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SUMMARY (IN GREEK) 

΢ηελ παξνύζα δηδαθηνξηθή δηαηξηβή δηεξεπλάηαη ην Πξόβιεκα Γξνκνιόγεζεο Ορεκάησλ 

Πνιιαπιώλ Πεξηόδσλ (ΠΓΟΠΠ) κε Υξνληθά Παξάζπξα (ΠΓΟΠΠΥΠ). ΢ηόρνο ηνπ 

πξνβιήκαηνο απηνύ είλαη ε ειαρηζηνπνίεζε ηνπ θόζηνπο δξνκνιόγεζεο εληόο νξίδνληα 

πξνγξακκαηηζκνύ πνιιαπιώλ πεξηόδσλ (π.ρ. εκεξώλ), ιακβάλνληαο ππόςε πεξηνξηζκνύο 

ρξνληθώλ παξαζύξσλ θαη ρσξεηηθόηεηαο νρεκάησλ, θαζώο θαη ρξνληθώλ παξαζύξσλ 

πεξηόδσλ.  Ωο ρξνληθό παξάζπξν πεξηόδσλ πειάηε νξίδεηαη ζύλνιν ζπλερώλ πεξηόδσλ εληόο 

ησλ νπνίσλ ν πειάηεο επηζπκεί λα εμππεξεηεζεί. Σν ΢ρήκα Π.1, παξνπζηάδεη ηα ΠΓΟΠΠ  ηα 

νπνία κειεηώληαη ζηελ παξνύζα δηαηξηβή θαη ηα νπνία εκπίπηνπλ ζε δύν  θαηεγνξίεο: 

 Ζ πξώηε θαηεγνξία πεξηιακβάλεη ην βαζηθό ΠΓΟΠΠ, ζην νπνίν όινη νη πειάηεο εληόο 

ηνπ νξίδνληα πξνγξακκαηηζκνύ ησλ επόκελσλ   πεξηόδσλ ζεσξνύληαη γλσζηνί. Σν 

πξόβιεκα απηό κπνξεί λα ζεσξεζεί σο κία εηδηθή πεξίπησζε ηνπ Πξνβιήκαηνο 

Πεξηνδηθήο Γξνκνιόγεζεο Ορεκάησλ (ΠΠΓΟ). ΢ην ηειεπηαίν, νη πειάηεο 

εμππεξεηνύληαη πνιιαπιέο θνξέο εληόο ρξνληθνύ νξίδνληα πξνγξακκαηηζκνύ   

πεξηόδσλ ζύκθσλα κε επηζπκεηό πιάλν εμππεξέηεζεο (π.ρ. Γεπηέξα – Σεηάξηε – 

Παξαζθεπή). 

 Ζ δεύηεξε θαηεγνξία αθνξά ην ΠΓΟΠΠ Δθηεηακέλνπ Υξνληθνύ Οξίδνληα 

(ΠΓΟΠΠΔΥΟ), π.ρ.   πεξηόδσλ.. Σν πξόβιεκα απηό αληηκεησπίδεηαη κέζσ 

πξνγξακκαηηζκνύ θπιηόκελνπ ρξνληθνύ νξίδνληα. ΢ύκθσλα κε απηή ηελ ηερληθή, ζε 

θάζε πεξίνδν επηιύεηαη έλα ΠΓΟΠΠ γηα     πεξηόδνπο  (ρσξίο λα είλαη γλσζηό ην 

ζύλνιν ησλ αηηεκάησλ εμππεξέηεζεο εληόο ηνπ νξίδνληα πξνγξακκαηηζκνύ ησλ   

πεξηόδσλ). Με βάζε ηε ιύζε, πινπνηείηαη ε πξώηε πεξίνδνο ηνπ ΠΓΟΠΠ θαη ε 

δηαδηθαζία επαλαιακβάλεηαη γηα θάζε επόκελε πεξίνδν ηνπ νξίδνληα   . Μειεηώληαη δύν 

δηαθνξεηηθέο πεξηπηώζεηο: (α) ε εκη-ζηαηηθή πεξίπησζε, ζηελ νπνία όια ηα αηηήκαηα 

εληόο ηνπ ρξνληθνύ νξίδνληα   ζεσξνύληαη γλσζηά, θαη (β) ε δπλακηθή πεξίπησζε όπνπ 

λέα αηηήκαηα εκθαλίδνληαη ζε θάζε πεξίνδν ηνπ νξίδνληα πξνγξακκαηηζκνύ.  

Μία παξαιιαγή ηεο δπλακηθήο πεξίπησζεο ηνπ ΠΓΟΠΠΔΥΟ (ΓΠΓΟΠΠΔΥΟ) έρεη 

κειεηεζεί από ηνπο Angelelli et al. (2009) θαη Wen et al. (2009) θαη αθνξά ηελ επηπξόζζεηε 

δπλαηόηεηα ηξνπνπνίεζεο ησλ εθηεινύκελσλ δξνκνινγίσλ (δει. νρεκάησλ πνπ βξίζθνληαη 

θαζνδόλ) γηα λα εμππεξεηεζνύλ λέα δπλακηθά αηηήκαηα. Σν πξόβιεκα απηό κπνξεί λα 

ζεσξεζεί όηη αλήθεη ζηε θαηεγνξία ησλ Πξνβιεκάησλ Γπλακηθώλ Γξνκνιόγεζεο Ορεκάησλ 

(ΠΓΓΟ). 
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΢ρήκα Π.1: Πξνβιήκαηα πνπ ζρεηίδνληαη κε πεξηβάιινληα πνιιαπιώλ πεξηόδσλ 

Ζ πθηζηάκελε βηβιηνγξαθία ζην ηνκέα ησλ ΠΓΟΠΠ είλαη πεξηνξηζκέλε, όπσο έρεη ηνληζηεί 

θαη από ηνπο Bostel et al. (2008) θαη Wen et al. (2009). Ο Πίλαθαο Π.1 παξνπζηάδεη ηα 

βαζηθά ραξαθηεξηζηηθά ησλ πξνβιεκάησλ πνπ έρνπλ δηεξεπλεζεί ζηηο ζρεηηθέο 

δεκνζηεύζεηο. 

Table Π.1: Πξνβιήκαηα Γξνκνιόγεζεο Ορεκάησλ Πνιιαπιώλ Πεξηόδσλ 

 
Ποιιαπιά 

Οτήκαηα 

Υροληθά 

Παράζσρα  

Παράζσρα  

Περηόδφλ 

(# Περηόδφλ) 

Μέζοδος Δπίισζες 
΢ηαζερά 

Γροκοιόγηα 

Teng et al. (2006) 

   

Δπξεηηθή/  

Γπλακηθή Γεκηνπξγία 

Μεηαβιεηώλ 

 

Angelelli et al. (2007)   1 ή 2  Δπξεηηθή  

Andreatta and Lulli (2008)   1 ή 2 Markov Process  

Tricoire (2006; 2007), 

Bostel et al. (2008) 
  1 ή 2 

Μεηεπξεηηθή/  

Γπλακηθή Γεκηνπξγία 

Μεηαβιεηώλ 

 

Wen et al. (2010)   
1 έσο 15 

(2.5 θ.κ.ν.) 
Δπξεηηθή  

Angelelli et al. (2009)   1 ή 2 Δπξεηηθή  

Athanasopoulos and Minis 

 (2010) 
  5  Δπξεηηθή  

Γηα ηελ αληηκεηώπηζε ηνπ ΠΓΟΠΠΥΠ πξνηείλνπκε πξνζέγγηζε αθξηβνύο επίιπζεο (exact) 

πνπ ρξεζηκνπνηεί ηε κέζνδν Γπλακηθήο Γεκηνπξγίαο Μεηαβιεηώλ (ΓΓΜ) ή Column 

Generation (CG). Πξνηείλνπκε δύν θαηλνηόκεο ηερληθέο γηα ηελ επηηάρπλζε ηεο εύξεζεο 

θαηώηαησλ νξίσλ ηεο ιύζεο (lower bounds), δειαδή γηα ηελ επίιπζε ηεο γξακκηθήο 

ραιάξσζεο ηνπ ΠΓΟΠΠΥΠ. Οη ηερληθέο απηέο εθκεηαιιεύνληαη ην πεξηβάιινλ πνιιαπιώλ 

πεξηόδσλ ηνπ πξνβιήκαηνο, θαη ρξεζηκνπνηνύλ ηηο νκνηόηεηεο κεηαμύ ησλ δηαθνξεηηθώλ 

ππνπξνβιεκάησλ ηεο κεζόδνπ ΓΓΜ. Γηα ηελ εύξεζε αθέξαησλ ιύζεσλ ρξεζηκνπνηνύκε δύν 

δηαθνξεηηθέο ζηξαηεγηθέο branch-and-price νη νπνίεο ιακβάλνπλ ππόςε ηα ραξαθηεξηζηηθά 

ησλ πνιιαπιώλ πεξηόδσλ. Πξνηείλνπκε, επίζεο απιή επξεηηθή κέζνδν, ε νπνία επηηαρύλεη 

επηπιένλ ηελ δηαδηθαζία επίιπζεο κε ακειεηέα δηαθνξνπνίεζε ηνπ θόζηνπο ηεο ιύζεο από 

ην βέιηηζην θόζηνο. 

ΠΠΔΟ ΠΔΔΟΠΔΟΠΠ ΔΠΔΟΠΠ
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Όζνλ αθνξά ην ΠΓΟΠΠΥΠ Δθηεηακέλνπ Υξνληθνύ Οξίδνληα (ΠΓΟΠΠΥΠΔΥΟ), 

δηεξεπλνύκε ηελ ρξήζε ηεο ηερληθήο πξνγξακκαηηζκνύ θπιηόκελνπ ρξνληθνύ νξίδνληα. 

Αξρηθά πξνηείλνληαη ηξία ζεσξήκαηα ηα νπνία παξέρνπλ ζεκαληηθέο πιεξνθνξίεο ζρεηηθά κε 

ηηο βαζηθέο παξακέηξνπο ηεο δηαδηθαζίαο επίιπζεο: Σνλ νξίδνληα πξνγξακκαηηζκνύ θαη ηνλ 

νξίδνληα πινπνίεζεο.  Δπηπξόζζεηα, κειεηώληαη ζεκαληηθέο ηξνπνπνηήζεηο ηνπ ΠΓΟΠΠΥΠ 

θαη ησλ πξνηεηλόκελσλ κεζόδσλ επίιπζήο ηνπ κέζσ ησλ νπνίσλ θαζίζηαηαη δπλαηή ε 

κεηάζεζε ηεο εμππεξέηεζεο πειαηώλ ζε επηηξεπηέο πεξηόδνπο πέξαλ ηνπ νξίδνληα 

πξνγξακκαηηζκνύ. Υξεζηκνπνηώληαο ηηο ηξνπνπνηεκέλεο πξνζεγγίζεηο, κειεηάηαη ε επίιπζε 

ηεο εκη-ζηαηηθήο θαη ην δπλακηθήο πεξίπησζεο (πνπ αλαθέξζεθαλ παξαπάλσ) ιακβάλνληαο 

ππόςε δηαθνξεηηθέο ζπλζήθεο, όπσο ε γεσγξαθηθή θαηαλνκή ησλ πειαηώλ θαη ην εύξνο ησλ 

ρξνληθώλ παξαζύξσλ. Ζ αλάιπζε δηεξεπλά θαη πξνηείλεη ηηο θαηάιιειεο ηηκέο ηνπ νξίδνληα 

πξνγξακκαηηζκνύ θαη ηνπ νξίδνληα πινπνίεζεο γηα ηηο δηάθνξεο πεξηπηώζεηο. . 

Σειηθά, κειεηάηαη παξαιιαγή ηνπ πξνβιήκαηνο ΠΓΟΠΠΥΠΔΥΟ πνπ παξνπζηάδεη 

ζεκαληηθό πξαθηηθό ελδηαθέξνλ. Ζ πεξίπησζε απηή αθνξά ζε πβξηδηθό κνληέιν 

εμππεξέηεζεο ησλ πειαηώλ θαη πεξηιακβάλεη (α) κε-επέιηθηεο θαη (β) επέιηθηεο παξαγγειίεο 

πειαηώλ. Πξνηείλνληαη νη απαξαίηεηεο ηξνπνπνηήζεηο ηνπ καζεκαηηθνύ κνληέινπ θαζώο θαη 

ηεο κεζόδνπ επίιπζεο θαη κειεηάηαη ε επίιπζε ηνπ πξνβιήκαηνο ππό δηαθνξεηηθέο ζπλζήθεο 

Όπσο θαη πξνεγνπκέλσο ε πεηξακαηηθή αλάιπζε εληνπίδεη ηηο θαηάιιειεο ηηκέο ηνπ νξίδνληα 

πξνγξακκαηηζκνύ θαη ηνπ νξίδνληα πινπνίεζεο γηα ηηο δηάθνξεο πεξηπηώζεηο. 

ΜΑΘΖΜΑΣΗΚΟ ΜΟΝΣΔΛΟ ΣΟΤ ΠΓΟΠΠΥΠ 

Γίλεηαη νξίδνληαο πξνγξακκαηηζκνύ     πεξηόδσλ θαη νξίδεηαη σο      ε ηξέρνπζα 

πεξίνδνο. Θεσξνύκε όηη όινη νη πειάηεο πξέπεη λα εμππεξεηεζνύλ εληόο ησλ επόκελσλ   

πεξηόδσλ, δειαδή εληόο ηνπ νξίδνληα πξνγξακκαηηζκνύ            . Οη παξάκεηξνη ηνπ 

καζεκαηηθνύ κνληέινπ είλαη νη εμήο: 

  ΢ύλνιν ησλ   ζπλερόκελσλ πεξηόδσλ (νξίδνληαο πξνγξακκαηηζκνύ) 

          Γλσζηνί πειάηεο (ή παξαγγειίεο) θαηά ηελ έλαξμε ηεο πεξηόδνπ 1 

            ΢ύλνιν θόκβσλ, ζπκπεξηιακβαλνκέλσλ ηεο αξρηθήο θαη ηειηθήο 

απνζήθεο (depot). Κάζε όρεκα εθθηλεί από ηελ αξρηθή απνζήθε 

(θόκβνο  ) θαη ηεξκαηίδεη ζηελ ηειηθή απνζήθε (θόκβνο    ). 

