational time among
all solution methods

As far as the remaining three methods, they succeed in reducing computational time
by 36%, 40% and 43% on average, compared to the classical method, for the small,
medium and large TW categories, respectively

The Cloning method appears to be the most efficient method for small and medium
time windows and is slightly outperformed by the Unified method for the large time
window instances. The cloning method exhibits 46% time reduction on average in all
three TW categories.

The Unified method is the least efficient among the three alternatives for small and
medium time windows. However, it appears to be the most efficient for large time

windows, resulting in a time reduction of 51% compared to the classical approach.

Note that patterns with wider period windows are more computationally expensive, and this

effect may not be apparent in the results of Fig. 4.11. To further investigate this, Table 4.3 and

Fig. 4.12 present results on total computational time per solution method and period-window

pattern. Every percentage value in the Table and the Figure represents the time increase or

decrease of the relevant solution method compared to the classical solution approach. In Table

4.3, the computational time of the classical approach is also presented per pattern. Again, the

instances of all problem sets (R1, C1, RC1) have been considered jointly.
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Table 4.3: Comparison of computational time of strategies (% difference from the FULL method)

Difference (%)

Pattern FULL (sec) CLONE UNI PARA
1 122 -3% 120% 12%
2 647 -13% 106% -22%
3 1.495 -27% 75% -27%
4 2.253 -23% 28% -27%
5 2.829 21% 44% -24%
6 7.938 -29% -27% -34%
7 12.167 -52% -58% -37%
8 12.285 -53% -60% -38%
9 14.725 -67% -74% -36%
Total/Average 54.460 -46% -44% -35%

Considering the computational times over all patterns, the Cloning method seems more
efficient with 46% savings compared to 35% savings of the Parallel method. Although the
Unified method seems efficient enough (44% reduction on average), it presents the most
diverse behavior regarding the period window patterns: It presents the least efficient results
for narrow period windows (with even 2 times greater computational time for pattern 1
compared to the classical method); however, for the larger period window patterns it
outperforms significantly all other alternatives, succeeding in a 74% reduction for pattern 9.
This behavior can be explained by the fact that in the initial patterns, customer flexibility is
restricted. Thus, extended labels are usually associated with a limited number of periods; as a
result, a large number of labels have to be processed for the same subproblem, increasing

computational complexity.

150%

100%

50%

0%

-50%

-100%
1 2 3 4 5 6 7 8 9

Pattern

ECLONE HUNI HPARA

Figure 4.12: Computational time (% difference from the classical method)
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Factor Analysis I1: Customer Patterns, Period Window Patterns, Methods

Table 4.4 presents (a) the number of the solved instances over all the multi-period instances

per problem sets, and (b) the cumulative computational times per problem set and solution

method. Fig. 4.13 illustrates these results. All three alternative methods succeed in reducing

the cumulative time across instances of the same problem set, compared to the classical

solution procedure. The Cloning method presents the highest overall reduction in the

cumulative computational time (46%) in comparison to the classical approach. For the R1 and

C1 instances, the cloning method remains the best alternative with time savings of 49% and

48% respectively. For the RC1 instances, the Unified method appears to be the most efficient,

resulting to the highest time savings (49%).

Table 4.4: Computational times per problem set (hrs)

Problem Set Solved FULL CLONE UNI PARA
Instances

R1 105 7,76 3,99 4,22 5,36

c1 73 1,47 0,77 1,29 0,85

RC1 71 5,90 3,34 3,04 3,64

Total 249 15,13 8,10 8,55 9,85
9

WFULL = CLONE = UNI = PARA

Cumulative Computational Time (hrs)

Problem Set

Figure 4.13: Cumulative computational times per problem set and method (hrs)
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Figure 4.14 presents the normalized computational times per problem set (e.g. R1, C1 and

RC1). The computational times have been normalized with respect to the classical solution

66

DeOPSys Lab



The MPVRP and Its Applications

method (100%). As discussed above, the Cloning method provides the largest time savings

consistently, although the Unified method is slightly better in the RC1 instances.

100%

80%

60%

40%

(% of the classical method)

20%

0%

Normalized Cumulative Computational Times

/-
B- J —
== CLONE UN| ==&=PARA
C1 R1 RC1
Problem Set

Figure 4.14: Normalized cumulative computational times of alternative methods with respect to the classical

approach (100%)

The time savings of all three alternative methods are further analyzed below, based on Figs.

4.15 to 4.17. Again, the computational times of the proposed alternative methods have been

normalized with respect to those of the classical solution procedure (100% for each pattern).

Normalized Cumulative Copmutational Times
(% of the classical method)
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Period Window Pattern

Figure 4.15: Cumulative computational times per pattern for the R1 Instances
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In the R1 instances (Fig. 4.15), the Parallel and the Cloning methods appear most efficient.
The Parallel method is more efficient in the narrow period windows, while the Cloning
method outperforms the former in wide period windows. Furthermore, the Unified method
outperforms all other alternative methods for the final three patterns with wider period

windows.

350%

== CLONE UNI === PARA
300%

250%

200%

150%

100% -
50% —
)]

0% T T T T T T T T 1

(% of the classical method)

Normalized Cumulative Copmutational Times

Period Window Pattern

Figure 4.16: Cumulative computational times per pattern for the C1 Instances

For the C1 instances (Fig. 4.16), the Parallel method appears to be the most efficient.
Although the Cloning method outperforms the classical approach, its behavior is not as
consistent (in comparison to the Parallel one). The Unified method presents the least efficient
results among the three methods; even the classical method outperforms the Unified method
for the majority of the period window patterns.

For the RC1 instances (Fig. 4.17), the Parallel method presents the most consistent behavior
compared to the classical method. On the other hand, the Cloning method, while for some
narrow period-window patterns, outperforms the Parallel method, it presents the least efficient
results for the moderate period window instances (pattern 5 and 6). Again, the Unified method
presents the least efficient results among all solution methods (including the classical
approach) for narrow period windows, while outperforms all methods for wider period

windows.
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Figure 4.17: Cumulative computational times per pattern for the RC1 Instances

Summary of conclusions from the analysis

Table 4.5 summarizes the results obtained by the analysis. The Table presents the best
alternative method with respect to the various problem attributes (geographical distribution of
customers, time windows interval and period window pattern). Period window patterns were
categorized in three sets: Narrow (patterns 1 to 3), medium (patterns 4 to 6) and wide
(patterns 7 to 9).

Table 4.5: Comparison of alternative methods per factor

Method
CLONE UNI PARA
Problem R1 v
Set C1 v
RC1 v
Time Narrow v
Window Medium v
Category Wide v
Period  Narrow (1to 3) 4
Window  Medium (4 to 6) v
Pattern Wide (7 to 9) v

The Table indicates that the Cloning method is the most efficient in uniformly distributed
(R1) and clustered (C1) problem sets, and in small and medium time windows. The Unified
approach performs better in the mixed customer distribution instances (RC1), which are the
hardest instances to be solved, and in instances with wide time windows and period windows.

Finally, the Parallel implementation of the classical approach outperforms the other
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alternatives in narrow and medium period windows, where the customer flexibility is limited.

More specifically:

The Cloning method:

O

Appears to be the most efficient method as far as the total cumulative
computational time is concerned (see Table 4.3).

Is efficient in R1 and C1 sets with narrow and medium period windows,
respectively. Although, specifically in C1 sets, it presents an inconsistent behavior
as far as the different period window patterns are concerned ( see Fig. 4.16)

In RC1 sets the method is outperformed by the Unified method and also presents
an inconsistent behavior regarding the period window patterns (Fig. 4.17).

Finally, the Cloning method appears to be efficient in wide period windows
regardless the geographical distribution of the customers, and ranks among the two
most efficient methods (along with the Unified method).

The Unified method:

o

Presents the least efficient results in narrow period windows for all three problems
sets.

In patterns with wide period windows, and especially in R1 and RC1 problem sets,
the Unified method outperforms all other methods.

Specifically, in C1 instances, it is the least efficient among all methods, including

the classical approach, regardless the period window pattern.

The Parallel method:

o

Appears to be efficient in the narrow period windows, in which the most routes are
different per period. Solving all subproblems simultaneously speeds up
significantly the classical approach.

In patterns with wide period windows, it is less efficient and is outperformed by
the other alternative methods. This is because common routes are exploited and
duplicate ones are created. Note also that the Parallel method follows similar
behavior (although more efficient) to the classical approach in all three problem

sets.
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Chapter 5: BRANCH AND PRICE: OBTAINING INTEGER

SOLUTIONS

In order to obtain integer solutions for the Multi-Period Vehicle Routing Problem with Time
Windows (MPVRPTW), we embedded the Column Generation approaches described in
Chapters 3 and 4 within a branch-and-price (B&P) scheme. B&P divides the feasible solution
space into subspaces, by avoiding selected fractional values of the problem variables (Lawler
and Wood, 1966; Lee and Mitchell, 2001). The solution space is repeatedly divided until
integer solutions are obtained, in a similar way to the classical branch-and-bound (B&B)

procedure.

Additionally B&P allows the generation of new proposed columns, i.e. routes, by solving the
subproblems at each node of the B&P tree. That is the fundamental distinction between B&P
and the classical branch-and-bound (B&B) procedure. Thus, the term “price" refers to the

pricing procedure that generates new columns (routes).

In this Chapter, we first discuss existing B&P methods initially proposed for the VRPTW
(Section 5.1). Section 5.2 proposes ways to adapt the existing VRPTW B&P methods to the
MPVRPTW. Section 5.3 proposes a heuristic technique to explore the B&P tree in an
efficient manner and obtain near optimal solutions with significant computational savings.
Finally, in Section 5.4 we test all aforementioned methods using the testbed developed and

presented in Chapter 4.

5.1 THE GENERIC BRANCH AND PRICE FOR THE VRPTW

Figure 5.1 describes the generic B&P procedure. Following the classic B&B procedure, B&P
procedure starts with obtaining the overall Lower Bound (LB), as described in Chapter 3 and
4. At this initial stage, the Global Upper Bound (GUB), i.e. the best known integer solution, is
set equal to a large number (M) or equal to the cost of any initial feasible integer solution (e.g.
obtained by a heuristic). If the LB corresponds to an integer solution, the algorithm terminates
and the LB is the optimal integer solution. In case the solution is not integer, the Branching
Policy is triggered. Given a fractional solution, the Branching Policy divides the feasible
solution space into subspaces, by avoiding fractional values of the selected problem variables.

Each subspace is explored (i.e. solved using the column generation method) independently
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and can lead to additional solution space division, in cases where fractional solutions are
obtained. Each one of these subspaces represents a new node of the B&P tree structure. Each
B&P node that is explored is deleted and the new nodes that are created are added to a list of
the remaining unexplored nodes (BBlist). In case a better integer solution (than the integer
solution found so far) the GUB is updated to these integer solution. Continuing the method,
another policy (Node Selection) is triggered in order to select the next node, among the
available unexplored nodes, to be explored. The algorithm terminates when no more
unexplored nodes exist or when the LB of all remaining nodes is larger than the GUB
(pruning of B&P nodes). Note that every B&P node is characterized by its predecessor (father
node) LB. Based on that, a node with LB larger than the current GUB cannot further improve

the solution, since its solution will always be larger than the predecessors' node LB.

Initial Solution
(GUB)

!

CG:Lower
Bound (LB)

No

LB< GUB?
Node Update GUB:
Selection GUB=NewlLB
No
odes’ List Delete Node Branching
Empty ? Explored Policy
Yes l
Termi AddNodesto |, New
erminate BBlist B&B Nodes

Figure 5.1: Branch and Price procedure

Branching Policies

Branching policy is used when a fractional LB solution is found for the current B&P node.
The policy is used to select the variable to partition the solution space. Some commonly used
branching policies on the VRPTW are overviewed below (Larsen, 2001; Danna and Le Pape,
2005):
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Branching on the Number of Vehicles

This was proposed initially by Desrochers et al. (1992). Given a solution with a fractional

number of vehicles equal to F, the solution space is divided into two subspaces.

Let X;; = Yxev Xijx be the cumulative vehicle flow from arc (i,j) in the final fractional
solution; that is the number of vehicles passing through arc (i, /). X;; provided by the routes

in the final fractional solution of the RMP. Based on X;;, two independent subspaces are

j1
created. The first is defined by an additional constraint, ¥, ;cy Xo; = [F], while the second by
YjenXoj < |F]. Note that these constraints can be easily incorporated in the RMP

formulation, and define two new nodes.

Although an integer number of vehicles may be obtained, using this policy, the actual LB
solution may still be fractional, with respect to the flow variables. For that reason, this

strategy is generally used together with other strategies.

Branching on Flow Variables

Given a solution with a fractional variable x;, the first subspace is defined by the additional
constraint, x;;; = 1, while the second is defined by, x;;, = 0. Thus, the first constraint forces

vehicle k to pass through arc (i, j), while the latter forbids it.

Since in the classical VRPTW, vehicles are considered to be identical, this branching cannot
be incorporated in the B&P procedure easily. That is, because branching on a specific vehicle
k is not possible since all vehicles are dealt through the same common subproblem and the
vehicles are not independently identified in the master problem. In order to incorporate it, one
subproblem per vehicle needs be solved. Due to this reason, branching on single flow

variables is not widely used.

Branching on Sums of the Flow Variables

This branching strategy was proposed by Halse (1992) and Desrochers et al. (1992). Given a
fractional solution of a B&P node, the sum of the vehicle flows (X;; = Yxey xiji) is

calculated. Selecting a fractional X;;, the first subspace is defined by constraining arc (i, j) to

j
be excluded by the solution, while the other subspace (X;; = 1) constrains arc (i, j) to be part

of the solution.

A major advantage of this strategy is that it can be easily implemented, without adding the

new constraints explicitly to the RMP formulation, but instead by modifying the cost matrix
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of the subproblem. Considering the first subspace, (a) all routes containing customers i and j
not in a consecutive manner are discarded from the current RMP of the father node, and (b)
all cost coefficients c;;, VI # j and ¢;;, V1 # i, are set to oo. These two modifications will
allow connections only from customer i to customer j to be created. In the second subspace,

the routes containing the arc (i, ) are discarded, and only the coefficient c;; is set to co.

Selection of Branching Variable

Regardless of the branching policy, a decision needs to be taken regarding the most promising
variable to branch on. Simple heuristics are typically used in order to select the branching
variable among the set of fractional variables. The most common approach is to branch on the
variable with the most fractional value (that is the value f, for which ([f] — f) is closest to
0.5).

Node Selection Policy

The node selection policy consists of the method to search and solve the known nodes of the
branch-and-price tree, that is the set of the known fractional solutions. There are several
policies, the majority of which mimics tree search methods, such as depth-first, best-first,
width-first and depth first with backtracking (see Larsen, 2001; Lee and Mitchell, 2001). One
of the most widely-used approaches is the Best-First approach. In a set of unexplored branch-
and-bound nodes, every node has been assigned with a metric, which is either the lower
bound of the CG solution corresponding to the parent node, or the lower bound corresponding
to the node itself. In the latter case, tighter bounds are assigned to the nodes and if a good
GUB value exists, many nodes may be discarded prior to expansion. On the other hand,
calculation of these lower bounds consumes considerable computational time. Based on this

metric, the node with the lowest LB is selected to be explored next.

5.2 BRANCH AND PRICE FOR THE MULTI-PERIOD ROUTING PROBLEM

Branching techniques

The branching and node selection policies proposed for the VRPTW (Section 5.1) are
modified properly in order to manage the additional degree-of-freedom introduced by the
flexibility of serving customers in multiple, adjacent, periods. Note that, as a consequence, all
decision variables (x;;x,) of the original formulation of the problem, contain an additional

subscript (p) denoting the associated period to the decision variable.
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One of the most widely used branching methods for the VRPTW is the "branching on the sum
of the flow variables over vehicles". This method is used either on its own, or together with
other branching methods (see Section 5.1). In the remainder we discuss our adaptation of the
above method for solving the MPVRPTW.

Consider a fractional lower bound and let X;;, = Yxexr(xijkp) be the cumulative vehicle
flow of arc (i,j) in period p, and X;; = ¥,cp(X;j,) be the cumulative vehicle flow of arc

(i, ) over all periods. We select to branch on the most fractional X;;,,. In order to implement

ijp-
this, one can select either of two branching methods for the B&P tree (see Fig. 5.1):

e 2br method: Two B&P nodes are created: The first concerns the subspace defined by
the additional constraint X;;,, = 0, and does not allow arc (i, j) to exist within period p
in any of the solutions within the defined subspace; however, this arc is allowed to
exist in all other periods. The second B&P node is defined by X;;,, = 1, which forces
arc (i, ) to be part of the solution within period p.

e P + 1 method: This method creates at least 2 B&P nodes. The actual number of nodes
to be created depends on the branching arc (i, j) and the feasibility of customers i and
j to be routed within the said periods. The first |[P| B&P nodes are defined by X;j, =

1, one per each period p, respectively. Each node forces arc (i,j) to be part of the
solution within the relevant period p. Note that in cases in which customers i and j are
not both feasible within a period, arc (i,j) is also not feasible. Thus, the related
subspace is not explored, and, therefore, the B&P node that corresponds to this period
is not created. An additional B&P node is generated for the subspace in which X;; =
0, and arc (i,j) does not participate in any solution. In this B&P node, arc (i,j) is

excluded from all periods of the planning horizon.

Figure 5.1 illustrates the two branching methods using a sample problem with 3 periods. In
this example, it is assumed that customers i and j are feasible in all three periods, and (i, j) is
the only arc with fractional flow within period p = 1. Given the initial lower bound (LB), the
2br method will divide the solution space three times, resulting in 6 subspaces; that is,
Xij» = 1and X;;; = 0, with the other subspaces created in a similar way in case fractional
solutions with respect to arc (i, j) continue to appear within period 2 (X;;, = 1 and X;;, = 0)
and 3 (X;j3 = 1 and X;;3 = 0). On the other hand, the P + 1 method will result directly in 4

subspaces. Three subspaces are defined by X;;,, = 1,p = 1,2,3, and one is defined by X;; = 0

ijp
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(i.e. Xjj1 + X;j2 + X;j3 = 0). Note that in Fig. 5.2, the highlighted subspaces are identical,

since XU = ZPEP(Xijp)'

2br technigue P+1 technique

(2 O
() () W @ ® O
() ()
Xi}-p=1
(2) (®) () Xy =0

Figure 5.2: Multi period Branch and Price techniques

The motivation of examining both methods is as follows: Considering a full exploration of
both trees, the P + 1 method is expected to be more efficient than the 2br method, since the
former does not explore certain subspaces (e.g. X;;; = 0 and X;,, = 0). For example, in the
2br method and for instances with wide period windows, the branch tree node X;;,, = 0 does
not define a "strong" partition of the solution space, since fractional variables are still allowed
for periods other that period p. That is, a fractional solution which we branched upon may be

replicated by traversing arc (i, j) within other periods, resulting to similar fractional solutions.

On the other hand, if an integer solution has been found at one of the nodes of the 2br
method, its successors will not be created. For example, if an integer solution is obtained in
the subspace defined by X;;; = 0, the four successor subspaces will not be created by the 2br

method. In this case, 2br is expected to be faster.
Implementation Issues

Both branching methods can be implemented without modifying/adding additional constraints
to the RMP, or the subproblems. This can be achieved by: (a) Modifying the time matrix of
each period appropriately in order to avoid creating new routes that contain the "forbidden"

arcs (note that for each period a separate time and cost from/to matrix is maintained, see
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Section 3.2), and (b) removing the existing routes within the RMP that violate the additional

constraints of the relevant B&P node.

Let t;;, be the travel time of traversing arc (i,j) in period p, N, be the set of feasible

customers within period p, and H be the planning horizon (periods 1, ..., P).

e Considering subspace (X;; = 0), (a) all routes within the RMP that is relevant to
period p and contain arc (i, j) are discarded (removed from the RMP of the said B&P
node), and (b) the coefficient t;;, is set to co. Thus, traversing arc (i, ) is not allowed
in period p.

e Considering subspace (X;j, = 1), we disregard (remove from the RMP of the said
B&P node) the following (a) all routes within period p that contain either customer (i
or j), or both customers not in a consecutive manner (i.e. arc (i, j) does not exist), and
(b) all routes of the other periods that contain either customer i or j. Additionally, all
travel time coefficients t;;,,, and t;;,,,, VI € Np,,, Vp' € H are set to oo, except from the
coefficient ¢;;,, of period p. Thus, traversing arc (i,j) will always be part of the
solution within period p.

e Especially in the P + 1 method, and for the subspace defined by constraint X;; = 0,
all routes containing arc (i, /) within all periods are discarded, and the coefficients ¢,

for every period p are set to oo. Thus, traversing arc (i, j) is not allowed in any period.

The special case of Unreachable Nodes in the ESPPTWCC

In our implementation, we utilize the concept of unreachable nodes proposed by Feillet et al.
(2005). In this concept, every label contains a binary vector with one element per customer.
The unreachable nodes, i.e. the already visited nodes, as well as the "non-feasible to be
visited" nodes due to constraint limitations, are set equal to 1 within this vector. Thus, a label

can be extended only to nodes that are not included in its related set of unreachable nodes.

Note, however, when branching is implemented with the aforementioned modifications (i.e.
setting values t;;,, to o), the triangular inequality may no longer be valid. For example,
consider a case with 3 customers in which the only fractional solution is related to arc (2,3)
and, thus, branching on this arc is performed. Note that the period subscript has been dropped,
since it is not relevant in this example. Considering the subspace defined by the additional

constraint x,3 = 1, all t,;,Vj # 3 are set to o while t,; remains as is. Given partial path

& = [1 2], the associated unreachable vector R, is equal to [1 0 1]. (Each unreachable vector
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R;s contains all customers excluding the depot and thus R,s = [r2s, 755, 75 ], Where ris = 1 if
customer i either has already been visited or cannot be visited due to resource limitations).
That is, path § will be extended to node 3 only, and a new partial path §' = [1 2 3] will be
defined.

Up to this point the whole procedure has been implemented properly; that is, arc (2,3) is part
of the generated paths. However, since the associated label L5/ inherits the unreachable
vector from its predecessor, customer 4 cannot be visited (note that r,% = 1 and, thus,
r345, = 1). In such case, partial path 6’ will be prohibited to be extended to other remaining
nodes (e.g. node 4); this, of course, precludes feasible solution regions and may lead to

suboptimalities.

In order to address this situation, the time matrices are not modified. Instead, we store the
information of the branching decisions (i.e. which arcs to prohibit from traversing in certain

periods) in a separate binary matrix B, for each period p, with elements:

b = {1 if arc (i,j) is allowed in period p
P 0 otherwise (5.1)

Thus, when solving a subproblem, a label L;s is allowed to be extended to another label L;s/

only if the relevant El-jp equals to one; otherwise the extension is not performed.

5.3 HEURISTIC PRUNING FOR BRANCH AND PRICE

Although B&P is not exhaustive (but exact), it may be excessively expensive, or, even,
computationally intractable. For example, even in cases in which the optimal solution has
been obtained, in order to prove optimality the method still needs to solve a subset of the
remaining B&P nodes (e.g. those with lower bound lower than the integer solution) (see
Section 5.3).

To obtain efficient integer solutions faster, we propose a heuristic pruning technique which
discards non-promising nodes (subspaces) of the B&P tree. The goal is to solve less B&P
nodes, while obtaining efficient integer solutions. Note that for these solutions optimality

cannot be proven.

Recall that when solving a node (n) of the B&P tree we obtain a lower bound LB, .
Additionally, an upper bound of the integer solution of node n may be calculated (denoted as

IB,,) by solving a Branch and Bound problem, using only the columns (routes) that exist in
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the current RMP (U,ep 2, ). The latter may be calculated using the default integer
programming methods of the CPLEX environment. Given the current best known integer
solution up to that point (i.e. Integer Upper Bound IUB), the following metric for each node

(n) may be calculated:

= IUB — LB, 52)
" IB,— LB, '

If LB, is larger or equal to IUB (i.e. M,, < 0), the corresponding B&P node is discarded by
the fathoming rules of the classic B&P procedure. That is, an improvement on IUB is not
feasible, and node n is discarded without creating any child nodes. Note that this procedure is

maintained within the proposed heuristic.