Δπηζεκάλεηαη όηη γηα ηελ απνζήθε ρξεζηκνπνηνύληαη δύν 

δηαθνξεηηθνί θόκβνη ώζηε λα επηηξέπεηαη θάπνην όρεκα λα κείλεη 

αλελεξγό (Cordeau et al., 2002)  
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                ΢ύλνιν όισλ ησλ δπλαηώλ αθκώλ αλάκεζα ζηνπο θόκβνπο ηνπ 

ζπλόινπ   

      
    

   Υξνληθό παξάζπξν πεξηόδσλ ηνπ πειάηε  ; όπνπ     
    

     

    Κόζηνο δηάλπζεο ηεο αθκήο                

    Υξόλνο δηάλπζεο ηεο αθκήο              , ζπκπεξηιακβαλνκέλνπ 

ηνπ ρξόλνπ εμππεξέηεζεο ηνπ πειάηε   

   Εήηεζε ηνπ πειάηε         

   ΢ύλνιν ησλ      δηαζέζηκσλ νρεκάησλ αλά πεξίνδν         

  
 
 Υσξεηηθόηεηα ηνπ νρήκαηνο   θαηά ηελ πεξίνδν   

        Υξνληθό παξάζπξν εμππεξέηεζεο ηνπ πειάηε  , θνηλό γηα θάζε 

πεξίνδν εληόο ηνπ παξαζύξνπ πεξηόδσλ   ; Γηα ηνπο θόκβνπο   θαη 

   ,   ν λσξίηεξνο ρξόλνο εθθίλεζεο θάζε νρήκαηνο από ην 

ακαμνζηάζην νξίδεηαη σο        , ελώ ν αξγόηεξνο ρξόλνο 

επηζηξνθήο θάζε νρήκαηνο ζηελ απνζήθε. νξίδεηαη σο          

Οξίδνληαη δύν δηαθνξεηηθά ζύλνια κεηαβιεηώλ: (α) Ζ κεηαβιεηή       είλαη ίζε κε έλα (1) 

εάλ ην όρεκα   δηαλύεη ηελ αθκή       εληόο ηεο πεξηόδνπ   θαη κεδέλ ζε νηαδήπνηε άιιε 

πεξίπησζε. (β) Ζ κεηαβιεηή      αθνξά ζην ρξόλν έλαξμεο εμππεξέηεζεο ηνπ πειάηε 

(θόκβνπ)   από ην όρεκα   εληόο ηεο πεξηόδνπ  . Δπηζεκαίλεηαη όηη ην      ηζνύηαη κε κεδέλ 

(0) εάλ ν θόκβνο   δελ εμππεξεηείηαη από ην όρεκα   εληόο ηεο πεξηόδνπ  .  

Αληηθεηκεληθόο ζηόρνο ηνπ πξνβιήκαηνο είλαη ε ειαρηζηνπνίεζε ηνπ ζπλνιηθνύ θόζηνπο 

δξνκνιόγεζεο θαζ’ όιν ην εύξνο ηνπ νξίδνληα πξνγξακκαηηζκνύ θαη δίλεηαη από ηελ 

εμίζσζε: 

                  

              

  (Π.1) 

Τπό ηνπο πεξηνξηζκνύο 

        

                 

        (Π.2) 
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        (Π.3) 

      

         

              (Π.4) 

      

       

        

          

                   (Π.5) 

          

       

              (Π.6) 

         

            

   
 
             (Π.7) 

                                               (Π.8) 

        

         

              

         

                 (Π.9) 

                                (Π.10) 

                               (Π.11) 

Ζ αληηθεηκεληθή ζπλάξηεζε (Π.1) αθνξά ζην ζπλνιηθό θόζηνο δξνκνιόγεζεο. Μέζσ ησλ 

πεξηνξηζκώλ (Π.2) θαη (Π.3) θάζε πειάηεο πξέπεη λα εμππεξεηεζεί κόλν κία θνξά (από έλα 

όρεκα θαη εληόο κίαο πεξηόδνπ) εληόο ηνπ αληίζηνηρνπ παξαζύξνπ πεξηόδσλ. Οη πεξηνξηζκνί 

(Π.4) θαη (Π.6) νξίδνπλ όηη θάζε όρεκα αλαρσξεί θαη ηεξκαηίδεη ζηελ αξρηθή θαη ηειηθή 

απνζήθε, αληίζηνηρα. Οη πεξηνξηζκνί (Π.5) αλαθέξνληαη ζηε δηαηήξεζε ηεο ξνήο θάζε 

νρήκαηνο. Μέζσ ησλ πεξηνξηζκώλ (Π.7) θαζνξίδεηαη όηη ην θνξηίν θάζε νρήκαηνο δε ζα 

μεπεξάζεη ηε ρσξεηηθόηεηά ηνπ. Οη πεξηνξηζκνί (Π.8) θαη (Π.9) θαζνξίδνπλ όηη θάζε πειάηεο 

εμππεξεηείηαη εληόο ηνπ ρξνληθνύ παξαζύξνπ ηνπ, ελώ νη πεξηνξηζκνί (Π.10) αθνξνύλ ζην 

ρξνληθό παξάζπξν ηεο απνζήθεο. Δπηζεκαίλεηαη όηη ην   ζπκβνιίδεη έλα κεγάιν ζεηηθό 

αξηζκό. Σέινο, νη πεξηνξηζκνί (Π.11) δεζκεύνπλ ηηο κεηαβιεηέο ξνήο ζε δπαδηθέο 

ηηκέο      . 

Δπηιύνπκε ηεο γξακκηθή «ραιάξσζε» ηνπ αλσηέξσ πξνβιήκαηνο κέζσ ηεο κεζόδνπ ΓΓΜ 

γηα ηελ εύξεζε θαηώηαησλ νξίσλ (lower bounds). Ζ ΓΓΜ δηαζπά (decomposes) ην 

ραιαξσκέλν κνληέιν ζε έλα Κπξίσο Πξόβιεκα (ΚΠ) θαη πνιιαπιά Τπνπξνβιήκαηα (ΤΠ). 

Γηα ηελ εύξεζε αθέξαησλ ιύζεσλ ρξεζηκνπνηείηαη ε κέζνδνο branch-and-price, θαηά ηελ 

νπνία ε δηαδηθαζία ΓΓΜ ρξεζηκνπνηείηαη ζε θάζε θόκβν ηνπ ζρεηηθνύ δέλδξνπ.  
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ΓΗΑ΢ΠΑ΢Ζ ΣΟΤ ΜΑΘΖΜΑΣΗΚΟΤ ΜΟΝΣΔΛΟΤ 

΢ηελ παξνύζα ελόηεηα παξνπζηάδνπκε ηελ δηάζπαζε ηνπ καζεκαηηθνύ κνληέινπ γηα ηε 

γεληθή πεξίπησζε ηνπ ΠΓΟΠΠΥΠ. ΢ηελ πεξίπησζε απηή, ην ΚΠ πεξηιακβάλεη κόλν ηνπο 

πεξηνξίζηκνπο αλαθνξηθά κε ην κέγεζνο ηνπ ζηόινπ νρεκάησλ θαη ηνπο ζύνθεηους (complex) 

πεξηνξηζκνύο (πνπ αθνξνύλ όιεο ηηο πεξηόδνπο ζπλδπαζηηθά). Σα ΤΠ πεξηιακβάλνπλ ηνπο 

ινηπνύο πεξηνξηζκνύο αλαθνξηθά κε ηελ εθηθηόηεηα ησλ δξνκνινγίσλ. Ζ ζπγθεθξηκέλε 

καζεκαηηθή κνληεινπνίεζε γεληθνπνηεί ην κνληέιν ησλ Bostel et al. (2008), θαη κπνξεί λα 

ρξεζηκνπνηεζεί σο βάζε γηα ηελ αλάπηπμε παξαιιαγώλ ηνπ ΠΓΟΠΠ. 

Σο Προηεηλόκελο Κσρίφς Πρόβιεκα 

Έζησ όηη    είλαη ην ζύλνιν ησλ εθηθηώλ δξνκνινγίσλ γηα ηελ πεξίνδν p. Οη ζπληειεζηέο 

   
  νξίδνληαη σο εμήο: 

   
 

  
 εαλ ν πειάηεο   πεξηιακβάλεηαη ζην δξνκνιόγην   ηεο πεξηόδνπ  

       
   (Π.12) 

Οη κεηαβιεηέο   
 
 νξίδνληαη σο εμήο:  

  
 

  
 αλ ην δξνκνιόγην   ηεο πεξηόδνπ   πεξηιακβάλεηαη ζηε ιύζε

       
   (Π.13) 

Δάλ   
 

 είλαη ην θόζηνο ηνπ δξνκνινγίνπ   γηα ηελ πεξίνδν  , ε αληηθεηκεληθή ζπλάξηεζε 

ηνπ ΚΠ είλαη: 

        
 
  

 

    

 

   

  (Π.14) 

ππό ηνπο πεξηνξηζκνύο: 

   
 

    

        (Π.15) 

     
 

    
 

  

    

 

   

      (Π.16) 

  
 

        (Π.17) 

 

Ζ αληηθεηκεληθή ζπλάξηεζε (Π.14) αθνξά ζην ζπλνιηθό θόζηνο δξνκνιόγεζεο. Οη 

πεξηνξηζκνί (Π.15) αθνξνύλ ζην πιήζνο ησλ νρεκάησλ πνπ κπνξνύλ λα ρξεζηκνπνηεζνύλ ζε 

θάζε πεξίνδν, ελώ νη πεξηνξηζκνί (Π.16) είλαη νη πεξηνξηζκνί θάιπςεο ζπλόινπ (set 

covering). Σέινο, νη πεξηνξηζκνί (Π.17) δεζκεύνπλ ηηο κεηαβιεηέο ξνήο ζε δπαδηθέο 
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ηηκέο        θαη ε ραιάξσζή ηνπο επηηξέπεη ηελ ρξήζε γλσζηώλ κεζόδσλ γξακκηθνύ 

πξνγξακκαηηζκνύ.  

΢ην αλσηέξσ κνληέιν έρνπκε ζεσξήζεη όηη ηα εθηθηά δξνκνιόγηα γηα θάζε πεξίνδν (  ) 

είλαη γλσζηά a priori. Γεδνκέλνπ, όκσο, όηη ε ππόζεζε απηή δελ είλαη πξαγκαηνπνηήζηκε 

ζηελ πξάμε  ιόγσ ηνπ πιήζνπο ησλ δπλαηώλ ζπλδπαζκώλ πειαηώλ, νξίδνπκε σο   
  έλα 

ππνζύλνιν ηνπ   . Κάζε   
  πεξηέρεη έλα πεξηνξηζκέλν πιήζνο εθηθηώλ δξνκνινγίσλ ηεο 

πεξηόδνπ  . Σν αλσηέξσ κνληέιν ην νπνίν αθνξά ην ζύλνιν   
 , αληί ηνπ   , νξίδεηαη σο 

Πεξηνξηζκέλν Κπξίσο Πξόβιεκα (ΠΚΠ) - Restricted Master Problem (RMP).  

Σα Τποπροβιήκαηα 

Σν θάζε ΤΠ απνηειεί έλα ΢ηνηρεηώδεο Πξόβιεκα ΢πληνκόηεξεο Γηαδξνκήο κε Υξνληθά 

Παξάζπξα θαη Πεξηνξηζκνύο Υσξεηηθόηεηαο (΢Π΢ΓΥΠΠΥ). Όινη νη ελαπνκείλαληεο 

πεξηνξηζκνί κεηαθέξνληαη ζηα ΤΠ ώζηε λα δηαζθαιίδεηαη ε εθηθηόηεηα ησλ δξνκνινγίσλ. Ζ 

αληηθεηκεληθή ζπλάξηεζε ηνπ ΢Π΢ΓΥΠΠΥ αθνξά ζηελ εύξεζε ηνπ δξνκνινγίνπ κε ην 

ρακειόηεξν μειωμένο κόζηος (reduced cost) γηα θάζε πεξίνδν  . 

        
        

                  

  (Π.18) 

 όπνπ ην ζύλνιν    απνηειεί ην ζύλνιν όισλ ησλ εθηθηώλ πειαηώλ εληόο ηεο πεξηόδνπ  , νη 

ζπληειεζηέο    
  ηζνύηαη κε       , όπνπ νη ζπληειεζηέο    θαη    είλαη νη ζθηώδεηο ηηκέο 

(shadow prices), νη νπνίεο ζρεηίδνληαη κε ηνπο πεξηνξηζκνύο (Π.14) θαη (Π.15) αληίζηνηρα. 

Δπηζεκαίλεηαη όηη ην θάζε ΤΠ επηιύεηαη γηα θάζε κία πεξίνδν  . Καζόηη ην ΠΚΠ 

πεξηιακβάλεη κόλν εθηθηά δξνκνιόγηα, νη πεξηνξηζκνί (Π.4) έσο (Π.10) εληάζζνληαη ζην ΤΠ 

ηεο θάζε πεξηόδνπ, ιακβάλνληαο ππόςε ηα ζύλνια    αληί ηνπ ζπλόινπ  . 