If both LB, and IB,, are lower than the current IUB (i.e. M,, = 1), then a new better integer

solution has been obtained (IB,,) and is set as the new IUB. In this case, node n will always be

further explored, since an improvement on IB,, is possible.

The proposed heuristic pruning technique is triggered when 0 < M,, < 1. In such cases,
LB, < IUB < IB,, and the value of M,, provides an insight on the current quality of the B&P
node, i.e. its ability to improve the current best integer solution (IUB). Note that in the exact
B&P approach, node n is explored further (not discarded). In our proposed heuristic we select
to discard node (n) when the potential for improvement of the best integer solution up to that
point (IUB) appears to be limited. The potential for improvement of IUB is assessed by the
relative distance between IUB and LB,, as compared to the distance between IUB,, and LB,,.
The greater the relative distance is, the greater the potential for improvement appears to be.
Based on this argument, node n is discarded when this relative distance is low, or,

equivalently, M,, is lower than a threshold value A € (0,1).

This argument is illustrated in Figure 5.2. Given node (n) and its corresponding LB,, and IB,,,
if the current best integer solution (IUB) is relatively closer to LB,,, then the exploration of
node n is not expected to improvelUB (the current best integer solution) significantly, since
the interval (LB, IUB) is narrow. Additionally, even if there is a better integer solution
within this interval, the cost improvement will be limited (Fig. 5.3a). Conversely, if IUB is
close to IB,, then the exploration of node n provides a more significant potential for obtaining

a better integer solution than the current IUB (Fig. 5.3b).
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0 LBn IUB IBn

(a) @ ® } *—>
0 LBn IUB IBn

(b) @ ® : ° >

Figure 5.3: Example of the heuristic pruning technique

In the extreme case of A = 0, all B&P nodes will be explored, resulting in an exact B&P
procedure. In the other extreme case (4 = 1), all nodes are discarded and, thus, Branch and
Bound is performed only on the columns obtained by the solution of the global lower bound
(Chapter 3.2). The latter case (1 = 1) has been utilized by Tricoire (2006).

5.4 BRANCH AND PRICE TESTING
The parameters used and choices made in our implementation are as follows:

e Exploration of the B&P nodes is performed using a best-first node selection policy,
that is, the node with the lowest lower bound is explored next (note that each node is
characterized by the lower bound of their parent node)

e All column generation parameters remain the same as in Section 3.3.5

e The Cloning method was utilized for obtaining the lower bound of each instance
(except in 5.4.3 where both the classical column generation and the Cloning method
are compared)

e When branching on the sum of flow variables and periods, and if more than two arcs
are competing for branching, then we select the one that is feasible in less periods; this
way, fewer B&P nodes need to be explored

e Each test instance is terminated when the computational time exceeds a time limit (set

to 1 hr in our implementation).

In Subsection 5.4.1 we validate the implementation of the B&P method by solving suitably
modified Solomon benchmarks, for which the optimal solutions are known. Subsection 5.4.2
presents comparison tests of the proposed B&P methods (P + 1 and 2br) regarding
computational efficiency. Subsection 5.4.3 presents comparison tests of the B&P scheme
when using the classical column generation approach and when using the cloning method.
Finally, Subsection 5.4.4 analyzes the efficiency of the proposed heuristic pruning technique

(Section 5.3) with respect to different values of the threshold A.
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5.4.1 VALIDATION OF THE BRANCH AND PRICE IMPLEMENTATION

In order to validate our branch-and-price implementation, we solve appropriate instances from
those presented in Chapter 4. Specifically we select the instances of pattern 9, in which the
period windows of all customers span the entire planning horizon. In addition, note the
number of available vehicles (within all periods) is large enough to satisfy the demand for

each instance.

Recall that all instances of Chapter 4 were based on the Solomon benchmarks for single
period VRPTW, which were converted to MPVRP instances by applying a period window to
each customer. Given that in the selected instances the period windows span the entire
planning horizon, the optimal solution of the MPVRP is the same as the one of the VRPTW,
which is known for the selected problems (Larsen, 2001). The goal of the validation testing

for our MPVRP solution approach is to obtain these optimal solutions in the MPVRP setting.

Table 5.1 presents the problem instance, the lower bound and the relevant computational time,
the integer solution obtained, the total B&P nodes created, the nodes explored until the
optimal solution is reached, the B&P node in which the first occurrence of the optimal
solution was detected and the computational time for the completion of the algorithm. In
instances where the "integer solution” fields are empty, the optimal integer solution was
obtained directly by the lower bound calculation and, thus, B&P was not needed. For the
instances that are not reported, the algorithm either terminated by the time limit or by resource

(memory) overflow, and the optimal integer solution was not obtained.

Table 5.1: Validation of the branch and price algorithm using Solomon benchmarks

Problem Vehicles Lower Bound Integer Solution
per Total Nodes First

# Set Period Cost Time Cost Nodes Explored Occ.)  Time (sec)
9 ri01 4 10434 6.14  1044.0 6 6 2 27.47
18 r102 3 909.0 35.63 @)

27 r103 3 769.2 34.37 772.9 141 141 1 2553.61
45 r105 3 892.1 10.46 899.3 559 199 86 1379.16
54 r106 3 791.4 26.92 793.0 43 13 13 233.83
62 r107 3 707.3 79.37 711.1 95 46 18 1763.34
90 r110 2 695.1 38.60 697.0 109 43 19 1019.18
117 c101 2 362.4 38.58 @
126 102 3 361.4  138.72 @
135 c103 2 361.4  742.25 @
153 105 2 362.4 65.35 @
162 c106 2 362.4 39.87 @
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Problem Vehicles Lower Bound Integer Solution
per Total Nodes First

# Set Period Cost Time Cost Nodes Explored Occ.  Time (sec)
171 c107 2 362.4 66.90 @

180 c108 2 362.4 92.11 @)

189 ¢109 2 362.4  215.32 @

225 rcl04 2 545.8 1568.86 @)

261 rcl108 2 541.2 1967.52 598.1 9 5 1 3633.01

(1) Number of nodes explored to initially reach the optimal integer solution.
(2) Optimal solution reached by the Column Generation method directly.

For all instances solved, the solutions obtained for the MPVRPTW were identical to the
optimal integer solutions reported in the literature for the VRPTW. This provides a strong
indication for the validity of our B&P (and CG) implementation.

5.4.2 COMPARISON OF BRANCH AND PRICE TECHNIQUES (P + 1 AND 2br)

We tested both proposed branching techniques (P + 1 and 2br) described in Section 5.1 and
compared the results obtained in terms of computational efficiency, using the 66 instances

that required the use of B&P and were solved by both techniques.

Appendix B.1 presents detailed results of the two B&P methods regarding these 66 instances.
Table 5.2 summarizes these results presenting the average computational time per instance,
the average number of nodes explored, and the average number of nodes explored until the

optimum was initially reached (first occurrence of optimal solution).

Table 5.2: Aggregate B&P results for the 66 instances solved by both techniques (2br and P + 1)

Average Time  Nodes First

Method (sec) Explored Occ.”
P+1 384.8 44.5 27.1
2br 391.8 46.5 21.0

(1) Number of nodes explored since the optimal integer solution was initially reached

It is clear from these aggregate results, as well as the detailed ones in Appendix B.1, that the
average performance of the two techniques with respect to computational times and number
of nodes explored is almost identical. Note that the 2br method appears to converge to the
optimal integer solution by solving fewer nodes, as evidenced by the reduction in the number
of nodes explored until the optimal integer solution was initially reached. However, no
method outperforms significantly the other one, in the average sense.
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5.4.3 COMPARING FULL AND CLONE METHODS WITH B&P
Based on the results of Chapter 4, for the B&P implementation we selected

e the CLONE over the UNI method, since it appears to: (a) yield the most efficient
cumulative computational times and (b) be the most consistent across all patterns and
client geographical distributions.

e The 2br branching technique.

We compared the efficiency of the B&P scheme that uses the CLONE method versus the
B&P scheme that uses the reference method (FULL).

Table 5.3 presents the number of test instances that converged either to the optimal integer
solution, or obtained an integer solution within the time limit (one hour of computational
time). The first column presents the instances for which the optimal integer solution was
obtained directly by solving the relaxed problem with the column generation method without
the use of B&P. The second column presents the instances that converged to the optimal
integer solution using B&P, while the third column presents the instances that converged to
an integer solution but terminated due to the time limit. The remaining instances did not
obtain an integer solution within the one hour time limit and were not tested further. Note that

most of these latter instances belonged to the RC1 configuration.

Table 5.3: Instances with an integer solution using the FULL or CLONE method

Integer Integer Integer Solution
Method by CG by B&P (optimality not verified) Total
FULL 89 70 37 196
CLONE 92 72 37 201

Figure 5.4 analyzes the average ratio of the B&P computational times using the CLONE
method versus the FULL method over all client geographical distributions per period window
pattern. Two different ratios are presented: (a) The IB ratio that concerns all 196 instances for
which an integer solution was obtained by both methods, and (b) The IC ratio that concerns

only the instances which were solved to optimality by B&P.
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Figure 5.4: Average computational time ratio (CLONE vs. FULL)

The IB ratio curve shows that the CLONE method results in significant gains in determining
the optimal (or a suboptimal) integer solution, especially as the width of the period window
increases. The IC ratio curve indicates that the efficiency gains of the CLONE method are
moderated when it is used in the B&P scheme. This is attributed to the fact that the savings,
stemming from determining the lower bound, are moderated by the other B&P operations,
such as the generation of the B&P nodes.

Figure 5.5 presents the average ratio of the number of B&P nodes explored by the CLONE
versus the FULL method per each period window pattern and across all client distributions.
Two different ratios are presented: The first concerns all instances for which both methods
determined the optimal integer solution within the time limit using B&P. The second concerns
those instances for which an integer solution was reached but the B&P scheme was
terminated due to the time limit. In the latter case, since CLONE is more efficient, it is
expected to explore a greater number of nodes within the same time interval. This is verified
by the second ratio in Fig. 5.5. This also seems to be the reason that five more instances were
solved by the B&P using the CLONE method vs. the FULL (see Table 5.3). The first ratio
verifies that in reaching the optimal solution, approximately the same number of nodes is

explored by either B&P method.
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Figure 5.5: Nodes explored per period window pattern

5.4.4 TESTING OF PROPOSED HEURISTIC PRUNING TECHNIQUE

In order to analyze the proposed heuristic technique described on Section 5.3, different values
for the threshold (1) were tested. Recall that given a value for the threshold A€ [0,1], the B&P

nodes for which M,, > A are maintained and explored further. The rest are discarded.

The analysis was based on the set of 66 problem instances for which the optimal solutions
were obtained by both B&P techniques. Analytical results are reported in Appendix B.2.
Tables 5.4 and 5.5 present the aggregate results of the analysis for different values of (A)
using the P + 1 and 2br techniques, respectively. Specifically the two Tables present the
average percent cost difference with the optimal integer solution, the average number of
nodes explored per problem, the average number of nodes explored until the best integer
solution was initially reached, the average computational time per problem, and the number of
instances for which the optimum was not obtained. (Note that the cost difference statistic in
Tables 5.4 and 5.5 considers only the instances for which the optimal integer solution was not
obtained. The other statistics consider all instances).

Table 5.4: Performance of pruning heuristic for different values of threshold 4 using the P + 1 branching

method (66 instances solved)

Instances in which Nodes Explored Average Comp.
A optimal was not Cost Difference ] @  Time per Instance
reached Average First Occ. (sec)
1.00 25 0.456% 1.0 1.0 23.2
0.99 6 0.389% 10.6 3.7 163.8
0.95 5 0.354% 12.1 3.6 169.3
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Instances in which Nodes Explored Average Comp.
A optimal was not Cost Difference ] @)  Time per Instance
reached Average First Occ. (sec)
0.85 4 0.182% 14.2 3.7 176.9
0.75 3 0.193% 17.3 4.1 191.0
0.50 - - 22.5 54 226.4
0.00 - - 44,5 27.1 384.8

(1) average number of nodes explored since the optimal integer solution was obtained.

Table 5.5: Performance of pruning heuristic for different values of threshold 4 using the 2br branching method

(66 instances solved)

A I.nstances in which Cost Difference Nodes Explored T;:r:lsr:egrel:\:st?:;e
optimal was not reached Average First Occ.” (sec)
1.00 25 0.456% 1.0 1.0 22.8
0.99 5 0.233% 10.0 3.6 142.4
0.95 5 0.233% 10.6 3.7 145.7
0.85 5 0.233% 14.3 4.4 171.2
0.75 4 0.151% 17.1 5.4 187.9
0.50 1 0.351% 22.3 6.8 215.0
0.00 - - 46.5 21.0 391.8

(1) average number of nodes explored since the optimal integer solution was obtained.

From Tables 5.4 and 5.5 it is clear that the proposed heuristic method presents similar results
under both the 2br and the P+1 B&P techniques.

As far as the solution quality is concerned, the heuristic results in very limited deviations from
the optimal integer solutions. Even with A = 1, only in 25 out of 66 instances the optimal
solution was not reached. The maximum cost deviation over all instances in both cases was
equal to 2.07%. Note that even for A = 0.99 the average deviation from the optimal integer

solutions is very limited and equal to 0.233%.

In terms of computational time, the proposed heuristic results in significant computational
time savings. For example, for A =1 a good solution is reached within 6% of the time
required to obtain the optimal solution (that is, for A =0). Even for A =0.5, the
computational time required (for the heuristic to terminate) equals 59% and 55% of the full

optimal solution time, respectively.

Figure 5.6 presents graphically the results of Table 5.4 with respect to the computational time
needed and the quality of the solution obtained for different values of A using the P + 1
method. In this Figure: (a) the computational time is normalized with respect to the
computational time of the full B&P method (100%), and (b) the cost difference is the average
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percent cost difference with respect to the optimal integer solution. (Again for the cost
difference we considered only the instances for which the optimal integer solution was not
obtained).
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Figure 5.6: Computational times and deviation from optimal integer solution for different values of 4 (P +
1 method)
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The results obtained validate the efficiency of the heuristic pruning technique, since

e The optimal integer solution is almost always obtained for A = 0.5 in approximately
60% of the time required by the full B&P

e The deviation of the solutions of the heuristic from the optimal integer solutions are
very limited and controllable by the value of A. Even for A = 1, the cost deviation is

less than 0.5%, while the time savings are 94% with respect to the full B&P.

Dept. of Financial & Management Engineering 87






The MPVRP and Its Applications

Chapter 6: ENHANCEMENTS FOR APPLYING THE MPVRPTW

IN A ROLLING HORIZON FRAMEWORK

In this Chapter we discuss important enhancements that are required in order to address
problems of practical significance using the MPVRPTW methods presented in Chapters 4 and

5. Specifically, we focus on the following issues:

e Employing MPVRP in rolling horizon planning (see Section 6.1).

e Developing fundamental understanding of rolling horizon planning using a special quasi-
static case (see Section 6.2)

e Addressing the case in which not all customer orders can be satisfied within the planning
horizon (see Section 6.3).

e Testing the MVRP in a rolling horizon environment for both the special quasi-static case,

and the more general dynamic case (see Section 6.4).

6.1 THE ROLLING HORIZON PLANNING PROCESS

In order to be able to address long-term horizons using the MPVRPTW we utilize a rolling
horizon framework in which the solution procedure of the MPVRPTW is embedded (see Fig.
6.1). Consider an environment in which each customer order i arriving in period t can be
served within a period window [£7,&7], where &7 > t, ; that is, the order may be served after
(and not including) the period of arrival. The long term time horizon defined by the latest
expiration time of any unserved order, ¢7,Vi € N (where N is the set of unserved orders) is
denoted as S. Note that S depends on N, but for simplicity this is not indicated explicitly in the
S symbol.

Denote the current period as p. and assume that we have elected to solve MPVRPTW for the
period interval [p. + 1,p. + P], where p. + P < S. This latter time interval is the planning
horizon. The fact that we consider a planning horizon [p. + 1, p. + P], which is a subset of

the long term horizon S may be attributed to the following reasons:

e The available information on customer orders to be serviced in distant periods from
the current period may be limited, and, the period windows of these customer orders
may not be overlapping with the customer orders within the selected planning horizon.
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Thus, there is no point in considering these periods within the planning horizon, since

they will not affect the planning of the selected planning horizon.

e The horizon § may be long, so that solving the MPVRPTW over S may be

computationally intractable, due to the associated large number of orders.

Let MPVRPTW (P, p. + 1) denote the multi period routing problem to be considered over the

planning horizon [p. + 1,p. + P] of length P. The customer orders to be considered in this

problem (set N) are those for which the period window has opened within the planning

horizon;i.e. N ={i E N:p. + 1 < & < p.+ P}, and (N € N).

Given this set up, the related planning process is as follows: Customer orders are assigned

over the next P periods [p. + 1,p. + P] using MPVRPTW (P, p. + 1). The orders assigned in

periods [p. + 1, ...,p. + M], where M < P, are selected for service. The remaining orders,

assigned in the time interval [p, + M + 1,p. + M + P] are considered again for routing

combined with the new customer orders that arrive during the execution of periods p, +

1, ...,p. + M. This rolling (planning) horizon process is shown in Fig. 6.1, where M is the

length of the implementation period.

New Orders
(feasiblein [pc+1,..., pc+P])

Unallocated Orders
from Periods
[pC-(P'M'l)/"'/ pC]

A

Routed in Periods
[pct+1,..., pctM]

Orders to be routed in the next planning
horizon [p+M+1,...,p +M+P]

Figure 6.1. Planning process

Routed in Periods
[pctM+1,...,p.+P]

The length P of the planning horizon is selected in order to balance the quality of the

combinations, and resulting routes, formed by the known customer orders within the horizon,

versus the computational effort required to solve the problem.
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6.2 THEORETICAL INSIGHTS FOR A SPECIAL CASE OF ROLLING HORIZON

PLANNING

6.2.1 NOTATION

Consider a routing problem over a long term horizon of S periods, in which all customer
orders are known throughout the horizon. Let also the sole objective of this problem be the

minimization of the routing cost.

Consider, now, solving the above problem by a rolling horizon scheme with planning horizon
of length P and implementation horizon of length M. Thus, the rolling horizon cycle will be
repeated every M periods. We call this case “quasi-static”, since each time we solve a
MPVRPTW, the only new clients considered are those of the last M periods of the planning
horizon. No new customer orders arrive dynamically. Using this special case, we will develop

some interesting theoretical insights. Prior to this, we will introduce necessary notation.

Let MP(P,p. + 1) be the optimal solution of the multi-period problem MPVRPTW (P, p. +

1),and C(P,p. + 1) be the related optimal cost; that is the cumulative routing cost

min (pc+P,S)

considering all periods of the planning horizon: C(P,p. + 1) = Z(chﬂ

C(P,w), where
C (P, w) denotes the routing cost of period w. Given this notation, we denote as Cp,, the final
cost of the entire long-term horizon plan for a planning horizon of P periods and an
implementation horizon of M periods. For convenience we assume that P is an integer

multiple of M. Then,

N
M M

Cou = Z Z C(P,p*M +k) (6.1)
=1k=1

14
Consider any set of feasible customers within period p, and the optimal w.r.t. cost solution for

serving these customers. If there are multiple optimal solutions for this set of customers, we
arbitrarily select one. We denote as O, the set that contains the optimal solutions (i.e.
combinations of routes) for all subsets of customers that are feasible within period p. Note

that for each different customer subset there is only one solution in O,,.

6.2.2 THEORETICAL INSIGHTS

In the current Section we propose important statements regarding rolling horizon planning for

long term quasi-static routing problems.
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The first statement compares the monolithic solution of the full routing problem (for the S

period horizon) with any solution obtained by a rolling horizon scheme.
Statement 1

Given that all customer orders to be served within the long-term horizon (S periods) are
known, the cost C3,, of the optimal solution of MPVRPTW (S, p. + 1) is always lower than or
equal to the final implemented cost Cj,, obtained by any rolling horizon scheme with

planning horizon of P < S periods, and implementation horizon M.
The justification of this statement has as follows:

Consider the solution of a problem provided by a rolling horizon scheme, which solves a
sequence of problems MPVRPTW (P,p.+ 1) for p. = 0,M,2M,...,S—M . The current
period is considered to be p, = 0. This solution, with cost C5,,, is also a feasible solution of
the monolithic problem MPVRPTW (S, 1). The justification of this has as follows:

e The feasible space of MPVRPTW (S, 1) may be formed by considering (a) all feasible
distributions of customer orders among the periods of horizon S, and (b) for each
period all feasible routes of the corresponding set of customer orders.

e Consider the optimal solution of MPVRPTW (S, 1). For each period p of horizon S,
the optimal solution contains the optimal routes of the customer orders allocated to
that period; these routes belong to set 0, defined in the previous Section. If we denote
by O(S, w) the set of routes of period w within the solution of MPVRPTW (S, 1), then
0(S,1) € 04, ...,0(S,S) € 0.

e Consider now, the solution of the same problem derived by a rolling horizon scheme
with planning horizon of P periods, and denote by O(P, w) the set of routes of period
w that belong to this solution. Since the solution of each MPVRPTW (P,p + 1) is
affected (constrained) by the part of the solution implemented up to period p, it holds
that the solution of the first period O(P, 1) € 0,, while the solutions of subsequent
periods belong to subsets (0y) of each 0, e.g. 0(P,2) € 05 € 0,,...,0(P,S) € 05 S
Os.

Based on the above, the resulting cost C (S, w) of each period w, which corresponds to the set
of routes O(S, w), is always less than or equal to the cost C(P, w) of O(P, w), and, ; therefore,

the cost C5, = X3/ SM, C(S,p * M + k) of the optimal solution MP(S, 1) is always lower
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than or equal to the cost C3,, obtained by the rolling horizon solutionwith planning horizon of

P periods (C3s < Chyy).

Example 1

To illustrate this fact, consider a simple example with 2 periods only, and two different
planning horizons (P =1 and P = 2). Let also the implementation horizon be equal to
one (M =1).

e For the case with P = 1, two single period problems are solved, and the final cost of
the two-period problem is CZ = €(1,1) + €(1,2)

e For the case with P = 2, one two-period problem is solved, and the final cost is given
by CZ4 = C(2,1) + C(2,2).

For period 1, the feasible routes are the same for both cases. For period 2, however, and for
the case with P = 1, the feasible set of routes, along with the routing cost € (1,2) is restricted
by the routing result of the first period problem MP(1,1). Thus, for P = 2 the feasible set of
period 2 is the set 0, of optimal solutions of all sets of customer orders that are feasible in
period 2 (see Section 6.2.1 above). For P = 1 the feasible set of period 2 is a subset of 0,,
since the available set of feasible solutions has been restricted by the i solution of period 1.
Thus, every solution obtained by the planning horizon P = 1 can also be obtained by P = 2,
and the cumulative cost C(2,1) + C(2,2) is less than or equal to €(1,1) + C(1,2).

Statement 2 below is related to the length P of the planning horizon of a rolling horizon
scheme that solves the long term problem of S periods (quasi-static case). One may assume
that a longer planning horizon may provide more efficient solutions, since it allows for an
increased number of customer combinations, thus leading to the formation of more efficient
routes. Statement 2 indicates that this is not necessarily true. The quality of the solutions is
strongly related to the period flexibility of the customers and their characteristics (time

windows, etc).
Statement 2

Consider the quasi-static routing problem of S periods. The overall routing cost (C3y,)
provided by a rolling horizon scheme with planning horizon of P periods is not necessarily
lower than or equal to the overall routing cost (C_If,M) provided by a rolling horizon scheme

with planning horizon of P'periods, where P’ < P < S for the same M.
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This fact is illustrated by the following example (and verified experimentally in Section 6.4).

Example 2

Consider five consecutive periods and four customers with period windows as shown in Table
6.1. Additionally, we consider that in each period only two customers may be routed and M is

considered equal to 1. The related distances are provided in Table 6.2.