΢σλδσάδοληας ηο Περηορηζκέλο Κσρίφς Πρόβιεκα κε ηα Τποπροβιήκαηα  

Σν ΢ρήκα Π.2 παξνπζηάδεη ηε δνκή ηεο κεζόδνπ ΓΓΜ γηα ηα ΠΓΟΠΠ. Δπηιύνληαο έλα 

ΠΚΠ, παξέρνληαη νη ζρεηηθέο ζθηώδεηο ηηκέο, ζε ζπλδπαζκό κε ηελ ιύζε ηνπ πεξηνξηζκέλνπ 

πξνβιήκαηνο (θόζηνο θαη ζρεηηθά δξνκνιόγηα). Οη ζθηώδεηο ηηκέο κεηαθέξνληαη ζηα ΤΠ θαη 

ρξεζηκνπνηνύληαη γηα ηνλ ππνινγηζκό ηνπ θόζηνπο    
 , γηα θάζε αθκή      . ΢ηνλ πίλαθα 

θόζηνπο/απνζηάζεσλ ηνπ ΢Π΢ΓΥΠΠΥ ρξεζηκνπνηνύληαη ηα    
 , αληί ησλ θαλνληθώλ ηηκώλ 

θόζηνπο. Οη ζθηώδεηο ηηκέο    επίζεο πεξηιακβάλνληαη ζηνλ πίλαθα θόζηνπο ηνπ 

πξνβιήκαηνο ηεο θάζε πεξηόδνπ, κέζσ ηεο ηξνπνπνίεζεο    
        ,     . 
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Δπηιύνληαο θάζε ΤΠ δεκηνπξγείηαη έλα ζύλνιν δξνκνινγίσλ αξλεηηθνύ θόζηους μείωζης. 

Κάζε έλα από απηά ηα δξνκνιόγηα ηξνπνπνηείηαη ζε κνξθή θαηάιιειε γηα ην ΠΚΠ, ζην 

νπνίν ρξεζηκνπνηνύληαη νη κεηαβιεηέο    
 

. Δπηζεκαίλεηαη όηη θαζόηη ε αιιεινπρία 

επίζθεςεο ησλ πειαηώλ δελ δηαηεξείηαη ζην ΠΚΠ, ε πιεξνθνξία απηή πξέπεη λα δηαηεξείηαη 

ρσξηζηά. Σα λέα δξνκνιόγηα πνπ πξνέθπςαλ πξνζηίζεληαη ζηα πθηζηάκελα δξνκνιόγηα εληόο 

ηνπ ΠΚΠ ην νπνίν επηιύεηαη εθ λένπ. Ζ δηαδηθαζία απηή ηεξκαηίδεη όηαλ θαλέλα 

΢Π΢ΓΥΠΠΥ δελ κπνξεί λα δεκηνπξγήζεη επηπιένλ δξνκνιόγηα αξλεηηθνύ κόζηους μείωζης. 

΢ηελ πεξίπησζε απηή, ην ΠΚΠ επηζηξέθεη ηε βέιηηζηε ιύζε κε ην ειάρηζην θόζηνο 

δξνκνιόγεζεο θαη ηα ζρεηηθά δξνκνιόγηα. Δπηζεκαίλεηαη όηη ε ιύζε απηή είλαη ελ γέλεη κε 

αθέξαηα. 

 

΢ρήκα Π.2: Μέζνδνο ΓΓΜ γηα ΠΓΟΠΠ 
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ΑΠΟΓΟΣΗΚΔ΢ ΣΔΥΝΗΚΔ΢ ΓΗΑ ΣΟΝ ΤΠΟΛΟΓΗ΢ΜΟ ΣΟΤ ΚΑΣΩΣΑΣΟΤ ΟΡΗΟΤ 

(LOWER BOUND) ΣΟΤ ΠΓΟΠΠΥΠ 

Με βάζε ηελ κέζνδν ΓΓΜ αλαπηύρζεθαλ δύν ηερληθέο γηα ηελ επηηάρπλζε πξνζδηνξηζκνύ 

ηνπ θαηώηαηνπ νξίνπ ηνπ ΠΓΟΠΠΥΠ:  

 Ζ ηερληθή Cloning (CLONE), ε νπνία εθκεηαιιεύεηαη ηελ επειημία ησλ πειαηώλ λα 

εμππεξεηεζνύλ (δξνκνινγεζνύλ) ζε πνιιαπιέο πεξηόδνπο ηνπ νξίδνληα 

πξνγξακκαηηζκνύ. Ζ κέζνδνο απηή κεηαθέξεη εθηθηά δξνκνιόγηα ηα νπνία 

δεκηνπξγνύληαη από έλα ΤΠ ζε άιια ΤΠ ηεο κεζόδνπ  ΓΓΜ θαη ζηνρεύεη ζηελ κείσζε 

ηνπ ππνινγηζηηθνύ ρξόλνπ απνθεύγνληαο ηελ επίιπζε όισλ ησλ ΤΠ ζε θάζε επαλάιεςε 

ηεο κεζόδνπ ΓΓΜ. Παξόκνηεο ηερληθέο έρνπλ παξνπζηαζηεί από ηνπο Pirkwieser θα Raidl 

(2009) θαη Mourgaya θαη Vanderbeck (2007) γηα ην ΠΠΓΟ.  

 Ζ ηερληθή Unified (UNI) ε νπνία επηιύεη έλα θνηλό ΤΠ γηα όιεο ηηο πεξηόδνπο ηνπ 

νξίδνληα πξνγξακκαηηζκνύ. Ζ εθηθηόηεηα ηνπ θάζε δξνκνινγίνπ εληόο κίαο πεξηόδνπ 

ειέγρεηαη εληόο ηνπ θνηλνύ ΤΠ. Ζ επίιπζε ηνπ θνηλνύ ΤΠ παξέρεη όια ηα δξνκνιόγηα 

γηα όιεο ηηο πεξηόδνπο ηνπ νξίδνληα πξνγξακκαηηζκνύ.  

Ζ απνηειεζκαηηθόηεηα ησλ πξνηεηλόκελσλ κεζόδσλ (ζε ζρέζε κε ηνλ ππνινγηζηηθό ρξόλν) 

κειεηήζεθε ζπγθξηηηθά α) κε ηελ θιαζζηθή πξνζαξκνγή (FULL) ηεο ΓΓΜ γηα πεξηβάιινληα 

δξνκνιόγεζεο πνιιαπιώλ πεξηόδσλ (βι. ΢ρήκα Π.2), θαζώο θαη β) κε πινπνίεζε ηεο 

θιαζζηθήο κεζόδνπ ζε πεξηβάιινλ παξάιιειεο εθαξκνγήο (PARA). 

Πεηρακαηηθή Γηερεύλεζε 

Γηα ηελ παξαπάλσ πεηξακαηηθή δηεξεύλεζε ηνπ ΠΓΟΠΠΥΠ δεκηνπξγήζεθαλ πεηξάκαηα κε 

50 πειάηεο (παξαγγειίεο) βάζεη ησλ πξνβιεκάησλ R1, C1 θαη RC1 ηνπ Solomon. Γηα ηε 

κεηαηξνπή ησλ πξνβιεκάησλ απηώλ ζε θαηάιιειε κνξθή γηα πεξηβάιινλ πνιιαπιώλ 

πεξηόδσλ, πξνζηέζεθαλ παξάζπξα πεξηόδσλ, σο εμήο: 

 Ο νξίδνληαο πξνγξακκαηηζκνύ νξίζηεθε ζε πέληε (5) πεξηόδνπο  

 Γηα θάζε πείξακα ηνπ Solomon, επηιερηήθαλ νη πξώηνη 50 πειάηεο θαη δηαρσξίζηεθαλ ζε 

5 νκάδεο (10 πειάηεο αλά νκάδα). ΢ε θάζε κία από ηηο νκάδεο αλαηέζεθε έλα 

δηαθνξεηηθό παξάζπξν πεξηόδσλ 

 Γεκηνπξγήζεθαλ ελλέα ππνδείγκαηα (κνηίβα) παξαζύξσλ πεξηόδσλ, ώζηε λα 

κειεηεζνύλ πεηξάκαηα κε δηαθνξεηηθή επειημία πειαηώλ όζνλ αθνξά ηηο εθηθηέο 

πεξηόδνπο δξνκνιόγεζεο. Έηζη, γηα θάζε έλα από ηα πεηξάκαηα ηνπ Solomon, 

δεκηνπξγήζεθαλ ελλέα δηαθνξεηηθά πεηξάκαηα. 



Summary (In Greek) 

xviii  DeOPSys Lab 

΢ην ΢ρήκα Π.3 παξνπζηάδνληαη ηα ελλέα δηαθνξεηηθά ππνδείγκαηα. Οη ζθηαζκέλεο πεξηνρέο 

αθνξνύλ ζην παξάζπξν πεξηόδσλ αλά ππόδεηγκα θαη νκάδα πειαηώλ. 

 

Τπόδεηγκα 1  Τπόδεηγκα 2  Τπόδεηγκα 3 

Περίοδος  Περίοδος  Περίοδος 

1 2 3 4 5  1 2 3 4 5  1 2 3 4 5 
Ο

κ
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 Π
ει

. 1                  

2                  

3                  

4                  

5                  

      

 

Τπόδεηγκα 4  Τπόδεηγκα 5  Τπόδεηγκα 6 

Περίοδος  Περίοδος  Περίοδος 

1 2 3 4 5  1 2 3 4 5  1 2 3 4 5 

Ο
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ά
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. 1                  

2                  

3                  

4                  

5                  

      

 

Τπόδεηγκα 7  Τπόδεηγκα 8  Τπόδεηγκα 9 

Περίοδος  Περίοδος  Περίοδος 

1 2 3 4 5  1 2 3 4 5  1 2 3 4 5 

Ο
κ

ά
δ

α
 Π

ει
. 1                  

2                  

3                  

4                  

5                  

΢ρήκα Π.3: Τπνδείγκαηα ρξνληθώλ παξαζύξσλ πεξηόδσλ 

Με βάζε ηα αλσηέξσ ππνδείγκαηα θαη ηα πεηξάκαηα ηνπ Solomon, δεκηνπξγήζεθαλ 261 

πεηξάκαηα ζε πεξηβάιινλ πνιιαπιώλ πεξηόδσλ σο εμήο: 

 Γηα ηε θαηεγνξία R1: 12 πεηξάκαηα x 9 ππνδείγκαηα = 108 πεηξάκαηα ΠΓΟΠΠΥΠ 

 Γηα ηε θαηεγνξία C1: 9 πεηξάκαηα x 9 ππνδείγκαηα = 81 πεηξάκαηα ΠΓΟΠΠΥΠ 

 Γηα ηε θαηεγνξία RC1: 8 πεηξάκαηα x 9 ππνδείγκαηα = 72 πεηξάκαηα ΠΓΟΠΠΥΠ 

΢ηνλ Πίλαθα Π.2 παξνπζηάδνληαη (α) ν αξηζκόο ησλ πεηξακάησλ ηα νπνία επηιύζεθαλ θαη γηα 

ηα νπνία βξέζεθε ην θαηώηαην όξην εληόο ζπγθεθξηκέλνπ ππνινγηζηηθνύ ρξόλνπ κίαο ώξαο  

(κε ρξήζε 8-πύξελνπ ππνινγηζηή κε επεμεξγαζηή 2GHz θαη 2GB κλήκεο RAM), θαη (β) ν 

ππνινγηζηηθόο ρξόλνο αλά θαηεγνξία πεηξακάησλ θαη ηερληθή επίιπζεο.  

Πίλαθας Π.2: Τπνινγηζηηθνί ρξόλνη αλά θαηεγνξία πεηξακάησλ (ώξεο) 

Καηεγορία Πεηράκαηα FULL CLONE UNI PARA 

R1 105 7,76 3,99 4,22 5,36 

C1 73 1,47 0,77 1,29 0,85 
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Καηεγορία Πεηράκαηα FULL CLONE UNI PARA 

RC1 71 5,90 3,34 3,04 3,64 

΢ύλοιο 249 15,13 8,10 8,55 9,85 

Οη ελαιιαθηηθέο ηερληθέο (cloning and unified) επηηπγράλνπλ κείσζε ηνπ ππνινγηζηηθνύ 

ρξόλνπ ζε ζρέζε κε ηηο δύν άιιεο κεζόδνπο, κε εμαίξεζε ζηα πεηξάκαηα κε νκαδνπνηεκέλνπο 

πειάηεο (Clustered – C1). ΢πγθεθξηκέλα, γηα ηηο πεξηπηώζεηο R1 θαη C1, ε ηερληθή CLONE 

επηηπγράλεη ηα θαιύηεξα απνηειέζκαηα κε κείσζε ηνπ ππνινγηζηηθνύ ρξόλνπ θαηά ~50% ζε 

ζρέζε κε ηε κέζνδν FULL. Όζνλ αθνξά ζηηο πεξηπηώζεηο RC1, ε ηερληθή UNI εκθαλίδεηαη 

σο πην απνηειεζκαηηθή, επηηπγράλνληαο, επίζεο, κείσζε ηνπ ππνινγηζηηθνύ ρξόλνπ θαηά 

~50%, ελώ ζπλνιηθά, ε CLONE θαη ε PARA εκθαλίδνληαη σο νη πην απνηειεζκαηηθέο 

κέζνδνη.  

΢ην ΢ρήκα Π.4 παξνπζηάδνληαη νη κέζεο ηηκέο ησλ ππνινγηζηηθώλ ρξόλσλ αλά θαηεγνξία 

πεηξακάησλ (R1, C1 θαη RC1) θαη ππόδεηγκα ρξνληθνύ παξαζύξνπ πεξηόδσλ. Σα ζρεηηθά 

απνηειέζκαηα ζπλνςίδνληαη ζηνλ Πίλαθα Π.3.  

 

(a) 

 

(b) 

 

(c) 

 

Figure Π.4: Μέζεο ηηκέο ππνινγηζηηθώλ ρξόλσλ αλά ππόδεηγκα ρξνληθνύ παξαζύξνπ πεξηόδσλ θαη θαηεγνξία 

πεηξακάησλ (α) R1, (β) C1 θαη (γ) RC1. 
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Γηα θάζε έλα από ηα ππνδείγκαηα ρξνληθώλ παξαζύξσλ πεξηόδσλ, ν Πίλαθαο Π.3 

παξνπζηάδεη ηνλ κέζν ππνινγηζηηθό ρξόλν ηεο κεζόδνπ FULL, θαζώο θαη ην κέζν ιόγν (%) 

ηνπ ππνινγηζηηθνύ ρξόλνπ ησλ άιισλ κεζόδσλ ζε ζρέζε κε ηε κέζνδν FULL.  