Table 6.1: Customers and related period windows (example 2)

Customer Period Window

a [1,2]
b [2,4]
c [4,5]
d [5,5]

Table 6.2: Costs of arcs (example 2)

Arc Cost Arc Cost
(a,b) 0.5 (D,a) 1.0
(b,c) 0.4 (D,b) 1.0
(c,d) 0.5 (D, ¢) 1.0
(D,d) 1.0

We compare two alternative planning horizons, P =2 and P = 3. Fig. 6.2 and Table 6.3
present the final routes that will be generated from the alternative planning horizons. The

relevant arc costs are shown in Fig. 4.

P=3

Figure 6.2: Customers and related network (example 2)

Table 6.3: Final routes per period for implementation horizon of P = 2 and 3 (example 2)

Period ——2 P=3
Routes Cost Routes Cost
1 - - - -
2 [D-a-b-D] (D,a) + (a,b) + (b,D) [D-a-D] 2 x (D, a)
3 - -
4 - - [D-b-c-D] (D,b) + (b,c) + (¢, D)
5 [D-c-d-D] (D,c) + (c,d) + (d,D) [D-d-D] 2 x (D, d)
Total 5 6.4
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The final routing costs of each planning horizon are:

e P=1:C3,=(D,a)+(ab)+ D)+ D,c)+(c,d)+(d,D) =50
e P=2:C3;=2(D,a)+ (D,b)+ (b,c) + (c,D) +2(D,d) = 6.4

Thus, for this example, the planning horizon of 2 periods results in better (lower) routing cost.

Note, although, that with appropriate period windows, this situation may be reversed.

Statement 3 concerns the length of the implementation horizon M of a rolling horizon scheme
for the quasi-static case. In practice it is typical to use the minimum possible M (i.e. M = 1 in
our case). Note that if M > 1 the step of the rolling horizon scheme is modified appropriately
to match M.

Implementing only the first period of the solution MP (P, p.) may seem the most appropriate
tactic, due to the fact that there is no knowledge of the customer orders beyond period p. + P.
Thus, implementing the minimum possible part of the solution may offer the opportunity to
incorporate in a better fashion the new orders of the next problem to be solved. This,

however, turns out not to be necessarily true.
Statement 3

Consider the quasi-static case of the long term problem (S periods). If this problem is solved
by a rolling horizon scheme with planning horizon P > 1, it is not guaranteed that M = 1
(i.e. implementing only the part of the solution corresponding to the first period of the

planning horizon) will lead to the minimum cost value C5,,.
This fact is illustrated by the following example.

Example 3

Consider the following problem with four periods and four customers with the period
windows provided in Table 6.4. Additionally, we consider that in each period only two

customers may be routed, and P is equal to 2. The related distances are provided in Table 6.5.

Table 6.4: Customers and related period windows (example 3)

Customer Period Window

a [1,2]
b [2,3]
c [3,4]
d [4,4]
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Table 6.5: Costs of arcs (example 3)

Arc Cost Arc Cost
(a,b) 0.5 (D,a) 1.0
(b,c) 0.2 (D, b) 1.0
(c,d) 0.5 (D, c) 1.0
(D,d) 1.0

Based on this information, Fig. 6.3 and Table 6.6 present the final routes that will be

generated by using two different implementation horizons, M = 1 and M = 2.

For M = 1: Since P = 2, in the first planning step of the first two periods only the first two
customers are considered. Since customer b cannot be routed prior to period 2, both
customers are planned for routing within the second period in order to minimize the routing
cost. Thus, there are no clients routed in period 1. The second planning step considers periods
2 and 3 and customers a, b and c. Since distance (b, c¢) is lower that (a, b), customers b and ¢
are planned to be served together in period 3. Customer a is served alone in period 2 and is
implemented during this second step. The next and final planning step considers periods 3 and
4 along with customers b, c and d. Similarly, in period 3 customers b and ¢ are scheduled

together in period 3 and customer d remains alone in period 4.

For M = 2: Using the same procedure but with implementing both planned periods, the final

routes per period are shown in Table 6.6.

Figure 6.3: Customers and routes for implementation horizons M = 1 and 2 (Example 3)

Table 6.6: Routes and cost per period for implementation horizons M = 1 and 2 (Example 3)

Period =1 M =2
Routes Cost Routes Cost
1 - - - -
2 [D-a-D] 2% (D,a) [D-a-b-D] (D,a) + (a,b) + (b,D)
3 [D-b-c-D] (D,b) + (b,c) + (¢,D) [D-c-d-D] (D,c)+ (¢,d) + (d,D)
4 [D-d-D] 2x(D,d) - -
Total 6.2 5.0
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The final routing cost of each implementation horizon are:

e M=1C{,=2(D,a)+ (D,b) + (b,c)+ (c,D)+2(D,d) =6.2
e M=2:C};=(D,a)+(ab)+ D)+ (D, c)+(c,d)+(dD)=5.0

For this example using an implementation horizon with M = 2 results in lower routing costs
if (D,a) + (b,c) + (D,d) > (a,b) + (c,d); this in our example holds for appropriately large

values of the arcs connecting the depot and the customers.

6.3 MODIFYING MPVRPTW 10 DEAL WITH LIMITED RESOURCES AND

UNSERVED CUSTOMERS

When addressing multi-period routing problems with a limited number of vehicles, not all
customer orders can be routed within the selected planning horizon. Thus, the following

important issues need to be considered:

e How to deal with cases in which not all customers can be served with planning
horizon P, due to resource limitations?

e Which customers to exclude from the current plan in that case?

e Even if the resources are adequate, depending on the problem model (e.g. the
objective function), customers may be excluded in order to save routing costs; how

can one deal with this matter?

An additional important issue to be considered when using a rolling horizon framework
within a multi-period setting, is the following: How to deal with the tendency of the rolling
horizon to postpone the scheduling of customers; this results in customers the period window

of which expires in the first period of the planning horizon (e.g. customers with &7 = p. + 1).

These issues are relevant when a rolling horizon framework is used to solve long term routing
problems (both quasi-static and dynamic). In this case, customers excluded from the solution
of the problem solved for a certain planning horizon will be considered by the problem(s)
corresponding to subsequent planning horizon(s) (if allowed by the customers' period
windows). This fact tends to “push” customers into the future, and may lead to unserved

customers, due to resource or period window constraints.

This situation describes cases, in which certain customers are selected against other
customers, and the latter remain unserved due to resource limitations. In the subsequent

planning horizons the period windows of these unplanned customers are becoming
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progressively narrower, leading to more “expiring” customers. In case not all customers can
be accommodated, the selection of which (expiring) customers to be left unserved is based

strictly on routing costs.

Below, the methods described in Chapters 4 and 5 for the MPVRPTW are further enhanced in

order to address the aforementioned issues.

6.3.1 ENHANCING THE OBJECTIVE FUNCTION

As indicated previously, the objective function of MPVRPTW accounts strictly for the
routing cost (see Chapters 3 and 4) and it regards cases in which all customers can be routed
within the selected planning horizon (i.e. with enough resource capacity to facilitate all
orders). For the case addressed in this Section, customers may be left unserved due to limited
resources (time, demand, and limited fleet). Two related issues arise then: (a) Since the model
proposed in Chapter 3 includes the constraint to serve all customers, and, if no adequate
resources are available, then there is no feasible solution; (b) on the other hand, if the
constraint for serving all customers is dropped, then customers may not be included in the
solution solely based on routing cost (e.g. remote customers). To address these related issues
we have introduced additional (penalty) terms in the objective function to prevent dropping
selected clients. We have also used a way to artificially satisfy the constraint of serving all

customers.

Consider the case of using MPVRPTW in a rolling horizon setting. If the period window of
an unserved customer is such that the latter may be re-planned in the next planning horizon,
then dropping the said customer may not become an issue, since this customer will be
considered again in the subsequent problem(s). If, on the other hand, the period window of the
customer expires in the first period of the current planning horizon, then the customer will be
left unserved, resulting to a severely negative impact to customer service. The proposed
penalty function should take this fact into account and avoid dropping such “expiring”

customers.

Note that for simplicity, and without loss of generality, below and in the following Sections
we consider that p. = 0; in this case the above “expiring” customers should be served within

the first period of the planning horizon.

Consider the solution of a MPVRPTW in the planning horizon [1, P] and let u, and u; be

the sets of expiring and non-expiring customers (derived from the feasible set of customers N
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within the planning horizon), which are left unassigned due to resource limitations. We
propose the following straightforward modification of the objective function in order to

simultaneously:
(a) Maximize the number of customers served in all periods of the planning horizon,
(b) Maximize the number of expiring customers served in period 1,

(c) Minimize the multi-period routing cost.

P
min Z Z CPxt +Pe|ue |+Pf|uf | (6.2)

p=1T€N,

where P, and P are the penalties for each expiring or non-expiring unassigned customer,
respectively. In order to minimize the number of unserved customers, both penalties need to

be set to large values. These penalties can be set to any value larger than max;ey (Cr,) Where
Cr, represents the cost of the unit route [Depot — i — Depot]. If the penalties are lower than
the unit route costs (C,,), there is possibility that in column generation the artificial routes —
columns related to the penalties (e.g. leaving a customer unserved) may enter the final basis

of the solution as opposed to the actual unit routes (however the grouping of customers to

routes might prevent this behavior).

Note that the proposed modification of Eq. (6.2) needs to be made only to the objective
function of the Master Problem, Eq. (3.14). Thus,

e Each unserved expiring or non-expiring customer is allocated to a virtual unit route
[Depot — i — Depot] with artificial routing cost equal to P, or Pf, respectively. Thus,
Constraints (3.16) (e.g. each customer should be served once) still remain feasible by this
artificial assignment.

e The elements of these artificial columns (routes) that are relevant to the vehicle
Constraints (3.15) are all equal to zero in order to not contribute to the number of used
vehicles. Note that in a route (column) assigned to a specific period the relevant element
of the vehicle constraint is equal to one in order to consider that one vehicle is used by the
solution.

e Although, the unserved customers contribute to the total final cost, by the assigned
penalties, they do not interfere with the actual routing costs, since the routing costs are
provided by the sequence of the assigned customer orders to each proposed route

(column) within the Master Problem.
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6.3.2 ADJUSTING THE PENALTIES P, AND Pf TO PRIORITIZE EXPIRING
CUSTOMERS
In order to ensure that an expiring customer will not be replaced by a non-expiring customer,
we consider using the following inequality
P, > P; + AM, (6.3)
and we identify the appropriate values of AM, ( to ensure that expiring customers will be

served, within the limits imposed by the resource constraints. That is, expiring customers may
still remain unserved in cases in which the available resources are not adequate to facilitate

them.

In order to compute the values for AM, ; we consider a theoretical multi-period routing
problem with two different solutions (1) and (2), the routing costs of which are given by R™
and R®, respectively, and |u£,1)| < |u£,2)|. In order for the objective function (6.2) to provide
lower cost for solution (1) in comparison to solution (2), the following should hold:

u((gl) u‘(az)

RMW +

P+ |uf| P < R® +

P+ [u®| Py (6.4)
If we substitute P, with P, = Pr + AM, £, then (6.3) becomes:

AR(1.2)=R(1)_R(2)
12)_, (1__ (2
Auf Sup —ug

(RO -RD)+ (" —u®) By ) (65)
_p BT
(1 = ug) '

1,2 (1,2)
AR + Aug Py

Augz’l)

AM,; >

AMe’f > — P¢ (6.6)

Thus, in order for (6.3) to hold, we should define AM,  to always be greater than the right
hand side of the inequality.

e The worst case of AR®? is when R® =YX, C,,, and when R® = 0 (i.e. none of

the customers are visited). Thus AR < ¥V, C,,

e The worst case for Aut?

;7 is when |u}1)| = £, where £ is the number of non-expiring

customers, and |u}2)| = 0. Thus, Au}l'z) <f.

2

e

<

ugl) u

e Similarly, Augz’l) >1, since we have considered that

and |ue | is

always a positive integer.
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Thus, by replacing the aforementioned equations to (6.5):

AR 4 4y p N . C. +fP J
f f i=1CYr; f _ A
o B ST k= ) Gt (- DR = 67)
ue i=1
N
AMop2 ) Crt (F = DB (63)
i=1

Now since Pr > max;en(Cy,), the difference (say 6) between the weights of the expiring and

the flexible customers is given by the following inequality (9 represents a small positive
value):

MMep26= ) Cri+ (f—1max(C) +9 (6.9)

N
=1

L
If § is set to this value, then the number of expiring customers that will be served is
guaranteed to be maximized. Note that for short planning horizons, lower values of AM,

result in a larger number of unserved customers.

6.3.3 ADJUSTING THE PENALTIES P, AND Pf FOR ALL (EXPIRING AND NON-

EXPIRING) CUSTOMERS

Using the aforementioned penalties we do not distinguish among non-expiring customers
based the imminence of their expiration periods. Thus, the non-expiring customers to be
assigned in period 1 will be selected solely based on their routing cost efficiency. This may
lead to a myopic assignment of customers, without taking into consideration their flexibility
(as defined by their expiration period), and may result in leaving customers with low
flexibility unserved. The requirement of serving these customers in the next period(s) may
increase the routing cost far beyond the savings incurred by excluding them from the original

planning horizon.

To moderate this issue, we propose five (5) alternative penalty functions that provide the
exclusion penalty of each customer depending on the imminence of its expiration period. That
is, the penalty sz assigned to customer i depends on the customer’s expiration period (&7)
and on the shape of the penalty function y. Note that this function provides the penalties for
all customers, expiring and non-expiring, taking into account (for y = 2, ...,5) the analysis

presented above for the difference of penalty values between the two types of customers. Each
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of the penalty functions represents an alternative trade-off between routing costs and service

level (maximization of served customers).

Penalty function y = 1: Ignoring the Period Window

This penalty function assigns the same penalty to all customers regardless their expiration
period; thus, AM, = 0 and P; = max;en(Cy,) + 9. This has the following implications: (a)
Expiring customers are not treated with priority in case resource limitations prevent all
customers to be routed within their period windows and the planning horizon considered, and
(b) routing costs are favored since the objective function allows the selection between
customers to yield more efficient routes (i.e. the customers that result in the minimum routing

costs).

Pl =P VieN (6.10)

Penalty function y = 2: Forcing the Inclusion of Expiring Customers

This penalty function respects the limitations of expiring customers. That is, the large penalty
value of Section 6.3.2 is assigned to penalty P, for each expiring customer. All other
customers, regardless their expiration period, are treated equally with the same penalty value
P;.
p2 — {Pf +6  vieN:&f =1

‘ Py otherwise (6.11)
As a result, in every multi-period problem, all expiring customers within the initial period of
the planning horizon are routed, if this is possible. Expiring customers may still be left
unrouted, but this is due only to resource limitations, and not to customer selection (i.e. in that

case no non-expiring customer will displace an expiring one in the solution).

Penalty function (y = 3,4, 5): Continuous Penalty Functions

In these functions, the penalty assigned to each customer i is based on each customer's
expiration period (7). Expiring customers in period 1 are assigned with a penalty of value P,,
while all others are assigned with a penalty value within the interval [Py, P.] according to the

selected penalty function.

Note that in the case of penalty functions y = 3,4,5 expiring customers do not always

displace non-expiring customers from the solution. This is because the penalties assigned to
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the flexible customers increase as a function of the imminence of the customer’s expiration

date beyond the value that secures their displacement by the expiring customers (that is the

difference between the penalties of expiring and non-expiring customers is not always greater

than 8). Also, max;.y(&7)>1. The three penalty functions are provided below:

4
¢ -1

r}le?vx(ff) -1

Pi3:

& -1
r}le?vx(ff) -1
¢ -1

o \max(¢) -1

X(Pr—F)+PF

X(Pr—F)+PF

X (P — P,) + P,

VieN

VieN

VieN

(6.12)

(6.13)

(6.14)

Each function presents a quadratic, square and linear decrease of the penalty, respectively,

with regard to each customer's expiration period (7).

Figure 6.4 illustrates the five different penalty functions. By using the appropriate function,

we may direct the solution method into prioritizing expiring customers, as well as customers

with limited flexibility (i.e. available number of periods to be routed).

Flat (y = 1)

Step (v = 2)

Pf—Q—Q—Q—Q—Q—H

Pf——————————o———

1 2 P 1 2 P
Quad (y = 3) Square (y = 4)
P, e P. @
vy
¢ “e..
Ce g

Py *- + * Py - *

1 2 P 1 2 P
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Linear (y =5)

Figure 6.4: Penalty functions (y =1, ..., 5)

Insights on the above Penalty Functions

To gain some insight regarding the alternative penalty functions, a series of tests were
conducted by solving multi-period routing problems with limited resources. The parameters

taken under consideration in these tests are:

e The scheduling horizon was set to five (5) periods

e 2 vehicles were considered available per period of the planning horizon

e Only period window patterns 3 and 5 were considered, providing a moderate customer
flexibility. Note that the following results consider both patterns cumulatively; more
detailed results are provided in Appendix C.

e The planning horizon was set to P = 1 to 5. For P < 5, a rolling horizon scheme was
utilized in order to plan all five periods.

e When rolling horizon planning was used, only the first period of each planning
horizon was implemented (M = 1). The remaining customers (routed in periods 2 to

P) were considered again in the next planning horizon, until all periods were planned.

For the testing process we generated 10 test instances based on the R1 (R101, R102, R105,
R109, R110) and C1 (C101, C105, C106, C107, C108) test sets of Solomon. For each test
instance we selected the first 50 customers and distributed them in the scheduling horizon of
the 5 periods (10 customers per period) in a sequential manner. Each instance was tested for
each one of the proposed penalty functions (y= 1 to 5). For each planning horizon and each
penalty function, the full B&P method was used providing optimal integer solutions for the
related MPVRPTW. For some instances, namely, R102, R109, R110 and C108, and for

period window pattern equal to 5, the B&P method did not reach the optimal solution within
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the allowable time limit. Thus, the analysis included only 16 combinations of test instances

and period window patterns for a total of 400 (16 x 5 X 5) experiments.

In order to assess the performance of the different penalty functions, the following measures

were defined:

e The percentage of unserved customers: For each P and y combination we consider the

total number of unserved customers w.r.t. the total number of customers over all 16

experiments corresponding to this combination

e The routing cost per served customer: The total implemented routing cost divided by

the total number of served customers.

The results are shown in Table 6.7 and Figs. 6.5 to 6.7.

Table 6.7: Average test results for 16 test instances per penalty function and planning horizon

Unserved Customers

Routing Cost/Served Customer

|4 )4

P 1 2 3 4 5 1 2 3 4 5
1 12.6% 4.8% 4.4% 4.4% 4.9% 14.37 15.90 16.88 16.88 16.31
2 7.4% 4.4% 4.0% 4.0% 3.8% 13.42 14.86 15.28 15.40 14.90
3 5.4% 4.4% 3.9% 3.9% 3.6% 13.33 14.42 14.68 14.67 14.43
4 3.9% 4.1% 3.9% 3.9% 3.6% 13.62 14.43 14.56 14.56 14.32
5 3.8% 4.0% 3.9% 3.9% 3.6% 13.56 14.07 14.54 14.54 14.30

6.6% 4.3% 4.0% 4.0% 3.9% 13.66 14.74 15.19 15.21 14.85

Figure 6.5 depicts the results of Table 6.7 w.r.t the ratio of unserved customers per planning

horizon and penalty function. Figure 6.6 depicts the results w.r.t the unit routing cost per

served customer.
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Figure 6.5: Ratio of unserved customers (%)
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Figure 6.6: Cost per served customer

With respect to the length of the planning horizon, Table 6.7 and Fig. 6.5 illustrates that
shorter planning horizons leave a larger number of customers unserved, for all penalty
functions y, though without the same effect among the various penalty functions. Note that as

the planning horizons increase, there is more flexibility in assigning customers to periods.

With respect to the routing cost per served customer (Table 6.7 and Fig. 6.6), as expected, the
larger planning horizons result in improved routing costs per served customer up to a certain

value of P for all penalty functions.

Figure 6.7 presents the average ratio of unserved customers and the average cost per served

customer across all planning horizons (P = 1 to 5) for each penalty function (y = 1 to 5).
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Figure 6.7: Unnerved customers and cost per served customer (all five penalty functions)
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With respect to the penalty function, according to Fig. 6.7 penalty functions y = 3,4 and 5
result in an increased number of served customers since they prioritize not only the expiring
customers but also the soon-to-be expiring customers, thus, forcing the latter to be routed
earlier, if possible. It is reasonable to expect that for these penalty functions the routing cost
per served customer may increase, as shown in Fig. 6.7 for y = 3, 4. Note that y = 5 results
in the best routing costs, among these three penalty functions; it appears that the linear penalty
function allows more flexibility in optimizing the routing costs. Overall, in a “Pareto optimal
sense”, penalty function y =5 seems to provide the most favorable results, and will be

employed hereafter.

6.4 EXPERIMENTAL INVESTIGATION OF ROLLING HORIZON ROUTING

Having addressed issues of practical significance arising in rolling horizon planning, we have
conducted an experimental investigation to study the significance of two critical parameters of
such rolling horizon schemes: The length of the planning horizon P, and the length of the
implementation horizon M (that is how many periods of the MPVRP. This study has focused

on two distinct types of long term routing problems that differ in the degree of dynamism.

e The first problem type is the quasi-static problem introduced in Section 6.2. In this
case, all customer orders, the period window of which starts within the planning
horizon (p. < &’ < p. + P), are considered to be known.

¢ In the second problem, customers become known at some point prior to the opening of
their period window. In this case not all customer orders, the period window of which
starts within the planning horizon, are known. Customer orders are revealed
dynamically as time progresses. We call this problem, the dynamic rolling horizon

routing problem.

The experimental testbed for both the quasi-static and the dynamic routing problems was

constructed as follows:

e In terms of customer geographical distribution, we generated test instances of three types
(random, clustered, and mixed), 3 test instances per type for a total of nine instances. The
customer locations were selected from the extended Solomon benchmarks (Homberger
and Gehring, 1999), which comprise 400 customers per problem

e Each test instance encompasses a long term horizon of 30 periods and 300 customers (i.e.

the first 300 customers from the corresponding 400-customer extended Solomon problem)
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All customer coordinates were normalized in order to make the travel times (arc costs) of
the extended Solomon benchmarks similar to the travel times (arc costs) of the Solomon

benchmarks, based on the following scaling functions:

X, % XSOl Y., x YSOl
X = gh max Y = gh max (6.15)
gh gh
Xmax Ymax

where X, is the actual x-coordinate from the Homberger and Gehring benchmarks, X;?l’;x

is the maximum x-coordinate from the same set and X;°.. is the maximum coordinate
from the relevant problem type (i.e. R1, C1 and RC1) of the Solomon benchmarks
(identical notation is used in the scaling function of the y-coordinate). This scaling
allowed us to use the same time windows and service times for the customer data of the
extended Solomon benchmarks, as those used in the original Solomon benchmarks

For each instance, the characteristics of the customers (i.e., the time windows, the service
times and the demands) were drawn from the relevant 100-customer Solomon benchmark,
and were duplicated three times in order to obtain a total of 300 parameter sets. Each of
these parameters, was allocated randomly and independently to the 300 customers of each
corresponding instance

Pattern 3 was used for the period window, since it provides moderate flexibility to
customers in this multi period setting

Two (2) vehicles were considered available per each period of the planning horizon in
order to impose a strict limit on vehicle availability

For each test instance, two implementation horizons (M =1 and M = 2) and two

planning horizons (N = 3 and N = 5) were tested initially

The way customer orders are revealed varies per problem type:

o In the quasi-static case, for each planning horizon we consider (only) those
customers, of which their period window starts within the planning horizon. All these
customers in the periods comprising the planning horizon are known. Thus, in each
MPVRPTW the only new customer orders are those with period window starting at
the last period of the planning horizon

o In the dynamic case, we consider that each customer order becomes known one
period prior to the opening of its period window. Thus, for each planning horizon
starting at period p. + 1, we consider the customer orders that have arrived (become

known) up to period p..
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The focus of our experimental investigation was to examine the effect of the planning horizon
P and the implementation horizon M in rolling horizon route planning. This analysis focuses
on two output attributes: (a) the customers served, and (b) the routing cost. In order to
determine the effects of P and M on these attributes under a broad range of conditions, we
used instances with a balanced mix of geographical distributions (R, C, RC) and different
time window ranges (narrow, medium and wide). Thus, the results are considered to be
unbiased with respect to these latter factors (geographical distribution and width of the time

window).
The solution approach throughout the experimental investigation was based on the following:

e The rolling horizon scheme described above was utilized to solve each instance
e At each step of this scheme we solved the related MPVRPTW employing the following
parameters:
o The Cloning method was utilized for obtaining the lower bound
o All column generation parameters remain the same as presented in Section 3.3.5
o The linear penalty function was utilized (e.g. y = 5).
o We implemented a Branch and Bound scheme on the columns generated by the CG

algorithm while computing the lower bound of each MPVRPTW.

Technical note: Transfer of routes within the first (implemented) period

In cases in which the majority of customers have wide period windows, it is possible to
identify routes in the final solution of a planning horizon, which are also feasible within the
first period of the planning horizon (denoted as Periodlfeasible routes). If there are
vehicles not used during this first period (have not been assigned to any route), then we select
to transfer as many as possible of the said routes to the first period. That is, routes are
assigned to period 1, starting from the Period1feasible route of the second period and
moving to the subsequent periods. Transfer of routes terminates when all available vehicles of
the initial period have been assigned to service.

6.4.1 EXPERIMENTAL RESULTS FOR THE QUASI-STATIC ROLLING HORIZON

ROUTING PROBLEM

Table 6.8 presents the results obtained for the above test instances in the quasi-static case. For
each instance, the Table presents the number of customers routed and the average routing cost

per customer, over all 30 periods for P = 3 and 5,and M = 1 and 2.
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Table 6.8: Comparative results for different planning and implementation horizons (quasi-static case)

Instance P Routed Customers Routing Cost per Customer
M=1 M=2 M=1 M=2
L_r103 3 293 287 20.09 20.62
293 292 19.26 19.43
L_r106 3 299 298 19.54 20.03
5% 299 289 18.31 18.17
L_r109 3 299 294 19.77 20.13
299 293 17.62 18.27
L_c106 3 300 298 27.90 28.88
5% 300 296 25.78 25.32
L_c108 3 300 300 22.72 24.41
5% 300 297 21.68 21.59
L_c102 3 299 296 26.64 27.22
299 298 24.40 24.52
L_rcl101 3* 283 240 28.86 31.98
5% 283 241 28.36 28.88
L_rc105 3* 293 253 26.84 27.95
5% 294 267 25.52 27.28
L_rc107 3 300 298 23.35 23.76
5 300 300 21.00 21.16
Average 3 296.2 284.9 23.97 25.00
5 296.3 285.9 22.44 22.74
Time Narrow 292.0 275.7 25.04 25.85
Windows Medium 297.5 284.0 22.43 23.24
Wide 299.3 296.5 22.13 22.51

* Cases where implementation horizon M = 2 results in lower routing cost compared to M = 1.

In terms of the implementation horizon M, it is clear that M = 1 results in higher (or equal)

number of routed customers in all cases. Furthermore, the value of M = 1 results in lower
routing cost per customer in almost all cases, except in the cases where M = 2 resulted in a
much lower number of served customers (also compare with Statement 3 of Section 6.2).

These conclusions are validated by the average values of Table 6.8.

In terms of planning horizon P, the larger planning horizon (P = 5) results in lower routing

costs, having served slightly increased number of customers in comparison to P = 3. These

conclusions are also validated by the average values of Table 6.8.

Since the data of Table 6.8 represent different problem types, with significant differences in
geographical distribution and time window patterns, there are large variations in the final

routing cost. In order to analyze the effect of planning parameters P and M over the different
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problem types, we performed a paired difference t-test on the differences of the output

parameters due to each of the selected factors (see Tables 6.9 and 6.10).

Table 6.9: Paired difference t-test for factor P (2 levels) - a = 0,05

Customers Routing Cost
P=3 P=5 Dif. P=3 P=5 Dif.
Mean 290.56 291.11 -0.56 2448 2259 1.90
Variance 283.91 222.81 18.85 15.33 1393 0.78
Df 17 17
t Stat -0.54 9.13
P(T<=t) one-tail 0.30 0.00
t Critical one-tail 1.74 1.74
P(T<=t) two-tail 0.59 0.00
t Critical two-tail 2.11 2.11

The paired t-test of Table 6.9 for the effect of the planning horizon P indicates that:

e For the customers served, the mean difference (P = 3 minus P = 5)of the customers

served is not significantly different than zero (t value, t(17) = —0.54 and single tail

probability 0.30). Thus, the increased planning horizon P =5 does not significantly

increase the number of served customers, for a confidence level of 95%.

e On the other hand, for the cost per served customer, the mean difference (P =
3 minus P = 5) of is significant (¢(17) = 9.13 and single tail probability 0.00). Thus

the observed improvement of the cost metric by increasing the planning horizon P = 5 is

significant.
Table 6.10: Paired difference t-test for factor M (2 levels), o. = 0,05
Customers Routing Cost
M=1 M=2 Dif. M=1 M=2  Dif.
Mean 296.28 285.39 10.89 23.20 23.87 -0.67
Variance 30.45 413.66 238.22 13.66 17.27 0.71
Df 17 17
t Stat 2.99 -3.36
P(T<=t) one-tail 0.00 0.00
t Critical one-tail 1.74 1.74
P(T<=t) two-tail 0.01 0.00
t Critical two-tail 2.11 2.11

The paired t-test of Table 6.10 for the effect of the implementation horizon M shows that:

e For the customers served, the mean difference (M = 1 minus M = 2) of the customers

served is significantly different than zero (t(17) = 2.99 and single tail probability 0.00).
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Thus, implementation horizon M = 1 increases significantly the number of served
customers, for a confidence level of 95%.

e On the other hand, for the cost per served customer, the mean difference (M =
1 minus M = 2) is not significant (t(17) = —3.36 and single tail probability 0.00).
Thus, there is no significant difference among the two different implementation horizons

concerning the routing cost, for a confidence level of 95%.

Figure 6.8 illustrates the variation of the cost per routed customer over the periods of the long
term scheduling horizon for instance L_R109. The Figure presents the results per each
combination of planning and implementation horizon. Similar results have been obtained for
all other instances. In this Figure, the cost ratio value in a certain period is the ratio of the total
routing cost from period 1 till the period under consideration, divided by the total number of

customers routed till the said period.
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Figure 6.8: Cumulative unit cost per routed customer and period (L_R109 Instance)

In Figure 6.8 the combination of M = 1 and P = 5 results in the best overall cost values
throughout the long term horizon. The combination P = 5, M = 2, provides better results than
the two remaining combinations; however due to the implementation horizon value (M = 2)
the number of served customers is reduced. Similar results are observed in the rest of the test

instances as reported in Appendix D.1.
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6.4.2 EXPERIMENTAL RESULTS FOR THE DYNAMIC ROLLING HORIZON

ROUTING PROBLEM

As mentioned previously, in the dynamic rolling horizon routing problem each customer
order becomes known a certain number of periods prior to the opening of its period window.
In the experimental investigation of this problem we assume the (most stringent) case in
which the order becomes known one period prior to the opening of the order’s period

window. Furthermore in the initial experiments:

e as before, two planning horizon values are used (3 and 5 periods), and,

e only the value M=1 is used for the implementation horizon.

Note that M>1 is not deemed appropriate in the dynamic problem; given that new customers
arrive in each period, a value of M>1 delays the planning of the arriving customers for M-1
periods. This is illustrated in Table 6.11 which presents the related analysis for instance
L r103 and a long term horizon of 30 periods. It is clear that M = 2 results in significant

fewer number of routed customers w.r.t M=1.

Table 6.11: Example illustrating the effect of the implementation horizon in the dynamic rolling horizon case

Routed Customers Unit Cost per Customer
Instance P
M=1 M=2 M=1 M=2
L_r103 3 295 164 18.80 20.77
294 164 19.14 20.09

Table 6.12 presents the results of the experimental investigation, which was conducted based
on the above parameters. The Table reports the instance name, the planning horizon used (P),
the total number of customers routed and the average routing cost per customer over the 30-
period horizon. Appendix D.2 presents the detailed figures per instance and period of the

planning horizon.

Table 6.12: Comparative results using different planning horizons (dynamic arrival of customers)

Planning Horizon

Instance £ =3 : P=5 :
Routed Customers Serve d%:l:tgcr:z Routed Customers Serve d%:l:tg‘::{‘
L_r103 295 18.80 294 19.14
L_r106 299 17.60 299 18.19
L_r109 299 17.91 299 17.91
L_c106 300 25.09 300 25.14
L_c108 300 24.68 300 24.98
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L_c102 299 24.44 299 23.25
L_rcl01 290 25.71 283 26.39
L_rc105 296 24.44 294 23.99
L_rc107 300 22.02 300 20.60

In terms of the planning horizon P, there is no strong evidence in favor of either value of P,

neither in terms of the number of customers served nor in terms of routing cost per customer
served. This is also shown by the results of the paired difference t-test presented in Table
6.13.

Table 6.13: Paired difference t-test for factor P (2 levels)

Customers Routing Cost
P=3 P=5 Dif. P=3 P=5 Dif.
Mean 297.56 296.44 1.11 22.30 22.18 0.12
Variance 11.28 31.28 5.36 11.00 10.57 0.57
Df 8 8
t Stat 1.44 0.49
P(T<=t) one-tail 0.09 0.32
t Critical one-tail 1.86 1.86
P(T<=t) two-tail 0.19 0.64
t Critical two-tail 2.31 2.31

Based on the above results, it seems that wider planning horizons do not always succeed in
improving routing costs. This may be attributed to the fact that wide planning horizons tend to
spread customers over an increased number of periods without full knowledge of the future

customers to appear.

Dynamic rolling horizon case: A more detailed investigation of the effect of P

In order to further examine the effect of the planning horizon, we conducted a series of
additional tests with P varying from 1 to 7. In these tests we used a wider period window
pattern (7 periods). In each test we selected the first 360 from the 400 customers of each
extended Solomon instance, and used an arrival rate of 12 customers per period with each

customer order becoming known one period prior to the opening of its period window.

Table 6.13 presents the average results per problem type. That is, the number of the served
customers per period and the cost per customer has been averaged over the three test instances
of the same problem type (random, clustered and mixed). Appendix D.3 presents the detailed

results per instance.

Table 6.14: Average results per planning horizon and problem type (dynamic arrival of customers)
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Problem Type

P R1 c1 RC1
Served Unit Cost Served Unit Cost Served Unit Cost
Customers per Customer Customers per Customer  Customers per Customer
1 356.7 21.2 360.0 34.8 347.0 24.2
2 358.7 19.1 360.0 25.6 349.7 22.8
3 357.3 16.9 359.7 22.5 347.0 215
4 305.3"" 15.5 358.7 20.8 348.7 20.6
5 356.0 15.3 359.3 20.8 347.3 20.0
6 356.0 15.8 358.3 20.5 348.7 19.4
7 342.0 15.9 359.3 21.7 344.0 20.1

(1) Low number of served customers is due to premature termination of the solution procedure at period 17.

Figure 6.9 displays the average unit cost per routed customer for all planning horizon values,
and for the three customer distribution types. Note that the served customers present a slight

but not considerable. decrease as the planning horizon increases (see Figure 6.10).
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Figure 6.9: Average cost per routed customer (per problem type)

In terms of planning horizon P, in all problem types there is an appreciable decrease of the

routing cost per customer up to a planning horizons of 4 periods. After that, and for all
problem types, the unit routing cost reaches a plateau with a slight routing cost increase in the
last two values of the planning horizon (6 and 7). This is also evident in Fig. 6.10 in terms of
the grand average over all instances and problem types. The same Figure indicates that the
total number of served customers does not exhibit significant variations among the different

planning horizons.
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In terms of problem type (R1, C1, RC1), it seems that all problem types present similar
behavior regarding the unit cost change as the planning horizon increases from 1 to 7 periods;

the C1 instances present the largest unit routing cost decrease.
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Figure 6.10: Routing cost per served customer and served customers per planning horizon (average over all
instances and types)

The above observations are validated by the Analysis of Variance (ANOVA) conducted for
factor P and for the cost per customer (output). Two analyses were conducted in order to
verify the initial favorable effect of increasing P, followed by the settling of the output value
beyond a certain P value: The first analysis concerned the effect of P over all 7 levels
(planning horizons from 1 to 7), while the second examined its effect over the last 4 levels
(planning horizons from 4 to 7). The analysis used all nine test instances, and the results are
shown in Tables 6.15 and 6.16, respectively.

Table 6.15: ANOVA for factor P varying from 1 to 7 (7 levels) w.r.t. cost per served customer

Groups Count Sum Average Variance
1 9  240.511 26.723 40.000
2 9 202.511 22.501 9.494
3 9  182.895 20.322 8.613
4 9 170.828 18.981 7.450
5 9 168.514 18.724 7.946
6 9 167.306 18.590 4.843
7 9 173.285 19.254 9.058
Source of Variation SS df MS F P-value F crit
Between Groups 477.638 6 79.606 6.375 0.000 2.266
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Within Groups 699.234 56 12.486

Total 1176.872 62

Table 6.16: ANOVA for factor P varying from 4 to 7 (4 levels) w.r.t. cost per served customer

Groups Count Sum Average Variance
4 9 170.83 18.98 7.45
5 9 168.51 18.72 7.95
6 9 167.31 18.59 4.84
7 9 173.28 19.25 9.06
ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 2.33 3 0.78 0.11 0.96 2.90
Within Groups 234.38 32 7.32
Total 236.70 35

Tables 6.15 and 6.16 show that the effect of P observed in Figs. 6.9 and 6.10 is statistically
significant, that is, wider planning horizons succeed in improving routing costs. However this
effect indeed reaches a plateau for P = 4, ..., 7, in which there is no significant variation of

the cost per customer (the F-value is lower than the F-critical value).

An additional analysis was conducted in order to test the effect of P on the number of
customers served (planning horizons from 1 to 7). The results are presented in Table 6.17 and
validate that there is no significant difference in the number of routed customers (F-value =
0.76 vs. critical F-value = 2.27).

Table 6.17: ANOVA Test for factor P (7 levels) w.r.t. Served Customers

Source of Variation SS df MS F P-value F crit
Between Groups 2338.16 6 389.69 0.76 0.60 2.27
Within Groups 28547.11 56 509.77
Total 30885.27 62
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Chapter 7: THE MPVRPTW WITH PRE-ASSIGNED
CUSTOMERS

In this Chapter we address an interesting problem that stems from practice. Consider an
environment in which a fleet of vehicles serves two types of customer orders over a time

horizon:

e First, each vehicle should serve certain known customer orders pre-assigned to it, per
period of the horizon. The sequence followed by a vehicle to serve these "inflexible"
orders is not fixed. Furthermore, the sets of pre-assigned orders per vehicle vary, in
general, from period to period of the horizon.

e Secondly, within this horizon, the fleet serves "flexible™ customer orders that arrive
dynamically and are characterized by a certain period window, and a certain time

window.

The problem posed in this Chapter is to serve both the inflexible and the flexible customer
orders with the minimum routing cost. This problem is solved on a rolling horizon basis in

order to address the dynamics of arriving orders.

There are significant operational parameters to be considered in this environment, which

make the problem both interesting and complex. These include the following:

e Assignment of flexible customer orders: As mentioned above, the flexible orders should
be assigned to the vehicles serving the pre-assigned, inflexible customer orders.

e Dynamic arriving process of flexible orders: A flexible order that arrives in the current
period, say p., may be served in a period window [/, é7] where &7 > p.. This implies
that not all flexible orders that may be served in period p [p. + 1 < p < P] are known in
the current period p.. However, all flexible orders to be served in period p. + 1 are

known in period p,.

The main concept of our proposed approach is outlined below. As in Chapter 6, each flexible
order i, for which &7 = p. + 1 must be assigned in period p. + 1, while all other flexible
orders with expiration period ¢ > p. + 1 can be assigned within their respective period
window interval [&7,¢7]. Each pre-planned inflexible (or mandatory) customer order i",
assigned to a specific vehicle r, may be considered as an order with period window of a single

period, i.e. &’ = &7, and, is also assigned to a specific vehicle within the period of service.
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The assignment of flexible orders is performed in the most cost effective manner. Having
assigned all known flexible orders within the planning horizon [p. + 1, p. + P], the orders in

the first M periods of the planning horizon P are implemented.

The importance of this special environment is discussed in the next Section. Note that the pre-
assignment of inflexible customer orders necessitates modifications to the multi-period
models presented in the previous Chapters. Furthermore, to solve the resulting problem,
certain modifications are required in the proposed method, including the column generation
scheme. These are discussed in the subsequent Sections.

7.1 PRACTICAL APPLICATIONS OF THE MPVRP WITH PRE-ASSIGNED

CUSTOMERS

The above planning problem is encountered in several supply chains. Typical examples
include environments in which: (a) the planning (routing) process is performed in several
batches throughout the day; in this case after each batch is scheduled, the related orders are
assigned to certain vehicles, and (b) Fixed routes are predefined in an effort to estimate the
expected workload in a, typically short-term planning horizon. (c) There are specific
customers that demand a daily or periodic service (i.e. bank, grocery stores). Typically, such
customers are pre-assigned to certain vehicles (e.g. that serve specific geographical areas).
Additional customer orders that may become known are allocated taking under consideration

these pre-assigned customers orders (inflexible orders).
All these environments are further discussed below.

Example 1: Strong dependence between routing and picking

Consider an operational environment, in which the picking process is time consuming.
Additionally, the customer orders arrive in batches, with the last batch arriving close to the
start of delivery operations. In such a situation, the picking process (i.e. the collection of the
items from the warehouse and their assignment to the vehicle loading zones), as well as the
loading of the vehicles, start prior to obtaining the information on all customer orders to be
delivered in the next scheduling period; this pre-emption is necessary in order to distribute
evenly the picking and vehicle loading work, and avoid operational delays. For a certain batch
of orders to be planned (flexible orders), the ones already assigned to vehicles are the

inflexible ones.
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Having pre-assigned customer orders to the vehicles, there is a possibility that not all flexible
customer orders can be served within the same period (day). Thus, the planners need to select
which orders to deliver during the next period and which to postpone for a later period. The
customer orders that have not yet been assigned to vehicles can be considered as the flexible
orders. Postponing some of the flexible orders necessitates to consider the MPVRP with pre-

assigned customers.

Example 2: Periodic service of significant customers

This case is related to environments, in which certain customers require daily or periodic
service. Usually these customers are considered as key accounts, which provide significant
revenue to the distribution business. Characteristic examples include: (a) Express courier
services that serve bank branches requiring daily service, as well as (b) distribution of
groceries, fresh, or perishable goods to minimarkets or supermarkets, to which the products
are delivered in set frequency (e.g. every 2 days). The current operational practice is to serve
these customers by predefined routes in order to simplify the warehousing and distribution
processes while providing increased service quality. These customers are considered as the
inflexible ones since they need to be serviced with high priority. Apart from these orders,
there are also additional customer orders that are concerned as 2™ priority orders. Based on
each company’s service level agreement, these orders may be served within a period window
of consecutive days upon their arrival, allowing the planners to provide a more cost effective

distribution planning.

Example 3: Next day delivery mixed with micro-logistics operations

This third case is related to operational environments that are characterized by a mix of
customer service levels. Such environments are, among others, courier services. A typical
courier network consists of several service centers, which are responsible for the distribution
and collection of parcels and letters using a dedicated fleet. The main tasks of a service center
can be summarized in (a) deliveries, (b) pickups, and (c) bulk product deliveries. Tasks (a)
and (b) are the inflexible orders, which arrive typically overnight or during the early morning
prior to the beginning of the mandatory service period. Tasks (c) are flexible, arrive daily but
should be served within the next P periods (days) after arrival. A mix of 80% inflexible and
20% flexible calls is typical in many courier operations. Typical tasks belonging to the latter
category (c) include several micrologistics activities, such as the distribution of high tech
items, e.g. mobile phone sets, or internet kits, as well as bulk deliveries of advertising

products and materials. For these tasks, the customers to be served should be informed at least
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one period prior to the actual service delivery. Due to the large volume of batch arrivals of
orders, and considering the nature of the product been delivered, it is both inefficient and
unnecessary to serve all micrologistics orders within a single period. Thus, the flexible orders
must be assigned to the periods of the planning horizon prior to knowing the inflexible orders,
in order to be able to inform the customers regarding the day and time of the scheduled visit.
In order to do this, one uses typical routes that the fleet vehicles are likely to travel during
each period of the planning horizon. These routes may vary or be the same within the horizon,
or may follow seasonal patterns.

Example 4: Dealing with routing uncertainty in field service environments

Another operational environment of relevance to the problem considered here concerns
maintenance/repair services that are delivered on-site. In this environment, a group of repair

persons provide services on location (e.g. appliance, or equipment maintenance).

The inflexible calls typically are repair tasks that (a) are pre-scheduled in a certain day (i.e.
for preventive maintenance) or (b) they need immediate attention (and generate increased
revenue), while flexible calls are the ones that may not need to be addressed immediately but
within a selected period window set by the customer. Pre-assignment of inflexible orders to

specific vehicles (or driver) may be performed based on the equipment or skills required.

In such operational environments, customer service is typically problematic, forcing
customers to wait for unspecified time within the promise day of service delivery. The main
reason for this difficulty is that service planners have no prior knowledge of the total picture
of the pending tasks, as well as of the dependencies among them (priorities, adjoined orders,
etc). The decisions are mostly based on experience and typically each day is taken as

independent from the others, without taking into account the characteristics of the demand.

7.2 MODIFICATIONS FOR THE MULTI-PERIOD ROUTING PROBLEM WITH
PRE-ASSIGNED CUSTOMERS

7.2.1 MODIFICATIONS IN THE MATHEMATICAL MODEL

In this Section, we modify the mathematical formulation presented in Chapter 3 and Section
6.3 in order to take under consideration the existence of pre-assigned customers. Hereafter for
simplicity, and without loss of generality, the current period (planning period) is set to p. =

0, and the planning horizon is [1, P].
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Let N™ be the set of all inflexible customer orders, and N/ be the set of all known flexible
orders, thus, N™ U N/ = N. Each inflexible customer i" is assigned a period window
[€7,¢&7] = [pi, pi] Where p; is the period within which customer i" should be served. In

addition, each inflexible order i" is assigned to the route of the corresponding vehicle r from

the available vehicle set K, = {k, ..., k, ..., kzl)K”l}.

In order to force inflexible customer orders to be served within a certain period by a
designated vehicle, while the flexible orders can be served once within their assigned period
window by any vehicle, Constraint (3.2) is modified into two separate constraints, one for the
inflexible and one for the flexible customer orders, as follows:

Z Xijpky, = 1 Vi" € N, (7.1)
jew

DD xype =1 vi e N (7.2)

pEl; KEKy JEW

Constraint (7.1) specifies that each inflexible customer order should be served during the
required (single) period and by the designated vehicle, while Constraint (7.2) specifies that
each flexible customer will be served only once by any available vehicle and in any period p
within its period window I;. Note that in the aforementioned business setting, it is possible to
have vehicles (routes) without assigned inflexible orders. The proposed modifications are
capable of handling such a situation, since these vehicles will contain only flexible customers
considered by Constraint (7.2).

7.2.2 MODIFICATIONS OF THE COLUMN GENERATION METHOD

In order to consider the assignment of inflexible customer orders to vehicles, several
modifications are required in the column generation method presented in Chapters 4, 5, and 6.
Similar modifications were first discussed and presented by Ninikas and Minis (2011) for the
Vehicle Routing Problem with Dynamic Pickups (VRPDP).