Πίλαθαο Π.3: ΢ύγθξηζε ππνινγηζηηθνύ ρξόλνπ 

Τπόδεηγκα 
Μέζος Υρόλος  

FULL (ζε δεση.) 

Μέζος Λόγος vs. FULL (%) 

CLONE UNI PARA 

1 4.2 97% 228% 130% 

2 23.1 95% 169% 104% 

3 53.4 83% 141% 77% 

4 86.6 89% 132% 76% 

5 108.8 89% 119% 78% 

6 283.5 65% 71% 61% 

7 434.5 60% 63% 55% 

8 438.7 51% 50% 53% 

9 525.9 40% 38% 51% 

Όπσο αλακέλνληαλ, θακία κέζνδνο δελ επηηπγράλεη ζεκαληηθή κείσζε ηνπ ππνινγηζηηθνύ 

ρξόλνπ γηα ηηο πεξηπηώζεηο ησλ ηδηαίηεξα ζηελώλ παξαζύξσλ πεξηόδσλ. Ωζηόζν, ζεκαληηθή 

κείσζε παξαηεξείηαη ζηηο πεξηπηώζεηο επξέσλ παξαζύξσλ πεξηόδσλ (ππνδείγκαηα 6 έσο 9), 

νη νπνίεο είλαη θαη νη πεξηπηώζεηο πνπ απαηηνύλ ηνπο κεγαιύηεξνπο ρξόλνπο ππνινγηζκνύ. Ζ 

UNI παξνπζηάδεη ηελ πιένλ πνηθίιε ζπκπεξηθνξά ζε ζρέζε κε ηα παξάζπξα εθηθηώλ 

πεξηόδσλ, ήηνη παξνπζηάδεη ηε ρακειόηεξε απνηειεζκαηηθόηεηα ζηηο πεξηπηώζεηο ζηελώλ 

παξαζύξσλ πεξηόδσλ (κε ρξόλνπο ππνινγηζκνύ κέρξη θαη 2 θνξέο κεγαιύηεξσλ απηώλ ηεο 

κεζόδνπ FULL γηα ηελ πεξίπησζε ηνπ ππνδείγκαηνο 1). Ωζηόζν, γηα ηηο πεξηπηώζεηο ησλ 

επξύηεξσλ παξαζύξσλ πεξηόδσλ, ππεξέρεη ησλ ππνινίπσλ κεζόδσλ επηηπγράλνληαο κείσζε 

62% ζε ζρέζε κε ηε κέζνδν FULL γηα ην ππόδεηγκα 9. 

ΔΤΡΔ΢Ζ ΑΚΔΡΑΗΩΝ  ΛΤ΢ΔΩΝ 

Όπσο επηζεκάλζεθε θαη αλσηέξσ, αθέξαηεο ιύζεηο ζην ΠΓΟΠΠΥΠ παξέρνληαη κέζσ 

κεζόδνπ branch-and-price (B&P) ε νπνία είλαη θαηάιιειε γηα ην πεξηβάιινλ πνιιαπιώλ 

πεξηόδσλ. Αλαπηύρζεθαλ θαη κειεηήζεθαλ δύν ζηξαηεγηθέο γηα ηελ δηεξεύλεζε ηνπ δέλδξνπ 

B&P: (α) ε θιαζζηθή ζηξαηεγηθή (    ), θαηά ηελ νπνία γηα θάζε κε αθέξαηα ιύζε 

δεκηνπξγνύληαη δύν δηαθνξεηηθά «θιαδηά» θαη (β) παξαιιαγή ε νπνία ζεσξεί     θιαδηά 

ιακβάλνληαο ππόςε ηα ραξαθηεξηζηηθά πνιιαπιώλ πεξηόδσλ ηνπ πξνβιήκαηνο.  

Γηα ηελ κειέηε ησλ αθέξαησλ ιύζεσλ, ζπγθξίλνπκε ηελ κέζνδν B&P κε ηε ηερληθή CLONE 

ζε ζρέζε κε ηελ B&P κε ηελ ηερληθή FULL. Ζ επηινγή ηεο ηερληθήο CLONE έλαληη ηεο UNI 
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βαζίζηεθε ζην όηη ε πξώηε  (i) παξνπζηάδεη ηνπο θαιύηεξνπο ζπλνιηθνύο ππνινγηζηηθνύο 

ρξόλνπο θαη (ii) είλαη ζπλεπέζηεξε ζε ζρέζε κε όια ηα ελαιιαθηηθά ππνδείγκαηα παξαζύξσλ 

πεξηόδσλ θαη όιεο ηηο δηαθνξεηηθέο γεσγξαθηθέο θαηαλνκέο πειαηώλ. ΢ην ΢ρήκα Π.5 

παξνπζηάδνληαη νη κέζεο ηηκέο ησλ ιόγσλ ησλ ππνινγηζηηθώλ ρξόλσλ ηεο κεζόδνπ B&P, 

ρξεζηκνπνηώληαο ηελ ηερληθή CLONE ζε ζρέζε κε ηελ FULL γηα όια ηα ελαιιαθηηθά 

ππνδείγκαηα παξαζύξσλ πεξηόδσλ θαη όιεο ηηο δηαθνξεηηθέο γεσγξαθηθέο θαηαλνκέο 

πειαηώλ. Σν ΢ρήκα παξνπζηάδεη δύν δηαθνξεηηθνύο ιόγνπο: (α) Ο ιόγνο ΗΒ αληηζηνηρεί ζηα 

196 πεηξάκαηα γηα ηα νπνία θαη νη δύν κέζνδνη εληόπηζαλ αθέξαηα ιύζε (είηε βέιηηζηε είηε 

ππν-βέιηηζηε). (β) Ο ιόγνο IC ν νπνίνο ιακβάλεη ππόςε ηνπ κόλν ηα πεηξάκαηα γηα ηα νπνία 

βξέζεθε ε βέιηηζηε ιύζε θαη από ηηο δύν κεζόδνπο. 

 

΢ρήκα Π.5: Μέζνο ιόγνο ππνινγηζηηθνύ ρξόλνπ (CLONE vs. FULL) 

Με βάζε ην αλσηέξσ ΢ρήκα, ε κέζνδνο CLONE επηηπγράλεη κείσζε ηνπ ππνινγηζηηθνύ 

ρξόλνπ γηα ηνλ πξνζδηνξηζκό αθέξαησλ ιύζεσλ, όζν δηεπξύλνληαη ηα ρξνληθά παξάζπξα 

πεξηόδσλ. Ωζηόζν, ε κείσζε απηή κεηξηάδεηαη γηα ηηο πεξηπηώζεηο εθείλεο ζηηο νπνίεο 

πξνζδηνξίζηεθε ε βέιηηζηε ιύζε εληόο ηνπ πξνθαζνξηζκέλνπ ρξνληθνύ νξίνπ ππνινγηζκνύ. 

Σν γεγνλόο απηό κπνξεί λα απνδνζεί ζην όηη ην ππνινγηζηηθό θέξδνο ην νπνίν επηηπγράλεηαη 

κε ελ κέζνδν CLONE γηα ηελ εύξεζε ηνπ θαηώηαηνπ νξίνπ (lower bound) κεηξηάδεηαη από 

ηνλ ππνινγηζκό ησλ ινηπώλ B&P θιάδσλ, ζηνπο νπνίνπο δεκηνπξγείηαη πεξηνξηζκέλνο 

αξηζκόο θνινλώλ (δξνκνιόγηα) θαη, ζπλεπώο, ε κέζνδνο CLONE δε δύλαηαη λα απνθέξεη 

ππνινγηζηηθό θέξδνο.  

Δσρεηηθή Σετληθή Απόρρηυες Κιάδφλ ηοσ Γέλδροσ B&P 

Γηα ηελ εύξεζε «απνδνηηθώλ» ιύζεσλ ζε ζπληνκόηεξν ρξνληθό δηάζηεκα, πξνηείλνπκε 

κέζνδν θαηά ηελ νπνία παύεη ε πεξαηηέξσ επίιπζε εθείλσλ ησλ θόκβσλ ηνπ δέλδξνπ B&P, 

γηα ηνπο νπνίνπο ην θαηώηαην όξην (lower bound) έρεη κηθξή απόθιηζε από ην θαιύηεξν 
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γεληθό αθέξαην αλώηαην όξην (Global Upper Bound) πνπ έρεη βξεζεί έσο εθείλε ηε ζηηγκή. 

Με ηνλ ηξόπν απηό επηηπγράλεηαη ε εύξεζε πνηνηηθώλ ππν-βέιηηζησλ ιύζεσλ, αθόκα θαη ζε 

πεξηπηώζεηο κε επξέα παξάζπξα πεξηόδσλ.  

Ζ δηαδηθαζία ηεο πξνηεηλόκελεο κεζόδνπ έρεη σο εμήο: Με ηελ επίιπζε ελόο θόκβνπ (έζησ 

ηνπ θόκβνπ  ) ηνπ δέλδξνπ     βξίζθεηαη ην θαηώηαην όξην    . Δπηπξόζζεηα, έλα 

αλώηαην αθέξαην όξην ηνπ θόκβνπ   (έζησ    ) ππνινγίδεηαη επηιύνληαο ην πξόβιεκα Β&Β 

κόλν κε ηα δξνκνιόγηα ηα νπνία πεξηέρνληαη ήδε ζην ηξέρνλ ΠΚΠ (κέζσ ηνπ ππνινγηζηηθνύ 

εξγαιείνπ CPLEX). Γεδνκέλεο ηεο θαιύηεξεο γλσζηήο αθέξαηεο ιύζεο (έζησ    ) πνπ 

είλαη γλσζηή έσο εθείλε ηε ζηηγκή, ππνινγίδεηαη γηα θάζε θόκβν   ε παξαθάησ κεηξηθή : 

   
       

       
 (Π.18) 

Γηαηεξνύληαη θαη επηιύνληαη πεξαηηέξσ κόλν νη θόκβνη εθείλνη γηα ηνπο νπνίνπο ηζρύεη όηη 

      γηα        . 

Γηα ηελ κειέηε ηεο απνηειεζκαηηθόηεηαο κεζόδνπ, εζηηάδνπκε ζηηο 66 πεξηπηώζεηο γηα ηηο 

νπνίεο ε B&P ζύγθιηλε ζηελ βέιηηζηε ιύζε εληόο ηνπ πξνθαζνξηζκέλνπ ρξνληθνύ νξίνπ 

ππνινγηζκνύ. Σν ΢ρήκα Π.6 παξνπζηάδεη ηα απνηειέζκαηα ζε ζρέζε ηόζν κε ηνλ 

ππνινγηζηηθό ρξόλν όζν θαη κε ηελ απόθιηζε από ηελ βέιηηζηε ιύζε γηα δηαθνξεηηθέο ηηκέο 

ηεο παξακέηξνπ   ρξεζηκνπνηώληαο ηελ κέζνδν    . Ο ππνινγηζηηθόο ρξόλνο είλαη 

θαλνληθνπνηεκέλνο ζε ζρέζε κε ηνλ ρξόλν ηεο κεζόδνπ B&P κε    . Δπηζεκαίλεηαη όηη γηα 

ηελ απόθιηζε από ηε βέιηηζηε ιύζε ρξεζηκνπνηήζεθαλ κόλν νη πεξηπηώζεηο νη νπνίεο δελ 

ζπλέθιηλαλ ζε απηή.  
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΢ρήκα Π.6: Τπνινγηζηηθνί ρξόλνη θαη απόθιηζε από ηελ βέιηηζηε αθέξαηα ιύζε γηα δηαθνξεηηθέο ηηκέο ηεο 

παξακέηξνπ   (κέζνδνο    ) 

Σα απνηειέζκαηα ηνπ ΢ρ. Π.6 επηβεβαηώλνπλ ηελ απνδνηηθόηεηα ηεο κεζόδνπ θαζώο ε 

βέιηηζηε αθέξαηα ιύζε επηηπγράλεηαη γηα       ζην 60% ηνπ ρξόλνπ ηνλ νπνίν απαηηεί ε 

νινθιεξσκέλε κέζνδνο B&P. Δπηπξόζζεηα, ε απόθιηζε από ηελ βέιηηζηε ιύζε είλαη 

πεξηνξηζκέλε θαη ειεγρόκελε από ηελ ηηκή ηεο παξακέηξνπ  . Δπηζεκαίλεηαη όηη αθόκα θαη 

γηα      ε απόθιηζε ηνπ θόζηνπο είλαη κηθξόηεξε ηνπ 0.5%, ελώ ε κείσζε ηνπ ρξόλνπ 

αλέξρεηαη ζε 94%. 

ΠΔΡΗΒΑΛΛΟΝ ΚΤΛΗΟΜΔΝΟΤ ΥΡΟΝΗΚΟΤ ΟΡΗΕΟΝΣΑ 

΢ηε ζπλέρεηα κειεηήζεθε ην ΠΓΟΠΠΥΠ ζε εθηεηακέλν ρξνληθό νξίδνληα θαη ε επίιπζή ηνπ 

κέζσ πξνγξακκαηηζκνύ θπιηόκελνπ νξίδνληα. Έζησ όηη έλαο πειάηεο (παξαγγειία)   γίλεηαη 

γλσζηόο ηελ πεξίνδν   θαη κπνξεί λα εμππεξεηεζεί εληόο ηνπ παξαζύξνπ    
    

  , όπνπ 

  
   . Ο ζπλνιηθόο καθξνρξόληνο νξίδνληαο ηνπ πξνβιήκαηνο (ΜΥΟ) θαζνξίδεηαη από ηελ 

κέγηζηε ηειηθή πεξίνδν,   
 , έσο ηελ νπνία κπνξεί λα εμππεξεηεζεί νπνηνζδήπνηε πειάηεο 

   , θαη νξίδεηαη σο    Δπηζεκαίλεηαη όηη ν νξίδνληαο   εμαξηάηαη από ην ζύλνιν πειαηώλ 

   αιιά γηα ιόγνπο απινύζηεπζεο δελ ζπκπεξηιακβάλεηαη ην   ζην ζύκβνιν  . 