Given the initial assignment of inflexible customer orders, the initial columns (routes) of the
Restricted Master Problem (RMP) should, at least, contain these inflexible orders. Note that
the RMP requires an initial feasible solution in order to be solved, and since the inflexible
customer orders are pre-assigned to vehicles (i.e. they are feasible only within the pre-
assigned vehicles and periods), such routes need to be provided. Recall that in the cases

without inflexible customer orders (discussed in Chapters 3 to 6) the following hold:
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(@) For the case of unlimited vehicle fleet, the initialization may be performed using the
unit routes (i.e. routes that visit only one customer and return to the depot, since such
routes are feasible, although trivial).

(b) For the case of limited fleet, but without inflexible customers (see Chapter 3), the
initialization may be performed through heuristics that provide an initial feasible
solution to the underlying problem, in which all orders are served and the fleet size
within each period is respected.

(c) For the case of limited fleet, when using the modified objective function described in
Chapter 6, the initial solution can be provided either using a heuristic (as described in
case b) or by using the virtual unit routes (columns) that are associated with the

unserved customers penalty costs.

All above initialization schemes cannot be utilized for the current case, since pre-assigned
customer orders should be taken under consideration along their assignment to certain
vehicles. We initialize the method using a trivial solution that includes the routes that contain
only the inflexible orders assigned to the vehicles of each period, while the flexible orders are
considered as unserved. The latter are treated as unserved in this initial solution, by using the

visual unit columns that correspond to leaving these customers unserved (see Section 6.3).

Since each available vehicle is associated with a set of inflexible customer orders, considering
a single subproblem per period is not appropriate. The reason is that the inflexible customer
orders assigned to each vehicle need to be treated in a way that prevents creating columns
(routes) that contain inflexible orders pre-assigned to different vehicles. In order to address
this issue, a straightforward modification is utilized that considers one subproblem per each
period-route combination. For a relevant approach in the case of the multiple depot MPVRP,
see Tricoire (2007).

Modifications to the Subproblem

In the current case, each subproblem is associated with a period p, a vehicle kj,, a set of
inflexible customers Ny, = {i" € N;,,p = p;}, and a set of flexible customers N = {i €
N, p € [€7,&71}. In order to generate feasible columns (routes), the following modifications

should be incorporated into the method presented in Section 3.3 and Chapter 4:

e Each generated column (route) should include all inflexible customers of set N;,, i.e. the

set corresponding to the appropriate vehicle. Thus, a label Lg; related to this route is not
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allowed to be extended to the depot if not all customers within N}, have already been
served.

e Additionally, each generated column (route) should not include any inflexible customer
not associated with vehicle r. This is addressed by including in the subproblem
corresponding to vehicle kj, only the corresponding feasible inflexible customers (i.e.
NJ).

e In case a mandatory customer from set N;, becomes unreachable within a label Lg;, this
label is discarded and it is not extended further, since it cannot include all inflexible

customers.
Required modifications for the dominance criteria

The existence of inflexible customers within each route requires the enhancement of the
dominance criteria in order to consider the number of inflexible customers that have been
served by the associated partial route 6 of a label Lg; when it is compared to another label
Ls,;. A straightforward modification would allow to compare for dominance two different
labels ending at the same node (customer) only if the associated partial paths have served the
same inflexible customers. Doing so, the dominance criteria would be applied only to a very
limited number of labels, leading to an impractically high number of partial routes to be
extended, and to prohibitive computational times.

In order to overcome this issue, we enhance the labels by adding a cost factor cs; (equilibrium
cost) that represents an upper bound (worst case) of the total modified cost required to visit all
inflexible customers not yet served following partial route §. This is done by taking into
account only connecting arcs which are feasible (and, thus, not included in unreachable vector
Rs;); that is,

Csi = Z < max (cpir) + max (C-’r-)> 73
TeNT AT ies) heNU{ON(h: RYy=0} JENU{n+1})\{j: RS, =0} i (7.3)

where c;; is the modified cost associated with arc (i,j), while RZ is the element of the
unreachable vector Rg; within the partial route § that is associated to node (customer) h (note
that when an element RY; is equal to 1, then order h has been already visited or cannot be

visited by partial path §, while R, = 0 denotes that customer h has not yet been included in

the partial route §.

Dept. of Financial & Management Engineering 125



Chapter 7 - The MPVRPTW with Pre-Assigned Customers

With this modification, label Ls; becomes Lgs; = [Cs;, Csi tsir dsi, Rsi], and the related
dominance criterion used in the procedure of Section 3.3 is given by:

Esli < ES”i (74)

Note that the additional dominance criterion does not violate optimality when the associated
ESPPTWCC is solved within a full B&P framework, since it eliminates labels that lead to

worst routes with respect to the reduced cost.

7.3 EXPERIMENTAL INVESTIGATION OF ROLLING HORIZON WITH PRE-

ASSIGNED CUSTOMERS

The experimental investigation of the present problem is similar in scope to the one described
in Section 6.4; that is, it seeks to determine the significance of the length of planning horizon
P in settings in which a part of the known customers has already been pre-assigned to certain
vehicles. We investigate the dynamic rolling horizon routing problem, in which customers

become known one period prior to the opening of their period window.

The experimental testbed was constructed as follows:

e The test instances described in Section 6.4. were used to define the customer geographical
distribution, as well as the customer parameters (time window, demand, etc)

e We considered three different period window patterns, that is 3, 5 and 7, in order to
simulate various degrees of customer period flexibility in this multi period setting.

e From the customer set of each instance, we randomly selected 180 customers as the
inflexible ones. We distributed these customers in subsets of 6 to the 30 periods of the
long-term horizon (one set per period). All inflexible customers were assigned the widest
possible time window (equal to the maximum available routing time per period) in order
to avoid routing infeasibilities and, also, to not limit the assignment of flexible orders to
the vehicles due to limited resources (e.g. increased waiting times due to the time
windows of the inflexible customer orders). Finally, to serve the customers of each period
we used two vehicles with maximum service limit of 3 inflexible customers orders per
vehicle; thus we developed two routes per period.

¢ In addition to the inflexible customers, 6 dynamic customer orders arrived per period (e.g.

180 flexible customer orders in total). To achieve a smooth initial transition, we employed
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a “warm start” by considering dynamic orders from 3 past periods prior to period 1 (e.g. in
the first period there are 18 dynamic customers that are considered for planning).

e The output parameters studied concern the number of flexible customer orders served, and
the additional cost per flexible customer order. This additional cost is derived by
subtracting from the overall routing cost of each period, the original routing cost of the
inflexible orders in the same period. To obtain the routing cost ratio, this additional cost is

divided by the number of flexible orders served in this period.

7.3.1 EXPERIMENTAL RESULTS

Table 7.1 presents the results per problem type, period window pattern and planning horizon.
The values presented in this Table are (a) the average number of served flexible customers
over the entire horizon, and b) the average cost ratio (or unit cost) ; these averages were
obtained over the three test instances of the corresponding problem type. (e.g. for R1 the
values corresponding to the instances R103, R106 and R109 have been averaged). Appendix

E presents the results per instance.

Table 7.1: Average experimental results per problem type, period window pattern, and planning horizon

Problem Type

R1 C1 RC1
p Unit Cost Unit Cost
Served Unit Cost Served per Served per
Customers per Customer Customers Customer Customers  Customer

Period Window Pattern 3

1 176.0 13.8 180.0 19.6 162.3 12.0
2 177.0 8.2 180.0 9.5 164.3 11.0
3 177.0 7.0 180.0 8.0 163.0 10.2
Period Window Pattern 5
1 177.3 13.1 180.0 19.5 174.7 11.9
2 177.3 7.1 180.0 8.3 176.3 9.5
3 177.3 4.4 180.0 5.2 176.3 8.2
4 177.3 4.1 180.0 4.1 176.0 5.7
5 177.3 4.1 180.0 4.2 175.7 6.4
Period Window Pattern 7
1 177.3 13.0 180.0 19.5 174.3 11.4
2 177.3 7.0 180.0 8.1 176.3 9.3
3 177.3 4.1 180.0 4.6 176.7 6.8
4 177.3 3.7 180.0 3.8 176.3 4.6
5 177.3 3.2 180.0 3.2 175.3 4.0
6 177.0 3.1 179.7 3.0 175.3 4.0
7 177.0 2.9 179.7 3.0 175.3 3.8
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For the three period window patterns, Figures 7.1, 7.2 and 7.3 display the average unit cost

per routed dynamic customer order for all planning horizon values, and for the three customer

distribution types.
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Figure 7.1: Average routing cost ratio per problem type (Pattern 3)
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Figure 7.2: Average routing cost ratio per problem type (Pattern 5)
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Figure 7.3: Average routing cost ratio per problem type (Pattern 7)

In terms of the planning horizon P, in all problem types and, specifically, in the period

window patterns 5 and 7, the routing cost per customer decreases significantly in the initial

range of P values. This decreasing trend reaches a plateau beyond a certain value of P (e.g

P = 4 for Pattern 7). In terms of problem type (R1, C1, RC1), it seems that the decrease of

the cost ratio is more pronounced for the R1 and C1 problems, while the RC1 problem type

presents a more limited decreasing trend.

Figures 7.4, 7.5 and 7.6 present the grand average over all instances and problem types per

period window pattern. These Figures validate the significant decrease of the routing cost

ratio with increasing values of the planning horizon. Furthermore, they indicate that the total

number of served customers is not affected significantly by the planning horizon value.
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Figure 7.4: Routing cost ratio and served customers per planning horizon (average over all instances) — Pattern 3
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Figure 7.5: Routing cost ratio and served customers per planning horizon (average over all instances) — Pattern 5
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Figure 7.6: Routing cost ratio and served customers per planning horizon (average over all instances) — Pattern 7

Statistical validation of the results

The above observations are validated by a paired difference t-test, which was conducted for
the factor P (input) and the routing cost ratio (output). For the results of each period window

pattern (3, 5 and 7), two paired difference t-tests were conducted.

e The first concerns the comparison of the routing cost ratio between the levels P = 1
and that corresponding to the medium range of P (e.g. P = 2 for pattern 3, P = 3 for

pattern 5, and P = 4 for pattern 7).
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e The second test concerns the comparison of the routing cost ratio between the level
corresponding to the medium range of P and the highest P level (e.g. 3, 5, 7 for

patterns 3, 5 and 7, respectively).

The hypothesis tested is the following:
H,: Average dif ference of Routing Cost Ratio = 0

H,: Average dif ference of Routing Cost Ratio > 0

Since we are testing only for the difference of the cost ratio been higher than zero, the one-tail

t-value is relevant. The degrees of freedom for all samples are equal to 8 (since each data set
contains nine samples). Based on a 95% confidence level, the related t-value is: tgag 5 =

1.86. Table 7.2 presents the results of the paired difference t-tests.

Table 7.2: Paired difference t-test analysis for factor P and routing cost ratio

Routing Cost

Pattern 3 =1 =2 Dif. =2 =3 Dif.
Mean 15.12 9.60 5.53 9.60 8.42 1.18
Variance 12.53 3.43 16.10 3.43 3.79 0.16
t Stat 4.13 8.75

Pattern 5 =1 =3 Dif. =3 =5 Dif.
Mean 14.82 5.95 8.88 5.95 4.92 1.03
Variance 13.89 544 22.14 5.44 3.04 0.76
t Stat 5.66 3.55

Pattern 7 P=1 P=4 Dif. P=4 =7 Dif.
Mean 14.64 4.05 10.59 4.05 3.24 0.81
Variance 14.72 0.88 16.22 0.88 0.70 0.04
t Stat 7.89 12.78

For both t-tests the null hypothesis is rejected (the t-Stat value is larger than the tg_g;gail value

in all paired differences). Thus, the routing cost ratio decreases significantly as the planning

horizon widens in all tested period window patterns.

Using similar hypotheses, the paired difference t-test w.r.t. the number of served customers
validates that P does not have a significant effect on the former.
Indicative experimental results for a case with a large number of unserved customers

We have also investigated cases in which only a limited number of flexible customers can be

serviced. The scope of this investigation was to assess the proposed approach under such
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extreme situations. To do so, we utilized pattern 7 and increased the assigned service time of
each flexible customer order by 100% (w.r.t. the service time of the test instances discussed in
Section 6.4). All other parameters used in the previous setting remained intact. Figure 7.7
presents the grand average over all instances per period window pattern.
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Figure 7.7: Routing cost ratio and served customers per planning horizon (average over all instances) — Pattern 7

In this case, the number of served flexible orders is limited compared to the total of 180
flexible orders. Additionally, the routing cost ratio does not indicate significant variation. This
is possibly due to the high ratio of unserved customer orders, which increases significantly the

penalty costs, and suppresses any routing cost variation.

To investigate this further, we tested different penalty cost functions in addition to the linear
one (y = 5). Thus we experimented with y = 1 (flat), y = 2 (step), and y = 3 (square). The
results for the average routing cost ratio and the average number of served customers are

presented in Figures 7.8 and 7.9, respectively.
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Figure 7.8: Average routing cost ratio per planning horizon and penalty function (average over all instances) —
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Figure 7.9: Average served customers per planning horizon and penalty function (average over all instances) —

Pattern 7

The flat penalty function (y = 1), in which all flexible customer orders are given the same

penalty cost, seems to provide improved results (in both routing cost and served customers) in

comparison with the other penalty functions. This can be explained by the fact that (a) the flat

penalty function does not interfere with the routing procedure by prioritizing expiring

customers, and (b) many flexible customers will remain unserved anyway.
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As far as the planning horizon is concerned, the moderate planning horizon values seem to
provide improved results in served customers per period, and slight improvements with

respect to routing costs.
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Chapter 8: CONCLUSIONS AND FUTURE RESEARCH

8.1 CONCLUSIONS

In this dissertation we studied the Multi-Period Vehicle Routing Problem with Time Windows
(MPVRPTW). We provided the mathematical formulation of the MPVRPTW in conjunction

with its remodeling into a framework amenable to column generation.

Efficient lower bounds for the relaxed MPVRPTW

Based on the insights in the column generation method, we developed two different exact

strategies to provide lower bounds to the linear relaxation of the MPVRPTW:

e The cloning strategy transfers feasible routes generated by one subproblem to the other
subproblems of the column generation scheme. This strategy seeks computational savings
by avoiding to solve explicitly the subproblem of each period

e The unified strategy solves a single (unified) subproblem that considers all periods of the
planning horizon. Period feasibility of each generated route is checked within this

subproblem.

These strategies take advantage of the special structure of the multi-period problem, such as
the flexibility of customers to be routed in different periods, and the existence of routes that
may be assigned to multiple periods. We studied the efficiency of the proposed methods
(w.r.t. computational savings) against the classical adaptation of the column generation

method to the multi-period setting, as well as against its parallel implementation.

The two alternative methods (cloning and unified) succeed in reducing the computational
time, compared to the above reference methods, with the exception of the clustered instances
in the parallel implementation. Specifically, for the random and the clustered instances, the
cloning method exhibits the best performance with time savings of about 50% with respect to
the classical method. For the mixed test instances, the unified method appears to be the most
efficient, resulting to the highest time savings (also about 50%). While for all problem sets,

the parallel and the cloning methods appear to be the most efficient.

Additionally, as expected, for narrow period windows the proposed algorithms do not provide
substantial efficiency gains, due to the limited customer flexibility and the limited similarity
between the subproblems. On the contrary, significant efficiency gains appear in wider period
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windows (patterns 6 to 9), which are the most computationally expensive instances. The
unified method exhibits the most diverse behavior regarding the period window patterns: It
presents the least efficient results for narrow period windows (with even 2 times greater
computational times for pattern 1 compared to the classical reference method); however, for
the wider period window patterns, it outperforms all other algorithms, succeeding in a 62%

reduction for pattern 9 with respect to the classical method.

The efficiency of all methods seems to be more evident in clustered instances where there are
computational savings even for moderate period windows. For the mixed instances, the
parallel implementation presents more consistent performance compared to the other
methods, while for the random instances efficiency gains are realized only for wide period

windows.

Integer Solutions for the MPVRPTW

Integer solutions for the MPVRPTW are provided through a proposed branch-and-price
implementation that is relevant to the multi-period setting. Two different strategies for
exploring the branch-and-price tree have been discussed and tested: (a) The classical one, in
which two branches are generated after each fractional solution, and (b) a slight modification
that considers the multi-period characteristics of the problem by creating P + 1 branches.
Additionally, a simple pruning heuristic is proposed in order to accelerate the integer solution
procedure. This heuristic stops the extension of the branch-and-price tree for not “promising”
branches, for which the lower bound is close to the best known global upper bound. Thus, it is
able to provide near-optimal results, also in instances with wide period flexibility of customer

orders.

Based on the previous results, we selected to employ the cloning method in the B&P scheme
and compared the efficiency of the latter against the B&P scheme that uses the classical
reference method. For the cases for which an integer solution was obtained (within the
computational time limit), the cloning method results in significant gains in determining the
optimal (or a suboptimal) integer solution, especially as the width of the period window
increases. For cases solved to optimality by B&P, the efficiency of the cloning method is
moderated. This is attributed to the fact that the savings, stemming from determining the
lower bound, are moderated by the other B&P operations, such as the generation of the B&P

nodes.
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To study the proposed pruning heuristic we focused on (a) those instances for which B&P
determined the integer optimal solution, and (b) the instances for which an integer solution
was found, but its optimality was not verified due to reaching the imposed time limit. The
resulting cost deviation was found to be limited, below 1%, while the computational time has
been reduced on the average by about 84% (category a) and 98% (category b). The significant
benefits in computational times and the very limited deviation in the cost of the final solution

indicated that the B&B heuristic is a very attractive alternative for large practical cases.

Rolling horizon routing

Having set the foundations of the addressing the generic MPVRPTW, we focused on
problems solved over long-term horizons. For these cases we proposed a rolling horizon
framework and studied two arrival patterns of customer orders: (a) the quasi-static, and (b) the
dynamic MPVRPTW. Considering the quasi-static case, we proposed and discussed three
theoretical statements concerning the implementation horizon (M) and the planning horizon
(P), thus, establishing the principles of applying the proposed framework and methods.
Specifically, it was established that:

e The monolithic solution of the full multi-period routing problem (for the S period horizon)
is always lower or equal to the final implemented solution obtained by any rolling horizon
scheme with planning horizon of P < S periods,

e The overall routing cost provided by a rolling horizon scheme with planning horizon of P
periods is not necessarily lower than or equal to the overall routing cost provided by a
rolling horizon scheme with planning horizon of P’ periods, where P’ < P < S, and

e Using a rolling horizon scheme with planning horizon P > 1, it is not guaranteed
that M = 1 (i.e. implementing only the first period of the planning horizon) will always

lead to a lower cost value compared to alternative implementation horizons with M > 1.

In order to address the MPVRPTW within a rolling horizon framework, we modified the
model of the problem to take under consideration the case in which not all customer orders
can be served within the planning horizon due to resource limitations. The problem is dealt
through introducing penalty functions for the unserved customers, thus, balancing routing

efficiency with the number of served customers within the long-term horizon.

Significant experimental investigation was performed considering both arrival patterns of
customer orders. For the quasi-static case, longer planning horizons result in lower routing

costs, validating the appropriateness and the efficiency of the proposed methods. In terms of
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the implementation horizon M, it is clear that M = 1 results in higher (or equal) number of
routed customers in all cases, and, also, in lower routing cost per customer in almost all cases,
except in the cases where M = 2 resulted in a much lower number of served customers. These
experimental results follow the same pattern for different time windows, as well as for
different geographical distributions of customer orders. The above conclusions were also
validated through appropriate statistical analysis.

For the dynamic rolling horizon routing case, and in all problem types, there is an appreciable
decrease of the routing cost per customer up to a planning horizons of 4 periods. After that,
the unit routing cost reaches a plateau with a slight routing cost increase in the last two values
of the planning horizon (6 and 7). Also, the total number of served customers does not exhibit

significant variations among the different planning horizons.

All problem types (random, mixed, clustered) present similar behavior regarding the unit
routing cost, as the planning horizon increases from 1 to 7 periods; the clustered instances
present the largest unit routing cost decrease. The experimental results also indicated that

there is no significant variation in the number of routed customers.

The MPVRPTW with pre-assigned customers

The MPVRPTW with pre-assigned customers is related to environments in which inflexible
and flexible customer orders co-exist. For this case, we proposed the required modifications
in both the MPVRPTW model and the solution approach (column generation). We considered
the dynamic arrival pattern of customer orders and tested three different period window
patterns (3, 5 and 7). Extensive experimental investigation indicated that significant cost
savings may be achieved by considering wider planning horizons in the planning process. In
terms of the planning horizon P, in all problem types and, specifically, in the period window
patterns 5 and 7, the routing cost per customer decreases significantly in the initial range of P
values. This decreasing trend reaches a plateau beyond a certain value of P (e.g P = 4 for
Pattern 7). In terms of problem type, it seems that the decrease of the routing cost ratio is
more pronounced for the random and the clustered instances, while the mixed instances
present a more limited decreasing trend. Furthermore, the total number of served customers is

not affected significantly by the planning horizon value.

For cases in which only a limited number of flexible customers can be served, we showed that
the “flat” penalty function seems to provide improved results in both routing cost and served

customers.
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8.2 FUTURE RESEARCH

In order to accelerate the exact column generation method for the MPVRPTW, additional
techniques that have already been proposed in the literature for vehicle routing or other
problems, such as stabilization of the dual variables, constraints aggregation or cutting planes

(k-path cuts, subset-row inequalities), can be studied.

Furthermore, intelligent heuristics, metaheuristics or hybrid approaches can be employed and
compared to the methods proposed in this dissertation. For example, current research is
focusing on hybrid approaches, in which column generation utilizes a heuristic or a
metaheuristic (such as the tabu search) to solve the subproblems. These approaches may be

promising in addressing large problem instances relevant to practical applications.

Beyond alternative or new methods to address the MPVRPTW, an interesting research

direction is to consider other relevant problems, including

e The fully dynamic MPVRPTW, in which customer orders may arrive and be served
during the execution of service to the customers (while vehicles are en-route). Column
generation with the appropriate modifications may be utilized and tested for different
planning horizons and penalty cost functions.

e The development of a stochastic model that concerns historical data and is able to
either forecast demands or identify geographical areas of high demand density. Such a
model may be combined with the MPVRPTW with pre-assigned customers and used
in environments in which flexible orders are known in advance, and inflexible ones

become known just prior to, or during, delivery.

In multi-period settings, the customer service level as defined by the actual period of service
within the period window of each customer order, may be a significant operational quality
indicator. Servicing the customer as early as possible within its period window may lead to
increased customer satisfaction, while, on the other hand, it may increase operational costs.
Enhancements of the MPVRPTW in order to balance service level and operational cost, may
provide interesting results. A related noteworthy case concerns the incorporation of soft
period windows to deal with the case of the limited resources and to minimize the number of
unserved customer orders. In addition, the use of different penalties, not only based on
expiration period, but also on the type of the customer, may provide a tool for prioritizing
certain customers (i.e. key accounts) that are considered more important by a managerial /

marketing or sales point of view.
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Finally, in order to evaluate practical aspects of the current research, an initial case study in a
Greek major courier service provider has been implemented and reported in Athanasopoulos
and Minis (2011). This initial study has shown encouraging results. However, further
investigation of the practical implications of the proposed methods is encouraged as part of

future research.
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APPENDICES

APPENDIX A: LOWER BOUNDS AND COMPUTATIONAL TIMES FOR ALL CG

TECHNIQUES

Table A.1 presents the results for the instances solved in Chapter 4. Specifically, Table A.1

provides the problem ID, the period window pattern (1 to 9), the maximum allowable number

of vehicles per period and: (a) the lower bound obtained and (b) the needed computational
time for each one of the tested CG methods, i.e. the FULL, CLONE, UNIFIED and Parallel
methods. Note that lower bound values highlighted in grey are different to the values

provided by the other CG methods due to the presence of the LDS procedure within the

column generation procedure.

Table A.1: Lower Bounds and Computational Time

Vehicle Lower Bound

Computational Time (sec)

Probl. Pat. .t  FULL CLON UNI PARA  FULL CLON UNIF  PARA
r101 1 6 1541,30 1541,30 1541,30 154130 2,28 0,70 2,59 1,14
r101 2 6 1253,90 1253,90 1253,90 1253,90 3,95 3,12 2,59 2,27
r101 3 4+ 1191,64 1191,64 1191,64 119164 4,99 345 4,11 3,33
r101 4 4+ 114433 114433 114433 114433 691 627 673 4,24
r101 5 a* 1119,70 1119,70 1119,70 1119,70 743 583 541 589
r101 6 4+ 1048,37 1048,37 104837 104837 953 600 7,00 6,46
r101 7 4+ 1048,37 1048,37 104837 104837 12,18 10,48 609 6,66
r101 8 4+ 1048,37 1048,37 104837 104837 11,89 724 7,27 6,67
r101 9 a* 1048,37 1048,37 104837 104837 19,05 6,91 696 824
r102 1 4 1410,60 1410,60 141480 1410,60 2,00 2,83 3,57 2,69
r102 2 3 1168,30 1168,30 1168,30 116830 578 4,15 690 4,17
r102 3 3 110404 110404 1103,53 110404 892 933 11,96 6,84
r102 4 3 1050,90 1050,90 1050,60 1050,90 23,08 1888 19,68 15,29
r102 5 3 1034,76 103476 1033,54 103476 30,22 23,63 29,79 24,86
r102 6 3 923,15 923,15 923,15 923,15 17,98 12,42 14,45 12,79
r102 7 3 914,00 914,00 914,00 914,00 22,32 1583 1557 14,07
r102 8 3 914,00 914,00 914,00 914,00 28,17 1549 16,72 1813
r102 9 3 914,00 914,00 914,00 914,00 30,00 1719 1543 20,10
r103 1 4 1277,40 1277,40 1283,00 1277,40 1,64 1,78 4,69 1,44
r103 2 3 1020,40 1020,40 1021,30 1020,40 6,42 6,94 1439 6,28
r103 3 3 965,10 965,10 965,10 965,10 18,53 1599 26,89 15,12
r103 4 3 870,67 870,67 870,67 870,67 5515 33,71 64,44 40,38
r103 5 3 85820 85820 857,98 85820 79,19 86,17 129,04 72,67
r103 6 3 78597 78597 78597 78597 64,90 53,04 64,87 40,02
r103 7 3 77423 77423 77423 77423 50,61 40,76 31,74 26,50
r103 8 3 77423 77423 77423 77423 62,15 37,33 39,00 32,71
r103 9 3 77423 77423 77423 77423 74,81 33,85 2809 33,89
r104 1 2 111590 111590 1126,85 111590 3,35 3,25 9,16 2,57
r104 2 2 831,70 831,70 831,70 831,70 31,39 37,61 49,85 24,02
r104 3 2 78891 788,91 788,91 788,91 118,05 111,14 169,78 91,98
r104 4 2 N/A
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Computational Time (sec)

Probl.  Pat. imit  FULL CLON UNI PARA  FULL CLON UNIF _ PARA
r104 5 2 N/A
r104 6 2 630,43 630,43 630,43 630,43 1747,99 908,94 838,65 127322
r104 7 2 624,08 624,08 62408 624,08 1366,01 880,69 649,55 842,42
r104 8 2 624,08 624,08 62408 624,08 1440,61 841,43 800,14 974,95
r104 9 2 624,08 624,08 62408 624,08 2020,35 761,73 567,48 1243,58
(105 1 3 146520 146520 146520 146520 0,85 0,79 1,85 1,40
r105 2 3 1157,00 1157,00 116450 1157,00 2,57 2,34 4,84 2,30
r105 3 3 1080,40 1080,40 1077,60 108040 6,25 4,88 807 4,73
r105 4 3 102420 102420 1018,66 102420 11,16 10,60 14,34 884
r105 5 3 100459 100459 992,60 100459 12,71 11,50 12,20 11,10
r105 6 3 901,66 901,66 901,66 90166 12,02 10,28 888 861
r105 7 3 897,12 897,12 897,12 897,12 1820 715 722 9,90
(105 8 3 897,12 897,12 897,12 897,12 20,29 12,74 921 10,46
(105 9 3 897,12 897,12 897,12 897,12 20,79 9,77 925 10,69
r106 1 4 1320,40 132040 1323,60 1320,40 1,50 1,45 3,44 1,56
r106 2 3 1041,95 1041,95 104195 1041,95 571 505 12,81 4,34
r106 3 3 958,19 958,19 958,19 958,19 10,54 863 11,87 7,73
r106 4 3 876,93 876,93 87693 876,93 21,33 1897 3399 16,14
(106 5 3 850,50 850,50 849,34 850,50 33,00 31,15 50,53 27,05
r106 6 3 796,88 796,88 796,88 796,88 39,72 29,05 24,58 23,62
(106 7 3 796,37 796,37 796,37 796,37 43,61 30,10 23,89 21,86
r106 8 3 796,37 796,37 796,37 796,37 50,72 24,00 31,03 2325
r106 9 3 796,37 796,37 796,37 796,37 59,57 24,99 23,80 26,56
107 1 4 1221,00 1221,00 122520 1221,00 3,25 2,01 3,89 2,07
r107 2 3 946,23 94623 946,66 94623 10,67 11,09 2276 7,84
r107 3 3 873,80 873,80 873,80 873,80 21,18 24,80 4628 1543
(107 4 3 792,26 792,26 792,26 792,26 43,51 4537 119,66 32,58
(107 5 3 762,59 762,59 761,84 76259 86,65 7833 232,47 74,69
(107 6 3 714,41 714,41 71441 714,41 83,64 64,33 72,96 46,87
r107 7 3 712,26 712,26 712,26 712,26 113,00 6533 69,93 53,86
r107 8 3 712,26 712,26 712,26 712,26 172,01 7849 73,78 74,21
(107 9 3 712,26 712,26 712,26 712,26 166,78 74,94 62,20 75,67
r108 1 3 1113,70 1113,70 1123,65 1113,70 4,23 3,88 7,02 2,85
r108 2 3 793,40 793,40 793,40 793,40 17,03 20,63 2835 11,22
r108 3 3 745,66 74566 74566 74566 44,22 4832 99,60 27,88
r108 4 3 657,40 657,40 657,40 657,40 193,54 197,47 543,23 131,87
r108 5 3 N/A
r108 6 3 599,70 599,70 599,70 599,70 2393,63 1846,30 2375,52 1737,70
r108 7 3 599,70 599,70 599,70 599,70 3443,39 1429,92 1571,16 2261,83
r108 8 3 599,70 599,70 599,70 599,70 4860,45 1709,37 1596,94 3318,27
r108 9 3 599,70 599,70 599,70 599,70 4755,93 1934,00 1309,59 3930,01
r109 1 3 1286,00 1286,00 1286,00 128600 1,40 1,39 2,97 2,20
(109 2 3 1001,93 1001,93 1001,93 1001,93 533 528 679 3746
r109 3 3 908,95 908,95 908,95 90895 11,60 9,37 11,67 1889
(109 4 3 829,89 829,89 829,87 829,89 21,83 1585 20,54 33,42
r109 5 3 812,86 812,86 812,86 812,86 20,28 1810 1769 31,68
r109 6 3 781,27 78127 781,27 78127 21,94 14,28 1497 20,85
r109 7 3 780,34 780,34 780,34 780,34 32,51 21,43 1859 26,06
r109 8 3 780,34 780,34 780,34 780,34 43,22 19,55 16,52 29,12
r109 9 3 780,34 780,34 780,34 780,34 43,52 21,58 20,69 24,38
110 1 3+ 1237,77 1237,77 1237,77 1237,77 1,64 1,78 260 1,59
(110 2 3+ 927,68 927,68 927,68 927,68 9,61 827 10,80 7,43
(110 3 2+ 899,55 899,55 899,55 899,55 36,65 30,71 5243 26,94
(110 4 2% 850,48 850,48 850,48 850,48 61,93 57,17 13511 41,80
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Limit FULL CLON UNI PARA FULL CLON UNIF PARA

ri10 5 2% 846,53 846,53 846,53 846,53 77,43 80,26 181,05 59,67
ri10 6 2 709,63 709,63 709,63 709,63 95,81 58,71 69,15 53,46
r110 7 2 700,06 700,06 700,06 700,06 65,36 42,40 40,50 35,55
r110 8 2 700,06 700,06 700,06 700,06 91,98 46,07 43,37 46,76
r110 9 2 700,06 700,06 700,06 700,06 77,86 3895 32,86 34,99
rllil 1 3 1212,75 1212,75 1226,70 1212,75 1,88 1,96 4,35 1,71
ri1il1 2 3 915,66 915,66 915,66 915,66 9,97 9,81 15,69 7,22
ri1i1 3 3 851,60 851,60 851,60 851,60 22,66 17,84 31,55 15,61
riil1 4 3 759,41 759,41 759,29 759,41 47,38 32,17 8830 36,56
riil1 5 3 736,29 736,29 736,28 736,29 118,25 101,80 160,54 106,94
ri1l1 6 3 701,29 701,29 701,29 701,29 90,44 51,41 53,66 50,80
ri11 7 3 701,29 701,29 701,29 701,29 100,83 60,04 5803 4813
ri11 8 3 701,29 701,29 701,29 701,29 137,38 80,27 61,13 62,00
ri1l1 9 3 701,29 701,29 701,29 701,29 165,64 78,57 62,08 75,68
ri1i2 1 3 1112,90 1112,90 1112,90 1112,90 2,99 2,86 8,51 2,72
ri12 2 3 815,23 815,23 815,23 815,23 13,82 1252 35,91 9,74
ri12 3 3 749,17 749,17 749,17 749,17 33,95 35,61 76,95 21,41
ri12 4 3 669,55 669,55 669,55 669,55 8506 99,81 117,77 52,69
ri12 5 3 644,35 644,35 644,35 644,35 332,13 401,95 561,26 330,84
ri12 6 3 619,85 619,85 619,85 619,85 337,61 202,77 237,22 199,95
ri12 7 3 619,85 619,85 619,85 619,85 346,97 243,34 289,61 192,90
ri12 8 3 619,85 619,85 619,85 619,85 537,72 283,26 250,78 284,49
ri1i2 9 3 619,85 619,85 619,85 619,85 647,97 256,85 193,63 33856
cl01 1 2 455,30 455,30 455,30 455,30 3,42 2,25 3,66 2,78
cl01 2 2 367,40 367,40 367,40 367,40 8,24 7,42 8,17 579
cl01 3 2 367,40 367,40 367,40 367,40 16,04 946 12,67 10,02
cl01 4 2 367,40 367,40 367,40 367,40 11,47 11,46 12,34 8,36
cl01 5 2 367,40 367,40 367,40 367,40 30,73 13,87 16,66 21,09
cl01 6 2 367,40 367,40 367,40 367,40 26,85 14,31 13,83 16,80
cl01 7 2 367,40 367,40 367,40 367,40 2842 1546 19,52 1595
cl01 8 2 367,40 367,40 367,40 367,40 5420 1985 22,28 30,61
cl01 9 2 367,40 367,40 367,40 367,40 3854 1858 16,57 17,92
c102 1 3 454,30 454,30 454,30 454,30 3,43 3,15 8,49 3,20
c102 2 3 366,40 366,40 366,40 366,40 23,75 1576 25,37 18,04
c102 3 3 366,40 366,40 366,40 366,40 27,32 22,05 4860 17,60
c102 4 3 366,40 366,40 366,40 366,40 36,42 24,01 44,56 25,78
c102 5 3 366,40 366,40 366,40 366,40 44,16 33,38 33,12 2944
c102 6 3 366,40 366,40 366,40 366,40 93,12 36,37 43,96 53,79
c102 7 3 366,40 366,40 366,40 366,40 72,47 43,69 4587 37,66
cl02 8 3 366,40 366,40 366,40 366,40 74,22 40,30 41,83 3823
c102 9 3 366,40 366,40 366,40 366,40 151,13 63,49 68,82 71,00
c103 1 2 446,42 446,42 446,42 446,42 4,98 5,01 14,32 4,16
c103 2 2 366,40 366,40 366,40 366,40 123,50 49,66 167,96 80,06
c103 3 2 366,40 366,40 366,40 366,40 121,13 135,61 312,35 76,02
c103 4 2 366,40 366,40 366,40 366,40 159,94 185,25 185,76 102,12
c103 5 2 366,40 366,40 366,40 366,40 144,26 15549 372,38 93,79
cl03 6 2 366,40 366,40 366,40 366,40 245,08 104,49 239,43 12822
c103 7 2 366,40 366,40 366,40 366,40 254,65 17596 537,15 128,74
cl03 8 2 366,40 366,40 366,40 366,40 545,36 23595 444,50 321,44
c103 9 2 366,40 366,40 366,40 366,40 904,25 141,25 137,84 472,39
cl04 1 2 422,69 422,69 422,69 422,69 4889 48,51 92,81 48,15
cl04 2 2 N/A

ci04 3 2 N/A

cl04 4 2 N/A
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Limit FULL CLON UNI PARA FULL CLON UNIF PARA
cl04 5 2 N/A
cl04 6 2 N/A
cl04 7 2 N/A
cl04 8 2 N/A
cl04 9 2 N/A
clo5 1 2 455,30 455,30 455,30 455,30 2,37 2,31 4,28 22,84
cl05 2 2 367,40 367,40 367,40 367,40 8,91 8,74 14,54 26,80
cl05 3 2 367,40 367,40 367,40 367,40 15,58 15,20 17,51 29,53
cl05 4 2 367,40 367,40 367,40 367,40 17,94 14,27 13,80 24,66
cl05 5 2 367,40 367,40 367,40 367,40 22,00 14,64 24,23 18,75
c105 6 2 367,40 367,40 367,40 367,40 24,93 18,43 18,58 15,58
clo5 7 2 367,40 367,40 367,40 367,40 43,59 23,27 26,79 24,96
c105 8 2 367,40 367,40 367,40 367,40 49,28 18,40 22,57 26,13
c105 9 2 367,40 367,40 367,40 367,40 67,04 25,69 30,95 32,42
clo6 1 2 454,50 454,50 454,50 454,50 2,50 3,16 3,55 2,81
cl06 2 2 367,40 367,40 367,40 367,40 7,57 8,04 11,64 6,56
cl06 3 2 367,40 367,40 367,40 367,40 16,86 11,59 13,85 11,85
cl06 4 2 367,40 367,40 367,40 367,40 14,02 15,19 21,53 11,40
cl06 5 2 367,40 367,40 367,40 367,40 20,76 11,12 19,50 15,43
c106 6 2 367,40 367,40 367,40 367,40 33,00 16,36 21,56 19,52
cl06 7 2 367,40 367,40 367,40 367,40 35,94 18,50 20,85 20,64
c106 8 2 367,40 367,40 367,40 367,40 50,24 24,55 25,80 26,52
cl06 9 2 367,40 367,40 367,40 367,40 54,21 18,85 21,00 27,46
cl07 1 2 455,30 455,30 455,30 455,30 2,36 2,40 4,80 2,84
cl07 2 2 367,40 367,40 367,40 367,40 11,53 10,18 9,90 10,24
cl07 3 2 367,40 367,40 367,40 367,40 20,63 16,50 17,24 15,77
cl07 4 2 367,40 367,40 367,40 367,40 22,51 16,92 23,51 16,17
c107 5 2 367,40 367,40 367,40 367,40 26,69 16,15 23,44 18,46
c107 6 2 367,40 367,40 367,40 367,40 29,27 22,19 28,30 17,85
cl07 7 2 367,40 367,40 367,40 367,40 42,01 20,09 30,81 24,84
cl07 8 2 367,40 367,40 367,40 367,40 47,50 23,30 30,50 25,70
cl07 9 2 367,40 367,40 367,40 367,40 56,66 23,64 23,94 27,35
cl08 1 2 448,90 448,90 448,90 448,90 3,24 3,46 837 3,85
cl08 2 2 367,40 367,40 367,40 367,40 14,62 16,12 22,55 10,84
cl108 3 2 367,40 367,40 367,40 367,40 32,00 23,74 41,30 20,98
cl08 4 2 367,40 367,40 367,40 367,40 33,98 26,56 38,18 22,17
cl08 5 2 367,40 367,40 367,40 367,40 44,53 25,70 51,14 30,88
cl08 6 2 367,40 367,40 367,40 367,40 55,49 27,34 44,67 29,82
cl08 7 2 367,40 367,40 367,40 367,40 61,36 61,12 52,48 31,64
cl08 8 2 367,40 367,40 367,40 367,40 99,90 35,67 49,13 47,48
cl08 9 2 367,40 367,40 367,40 367,40 90,87 38,17 44,77 43,97
cl09 1 2 422,98 422,98 422,98 422,98 4,38 4,42 9,48 3,86
cl09 2 2 367,40 367,40 367,40 367,40 41,32 39,73 64,21 29,58
cl09 3 2 367,40 367,40 367,40 367,40 68,45 41,73 69,76 40,91
cl09 4 2 367,40 367,40 367,40 367,40 58,94 52,00 95,52 36,62
cl09 5 2 367,40 367,40 367,40 367,40 85,95 59,83 88,38 54,50
cl09 6 2 367,40 367,40 367,40 367,40 120,98 53,67 96,59 61,34
cl09 7 2 367,40 367,40 367,40 367,40 95,71 65,56 97,20 44,78
cl09 8 2 367,40 367,40 367,40 367,40 112,47 71,03 108,87 47,37
cl09 9 2 367,40 367,40 367,40 367,40 212,11 64,51 130,34 109,58
rcl0l 1 4 1300,80 1300,80 1300,80 1300,80 1,13 1,14 1,97 1,97
rcl0l1 2 3 1061,38 1061,38 1061,38 1061,38 4,42 4,47 513 3,41
rcl01 3 3 995,29 995,29 995,29 995,29 7,01 532 6,11 537
rcl01 4 2 N/A
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Limit FULL CLON UNI PARA FULL CLON UNIF PARA
rcl0l1 5 2 903,54 903,54 903,54 903,54 12,51 11,60 9,59 9,01
rcl01 6 2 855,02 855,02 855,02 855,02 13,23 9,26 8,79 7,48
rclol 7 2 855,02 855,02 855,02 855,02 17,27 10,65 11,07 9,87
rcl01 8 2 855,02 855,02 855,02 855,02 2559 11,58 12,71 12,96
rcl01 9 2 855,02 855,02 855,02 855,02 2891 12,33 13,08 14,25
rcl02 1 3 1205,20 1205,20 1205,20 1205,20 1,82 1,79 4,82 1,96
rcl02 2 2 951,57 951,58 951,58 951,57 527 6,17 7,27 4,13
rcl02 3 2 895,47 895,47 895,48 895,47 8,41 10,96 9,20 6,28
rcl02 4 2 847,15 847,15 847,15 847,15 13,15 17,55 18,81 8,68
rcl02 5 2 726,81 726,81 726,82 726,81 22,03 21,56 14,47 16,04
rcl02 6 2 726,82 726,82 726,82 726,82 22,20 17,36 1577 12,08
rcl02 7 2 726,81 726,81 726,81 726,81 44,92 18,40 1865 21,60
rcl02 8 2 726,82 726,81 726,81 726,82 42,73 17,97 17,33 19,66
rcl02 9 2 726,82 726,82 726,81 726,82 47,40 24,23 24,25 21,49
rclo3 1 3 1140,60 1140,60 1140,60 1140,60 2,21 2,19 5,80 1,77
rcl03 2 2 869,32 869,33 869,32 869,32 12,92 1811 17,22 8,14
rcl03 3 2 829,58 829,58 829,58 829,58 24,34 20,10 35,61 15,46
rcl03 4 2 750,38 750,38 750,38 750,38 54,47 44,06 54,99 36,43
rcl03 5 2 650,28 650,28 650,28 650,28 61,99 6023 48,06 39,04
rcl03 6 2 650,28 650,28 650,28 650,28 140,78 6850 97,78 75,09
rcl03 7 2 650,28 650,28 650,28 650,28 185,53 78,01 72,35 83,84
rcl03 8 2 650,28 650,28 650,28 650,28 153,80 64,96 53,04 61,46
rcl03 9 2 650,28 650,28 650,28 650,28 364,74 128,52 104,55 15848
rclo4 1 3 1061,20 1061,20 1061,20 1061,20 3,31 3,18 16,05 2,59
rcl04 2 2 778,10 778,10 778,10 778,10 96,81 74,84 423,42 65,16
rcl04 3 2 721,80 721,80 721,80 721,80 230,80 94,73 973,99 170,71
rcl04 4 2 649,60 649,60 649,60 649,60 300,77 299,59 382,70 305,92
rcl04 5 2 550,80 550,80 550,80 550,80 436,99 1014,36 342,81 348,71
rcl04 6 2 550,80 550,80 550,80 550,80 680,42 990,32 606,68 413,14
rclo4 7 2 550,80 550,80 550,80 550,80 4123,99 1614,31 579,05 2807,22
rcl04 8 2 550,80 550,80 550,80 550,80 833,57 1229,37 447,24 469,30
rcl04 9 2 550,80 550,80 550,80 550,80 2272,42 303,41 219,39 1331,80
rclo5 1 3 1243,80 1243,80 1243,80 1243,80 1,87 2,09 2,99 2,03
rcl05 2 3 996,46 996,46 996,46 996,46 7,82 8,16 7,24 5,01
rcl05 3 3 942,76 942,76 942,76 942,76 11,04 892 12,59 6,88
rcl05 4 3 842,16 842,16 842,16 842,16 13,50 1543 10,33 9,06
rcl05 5 3 766,56 766,56 766,56 766,56 21,41 12,16 20,00 15,23
rcl05 6 2 766,56 766,56 766,56 766,56 29,90 1583 1853 1575
rcl05 7 2 766,56 766,56 766,56 766,56 37,42 18,31 16,06 1831
rcl05 8 2 766,56 766,56 766,56 766,56 40,10 19,51 18,01 18,97
rcl05 9 2 766,56 766,56 766,56 766,56 44,23 20,52 1824 19,53
rcl06 1 3 1133,80 1133,80 1133,80 1133,80 2,31 2,04 2,69 2,36
rcl06 2 2 885,80 885,80 885,80 885,80 8,24 7,20 10,11 4,87
rcl06 3 2 846,23 846,23 846,23 846,23 17,70 8,71 10,61 9,18
rcl06 4 2 779,23 779,23 779,23 779,23 24,20 17,07 14,21 12,90
rcl06 5 2 669,43 669,43 669,43 669,43 2812 18,71 14,87 16,20
rcl06 6 2 669,43 669,43 669,43 669,43 36,15 21,46 21,12 18,32
rcl06 7 2 669,43 669,43 669,43 669,43 44,81 18,72 1934 19,21
rcl06 8 2 669,43 669,43 669,43 669,43 50,36 25,64 23,47 22,49
rcl06 9 2 669,43 669,43 669,43 669,43 65,09 26,59 23,39 27,85
rcl07 1 3 1101,80 1101,80 1101,80 1101,80 2,66 2,74 8,11 2,54
rcl07 2 2 794,80 794,80 794,80 794,80 27,31 20,89 120,11 23,25
rcl07 3 2 788,53 788,53 788,53 788,53 100,02 69,76 106,16 66,44
rcl07 4 2 710,91 710,91 710,91 710,91 116,42 97,94 129,70 67,75
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Vehicle Lower Bound

Computational Time (sec)

Probl.  Pat. imit  FULL CLON UNI PARA  FULL CLON UNIF _ PARA
rc107 5 2 608,58 608,58 608,58 60858 220,61 191,34 224,02 125,61
rc107 6 2 608,58 608,58 608,58 60858 392,10 172,52 134,12 200,84
rc107 7 2 608,58 60858 60858 60858 20882 151,71 11833 94,95
rc107 8 2 608,58 60858 60858 60858 390,99 12647 98,14 182,68
rc107 9 2 608,58 608,58 60858 60858 316,26 120,57 90,44 146,53
rc108 1 3 1066,30 1066,30 1066,30 106630 4,16 4,03 22,11 3,33
rc108 2 2 769,40 769,40 769,40 769,40 122,46 137,55 204,90 79,98
rc108 3 2 745,43 745,43 74543 74543 440,60 277,22 382,05 334,54
rc108 4 2 656,07 656,07 656,07 656,07 803,96 360,85 66576 536,46
rc108 5 2 546,17 546,17 N/A 54617 808,90 933,02 140446 561,87
rc108 6 2 546,17 546,17 546,17 546,17 1078,89 761,67 606,76 664,92
rc108 7 2 546,17 546,17 546,17 546,17 125508 712,74 620,02 737,28
rc108 8 2 546,17 546,17 546,17 546,17 2257,79 705,94 591,32 1351,21
rc108 9 2 546,17 546,17 546,17 546,17 192854 590,74 462,31 1107,33

* LDS is not used.
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APPENDIX B: BRANCH-AND-PRICE RESULTS

We present here the original detailed results, which were summarized in Chapter 5.