Έζησ                 ην ζρεηηθό πξόβιεκα εληόο νξίδνληα [           κήθνπο 

    πεξηόδσλ. Οη πειάηεο νη νπνίνη πεξηιακβάλνληαη ζην πξόβιεκα απηό (ζύλνιν πειαηώλ 

    είλαη απηνί γηα ηνπο νπνίνπο ην παξάζπξν εθηθηώλ πεξηόδσλ αξρίδεη εληόο ηνπ νξίδνληα 

πξνγξακκαηηζκνύ, δει.,                 
         θαη (    ).  

Ζ κέζνδνο πξνζέγγηζεο ηνπ πξνβιήκαηνο έρεη σο εμήο: Οη πειάηεο αλαηίζεληαη ζηηο επόκελεο 

  πεξηόδνπο, δει. ζηηο πεξηόδνπο             επηιύνληαο ην                . Σν 

κήθνο ( ) ηνπ νξίδνληα πξνγξακκαηηζκνύ επηιέγεηαη ώζηε λα παξέρεη ηθαλνπνηεηηθέο ιύζεηο 

«βιέπνληαο» ζην κέιινλ, αιιά θαη ώζηε λα κελ θαζηζηά απαγνξεπηηθό ηνλ απαηηνύκελν γηα 

ηελ επίιπζε ηνπ πξνβιήκαηνο ππνινγηζηηθό ρξόλν. Με βάζε ηε ιύζε ηνπ 

                 επηιέγνληαη πξνο εμππεξέηεζε νη πειάηεο νη νπνίνη αλαηέζεθαλ ζηηο 

πεξηόδνπο              , όπνπ    . Οη ελαπνκείλαληεο πειάηεο (νη νπνίνη 

αλαηέζεθαλ ζην δηάζηεκα [                δξνκνινγνύληαη μαλά ζε ζπλδπαζκό 

κε ηνπο λένπο πειάηεο, ην παξάζπξν πεξηόδσλ ησλ νπνίσλ αξρίδεη  εληόο ησλ πεξηόδσλ 

           . Ζ θπιηόκελε απηή δηαδηθαζία πξνγξακκαηηζκνύ παξνπζηάδεηαη ζην 

΢ρήκα Π.7. 
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΢ρήκα Π.7. Γηαδηθαζία πξνγξακκαηηζκνύ  

Με βάζε ην αλαθεξόκελν πεξηβάιινλ θπιηόκελνπ ρξνληθνύ νξίδνληα, κειεηώληαη δύν 

πεξηπηώζεηο:  

Ζ εκη-ζηαηηθή πεξίπησζε, ζηελ νπνία όινη νη πειάηεο εληόο ηνπ νξίδνληα   ζεσξνύληαη 

γλσζηνί. Υξεζηκνπνηώληαο νξίδνληα πξνγξακκαηηζκνύ κήθνπο   πεξηόδσλ θαη νξίδνληα 

πινπνίεζεο κήθνπο   πεξηόδσλ,  ν θύθινο επίιπζεο επαλαιακβάλεηαη θάζε   πεξηόδνπο. 

΢ηελ πεξίπησζε απηή, νη επηπξόζζεηνη πειάηεο γηα θάζε επόκελν ΠΓΟΠΠΥΠ είλαη νη 

πειάηεο ησλ ηειεπηαίσλ    πεξηόδσλ ηνπ αληίζηνηρνπ (λένπ) νξίδνληα πξνγξακκαηηζκνύ. 

Ζ δσλακηθή πεξίπησζε, ζηελ νπνία ζε θάζε πεξίνδν εκθαλίδνληαη λένη πειάηεο . ΢ηελ 

πεξίπησζε απηή δελ είλαη γλσζηνί όινη νη πειάηεο εληόο ηνπ νξίδνληα πξνγξακκαηηζκνύ. 

Πιήξεο γλώζε ησλ πειαηώλ ππάξρεη κόλν γηα ηελ πξώηε πεξίνδν ηνπ νξίδνληα 

πξνγξακκαηηζκνύ.  

Θεφρεηηθή Γηερεύλεζε 

Γηα ηελ εκη-ζηαηηθή πεξίπησζε, δηεξεπλήζεθε ε επίδξαζε δύν βαζηθώλ παξακέηξσλ ηνπ 

πξνγξακκαηηζκνύ θπιηόκελνπ ρξνληθνύ νξίδνληα: Ο νξίδνληαο πινπνίεζεο (  ) θαη ν 

νξίδνληαο πξνγξακκαηηζκνύ ( ).  

Έζησ όηη            είλαη ε βέιηηζηε ιύζε ηνπ                , θαη           

είλαη ην ζρεηηθό βέιηηζην θόζηνο, ην νπνίν αθνξά ζην ζπλνιηθό αζξνηζηηθό θόζηνο 

δξνκνιόγεζεο εληόο ησλ πεξηόδσλ ηνπ νξίδνληα πξνγξακκαηηζκνύ:           

       
            
      , όπνπ        είλαη ην θόζηνο δξνκνιόγεζεο ηεο πεξηόδνπ  . 

Οξίδνπκε σο   
  
  ην ηειηθό πινπνηεζέλ θόζηνο δξνκνιόγεζεο ηνπ ζπλνιηθνύ καθξνρξόληνπ 

νξίδνληα  , ην νπνίν πξνθύπηεη κέζσ ηερληθήο θπιηόκελνπ ρξνληθνύ νξίδνληα 

πξνγξακκαηηζκνύ κήθνπο   θαη νξίδνληα πινπνίεζεο κήθνπο   πεξηόδσλ, αληίζηνηρα. Γηα 

ιόγνπο απινπνίεζεο ζεσξνύκε όηη ην   είλαη αθέξαην πνιιαπιάζην ηνπ  . Σόηε 

Unallocated Orders
from Periods

[pc-(P-M-1),…, pc]

New Orders
(feasible in [pc+1,…, pc+P])

Routed in Periods 
[pc+1,…, pc+M]

Routed in Periods 
[pc+M+1,…,pc+P]

Orders to be routed in the next planning 
horizon [pc+M+1,…,pc+M+P]

MPVRPTW(P,pc+1)
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 (Π.19) 

Έζησ, επίζεο, ζύλνιν εθηθηώλ πειαηώλ εληόο ηεο πεξηόδνπ   θαη ζεσξνύκε ην βέιηηζην 

θόζηνο δξνκνιόγεζεο γηα ηελ εμππεξέηεζε ησλ πειαηώλ απηώλ. ΢ηελ πεξίπησζε πνπ 

ππάξρνπλ πνιιαπιέο ιύζεηο κε ην ίδην βέιηηζην θόζηνο, επηιέγεηαη κία ηπραία. Οξίδνπκε σο 

   ην ζύλνιν ησλ βέιηηζησλ ιύζεσλ (ζπλδπαζκό δξνκνινγίσλ) γηα δηαθνξεηηθά ππνζύλνια 

πειαηώλ, εθηθηώλ εληόο ηεο πεξηόδνπ  . Δπηζεκαίλεηαη όηη γηα θάζε δηαθνξεηηθό ππνζύλνιν 

πειαηώλ κόλν κία ιύζε εκπεξηέρεηαη εληόο ηνπ   . 

Γηα ηελ εκηζηαηηθή πεξίπησζε θαη κε βάζε ηνπο παξαπάλσ νξηζκνύο έρνπκε δηαηππώζεη θαη 

απνδείμεη ηηο παξαθάησ διαπιζηώζεις. 

Ζ 1
ε
 Διαπίζηωζη απνδεηθλύεη ηελ απνηειεζκαηηθόηεηα ηεο κνλνιηζηθήο επίιπζεο ηνπ 

ζπλνιηθνύ πξνβιήκαηνο δξνκνιόγεζεο (γηα ηνλ καθξνρξόλην νξίδνληα  ) ζε ζρέζε κε θάζε 

άιιε πηζαλή ιύζε ε νπνία ιακβάλεηαη κέζσ ηεο ηερληθήο θπιηόκελνπ ρξνληθνύ νξίδνληα.  

Ζ 2
ε
 Διαπίζηωζη ζρεηίδεηαη κε ην κήθνο ηνπ νξίδνληα πξνγξακκαηηζκνύ   πνπ 

ρξεζηκνπνηείηαη ζηελ ηερληθή θπιηόκελνπ ρξνληθνύ νξίδνληα. Απνδεηθλύεηαη όηη επξύηεξνη 

νξίδνληεο πξνγξακκαηηζκνύ δελ είλαη απαξαίηεην όηη ζα νδεγήζνπλ θαη ζε θαιύηεξεο ιύζεηο.  

Σέινο, ε 3
ε
 Διαπίζηωζη δείρλεη όηη έλαο ζπληνκόηεξνο νξίδνληαο πινπνίεζεο   δελ νδεγεί 

αλαγθαζηηθά ζε θαιύηεξε ηειηθή ιύζε δξνκνιόγεζεο. 

Σροποποηήζεης ηοσ ΠΓΟΠΠΥΠ γηα ηελ εθαρκογή ηοσ ζε περηβάιιολ Κσιηόκελοσ 

Υροληθού Ορίδοληα 

Γηα ηελ εθαξκνγή ηνπ ΠΓΟΠΠΥΠ ζε πεξηβάιινλ θπιηόκελνπ ρξνληθνύ νξίδνληα 

απαηηνύληαη ζπγθεθξηκέλεο ηξνπνπνηήζεηο ηόζν ζηελ αληηθεηκεληθή ζπλάξηεζε, όζν θαη ζηε 

κέζνδν επίιπζεο. Οη ηξνπνπνηήζεηο απηέο αθνξνύλ ζηε δπλαηόηεηα λα αλαβάιιεηαη ε 

εμππεξέηεζε ησλ πειαηώλ από ηνλ έλα νξίδνληα πξνγξακκαηηζκνύ ζηνλ επόκελν. Γηα ηνλ 

ιόγν απηό εηζάγνπκε θαηάιιειεο ζπλαξηήζεηο πνηλώλ (penalty functions).  

Σξνπνπνηήζεηο ηεο Αληηθεηκεληθήο ΢πλάξηεζεο 

Έζησ πξόβιεκα ΠΓΟΠΠΥΠ κε νξίδνληα πξνγξακκαηηζκνύ      . Οξίδνπκε σο    ην 

ζύλνιν ησλ κε δξνκνινγεζέλησλ εληόο ηνπ νξίδνληα   πειαηώλ, ηα παξάζπξα πεξηόδσλ ησλ 

νπνίσλ ιήγνπλ ηελ πεξίνδν 1, δει.   
   , (ππνρξεσηηθνί πειάηεο) θαη σο    ην ζύλνιν ησλ 

κε δξνκνινγεζέλησλ πειαηώλ ηα παξάζπξα πεξηόδσλ ησλ νπνίσλ δελ ιήγνπλ ηελ πεξίνδν 1,   
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δει.   
   , (κε ππνρξεσηηθνί πειάηεο). Με βάζε ηα αλσηέξσ πξνηείλεηαη ε ηξνπνπνηεκέλε 

αληηθεηκεληθή ζπλάξηεζε.  

         
 
  

 

    

 

   

                (Π.20) 

όπνπ νη ζπληειεζηέο    θαη    είλαη νη πνηλέο γηα θάζε κε δξνκνινγεκέλν πειάηε, 

ππνρξεσηηθό ή κε, αληίζηνηρα. Δάλ γηα ηηο ζπγθεθξηκέλεο πνηλέο νξηζηνύλ ηηκέο ρακειόηεξεο 

από    
, όπνπ    

 είλαη ην θόζηνο ηνπ κνλαδηαίνπ δξνκνινγίνπ [             ], ηόηε 

ππάξρεη πηζαλόηεηα ηα εηθνληθά δξνκνιόγηα (θνιώλεο) εληόο ηεο ΓΓΜ ηα νπνία ζρεηίδνληαη 

κε ηηο πνηλέο λα εηζέιζνπλ ζηε ηειηθή βάζε ηεο ιύζεο ζε βάξνο ησλ κνλαδηαίσλ 

δξνκνινγίσλ θαη κε απηό ηνλ ηξόπν λα κε δξνκνινγεζεί ν πειάηεο    (Δπηζεκαίλεηαη όηη ε 

νκαδνπνίεζε ησλ πειαηώλ ζε θνηλά δξνκνιόγηα κπνξεί λα απνηξέςεη ηε ζπγθεθξηκέλε 

ζπκπεξηθνξά). 

Ρπζκίδνληαο ηηο Πνηλέο    θαη    ώζηε λα  δίλεηαη Πξνηεξαηόηεηα  ζηνπο Τπνρξεσηηθνύο 

Πειάηεο 

Με βάζε ηηο πξναλαθεξζείζεο πνηλέο δελ γίλεηαη δηάθξηζε ησλ κε ππνρξεσηηθώλ πειαηώλ 

αλάινγα κε ηελ πεξίνδν ιήμεο ηνπ θαζελόο (δει. κε βάζε ηελ εγγύηεηα ηεο πεξηόδνπ ιήμεο). 

Με ηνλ ηξόπν απηό νη κε ππνρξεσηηθνί πειάηεο νη νπνίνη ζα δξνκνινγεζνύλ ζηελ πεξίνδν 1 

επηιέγνληαη απνθιεηζηηθά κε βάζε ην θόζηνο δξνκνιόγεζεο, θαη ζπλεπώο ελδέρεηαη 

ππνρξεσηηθνί πειάηεο λα κείλνπλ εθηόο δξνκνιόγεζεο, νδεγώληαο ζε κεησκέλν αξηζκό 

εμππεξεηνύκελσλ πειαηώλ. Γηα λα επηβεβαηώζνπκε όηη έλαο ππνρξεσηηθόο πειάηεο δελ ζα 

αληηθαηαζηαζεί από έλαλ κε ππνρξεσηηθό, πξνηείλνπκε ηελ παξαθάησ αληζόηεηα: 

              (Π.21) 

θαη νξίδνπκε ηελ θαηάιιειε ηηκή ηνπ       ώζηε λα εμππεξεηνύληαη όινη νη ππνρξεσηηθνί 

πειάηεο (κε εμαίξεζε όζνπο δε κπνξνύλ λα δξνκνινγεζνύλ ιόγσ πεξηνξηζκώλ πόξσλ:  

             

 

   

          
   

    
    (Π.22) 

Όπνπ    είλαη ν αξηζκόο ησλ (κε δξνκνινγεζέλησλ) κε ππνρξεσηηθώλ πειαηώλ θαη   είλαη 

έλαο κηθξόο ζεηηθόο αξηζκόο. Αλ ην   νξηζηεί ζε απηήλ ηελ ηηκή, ηόηε ν αξηζκόο ησλ 

ππνρξεσηηθώλ πειαηώλ πνπ ζα εμππεξεηεζνύλ ζα είλαη ν κέγηζηνο δπλαηόο. 
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Γηα λα κειεηεζνύλ δηαθνξεηηθέο πεξηπηώζεηο δηάθξηζεο ησλ κε ππνρξεσηηθώλ πειαηώλ κε 

βάζε ηελ εγγύηεηα ηεο ιήμεο ηνπ παξαζύξνπ πεξηόδσλ, πξνηείλνπκε πέληε (5) ελαιιαθηηθέο 

ζπλαξηήζεηο πνηλήο (penalty functions). Έηζη, ε πνηλή   
 
 πνπ αλαηίζεηαη ζε θάζε πειάηε   

εμαξηάηαη από ηελ θαηαιεθηηθή πεξίνδν (  
   θαη ηε κνξθή ηεο ζπλάξηεζεο  . ΢ην ΢ρήκα 

Π.8 παξνπζηάδνληαη νη πέληε ζπλαξηήζεηο πνηλήο. Υξεζηκνπνηώληαο ηελ θαηάιιειε 

ζπλάξηεζε, κπνξνύκε λα θαηεπζύλνπκε ηελ κέζνδν επίιπζεο ώζηε λα δίλεη πξνηεξαηόηεηα 

ζηνπο ππνρξεσηηθνύο πειάηεο, θαζώο θαη ζηνπο πειάηεο κε πεξηνξηζκέλε πεξηνδηθή επειημία 

(δει. πεξηνξηζκέλν πιήζνο δηαζέζηκσλ πεξηόδσλ δξνκνιόγεζεο). 

Flat (   ) 

 

Step (     

 

Quad (   ) 

 

Square (     

 

Linear (   ) 

 

 

΢ρήκα Π.8: ΢πλαξηήζεηο πνηλήο (γ = 1, ..., 5) 

Pf

Pe

1 P2 …

Pf

Pe

1 P2 …

Pf

Pe

1 P2 …

Pf

Pe

1 P2 …

Pf

Pe

1 P2 …
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Γηα ηελ κειέηε ηεο απνδνηηθόηεηαο ησλ δηαθνξεηηθώλ ζπλαξηήζεσλ ρξεζηκνπνηεζήθαλ νη 

παξαθάησ κεηξηθέο: 

 Πνζνζηό κε δξνκνινγεκέλσλ πειαηώλ: Γηα θάζε ζπλδπαζκό   θαη   ζεσξνύκε ην 

ζπλνιηθό πιήζνο κε δξνκνινγεκέλσλ πειαηώλ ζε ζρέζε κε ην ζπλνιηθό πιήζνο 

πειαηώλ. 

 Κόζηνο δξνκνιόγεζεο αλά δξνκνινγεκέλν πειάηε (ιόγνο θόζηνπο δξνκνιόγεζεο): 

Αθνξά ην ζπλνιηθό θόζηνο δξνκνιόγεζεο δηαηξεκέλν κε ηνλ αξηζκό (πιήζνο) ησλ 

δξνκνινγεκέλσλ πειαηώλ. 

΢ην ΢ρήκα Π.9 παξνπζηάδεηαη ν κέζνο ιόγνο ησλ κε δξνκνινγεκέλσλ πειαηώλ θαη ν ιόγνο 

ηνπ θόζηνπο δξνκνιόγεζεο γηα νξίδνληεο πξνγξακκαηηζκνύ          , θαη γηα θάζε 

δηαθνξεηηθή ζπλάξηεζε πνηλήο (          ).  

 

΢ρήκα Π.9: Με δξνκνινγεκέλνη πειάηεο θαη θόζηνο δξνκνιόγεζεο (κέζεο ηηκέο) γηα ηηο 5 δηαθνξεηηθέο 

ζπλαξηήζεηο πνηλήο 

Όπσο θαίλεηαη από ην ΢ρήκα Π.9, νη ζπλαξηήζεηο       θαη 5 επηηπγράλνπλ αύμεζε ησλ 

δξνκνινγεκέλσλ πειαηώλ θαζόηη δίλνπλ πξνηεξαηόηεηα ζηνπο ππνρξεσηηθνύο πειάηεο αιιά 

θαη ζηνπο πειάηεο κε πεξηνξηζκέλε επειημία πεξηόδσλ. Γηα ηηο ζπλαξηήζεηο απηέο είλαη 

ινγηθό λα αλακέλνπκε αύμεζε ηνπ θόζηνπο δξνκνιόγεζεο . Δπηζεκαίλεηαη όηη ε ζπλάξηεζε 

    επηηπγράλεη ρακειόηεξν θόζηνο δξνκνιόγεζεο αλάκεζα ζηηο ηξεηο απηέο ζπλαξηήζεηο 

θαζώο επηηξέπεη πεξηζζόηεξε επειημία θαηά ηελ βειηηζηνπνίεζε ηνπ θόζηνπο δξνκνιόγεζεο. 

Γηα ηνλ ιόγν απηό ρξεζηκνπνηείηαη ζηε ζπλέρεηα ηεο παξνύζαο έξεπλαο. 
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Πεηρακαηηθή Γηερεύλεζε Κσιηόκελοσ Υροληθού Ορίδοληα 

΢θνπόο ηεο αλάιπζεο είλαη λα ειεγρζεί ε επίδξαζε ηνπ νξίδνληα πξνγξακκαηηζκνύ   θαη ηνπ 

νξίδνληα πινπνίεζεο   ζε ζρέζε κε δύν κεηξηθέο απόδνζεο: (α) Σνλ αξηζκό ησλ 

δξνκνινγεκέλσλ πειαηώλ, θαη (β) ην ιόγν θόζηνπο δξνκνιόγεζεο. ΢ηελ πεηξακαηηθή 

δηεξεύλεζε ρξεζηκνπνηήζεθαλ πεηξάκαηα κε δηαθνξεηηθέο γεσγξαθηθέο θαηαλνκέο (R1, C1, 

RC1) θαη δηαθνξεηηθό εύξνο ρξνληθώλ παξαζύξσλ. Σα ραξαθηεξηζηηθά ησλ πεξηπηώζεσλ πνπ 

αλαιύζεθαλ θαη ζηηο δύν πεξηπηώζεηο, εκη-ζηαηηθή θαη δπλακηθή, έρνπλ σο εμήο: 

 ΢ε θάζε πείξακα ρξεζηκνπνηείηαη νξίδνληαο 30 πεξηόδσλ θαη 300 πειάηεο 

 Γηα ηα παξάζπξα πεξηόδσλ ρξεζηκνπνηείηαη ην ππόδεηγκα 3 θαζόηη παξέρεη κεηξηαζκέλε 

πεξηνδηθή επειημία πειαηώλ 

 Γύν (2) νρήκαηα ζεσξήζεθαλ σο δηαζέζηκα γηα θάζε πεξίνδν 

 Γηα θάζε πείξακα κειεηήζεθαλ δύν δηαθνξεηηθνί νξίδνληεο πινπνίεζεο (    θαη 

   ) θαη δύν νξίδνληεο πξνγξακκαηηζκνύ (    θαη    )  

 Σν ΠΓΟΠΠΥΠ επηιύεηαη ρξεζηκνπνηώληαο ηηο παξαθάησ παξακέηξνπο: 

o Σν θαηώηαην όξην ππνινγίδεηαη κε ηελ κέζνδν Cloning 

o Υξεζηκνπνηήζεθε ε γξακκηθή ζπλάξηεζε πνηλήο (δει.    ) 

o Οη αθέξαηεο ιύζεηο ππνινγίζηεθαλ κε ηελ επξεηηθή κέζνδν κε    . 

Πεηξακαηηθά Απνηειέζκαηα γηα ηελ Ζκη-ζηαηηθή Πεξίπησζε 

Ο Πίλαθαο Π.4 παξνπζηάδεη γηα θάζε πείξακα, ην πιήζνο ησλ δξνκνινγεκέλσλ πειαηώλ, 

θαζώο θαη ην κέζν θόζηνο δξνκνιόγεζεο αλά πειάηε γηα ην ζπλνιηθό νξίδνληα ησλ 30 

πεξηόδσλ.  Οη ηηκέο απηέο δίλνληαη γηα     θαη  , θαη     θαη  . 

Πίλαθαο Π.4: ΢πγθξηηηθά απνηειέζκαηα γηα ηελ επίιπζε ηεο εκη-ζηαηηθήο πεξίπησζεο κε δηαθνξεηηθνύο 

νξίδνληεο πξνγξακκαηηζκνύ θαη πινπνίεζεο 

Πείραμα P 
Δρομολογθμζνοι Πελάτεσ Κόςτοσ Δρομολόγθςθσ/Πελάτθ 

M=1 M=2 M=1 M=2 

L_r103 3 293 287 20.09 20.62 

 
5 293 292 19.26 19.43 

L_r106 3 299 298 19.54 20.03 

 
5* 299 289 18.31 18.17 

L_r109 3 299 294 19.77 20.13 

 
5 299 293 17.62 18.27 

L_c106 3 300 298 27.90 28.88 

 
5* 300 296 25.78 25.32 

L_c108 3 300 300 22.72 24.41 

 
5* 300 297 21.68 21.59 
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Πείραμα P 
Δρομολογθμζνοι Πελάτεσ Κόςτοσ Δρομολόγθςθσ/Πελάτθ 

M=1 M=2 M=1 M=2 

L_c102 3 299 296 26.64 27.22 

 
5 299 298 24.40 24.52 

L_rc101 3* 283 240 28.86 31.98 

 
5* 283 241 28.36 28.88 

L_rc105 3* 293 253 26.84 27.95 

 
5* 294 267 25.52 27.28 

L_rc107 3 300 298 23.35 23.76 

 
5 300 300 21.00 21.16 

Μζςοσ Όροσ 3 296.2 284.9 23.97 25.00 

 5 296.3 285.9 22.44 22.74 

Χρονικά  Στενά 292.0 275.7 25.04 25.85 

Παράκυρα Μζτρια 297.5 284.0 22.43 23.24 

 Μεγάλα 299.3 296.5 22.13 22.51 

* Πεξηπηώζεηο ζηηο νπνίεο ν νξίδνληαο πινπνίεζεο     επηηπγράλεη ρακειόηεξν θόζηνο δξνκνιόγεζεο ζε 

ζρέζε κε ηνλ νξίδνληα πινπνίεζεο    . 

Ο επξύηεξνο νξίδνληαο πξνγξακκαηηζκνύ επηηπγράλεη κείσζε ηνπ θόζηνπο δξνκνιόγεζεο, 

επηβεβαηώλνληαο ηελ θαηαιιειόηεηα ησλ πξνηεηλόκελσλ κεζόδσλ. Όζνλ αθνξά ζηνλ 

νξίδνληα πινπνίεζεο  , είλαη ζαθέο όηη ε πεξίπησζε     επηηπγράλεη πςειόηεξν (ή ίζν) 

αξηζκό δξνκνινγεκέλσλ πειαηώλ ζε ζρεδόλ όιεο ηηο πεξηπηώζεηο, κε εμαίξεζε ηηο 

πεξηπηώζεηο ζηηο νπνίεο ε     εμππεξεηεί πνιύ ιηγόηεξνπο πειάηεο. Σα απνηειέζκαηα 

απηά παξακέλνπλ ζπλεπή γηα δηαθνξεηηθά ρξνληθά παξάζπξα, θαζώο θαη γηα δηαθνξεηηθέο 

γεσγξαθηθέο θαηαλνκέο πειαηώλ.  

Πεηξακαηηθά Απνηειέζκαηα γηα ηελ Γπλακηθή Πεξίπησζε  

Γηα ηα ζπγθεθξηκέλα πεηξάκαηα ρξεζηκνπνηήζεθε κόλν ε πεξίπησζε  =1. ΢ηνλ Πίλαθα Π.5 

παξνπζηάδνληαη ν αξηζκόο ησλ δξνκνινγεκέλσλ πειαηώλ θαη ην κέζν θόζηνο δξνκνιόγεζεο 

αλά πειάηε γηα ηνλ νξίδνληα ησλ 30 πεξηόδσλ θαη γηα ηηο δύν ηηκέο  ηνπ νξίδνληα 

πξνγξακκαηηζκνύ.  

Πίλαθαο Π.5: ΢πγθξηηηθά απνηειέζκαηα γηα δηαθνξεηηθνύο νξίδνληεο πξνγξακκαηηζκνύ (δπλακηθή πεξίπησζε) 

Πείραμα 

Ορίηοντασ Προγραμματιςμοφ 

        

Δρομολογθμζνοι 
Πελάτεσ 

Κόςτοσ 
Δρομολόγθςθσ/ 

Πελάτθ 
Δρομολογθμζνοι 

Πελάτεσ 

Κόςτοσ 
Δρομολόγθςθσ/ 

Πελάτθ 

L_r103 295 18.80 294 19.14 

L_r106 299 17.60 299 18.19 

L_r109 299 17.91 299 17.91 

L_c106 300 25.09 300 25.14 
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Πείραμα 

Ορίηοντασ Προγραμματιςμοφ 

        

Δρομολογθμζνοι 
Πελάτεσ 

Κόςτοσ 
Δρομολόγθςθσ/ 

Πελάτθ 
Δρομολογθμζνοι 

Πελάτεσ 

Κόςτοσ 
Δρομολόγθςθσ/ 

Πελάτθ 

L_c108 300 24.68 300 24.98 

L_c102 299 24.44 299 23.25 

L_rc101 290 25.71 283 26.39 

L_rc105 296 24.44 294 23.99 

L_rc107 300 22.02 300 20.60 

Όζνλ αθνξά ζηα απνηειέζκαηα πνπ αληηζηνηρνύλ ζηνπο δύν νξίδνληεο πξνγξακκαηηζκνύ  , 

δελ δηαθξίλεηαη θάπνηα ζεκαληηθή δηαθνξά, ηόζν ζε ζρέζε κε ηνπο δξνκνινγεκέλνπο 

πειάηεο, όζν θαη ζε ζρέζε κε ην ιόγν ηνπ θόζηνπο δξνκνιόγεζεο αλά πειάηε. 