APPENDIX B.1: BRANCH-AND-PRICE RESULTS

Table B.1 presents the results for the instances solved using B&P, and employs both branching methods (2br and P+1). Specifically, Table B.1

provides the problem ID, the problem set, the period window pattern (1 to 9), the maximum allowable number of vehicles per period and, for

each method, the cost of the integer solution, the total nodes created, the nodes explored, the number of nodes explored since the best integer

solution was initially reached, and the time needed to calculate the integer solution. The analysis of these results is presented in Section 5.4.3.

Table B.1: Results on P 4+ 1 and 2br methods for obtaining integer solutions

No Prop- Pat. vax LT Total Nodes First Rl Total Nodes First
Set ven. 1B Nodes Explored QOcc.(1) IB Time B Nodes Explored Occ.(1) IB Time

1 ri0l 1 6 1549.5 11 9 8 3.145 1549.5 11 9 8 4.219
3 riol 3 4 1191.7 5 3 3 5.086 1191.7 5 3 3 4.986
4 ri0l 4 4 1157.8 71 63 50 115.128 1157.8 71 63 50 114.49
6 riol 6 4 1049 10 4 4 18.432 1049 9 7 4 29.608
7 ri0l 7 4 1049 5 5 2 26.483 1049 7 7 2 33.462
8 riol 8 4 1049 6 6 2 31.72 1049 9 9 2 46.334
9 ri0l 9 4 1049 13 13 3 74.073 1049 23 23 2 134.524
11 r102 2 3 1183.9 3 3 3 7.843 1183.9 3 3 3 7.539
12 r102 3 3 1107.7 9 9 2 39.883 1107.7 9 9 2 40.468
13 r102 4 3 1051.7 5 3 3 27.463 1051.7 5 3 3 27.007
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No ProY Pat. vax L0 Total Nodes First b Total Nodes First
>et ven 1B Nodes Explored Occ.(1) IB Time B Nodes Explored Occ.(1) IB Time

14 r102 5 3 1040.1 15 9 8 93.641 1040.1 15 9 8 93.119
15 r102 6 3 924.6 7 7 2 75.501 924.6 11 11 2 104.641
19 r103 1 4 1278.5 9 9 4 7.334 1278.5 9 9 4 7.196
21 r103 3 3 967.8 7 5 5 54.479 967.8 7 5 5 55.144
22 r103 4 3 872.7 7 5 4 99.714 872.7 7 5 4 107.084
23 rio3 5 3 862.8 34 24 19 647.658 862.8 31 23 18 611.412
24 r103 6 3 786.9 10 4 4 149.489 786.9 9 5 5 171.566
25 rio3 7 3 777.9 73 41 18 1145.506 777.9 25 19 8 533.84
26 r103 8 3 777.9 90 26 17 813.423 777.9 65 41 26 1250.576
27 r103 9 3 7779 121 31 20 1091584 777.9 119 77 6 2959.26
28 ri04 1 2 1126.5 7 7 4 15.374 1126.5 7 7 4 14.07
30 r104 3 2 794.5 44 42 5 1621.897 794.5 23 23 4 894.932
38 rio5 2 3 1168.3 25 19 19 23.243 1168.3 23 17 17 22.86
39 r105 3 3 1082.1 13 7 7 20.486 1082.1 11 9 4 24.41
40 r105 4 3 1040.2 70 59 40 205.51 1040.2 71 65 58 230.134
41 r105 5 3 1026.7 195 170 120 690.884 1026.7 153 121 84 465.756
42 r105 6 3 914.2 686 531 192 2769.084 914.2 721 653 272 3059.804
43 r10s 7 3 904.3 261 145 98 914.757 904.3 227 199 54 1040.486
46 r106 1 4 1320.8 3 3 3 2.804 1320.8 3 3 3 2.56
47 r106 2 3 1046 5 5 2 18.318 1046 5 5 2 17.661
48 r106 3 3 976 500 470 447 1880.641 976 441 433 94 1637.895
49 r106 4 3 880.4 13 9 6 108.778 880.4 13 9 6 109.605
50 r106 5 3 865.1 168 83 75 1101.317 865.1 63 49 30 664.597
51 r106 6 3 798 4 4 4 90.385 798 5 5 5 105.669
52 r106 7 3 798 5 5 5 109.338 798 15 15 8 284.421
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No ProY Pat. vax L0 Total Nodes First b Total Nodes First
>t ven 1B Nodes Explored Occ.(1) IB Time B Nodes Explored Occ.(1) IB Time

53 r106 8 3 798 31 11 11 225.356 798 25 23 12 442.995
54 r106 9 3 798 43 13 13 317.954 798 23 23 12 523.242
55 rio7 1 4 12214 3 3 3 3.524 12214 3 3 3 3.588
56 r107 2 3 946.7 3 3 3 23.39 946.7 3 3 3 225
57 rio7 3 3 878.9 41 26 22 300.741 878.9 29 21 21 256.736
58 rio7 4 3 800.1 49 41 12 845.913 800.1 35 27 25 482.529
59 rio7 5 3 768.6 87 45 32 2001.875 768.6 55 43 24 2009.306
64 rios 1 3 1126.5 33 19 16 31.039 1126.5 33 19 16 31.988
66 r108 3 3 752.2 56 31 26 752.168 752.2 47 29 24 708.455
74 r109 2 3 1005.6 17 13 9 37.992 1005.6 11 9 4 25.275
75 r109 3 3 915.9 30 28 9 144.322 915.9 35 33 19 158.254
76 r109 4 3 8425 92 87 50 603.437 842.5 101 97 44 627.876
77 r109 5 3 825.5 154 75 64 662.644 825.5 55 41 26 352.565
82 r110 1 3 1242.7 23 13 12 11.777 1242.7 23 13 12 11.099
84 ri110 3 2 905 13 9 8 145.019 905 15 11 9 168.402
88 r110 7 2 702 43 21 13 728.616 702 27 19 15 512.715
91 ril1l 1 3 1216.6 7 7 4 8.783 1216.6 7 7 4 8.695
92 riil 2 3 926.7 148 125 63 588.167 926.7 165 151 62 648.799
93 ril1l 3 3 861.4 66 49 38 434.434 861.4 79 63 47 558.595
94 rill 4 3 769.5 68 42 37 782.906 769.5 19 17 6 327.117
101 ril2 2 3 817.9 9 7 5 54.305 817.9 9 7 5 54.113
102 ri12 3 3 751.7 5 5 2 113.828 751.7 5 5 2 112.588
127 c103 1 2 451.6 5 3 3 12.152 451.6 5 3 3 12.014
172 €108 1 2 4537 9 5 5 10.048 4537 9 5 5 9.917
181 c109 1 2 449.1 85 65 45 81.733 449.1 85 65 45 78.478
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No ProY Pat. vax L0 Total Nodes First b Total Nodes First
>et ven 1B Nodes Explored Occ.(1) IB Time B Nodes Explored Occ.(1) IB Time

190 rc101 1 4 1399.8 241 241 22 82.268 1399.8 241 241 22 80.969
199 rc102 1 3 1267.4 49 49 24 29.224 1267.4 49 49 24 28.368
218 rc104 2 2 781 24 22 10 756.836 781 29 23 16 773.189
236 rc106 2 2 892.1 15 11 7 53.299 892.1 25 23 7 108.359
246 rcl107 3 2 793.5 28 22 5 1021.212 793.5 35 33 12 1317.692
254 rc108 2 2 770.6 11 6 6 431.697 770.6 9 9 9 491.354

(1) Number of nodes explored since the best integer solution initially reached
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APPENDIX B.2: BRANCH-AND-PRICE HEURISTIC PRUNING RESULTS

Table B.2 presents the results obtained by using the heuristic pruning technique with the P 4+ 1 branching method for different values of the
parameter A (4 = 1.00, 0.95, 0.90, 0.80, 0.75, 0.50). Specifically, Table B.2 presents the problem ID, the problem set, the period window pattern

(1 to 9), the maximum allowable number of vehicles per period, and, for each method, the cost of the integer solution, and its deviation from the

cost of the optimal solution (%), the number of nodes explored, the number of nodes explored since the best integer solution was initially

reached, and the time required to calculate the integer solution. The analysis of these results is presented in Section 5.4.4.

Table B.2: Pruning heuristic results (P + 1 B&P method)

Cost Deviation

Nodes Explored

First Occurrence ©

1B Computational Time

f ngtb. et \'\/Ae?(- 1.00 095 090 085 080 075 050 1.000.950.900.850.800.75 0.50 1.00 0.950.90 0.850.80 0.75 0.50 1.00 0.95 0.90 0.85 0.80 0.75 0.50
3 rlol 3 4 11917 13 3 3 3 3 3 1 1 1 1 1 1 1 30 54 49 54 51 52 52
4 rlol 4 4 11578 0.46% 0.16% 0.16% 0.16% 0.16% 0.16% 1 9 9 9 15 17 27 1 7 7 7 13 13 11 40 203 205 200 340 36.0 52.8
6 riol 6 4 1049 1 4 4 4 4 4 4 1 1 1 1 1 1 1 59 173 169 186 178 168 17.9
7 ri0l 7 4 1049 1 5 5 5 5 5 5 1 1 1 1 1 1 1 63 261 252 271 272 262 257
8 riol 8 4 1049 0.26% 1 6 6 6 6 6 6 1 2 2 2 2 2 2 66 319 322 338 336 333 312
9 ri0l 9 4 1049 17 7 7 7 7 7 1 1 1 1 1 1 1 79 474 439 462 472 441 441
11 r102 2 3 11839 13 3 3 3 3 3 1 1 1 1 1 1 1 43 79 80 121 79 81 82
12 r102 3 3 11077 13 3 3 3 3 5 1 1 1 1 1 1 1 79 184 180 186 188 183 26.2
13 rl102 4 3 10517 0.10% 13 3 3 3 3 3 1 3 3 3 3 3 3 162 287 269 270 278 273 27.3
14 r102 5 3 10401 0.05% 0.05% 0.05% 0.05% 0.05% 0.05% 17 7 7 7 7 7 1 1 1 1 1 1 6 225 687 673 684 680 682 728
15 rl02 6 3 9246 1 4 4 4 4 4 4 1 1 1 1 1 1 1 151 434 428 439 439 433 440
19 r103 1 4 12785 0.08% 17 7 7 7 7 7 1 4 4 4 4 4 4 16 59 51 55 56 53 53
21 ri03 3 3  967.8 1 55 5 5 5 5 1 1 1 1 1 1 1 169 551 537 553 545 545 553
22 rl03 4 3 8727 1.16% 1.04% 1 5 5 5 5 5 5 1 2 4 4 4 4 4 363 95910141047 1034 102.3 100.8
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Cost Deviation

Nodes Explored

First Occurrence @

1B Computational Time

f Plsrgtbl et \'\’A;‘X 100 095 090 085 080 075 050 1.000.950.900.850.800.75 0.50 1.00 0.950.90 0.850.80 0.75 0.50 1.00 0.95 0.90 085 0.80 0.75 0.50
23 ri03 5 3 8628 0.13% 1 14 14 14 14 14 16 1 6 6 6 6 6 6 69.2421.0416.6 423.1 4186 4185 457.7
24 ri03 6 3 7869 1 4 4 4 4 4 4 1 1 1 1 1 1 1 66214961468 1505 147.9 148.0 148.3
25 rl03 7 3 7779 0.19% 1 25 25 25 25 25 29 1 14 14 14 14 14 18 350 750.0 745.8 751.9 740.7 7482 8425
26 ri03 8 3 7779 0.36% 1 21 21 21 21 21 21 1 17 17 17 17 17 17 46.6 664.6 656.1 656.6 653.9 657.4 656.5
27 rl03 9 3 7779 0.19% 1 25 25 25 25 25 25 1 20 20 20 20 20 20 36.8 886.7 876.6 8723 874.9 877.0 878.9
28 ri04 1 2 11265 17 7 7 7 7 7 1 1 1 1 1 1 1 36 150 148 153 145 151 150
30 rio4 3 2 7945 120 22 22 26 26 29 1 1 1 1 1 1 112968469 907.6906.2 1033.9 1034.81149.6
38 ri05 2 3 11683 0.01% 111 11 13 13 13 13 1 2 2 2 2 2 2 25 146 145 175 169 165 16.7
39 rio5 3 3 10821 0.35% 1 7 7 7 7 7 7 1 7 7 7 7 7 7 54 26 199 202 201 204 208
40 rl05 4 3 10402 0.10% 117 17 19 19 19 25 1 12 12 12 12 12 18 10.0 626 614 677 678 67.9 90.0
41 r105 5 3 10267 0.21% 1 11 13 34 34 42 8 1 2 2 2 2 2 2 119 586 669 1486 1493 180.1 369.6
42 rl05 6 3 9142 0.28% 1 57 57 57 57131 177 1 29 29 29 29 41 75 10.6 347.8 3416 3384 3439 761.01045.9
43 r105 7 3 9043 0.83% 1105 105 105 105 105 105 1 6 6 6 6 6 6 9.8700.2 685.4 6859 688.3 691.1 691.5
46 rl06 1 4 13208 13 3 3 3 3 3 1 1 1 1 1 1 1 14 27 26 26 27 28 26
47 r106 2 3 1046 1 3 3 5 5 5 5 1 1 51 125 119 174 174 179 176
48 ri06 3 3 976 0.77% 1 31 38 48 48 48 126 1 11 11 11 11 11 43 11.6 157.0 1814 218.3 2226 221.7 590.6
49 r106 4 3 8804 0.37% 0.37% 0.37% 0.37% 0.37% 0.37% 111 11 11 13 13 7 1 1 1 1 1 1 6 23011361121 1114 1239 1247 92.8
50 ri06 5 3 8651 17 7 7 7 7 17 1 1 1 1 1 1 1 31811271129 1114 1116 113.3 254.3
51 rio6 6 3 798 1 4 4 4 4 4 4 1 1 1 1 1 1 1 288 909 909 901 906 904 89.3
52 rl06 7 3 798 1 5 5 5 5 5 5 1 1 1 1 1 1 1 25110711063 1062 1058 106.9 106.1
53 rio6 8 3 798 111 11 11 11 11 11 1 1 1 1 1 1 1 24522662253 2227 2253 223.8 223.1
54 ri06 9 3 798 113 13 13 13 13 13 1 1 1 1 1 1 1 288316.0 3149 3137 3157 3134 3114
55 rl07 1 4 12214 13 3 3 3 3 3 1 1 1 1 1 1 1 21 36 38 36 37 36 36
56 ri07 2 3 9467 13 3 3 3 3 3 1 1 1 1 1 1 1 117 229 229 225 234 226 230
57 rl07 3 3 8789 0.15% 0.15% 0.15% 0.15% 0.15% 111 11 11 13 18 18 1 1 1 1 1 8 8 26115141492 1479 1752 210.3 211.0
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" Prob. Pat. Max Cost Deviation Nodes Explored First Occurrence 1B Computational Time

Set veh. 100 095 090 085 080 0.75 0.50 1.000.950.900.850.800.75 0.50 1.00 0.95 0.90 0.850.80 0.75 0.50 1.00 0.95 0.90 0.85 080 0.75 0.50
58 rl07 4 3 800.1 15 5 5 5 5 5 1 1 1 1 1 1 1 410126.61253 1240 1253 1248 1247
59  ri107 5 3 768.6 1.47% 1 12 19 19 19 19 22 1 11 16 16 16 16 19 939 577.6 887.7 8852 888.8 892.1 982.2
64 rl08 1 3 11265 111 11 11 11 11 11 1 1 1 1 1 1 1 40 186 185 185 179 176 185
66 r108 3 3 752.2 111 11 117 11 117 11 1 1 1 1 1 1 1 435 305.2 302.3 302.8 304.0 300.8 336.3
74 rl09 2 3 1005.6 i 7 7 7v 7 7 7 1 1 1 1 1 1 1 58 213 220 212 221 223 272
75  rl09 3 3 915.9 1 10 10 10 14 14 18 1 1 1 1 1 1 1 101 521 512 520 73.0 74.6 108.7
76 rl09 4 3 842.5 1 18 18 18 18 18 32 1 1 1 1 1 1 1 18.1 146.9 146.4 1458 146.4 1454 299.6
77 r109 5 3 8255 1.50% 1 13 13 15 15 18 22 1 6 6 6 6 6 6 25.1 155.8 153.7 173.9 175.1 201.9 267.9
82 rli10 1 3 12427 111 11 11 11 11 13 1 1 1 1 1 1 1 18 104 103 102 114 101 149
84 rll0 3 2 905 1 9 9 9 9 9 9 1 1 1 1 1 1 1 317 148.2 1475 147.7 1459 147.0 168.5
88 rli10 7 2 702 121 21212121 22 1 1 1 1 1 1 1 422 7325 730.3 733.0 730.2 731.2 806.2
91 ril11 1 3 1216.6 1 5 5 5 5 5 5 1 1 1 1 1 1 1 21 68 68 65 6.9 71 7.0
92 ri11 2 3 926.7 0.11% 1 23 23 23 31 33 41 1 3 3 3 3 3 3 9511941166 119.1 1565 160.9 240.7
93 ril1 3 3 861.4 1 10 10 10 10 10 26 1 1 1 1 1 1 1 199 943 937 928 96.0 94.2 300.3
94 rll1 4 3 769.5 2.07% 1 13 13 13 16 18 22 1 4 4 4 4 4 4 50.0 227.4 226.4 2245 303.0 357.2 486.6
101 rl12 2 3 817.9 1 5 5 5 5 5 5 1 1 1 1 1 1 1 137 434 439 432 432 420 486
102 rl12 3 3 751.7 1 3 3 3 3 3 31 1 1 1 1 1 1 354 723 718 711 717 716 76.9
127 c103 1 2 451.6 1 3 3 3 3 3 31 1 1 1 1 1 1 54 123 123 122 127 122 126
172 c108 1 2 453.7 1 5 5 5 5 5 5 1 1 1 1 1 1 1 34 100 102 98 102 103 103
181 c109 1 2 449.1 1 23 23 23 23 23 23 1 1 1 1 1 1 1 46 351 342 345 349 346 418
190 rcl01 1 4 1399.8 0.05% 1 31 59101 129 157 241 1 18 20 20 22 22 22 12 135 245 360 470 587 103.7
199 rcl02 1 3 12674 1 9 15 256 37 47 49 1 1 1 1 1 1 1 18 69 107 168 232 281 346
218 rcl04 2 2 781 1 8 8 8 8 8 10 1 1 1 1 1 1 1 75.0 348.3 3429 343.0 345.0 344.8 418.6
236 rcl06 2 2 892.1 15 5 5 5 5 5 1 1 1 1 1 1 1 72 309 303 308 305 304 314
246 rcl07 3 2 7935 0.16% 1 13 13 13 13 13 13 1 5 5 5 5 5 5 76.9 694.0 684.6 683.1 688.1 684.8 709.4
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4 Prob. pat Max Cost Deviation Nodes Explored First Occurrence 1B Computational Time
Set veh. 100 095 090 085 080 0.75 0.50 1.000.950.900.850.800.75 0.50 1.00 0.95 0.90 0.850.80 0.75 0.50 1.00 0.95 0.90 0.85 080 0.75 0.50
254 rcl08 2 2 770.6 1 6 6 6 6 6 6 1 1 1 1 1 1 1 97.243294251 4248 4265 425.6 438.0

(1) Number of nodes explored since the best integer solution initially reached
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APPENDIX C: DETAILED RESULTS ON THE EXPERIMENTS REGARDING THE PENALTY FUNCTIONS

Table C.1 presents the analytical results for the instances solved in Section 6.3.3 concerning the utilization of different penalty functions in the
multi-period vehicle routing setting. Specifically, Table C.1 provides the period window pattern (3 or 5), the planning horizon (1 to 5), and the
routing cost (1), total cost (incl. penalties) (2), the number of customer orders considered in each MPVRPTW, the number of routed customer
orders (3), and the number of unserved customer orders (4) within the planning horizon, as well as the unit routing cost per served customer (5)

for each one of the penalty functions (y = 1,2, 3,4 and 5).