Γηα λα κειεηεζεί αλαιπηηθόηεξα ε επίδξαζε ηνπ νξίδνληα πξνγξακκαηηζκνύ, δηελεξγήζακε 

κία ζεηξά επηπξόζζεησλ πεηξακάησλ γηα ηηκέο ηνπ νξίδνληα πξνγξακκαηηζκνύ από 1 έσο 7. 

΢ηα πεηξάκαηα απηά ρξεζηκνπνηήζεθε κεγαιύηεξν εύξνο πεξηνδηθήο επειημίαο (ππόδεηγκα 7 

πεξηόδσλ). Γηα θάζε πείξακα ζεσξήζεθαλ 360 πειάηεο κε ξπζκό άθημεο 12 πειαηώλ αλά 

πεξίνδν. ΢ην ΢ρήκα Π.10 παξνπζηάδνληαη νη κέζεο ηηκέο ησλ απνηειεζκάησλ 

(δξνκνινγεκέλνη πειάηεο θαη θόζηνο δξνκνιόγεζεο αλά πειάηε) γηα όια ηα πεηξάκαηα (πνπ 

αθνξνύλ δηαθνξεηηθέο γεσγξαθηθέο θαηαλνκέο πειαηώλ θαη δηαθνξεηηθό εύξνο ρξνληθώλ 

παξαζύξσλ).  

 

΢ρήκα Π.10: Αξηζκόο δξνκνινγεκέλσλ πειαηώλ θαη θόζηνο δξνκνιόγεζε αλά πειάηε γηα ηηκέο ηνπ νξίδνληα 

πξνγξακκαηηζκνύ από         (κέζεο ηηκέο γηα ηα πεηξάκαηα δηαθνξεηηθώλ γεσγξαθηθώλ θαηαλνκώλ θαη 

ηηκώλ ηνπ εύξνπο ρξνληθώλ παξαζύξσλ) 
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Όζνλ αθόξα ζηνλ νξίδνληα πξνγξακκαηηζκνύ  , ζε όια ηα πεηξάκαηα εκθαλίδεηαη κείσζε 

ηνπ θόζηνπο δξνκνιόγεζεο κέρξη ηεο ηηκήο      ΢ηε ζπλέρεηα, ην κέζν θόζηνο 

δξνκνιόγεζεο αλά πειάηε παξακέλεη ζρεδόλ ακεηάβιεην παξνπζηάδνληαο ειαθξηά αύμεζε 

γηα ηηο ηηκέο   = 6 and 7). Δπίζεο, κε βάζε ην ΢ρήκα Π.10 δελ παξαηεξνύληαη ζεκαληηθέο 

δηαθνξνπνηήζεηο όζνλ αθνξά ζην πιήζνο ησλ δξνκνινγεκέλσλ πειαηώλ.  

ΜΗΑ ΔΗΓΗΚΖ ΠΔΡΗΠΣΩ΢Ζ ΠΡΑΚΣΗΚΖ΢ ΢ΖΜΑ΢ΗΑ΢ 

΢ηελ παξνύζα δηδαθηνξηθή δηαηξηβή κειεηήζεθε επίζεο ε πεξίπησζε ζηελ νπνία ζηόινο 

νρεκάησλ εμππεξεηεί δύν είδε πειαηώλ ζε πεξηβάιινλ πνιιαπιώλ πεξηόδσλ: 

 Σν πξώην είδνο αθνξά πειάηεο νη νπνίνη έρνπλ αλαηεζεί ήδε ζε ζπγθεθξηκέλα νρήκαηα 

θαη πεξηόδνπο ηνπ ρξνληθνύ νξίδνληα. Ωζηόζν ε αιιεινπρία ησλ επηζθέςεσλ ζηνπο 

πειάηεο απηνύο δελ είλαη πξνθαζνξηζκέλε εληόο ηεο δηαδξνκήο θάζε νρήκαηνο. Οη 

πξνθαζνξηζκέλνη πειάηεο πνηθίινπλ από πεξίνδν ζε πεξίνδν. 

 Σν δεύηεξν είδνο αθνξά πειάηεο νη νπνίνη παξνπζηάδνπλ πεξηνδηθή επειημία, γίλνληαη 

γλσζηνί δπλακηθά ζε θάζε πεξίνδν θαη ραξαθηεξίδνληαη από ρξνληθά παξάζπξα θαη 

παξάζπξα πεξηόδσλ. 

΢θνπόο ηνπ πξνβιήκαηνο είλαη ε ειαρηζηνπνίεζε ηνπ ζπλνιηθνύ θόζηνπο δξνκνιόγεζεο πνπ 

αθνξά ζηα δύν είδε πειαηώλ. Σν πξόβιεκα επηιύεηαη κέζσ ηερληθήο θπιηόκελνπ ρξνληθνύ 

νξίδνληα κε ζθνπό λα αληηκεησπηζηεί ε δπλακηθή άθημε ησλ πειαηώλ. 

Απαραίηεηες Σροποποηήζεης 

Γηα ηελ επίιπζε ηνπ πξνβιήκαηνο απηνύ πξνηείλνπκε απαξαίηεηεο αλαγθαίεο ηξνπνπνηήζεηο 

ζην κνληέιν θαη ηνλ ηξόπν επίιπζεο ηνπ ΠΓΟΠΔΥΠ. 

Σξνπνπνηήζεηο Μαζεκαηηθνύ Μνληέινπ 

Σν καζεκαηηθό κνληέιν ηξνπνπνηείηαη ώζηε λα πεξηιάβεη ηνπο πξνθαζνξηζκέλνπο πειάηεο. 

Γηα ηνλ ιόγν απηό νξίδνπκε ηα ζύλνια    (ζύλνιν ησλ πξνθαζνξηζκέλσλ πειαηώλ) θαη    

(ζύλνιν ησλ γλσζηώλ επέιηθησλ πειαηώλ). ΢ε θάζε πξνθαζνξηζκέλν πειάηε    αλαηίζεηαη 

παξάζπξν πεξηόδνπ    
    

           όπνπ    είλαη ε πεξίνδνο ζηελ νπνία πξέπεη λα 

εμππεξεηεζεί ν πειάηεο   . Δπηπξόζζεηα, θάζε πειάηεο    πξέπεη λα εμππεξεηεζεί από 

ζπγθεθξηκέλν όρεκα   πνπ αλήθεη ζην ζύλνιν ησλ δηαζέζηκσλ νρεκάησλ    

   
      

      

    
 . Οη πεξηνξηζκνί (Π.2) ηξνπνπνηνύληαη ζε δύν δηαθξηηνύο πεξηνξηζκνύο 

σο εμήο: 
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           (Π.23) 

        

           

         (Π.24) 

Οη πεξηνξηζκνί (Π.23) νξίδνπλ όηη θάζε πξνθαζνξηζκέλνο πειάηεο πξέπεη λα εμππεξεηεζεί 

εληόο ηεο ζπγθεθξηκέλεο πεξηόδνπ    θαη από ην ζπγθεθξηκέλν όρεκα    

 , ελώ νη πεξηνξηζκνί 

(Π.24) νξίδνπλ όηη θάζε επέιηθηνο πειάηεο πξέπεη λα εμππεξεηεζεί κία θνξά (από έλα όρεκα 

εληόο κίαο πεξηόδνπ ηνπ παξαζύξνπ πεξηόδσλ   ).  

Σξνπνπνηήζεηο Μεζόδνπ Γπλακηθήο Γεκηνπξγίαο Μεηαβιεηώλ (ΓΓΜ) 

Γεδνκέλεο ηεο αξρηθήο αλάζεζεο ησλ πξνθαζνξηζκέλσλ πειαηώλ, νη αξρηθέο «θνιώλεο» ηνπ 

ΠΚΠ πξέπεη λα πεξηιάβνπλ, ηνπιάρηζην, ηνπο πειάηεο απηνύο. Αξρηθνπνηνύκε ηελ κέζνδν κε 

ιύζε ηεο νπνίαο ηα αξρηθά δξνκνιόγηα πεξηιακβάλνπλ κόλν ηνπο πξνθαζνξηζκέλνπο  

πειάηεο. ΢ηε ιύζε απηή νη επέιηθηνη πειάηεο ζεσξνύληαη σο κε δξνκνινγεκέλνη. 

Καζώο θάζε όρεκα δεζκεύεηαη από ηελ ύπαξμε ησλ πξνθαζνξηζκέλσλ πειαηώλ, ε ρξήζε 

ελόο θνηλνύ ΤΠ γηα θάζε πεξίνδν δελ είλαη εθηθηή.. ΢πλεπώο, ζηελ πεξίπησζε απηή, 

επηιύεηαη μερσξηζηό ΤΠ γηα θάζε ζπλδπαζκό πεξηόδνπ θαη νρήκαηνο.  

Σξνπνπνηήζεηο ηνπ ΤΠ 

Όπσο αλαθέξζεθε παξαπάλσ, θάζε «θνιώλα» (δξνκνιόγην) πξέπεη λα πεξηιακβάλεη όινπο 

ηνπο πξνθαζνξηζκέλνπο πειάηεο ηνπ ζπλόινπ   
 , δει. ηνπ ζπλόινπ ην νπνίν αθνξά ην 

όρεκα  . Έηζη, ε εηηθέηα (label)     πνπ ζρεηίδεηαη κε ην ζπγθεθξηκέλν δξνκνιόγην δελ 

επηηξέπεηαη λα επηζηξέςεη ζην depot εάλ δελ έρνπλ δξνκνινγεζεί όινη νη πειάηεο ηνπ   
 . 

Δπηπξόζζεηα, θάζε «θνιώλα» πξέπεη λα κελ πεξηιακβάλεη πξνθαζνξηζκέλνπο πειάηεο νη 

νπνίνη δε ζρεηίδνληαη κε ην όρεκα  . Ζ ηειεπηαία απαίηεζε αληηκεησπίδεηαη 

ρξεζηκνπνηώληαο κόλν ηνπο εθηθηνύο πειάηεο ζε θάζε ΤΠ γηα θάζε όρεκα   
  (δει.   

 ). ΢ε 

πεξίπησζε πνπ έλαο πειάηεο ηνπ   
  δελ κπνξεί λα εμππεξεηεζεί εληόο ηνπ ζρεηηθνύ 

δξνκνινγίνπ, ηόηε ε ζρεηηθή εηηθέηα απαιείθεηαη θαη δελ επεθηείλεηαη πεξαηηέξσ. 

Ζ ύπαξμε ησλ πξνθαζνξηζκέλσλ πειαηώλ εληόο θάζε δξνκνινγίνπ, απαηηεί ηελ ηξνπνπνίεζε 

ησλ θξηηεξίσλ θπξηαξρίαο (dominance criteria) ώζηε όηαλ ζπγθξίλεηαη ε ηακπέια     κε κία 

άιιε     λα ιακβάλεηαη ππόςε ην πιήζνο ησλ πειαηώλ νη νπνίνη έρνπλ ήδε εμππεξεηεζεί 

από ην ζρεηηθό αηειέο (partial) δξνκνιόγην  . Γηα ην ζθνπό απηό ελδπλακώλνπκε ηα θξηηήξηα 

θπξηαξρίαο, πξνζζέηνληαο ηελ παξάκεηξν θόζηνπο      (κόζηος ιζοδυναμίας). Σν ηειεπηαίν 



Summary (In Greek) 

xxxiv  DeOPSys Lab 

αληηπξνζσπεύεη άλσ όξην (ρείξηζηε πεξίπησζε) ηνπ ζπλνιηθνύ θόζηνπο πνπ απαηηείηαη γηα λα 

εμππεξεηεζνύλ όινη νη πξνθαζνξηζκέλνη πειάηεο, νη νπνίνη δελ έρνπλ αθόκα ζπκπεξηιεθζεί 

εληόο ηνπ αηεινύο δξνκνινγίνπ  . 

Πεηρακαηηθή Γηερεύλεζε Κσιηόκελοσ Υροληθού Ορίδοληα κε Προ-αλαηεζεηκέλοσς 

Πειάηες 

΢ηελ δηεξεύλεζε ηεο παξνύζαο πεξίπησζεο ρξεζηκνπνηήζεθαλ ηα πεηξακαηηθά δεδνκέλα πνπ 

πεξηγξάθεθαλ ζηελ πξνεγνύκελε Παξάγξαθν, ήηνη: 

 Υξεζηκνπνηήζεθαλ ηξία δηαθνξεηηθά ππνδείγκαηα πεξηόδσλ (3, 5 θαη 7 πεξηόδσλ) . 

 Ωο πξνθαζνξηζκέλνη πειάηεο επηιέρζεθαλ ηπραία 180 πειάηεο. Γηα ηνπο πειάηεο απηνύο 

νξίζηεθε ην κεγαιύηεξν δπλαηό ρξνληθό παξάζπξν 

 Οξίζηεθε ξπζκόο άθημεο 6 δπλακηθώλ πειαηώλ ζε θάζε πεξίνδν  

 Δπηιέρζεθαλ ηξία πεηξάκαηα, έλα γηα θάζε γεσγξαθηθή θαηαλνκή πειαηώλ (R1, C1 θαη 

RC1) 

 Σέινο, δύν νρήκαηα ζεσξήζεθαλ δηαζέζηκα ζε θάζε πεξίνδν κε κέγηζην αξηζκό 

πξνθαζνξηζκέλσλ πειαηώλ αλά όρεκα ίζν κε ηξία. 