Table C.1: Pruning heuristic results (P + 1 B&P method)

E ‘g g y = 1 (flat) Y = 2 (step) Y = 3 (square) Y = 4 (quad) Y = 5 (linear)
©
¢ == ()] 2 @ @ 6 (1) @2 @ @ 6 (1) @2 @ @ © (1) 2 @B @ 6 (1) @ @ @ 6
R101
3 1 830,1 1654,7 34 16 24,41 1053,4 1671,2 38 12 27,72 1069,0 1590,1 39 11 27,41 10690 1590,1 39 11 27,41 1069,0 1590,1 39 11 27,41
3 2 901,3 1508,5 38 12 23,72 1048,0 16195 39 11 26,87 10480 161955 39 11 26,87 10480 16195 39 11 26,87 1004,7 15573 40 10 25,12
3 3 949,4 1480,2 40 10 23,74 10416 1621,9 39 11 26,71 10416 16219 39 11 26,71 10416 1621,9 39 11 26,71 992,3 15325 40 10 24,81
3 4 1004,1 15036 41 9 24,49 10356 16319 39 11 26,55 10416 16219 39 11 26,71 10416 16219 39 11 26,71 992,3 15325 40 10 24,81
3 5 1002,1 14830 41 9 24,44 10336 15572 40 10 25,84 10416 1621,9 39 11 26,71 10416 1621,9 39 11 26,71 992,3 15325 40 10 2481
R101
5 1 810,8 16558 34 16 23,85 1059,6 16357 39 11 27,17 1069,0 1590,1 39 11 27,41 1069,0 1590,1 39 11 27,41 10139 15143 40 10 25,35
5 2 839,3 15466 37 13 22,68 1014,6 16241 39 11 26,02 10480 16195 39 11 26,87 10480 16195 39 11 26,87 1004,7 15573 40 10 25,12
5 3 893,3 15143 38 12 23,51 1040,9 16124 39 11 26,69 10428 1623,1 39 11 26,74 1042,8 1623,1 39 11 26,74 991,9 1482,1 40 10 24,80
5 4 9690 1427,4 40 10 2423 9964 15357 39 11 2555 997,4 16157 39 11 2557 997,4 16157 39 11 2557 9454 1490,6 40 10 23,64
5 5 964,4 14143 41 9 23,52 1001,6 1547,4 40 10 25,04 997,4 1615,7 39 11 2557 997,4 16157 39 11 25,57 945,4 14906 40 10 23,64
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g %D § y = 1 (flat) Y = 2 (step) Y = 3 (square) Y = 4 (quad) Y = 5 (linear)
R ¢ 20 (3 (4 (5 (1) 2 @B @4 (5 (1) 2 () (@ (5 (1) 2 @B @ (5 (1) 2 @B 4 (5
R102
3 1 992,4 1460,4 42 8 23,63 1134,8 14453 45 5 2522 1061,3 13088 45 5 23,58 1061,3 13088 45 5 23,58 1016,3 1500,0 43 7 23,63
3 2 950,6 1356,9 43 7 22,11 1089,5 1292,9 46 4 23,68 1071,5 1292,7 46 4 2329 10715 1292,7 46 4 2329 1072,5 12342 47 3 22,82
3 3 10556 12173 47 3 22,46 1091,1 1262,8 47 3 2321 1087,1 12588 47 3 23,13 1091,1 1262,8 47 3 23,21 1087,1 12588 47 3 23,13
3 4 1033,4 11943 47 3 21,99 1087,1 1258,8 47 3 23,13 1087,1 1258,8 47 3 23,13 1087,1 1258,8 47 3 23,13 1087,1 1258,8 47 3 23,13
3 5 10334 11943 47 3 21,99 1087,1 1258,8 47 3 23,13 1087,1 1258,8 47 3 23,13 1087,1 1258,8 47 3 23,13 1087,1 1258,8 47 3 23,13
R105
3 1 906,7 1505,4 39 11 23,25 1167,0 1469,1 45 5 2593 1307,2 14864 46 4 28,42 1307,2 1486,4 46 4 28,42 1289,9 1458,3 46 4 28,04
3 2 9351 13052 43 7 21,75 1147,2 1483,3 45 5 2549 12689 1373,8 47 3 27,00 12689 1373,8 47 3 27,00 1232,2 1380,5 47 3 26,22
3 3 904,1 1255,0 43 7 21,03 10955 1427,2 45 5 24,34 1263,7 13774 47 3 26,89 1263,7 1377,4 47 3 26,89 1263,7 1377,4 47 3 26,89
3 4 1047,3 1268,3 46 4 22,77 1169,2 1437,4 46 4 25,42 1255,8 1389,9 47 3 26,72 12558 1389,9 47 3 26,72 12558 1389,9 47 3 26,72
3 5 1040,0 1262,2 46 4 22,61 1044,6 1299,3 45 5 23,21 12558 13899 47 3 26,72 12558 13899 47 3 26,72 1255,8 13899 47 3 26,72
R105
5 1 842,9 1494,8 37 13 22,78 1311,2 1519,6 46 4 28,50 1307,2 1486,4 46 4 28,42 1307,2 1486,4 46 4 28,42 1016,6 13258 44 6 23,10
5 2 837,8 1359,5 41 9 20,43 1258,8 1464,8 46 4 27,37 1267,4 14015 47 3 26,97 1267,4 14015 47 3 2697 11525 1313,8 47 3 24,52
5 3 950,0 1185,9 45 5 21,11 1084,8 1369,7 45 5 24,11 1204,9 13478 47 3 25,64 1204,9 13478 47 3 25,64 12049 1347,8 47 3 25,64
5 4 1001,4 1201,2 46 4 21,77 1148,6 13764 46 4 2497 1199,7 13426 47 3 25,53 1199,7 1342,6 47 3 25,53 1199,7 1342,6 47 3 25,53
5 5 1001,4 1201,2 46 4 21,77 1054,2 1228,8 46 4 22,92 1199,7 1342,6 47 3 25,53 1199,7 1342,6 47 3 25,53 1199,7 1342,6 47 3 25,53
R109
3 1 890,5 1293,1 42 8 21,20 1061,1 1091,2 49 1 2166 1127,7 1127,7 50 0 22,55 1127,7 1127,7 50 0 22,55 1021,8 1072,7 49 1 2085
3 2 795,2 12234 42 8 18,93 1119,6 11196 50 0 2239 1121,5 11215 50 0 2243 1121,5 1121,5 50 0 22,43 1044,8 1095,7 49 1 21,32
3 3 861,7 1070,5 46 4 18,73 11196 1119,6 50 0 22,39 1106,7 1106,7 50 0 22,13 1106,7 1106,7 50 0 22,13 1106,7 1106,7 50 0 2213
3 4 951,7 1002,6 49 1 19,42 11010 1101,0 50 0 22,02 1106,7 1106,7 50 0 22,13 1106,7 1106,7 50 0 22,13 1106,7 1106,7 50 0 2213
3 5 951,7 1002,6 49 1 19,42 1083,7 1083,7 50 0 21,67 1083,7 1083,7 50 0 2167 1083,7 10837 50 0 21,67 1083,7 10837 50 0 21,67
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g %D § y = 1 (flat) Y = 2 (step) Y = 3 (square) Y = 4 (quad) Y = 5 (linear)
£E 85
R ¢ 20 B @ (5 (1) 2 B (4 () (1) 2 B (4 (5 (1) 2 (3 (49 (5 (1) 2 B (4 ()
R110
3 1 9522 11747 45 5 21,16 11726 11726 50 O 23,45 10870 10870 50 O 21,74 10870 10870 50 O 21,74 10870 10870 50 O 21,74
3 2 810 10215 47 3 1874 1002,4 10024 50 O 20,05 10690 1069,0 50 O 21,38 10690 10690 50 O 21,38 1069,0 10690 50 O 21,38
3 3 8373 9461 48 2 17,44 902,8 9028 50 O 1806 9143 9143 50 0 1829 9154 9154 50 O 1831 9143 9143 50 O 1829
3 4 9000 9000 50 O 1800 9000 9000 50 O 1800 9000 900,0 50 O 1800 9000 9000 50 O 1800 9000 9000 50 O 18,00
3 5 9000 9000 50 O 1800 900,0 9000 50 O 1800 9000 9000 50 O 1800 9000 9000 50 O 1800 900,0 900,0 50 O 18,00
c101
3 1 3624 3624 50 O 725 3624 3624 50 0 725 5138 5138 50 O 10,28 5138 5138 50 O 1028 513,8 5138 50 O 10,28
3 2 3624 3624 50 0 725 3624 3624 50 O 725 3624 3624 50 0O 725 3624 3624 50 O 725 3624 3624 50 0O 725
3 3 3624 3624 50 O 725 3624 3624 50 0 725 3624 3624 50 O 725 3624 3624 50 0O 725 3624 3624 50 O 725
3 4 3624 3624 50 0 725 3624 3624 50 O 725 3624 3624 50 0O 725 3624 3624 50 O 725 3624 3624 50 0 725
3 5 3624 3624 50 O 725 3624 3624 50 0 725 3624 3624 50 O 725 3624 3624 50 0 725 3624 3624 50 0 7725
c101
5 1 3276 9124 42 8 780 4929 4929 50 O 98 5666 5666 50 O 11,33 5666 5666 50 O 11,33 5666 5666 50 0 11,33
5 2 3624 3624 50 0 725 3624 3624 50 O 725 4234 4234 50 O 847 3988 3988 50 O 798 4336 4336 50 O 867
5 3 3624 3624 50 O 725 3624 3624 50 0 725 3624 3624 50 O 725 3624 3624 50 0O 725 3624 3624 50 O 725
5 4 3624 3624 50 0 725 3624 3624 50 O 725 3624 3624 50 0 725 3624 3624 50 O 725 3624 3624 50 0O 725
5 5 3624 3624 50 O 725 3624 3624 50 0 725 3624 3624 50 O 725 3624 3624 50 0 725 3624 3624 50 0 7725
€105
3 1 3624 3624 50 0 725 3624 3624 50 O 725 4461 4461 50 0 892 4461 4461 50 O 892 4461 4461 50 O 892
3 2 3624 3624 50 O 725 3624 3624 50 0 725 3624 3624 50 O 725 3624 3624 50 0O 725 3624 3624 50 O 725
3 3 3624 3624 50 0 725 3624 3624 50 O 725 3624 3624 50 O 725 3624 3624 50 O 725 3624 3624 50 0 725
3 4 3624 3624 50 O 725 3624 3624 50 0O 725 3624 3624 50 O 725 3624 3624 50 0 725 3624 3624 50 O 725
3 5 3624 3624 50 0 725 3624 3624 50 O 725 3624 3624 50 0 725 3624 3624 50 O 725 3624 3624 50 0 7725
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g %D § y = 1 (flat) Y = 2 (step) Y = 3 (square) Y = 4 (quad) Y = 5 (linear)
E 85
R ¢ 20 (3 (4 (5 (1) 2 @B @4 (5 (1) 2 () (@ (5 (1) 2 @B @ (5 (1) 2 @B 4 (5
C105
5 1 3276 9124 42 8 780 4678 4678 50 O 936 5028 5028 50 O 10,06 502,8 502,8 50 O 10,06 502,8 502,8 50 O 10,06
5 2 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 408,7  408,7 50 0 8,17 398,3 398,3 50 0 7,97 408,7  408,7 50 0 8,17
5 3 3624 3624 50 O 725 3624 3624 50 O 725 3624 3624 50 O 725 3624 3624 50 O 725 3624 3624 50 O 7,25
5 4 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25
5 5 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25
C106
3 1 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 469,9 469,9 50 0 9,40  469,9 469,9 50 0 9,40 469,9  469,9 50 0 9,40
3 2 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25
3 3 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25
3 4 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25
3 5 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25
C106
5 1 327,6 912,4 42 8 780  467,8 4678 50 0 9,36 596,7 596,7 50 0 11,93 596,7 596,7 50 0 11,93 607,1 607,1 50 0 12,14
5 2 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 433,6 4336 50 0 8,67 362,4 362,4 50 0 7,25 4336 4336 50 0 8,67
5 3 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25
5 4 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25
5 5 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25
c107
3 1 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 445,9 445,9 50 0 8,92 445,9 445,9 50 0 8,92 4459 4459 50 0 8,92
3 2 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25
3 3 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25
3 4 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25
3 5 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25
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g %D § y = 1 (flat) Y = 2 (step) Y = 3 (square) Y = 4 (quad) Y = 5 (linear)
£E 85
R ¢ 20 B @ (5 (1) 2 B (4 () (1) 2 B (4 (5 (1) 2 (3 (49 (5 (1) 2 B (4 ()
€107
5 1 4983 4983 50 0 997 4983 4983 50 O 997 5346 5346 50 0 1069 5346 5346 50 O 1069 5346 5346 50 0 10,69
5 2 4178 4178 50 O 836 3979 3979 50 O 79 5041 5041 50 O 1008 5090 5090 50 O 10,18 5041 5041 50 O 10,08
5 3 3624 3624 50 0 725 3624 3624 50 O 725 3624 3624 50 O 725 3624 3624 50 O 725 3624 3624 50 0 725
5 4 3624 3624 50 0 725 3624 3624 50 O 725 3624 3624 50 O 725 3624 3624 50 O 725 3624 3624 50 0O 725
5 5 3624 3624 50 O 725 3624 3624 50 0 725 3624 3624 50 O 725 3624 3624 50 0 725 3624 3624 50 0 7725
€108
3 1 3624 3624 50 O 725 3624 3624 50 0O 725 4527 4527 50 O 9,05 4527 4527 50 O 9,05 4527 4527 50 O 9,05
3 2 3624 3624 50 0 725 3624 3624 50 O 725 3624 3624 50 0O 725 3624 3624 50 O 725 3624 3624 50 0O 725
3 3 3624 3624 50 O 725 3624 3624 50 0 725 3624 3624 50 O 725 3624 3624 50 0O 725 3624 3624 50 O 725
3 4 3624 3624 50 0 725 3624 3624 50 O 725 3624 3624 50 0O 725 3624 3624 50 O 725 3624 3624 50 0 725
3 5 3624 3624 50 O 725 3624 3624 50 0 725 3624 3624 50 O 725 3624 3624 50 0 725 3624 3624 50 0 725
Dept. of Financial & Management Engineering 171



Appendices

APPENDIX D: DETAILED RESULTS OF THE EXPERIMENTAL INVESTIGATION PRESENTED IN CHAPTER 6

We present here the detailed results of the experimental investigation of Chapter 6. These results were summarized in Section 6.4.

APPENDIX D.1: RESULTS FOR THE QUASI-STATIC INSTANCES

Figure D.1 illustrates the cost per routed customer as it changes over the periods of the long term horizon. These figures correspond to the

analysis presented in Section 6.4.1 regarding the quasi-static test instances. The cost value per customer at a certain period is the ratio of the total

routing costs for all periods till the period under consideration, over the total number of customers routed till the said period (cumulative unit cost

per customer). Results are presented per each combination of planning horizon (P) and implementation horizon (M). Each Figure presents 3

graphs, one per each instance of the random, clustered and mixed instances tested, respectively.
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Figure D.1: Cumulative unit cost per routed customer and period for all instances of Section 6.4.1

Dept. of Financial & Management Engineering

173




Appendices

APPENDIX D.2: RESULTS FOR THE DYNAMIC INSTANCES OF SECTION 6.4.2 (A)

Figures D.2 illustrates the cost per routed customer as it changes over the periods of the scheduling horizon. These figures correspond to the

analysis presented in Section 6.4.2 regarding the dynamic test instances with moderate planning horizon (3 and 5). The cost value per customer at

a certain period is the ratio of the total routing costs for all periods till the period under consideration, over the total number of customers routed

till the said period (cumulative unit cost per customer). Results are presented per each planning horizon (P). Each Figure presents 3 graphs, one

per each instance of the random, clustered and mixed instances tested, respectively.
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Figure D.2: Cumulative unit cost per routed customer and period for all instances of Section 6.4.2
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APPENDIX D.3: RESULTS OF THE DYNAMIC INSTANCES OF SECTION 6.4.2 (B)

Table D.1 presents the results obtained for the dynamic test instances of Section 6.4.2 for all

planning horizons (1 and 7) and for period window pattern #7. The Table presents the

instance name, the value of the planning horizon used (P), the total number of served

customers, and the average routing cost ratio over the 30- period horizon.

Table D.1: Comparative results using different planning horizons (dynamic arrival of customers)

Served Routin
Problem P Customers Cost Ratgio

L_r103 1 350 213
2 356 19.1

3 353 18.2

4* 197 15.5

5 349 15.9

6 349 155

7* 307 15.8

L_r106 1 360 215
2 360 19.4

3 359 16.4

4 359 15.6

5 359 15.5

6 359 15.7

7 359 16.4

L_r109 1 360 20.9
2 360 18.9

3 360 16.0

4 360 15.5

5 360 14.6

6 360 16.2

7 360 15.6

L_c106 1 360 37.7
2 360 26.9

3 360 22.6

4 360 20.6

5 360 214

6 360 20.5

7 360 21.1

L_c108 1 360 324
2 360 235

3 360 21.8

4 360 20.9

5 360 20.7

6 360 21.1

7 360 22.6
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Problem Served Routing
Customers Cost Ratio
L_c102 1 360 34.3
2 360 26.3
3 359 23.0
4 356 21.0
5 358 20.2
6 355 20.0
7 358 21.3
L_rc101 1 337 24.7
2 340 24.0
3 332 23.8
4 335 22.2
5 336 22.5
6 337 20.5
7 326 23.6
L_rc105 1 344 24.2
2 349 23.8
3 349 22.0
4 351 20.5
5 346 19.5
6 349 18.9
7 346 18.5
L_rc107 1 360 23.7
2 360 20.7
3 360 19.0
4 360 19.1
5 360 18.2
6 360 18.9
7 360 18.5

* In this cases the solution procedure terminated prematurely (P = 4, period 17,P = 7,period 27) due to computational complexity

Figures D.3, D.4 and D.5 illustrate the average routing cost ratio per each planning horizon, as
presented in Table D.1. Each Figure presents 3 graphs, one per each instance of the random,

clustered and mixed instances tested, respectively.
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Figure D.3: Cumulative unit cost per routed customer and period (Random Instances)
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Figure D.4: Cumulative unit cost per routed customer and period (Clustered Instances)
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Figure D.5: Cumulative unit cost per routed customer and period (Mixed Instances)
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APPENDIX E: DETAILED RESULTS OF THE EXPERIMENTAL INVESTIGATION

PRESENTED IN CHAPTER 7

We present here the detailed results of the experimental investigation of Chapter 7. Table E.1
presents the results obtained for the dynamic test instances of Section 7.3.1 for all planning
horizons (1 and 7) and for period window patterns #3, #5 and #7. The Table presents the
instance name, the value of the planning horizon used (P), the total number of flexible served
customers, and the average routing cost ratio (only for the flexible customers) over the 30-

period horizon for each one of the period window patterns tested.

Table E.1: Comparative results using different planning horizons (dynamic arrival of customers)

£s Pattern #3 Pattern #5 Pattern #7
Problem § .g Served Unit Cost Served Unit Cost Served Unit Cost
aT Customers per Customer  Customers per Customer  Customers per Customer
L_r103 1 171 13,2 172 12,1 172 12,1
2 172 7,5 172 6,6 172 6,6
3 172 6,6 172 4,4 172 4,0
4 172 4,0 172 3,7
5 172 4,1 172 2,9
6 172 2,8
7 172 2,8
L_r106 1 178 14,4 180 14,2 180 14,0
2 179 8,6 180 8,0 180 7,7
3 179 7,5 180 4,6 180 4,4
4 180 4,4 180 4,0
5 180 4,4 180 3,8
6 179 3,8
7 179 3,5
L_r109 1 179 13,7 180 13,0 180 13,0
2 180 8,4 180 6,7 180 6,9
3 180 6,8 180 4,3 180 4,1
4 180 4,0 180 3,5
5 180 3,9 180 2,9
6 180 2,8
7 180 2,6
L_c106 1 180 20,5 180 20,5 180 20,5
2 180 10,0 180 8,7 180 8,5
3 180 8,6 180 6,2 180 5,2
4 180 4,1 180 3,8
5 180 4,8 180 3,3
6 180 3,1
7 180 3,1

Dept. of Financial & Management Engineering 179



Appendices

2s Pattern #3 Pattern #5 Pattern #7
Problem g .g Served Unit Cost Served Unit Cost Served Unit Cost
&+ Customers per Customer  Customers per Customer  Customers per Customer
L_c102 1 180 20,1 180 20,1 180 20,1
2 180 10,3 180 9,2 180 9,3
3 180 8,4 180 54 180 4,9
4 180 4,6 180 4,5
5 180 4,7 180 3,8
6 179 3,5
7 179 3,5
L_c108 1 180 18,1 180 17,8 180 17,8
2 180 8,1 180 6,8 180 6,6
3 180 6,8 180 3,9 180 3,8
4 180 3,5 180 3,1
5 180 3,2 180 2,7
6 180 2,4
7 180 2,4
L_rc101 1 153 13,3 171 13,5 169 12,9
2 155 12,7 175 11,6 175 10,6
3 154 11,7 175 11,3 176 9,5
4 174 7,7 175 5,9
5 173 8,5 173 5,9
6 173 57
7 173 4,9
L_rc105 1 159 12,2 173 11,8 174 11,1
2 162 12,2 174 9,9 174 10,5
3 159 11,5 174 7,9 174 6,7
4 174 5,6 174 5,0
5 174 7,1 173 3,6
6 173 3,8
7 173 3,9
L_rc107 1 175 10,6 180 10,4 180 10,3
2 176 8,4 180 7,0 180 6,8
3 176 7,7 180 5,6 180 4,3
4 180 3,8 180 3,0
5 180 3,7 180 2,6
6 180 2,5
7 180 2,4

Table E.2 presents the results obtained for the dynamic test instances of Section 7.3.1 with
respect to the penalty cost functions, for all planning horizons (1 and 7) and for period
window pattern #7. The Table presents the instance name, the value of the planning horizon

used (P), the total number of flexible served customers, and the average routing cost ratio
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(only for the flexible customers) over the 30-period horizon for each one of the penalty
functions (y = 1,2,3 and 5).

Table E.2: Comparative results using different penalty cost functions (dynamic arrival of customers)

.E g y=1 (flat) y=2 (step) y=3 (square) y=3 (linear)
Problem £ £

f :|°: Served Unit Cost/ Served Unit Cost/ Served Unit Cost/ Served Unit Cost/
Customers Customer Customers Customer Customers Customer Customers Customer
L_r103 1 140 44,9 128 52,1 128 53,7 136 49,1
2 145 44,3 137 48,7 133 50,8 141 47,1
3 147 43,0 138 48,0 136 48,8 143 46,7
4 150 42,3 139 46,8 137 48,6 140 47,4
5 148 43,0 136 48,8 130 51,9 138 47,8
6 147 43,8 139 47,4 133 50,3 138 47,7
7 147 43,3 136 47,8 131 51,3 136 48,8
L_r106 1 142 43,7 141 46,4 130 53,8 140 48,1
2 148 42,5 141 47,2 137 49,9 141 48,0
3 148 42,6 140 47,2 137 50,0 142 47,2
4 154 41,8 139 48,2 138 49,2 145 46,3
5 152 42,6 140 47,8 139 48,7 144 46,8
6 151 42,4 138 48,4 134 50,3 142 47,3
7 148 43,7 134 50,1 134 50,2 141 47,2
L_r109 1 147 42,4 139 47,4 133 52,1 142 47,7
2 150 41,5 138 47,6 137 49,7 147 45,3
3 149 41,1 137 49,0 138 49,4 143 47,1
4 156 40,6 144 46,3 136 49,3 142 46,8
5 154 411 141 46,5 140 47,8 142 47,3
6 153 41,4 145 45,2 141 46,7 142 46,6
7 146 43,7 135 49,2 131 51,2 136 48,9
L_c106 1 146 58,6 141 69,8 135 77,7 143 74,0
2 152 56,5 140 72,5 141 71,9 147 68,8
3 153 57,5 139 72,6 140 70,9 145 69,7
4 154 56,4 146 66,4 147 66,6 148 67,2
5 151 56,8 138 71,0 140 69,2 142 69,9
6 151 57,4 137 71,3 136 70,9 140 70,6
7 145 59,8 134 71,3 132 74,7 139 70,3
L_c102 1 140 61,7 133 74,9 133 79,3 134 80,9
2 143 60,2 133 73,5 136 75,7 137 78,8
3 145 59,3 132 75,7 136 75,2 136 77,5
4 149 58,5 137 71,6 137 72,9 139 74,7
5 143 59,1 132 73,1 132 74,2 135 76,1
6 143 59,8 132 71,8 133 73,8 133 76,9
7 139 61,8 128 74,9 129 77,8 130 77,1
L_c108 1 152 56,2 148 65,4 137 74,4 147 68,6
2 156 55,5 150 65,3 143 69,6 148 67,7
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Appendices

¥ v=1 (flat) v=2 (step) v=3 (square) v=3 (linear)
Problem £ £
f :|°: Served Unit Cost/ Served Unit Cost/ Served Unit Cost/ Served Unit Cost/
Customers Customer Customers Customer Customers Customer Customers Customer
3 160 53,4 150 63,8 150 63,9 150 66,3
4 160 54,0 152 61,8 154 60,7 153 62,0
5 156 55,4 144 65,7 145 65,4 147 63,8
6 153 56,0 142 66,5 138 69,2 141 67,1
7 154 56,4 140 67,2 139 69,3 142 68,2
L_rc101 1 98 78,3 98 80,5 93 87,2 97 83,2
2 101 76,4 96 82,7 94 86,6 99 82,1
3 100 76,7 96 82,2 94 86,0 99 81,5
4 100 76,7 96 82,5 93 87,0 98 82,3
5 103 751 97 81,6 96 84,0 97 83,0
6 104 74,4 97 82,0 95 84,9 97 83,2
7 102 76,0 99 79,7 95 84,9 97 83,2
L_rc105 1 104 73,6 102 78,1 100 80,6 104 77,2
2 107 71,7 101 78,9 100 80,8 106 76,0
3 106 72,4 102 77,6 100 80,5 105 76,8
4 112 69,6 106 74,8 100 80,4 103 78,0
5 113 69,4 104 76,5 100 80,7 105 77,0
6 111 70,3 105 75,9 101 79,7 106 75,9
7 111 70,6 103 77,6 102 79,2 107 75,3
L_rc107 1 110 69,2 105 75,8 101 79,9 107 74,9
2 114 65,5 107 74,0 104 78,2 111 71,7
3 117 65,3 107 73,8 105 76,5 111 71,8
4 118 65,2 106 75,1 104 76,8 109 73,1
5 116 65,8 112 70,6 104 76,8 109 73,3
6 118 64,5 111 72,3 107 75,0 110 72,6
7 119 64,6 107 74,9 106 75,7 111 71,5
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