Ο Πίλαθαο Π.6 παξνπζηάδεη ηα απνηειέζκαηα αλά γεσγξαθηθή θαηαλνκή πειαηώλ, 

παξάζπξν πεξηόδσλ θαη νξίδνληα πξνγξακκαηηζκνύ. Σα ζηνηρεία πνπ παξνπζηάδνληαη ζηνλ 

Πίλαθα είλαη ηα εμήο: (α) Ο κέζνο αξηζκόο δπλακηθώλ πειαηώλ πνπ δξνκνινγήζεθαλ ζηνλ 

καθξνρξόλην νξίδνληα  . (β) Σν κέζν επηπξόζζεην θόζηνο αλά δπλακηθό πειάηε. Σν 

επηπξόζζεην θόζηνο ππνινγίδεηαη αθαηξώληαο από ην ζπλνιηθό θόζηνο δξνκνιόγεζεο θάζε 

πεξηόδνπ, ην αξρηθό θόζηνο δξνκνιόγεζεο ησλ πξνθαζνξηζκέλσλ πειαηώλ. 

Πίλαθαο Π.6: Μέζεο ηηκέο απνηειεζκάησλ αλά ηύπν πξνβιήκαηνο, ππόδεηγκα παξαζύξνπ πεξηόδσλ θαη 

νξίδνληα πξνγξακκαηηζκνύ 

  

Τφποι Προβλιματοσ (Γεωγραφικι Κατανομι) 

R1 C1 RC1 

Δρομολογθμζνοι  
Πελάτεσ 

Κόςτοσ 
 Δρομολόγθςθσ/ 

 Πελάτθ 
Δρομολογθμζνοι  

Πελάτεσ 

Κόςτοσ 
Δρομολόγθςθσ/ 

 Πελάτθ 
Δρομολογθμζνοι  

Πελάτεσ 

Κόςτοσ 
Δρομολόγθςθσ/ 

 Πελάτθ 

 
Υπόδειγμα Παρακφρου Περιόδων 3 

1 176.0 13.8 180.0 19.6 162.3 12.0 

2 177.0 8.2 180.0 9.5 164.3 11.0 

3 177.0 7.0 180.0 8.0 163.0 10.2 

 
Υπόδειγμα Παρακφρου Περιόδων 5 

1 177.3 13.1 180.0 19.5 174.7 11.9 

2 177.3 7.1 180.0 8.3 176.3 9.5 

3 177.3 4.4 180.0 5.2 176.3 8.2 
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Τφποι Προβλιματοσ (Γεωγραφικι Κατανομι) 

R1 C1 RC1 

Δρομολογθμζνοι  
Πελάτεσ 

Κόςτοσ 
 Δρομολόγθςθσ/ 

 Πελάτθ 
Δρομολογθμζνοι  

Πελάτεσ 

Κόςτοσ 
Δρομολόγθςθσ/ 

 Πελάτθ 
Δρομολογθμζνοι  

Πελάτεσ 

Κόςτοσ 
Δρομολόγθςθσ/ 

 Πελάτθ 

4 177.3 4.1 180.0 4.1 176.0 5.7 

5 177.3 4.1 180.0 4.2 175.7 6.4 

 
Υπόδειγμα Παρακφρου Περιόδων 7 

1 177.3 13.0 180.0 19.5 174.3 11.4 

2 177.3 7.0 180.0 8.1 176.3 9.3 

3 177.3 4.1 180.0 4.6 176.7 6.8 

4 177.3 3.7 180.0 3.8 176.3 4.6 

5 177.3 3.2 180.0 3.2 175.3 4.0 

6 177.0 3.1 179.7 3.0 175.3 4.0 

7 177.0 2.9 179.7 3.0 175.3 3.8 

΢ην ΢ρήκα Π.11 παξνπζηάδεηαη ελδεηθηηθά ν κέζνο ιόγνο ηνπ θόζηνπο δξνκνιόγεζεο αλά 

πειάηε γηα ην ππόδεηγκα παξαζύξνπ πεξηόδσλ 7 θαη γηα όινπο ηνπο νξίδνληεο 

πξνγξακκαηηζκνύ. Παξόκνηα απνηειέζκαηα ειήθζεζαλ θαη γηα ηα άιια ππνδείγκαηα 

παξαζύξνπ πεξηόδσλ (δει. 3 θαη 5). 

 

΢ρήκα Π.11: Μέζν θόζηνο δξνκνιόγεζεο αλά ηύπν πξνβιήκαηνο (R1, C1, RC1) γηα ην ππόδεηγκα 7 

΢ε όινπο ηνπο ηύπνπο πξνβιεκάησλ θαη εηδηθόηεξα γηα ηα ππνδείγκαηα 5 θαη 7, ην θόζηνο 

δξνκνιόγεζεο αλά πειάηε κεηώλεηαη ζεκαληηθά γηα ηηο αξρηθέο ηηκέο ηνπ  . Ζ κείσζε απηή 

εκθαλίδεη ζηαζεξνπνίεζε κεηά από ζπγθεθξηκέλε ηηκή ηνπ   (π.ρ. γηα     ζην ππόδεηγκα 

7). Όζνλ αθνξά ζηνλ ηύπν πξνβιήκαηνο (R1, C1, RC1), ε κείσζε απηή είλαη πην εκθαλήο γηα 

ηα πξνβιήκαηα R1 θαη ηα C1, ελώ ζηα πξνβιήκαηα RC1 παξνπζηάδεηαη κεηξηαζκέλε ηάζε 

κείσζεο ηνπ θόζηνο. 
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Δλδεηθηηθά Πεηξακαηηθά Απνηειέζκαηα γηα ηελ Πεξίπησζε Μεγάινπ Αξηζκνύ Με-

Γξνκνινγεκέλσλ Πειαηώλ 

Γηεξεπλήζεθε, επίζεο, ε απνηειεζκαηηθόηεηα ησλ πξνηεηλόκελσλ κεζόδσλ ζε πεξηπηώζεηο 

όπνπ κόλν έλα πεξηνξηζκέλν κέξνο ηνπ ζπλόινπ ησλ δπλακηθώλ πειαηώλ κπνξεί λα 

δξνκνινγεζεί ιόγσ απζηεξώλ πεξηνξηζκώλ πόξσλ. Γηα ηνλ ιόγν απηό ρξεζηκνπνηήζεθε ην 

ππόδεηγκα πεξηόδσλ 7 θαη απμήζεθε ν ρξόλνο εμππεξέηεζεο θάζε δπλακηθνύ πειάηε θαηά 

100%. Οη ππόινηπεο παξάκεηξνη παξακέλνπλ όπσο ζηελ πξνεγνύκελε πεηξακαηηθή 

δηεξεύλεζε. Μειεηήζεθαλ δηαθνξεηηθέο ζπλαξηήζεηο πνηλήο, επηπιένλ ηεο γξακκηθήο 

     :     (νκνηόκνξθε),     (βεκαηηθή), θαη     (ηεηξαγσληθή). Σα ΢ρήκαηα Π.12 

θαη Π.13 παξνπζηάδνπλ ηα απνηειέζκαηα γηα ην κέζν ιόγν θόζηνπο δξνκνιόγεζεο αλά 

νξίδνληα πξνγξακκαηηζκνύ θαη ην κέζν αξηζκό δξνκνινγεκέλσλ δπλακηθώλ πειαηώλ. 

 

΢ρήκα Π.12: Μέζνο ιόγνο θόζηνπο δξνκνιόγεζεο αλά νξίδνληα πξνγξακκαηηζκνύ θαη ζπλάξηεζε πνηλήο (γηα 

όια ηα πεηξάκαηα) – Τπόδεηγκα 7 
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΢ρήκα Π.12: Μέζνο αξηζκόο δξνκνινγεκέλσλ δπλακηθώλ πειαηώλ αλά νξίδνληα πξνγξακκαηηζκνύ θαη 

ζπλάξηεζε πνηλήο (γηα όια ηα πεηξάκαηα) – Τπόδεηγκα 7 

Ζ νκνηόκνξθε ζπλάξηεζε    , ζηελ νπνία όινη νη δπλακηθνί πειάηεο έρνπλ ηεο ίδηα πνηλή, 

επηηπγράλεη ηα επλντθόηεξα απνηειέζκαηα, όζνλ αθνξά ζην θόζηνο δξνκνιόγεζεο αιιά θαη 

ζηνλ αξηζκό ησλ δξνκνινγεκέλσλ πειαηώλ. Σν απνηέιεζκα απηό απνδίδεηαη ζηα εμήο: (α)  

Ζ νκνηόκνξθε ζπλάξηεζε δελ εκπιέθεηαη κε ηελ δηαδηθαζία δξνκνιόγεζεο κε απνδίδνληαο 

επηιεθηηθή πξνηεξαηόηεηα ζε πειάηεο, θαη (β) πνιινί δπλακηθνί πειάηεο δε δξνκνινγνύληαη 

ζε θάζε πεξίπησζε.  

Όζνλ αθνξά ζηνλ νξίδνληα πξνγξακκαηηζκνύ, νη ελδηάκεζνη νξίδνληεο επηηπγράλνπλ 

βειηησκέλα απνηειέζκαηα ζρεηηθά κε ην πιήζνο ησλ δξνκνινγεκέλσλ πειαηώλ, θαζώο  θαη 

πεξηνξηζκέλε βειηίσζε ζην θόζηνο δξνκνιόγεζεο. 
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ABSTRACT 

In this dissertation we investigate the Multi-Period Vehicle Routing Problem with Time 

Windows (MPVRPTW), in which customer orders are related to a period window (a set of 

service periods). Routing costs are minimized over a planning horizon, respecting period 

window, time window, and capacity constraints. We present a general model and an exact 

approach to solve this problem based on the column generation method. We also propose two 

novel, efficient techniques to speed up the column generation method for obtaining lower 

bounds. The proposed techniques exploit the multi-period setting in order to identify 

similarities within the subproblems and, thus, avoid solving all subproblems at each iteration. 

We evaluated the performance of the proposed methods systematically for various 

parameters, such as customer geographical distribution and period window patterns. In most 

cases, the new methods improve significantly the efficiency of convergence to the optimal 

solution of the relaxed problem, especially in the computationally expensive test cases with 

wide period windows.  

Integer optimal solutions to the MPVRPTW are provided through a branch-and-price 

implementation. We propose two different strategies that consider the multi-period 

characteristics of the problem, in addition to a simple pruning heuristic that speeds up the 

solution procedure and provides efficient results.  

For solving the MPVRPTW in long-term horizons, we propose a rolling horizon framework. 

Initially, we discuss three theoretical statements that provide insights on the effects of the 

planning and implementation horizons in the final solutions. Subsequently, in order to apply 

rolling horizon routing, we propose significant modifications to the model and the solution 

approach for the MPVRP; these modifications concern the ability to postpone serving 

customers for later periods. We investigate two rolling horizon settings (quasi-static and 

dynamic) and we establish the recommended values for the planning and implementation 

horizons, under a wide range of parameters, such as customer geographical distribution and 

time window width.  

Finally, we address a practical variation, which regards a hybrid service policy that includes 

(a) inflexible (pre-assigned to specific vehicles) and (b) flexible customer orders. For this 

case, we propose the necessary modifications to the MPVRP model and solution approach. 

Extensive experiments show that significant cost savings can be achieved by considering 

longer planning horizons in the planning process. 
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Chapter 1: INTRODUCTION  

During the last five decades, transportation and distribution of goods have received 

considerable attention from both industry and academia. The major focus of this interest has 

been to simultaneously minimize logistics costs and maximize service quality. In order to 

obtain efficient solutions to related practical problems, the research community has used the 

fundamentals of Operations Research (OR) to pose basic problems, construct robust models, 

and develop effective approaches based on both heuristics and exact methods of integer 

programming. 

One of the initial problems that received considerable research interest is the Travelling 

Salesman Problem (TSP), which has set the basis for significant subsequent work in this field. 

In the TSP, a single vehicle (or salesperson) is tasked to visit a set of customers using the 

minimum cost route. This problem has been shown to be NP-hard (Garey and Johnson, 1979); 

however a wealth of solution procedures and methods has been developed to address it 

effectively, based on network theory, linear programming and other approaches, such as 

heuristics and metaheuristcs.  

A second fundamental problem of equivalent contribution in the area is the so called Vehicle 

Routing Problem (VRP), which targets the design of a set of minimum cost routes, each 

served by a vehicle belonging to a fleet, starting and ending at a depot and serving a set of 

customers with known demand and service costs. These routes are designed subject to several 

constraints, such as limited total time of travel (route length), or limited vehicle capacity. 

Numerous variations of this problem exist, using different objectives and constraints, 

depending on the problem under investigation.  

The majority of methods and systems used in practice for vehicle routing deal with single-

period problems under known demand; that is, orders of known demand are provided for a 

certain period (e.g. day) and are serviced within this period. Although in various practical 

cases this setting is appropriate, there are many other cases in which the orders can be served 

within a period window, i.e., a consecutive set of periods (days). This simple alteration 

complicates the routing procedure by adding another critical factor: The selection of 

customers (orders) to be served in each period, in order to minimize the total cost (or 

distance) for the entire time horizon. 
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Related problems are faced in practice by appointment-based logistics systems, such as those 

offering on-site repair/maintenance services, home delivery of products, or hybrid courier 

services that perform both next day and bulk deliveries. These problems are typically dealt by 

a two-phase procedure: In the first phase, the customer orders are allocated/assigned in a 

specific period within the planning horizon using simple rules (e.g. First-Come-First-Serve or 

geographical grouping) without considering the routing costs directly. In the second phase, 

the vehicle routing problem is solved for each period of the horizon in order to minimize 

routing costs. This practice, however, may lead to suboptimalities, since routing costs are not 

considered simultaneously with the allocation of orders in the periods of the planning horizon. 

This latter consideration is the focus of the Multi-Period Vehicle Routing Problem. 

The Multi-Period Vehicle Routing Problem with Time Windows (MPVRPTW) 

Consider a dedicated fleet of vehicles (of fixed capacity) that is available to serve customer 

orders starting operations from a single depot. Each customer order is related to a period 

window, which depends on the service level provided to that customer. The period window is 

a set of consecutive periods. In addition to the period window, each order may be related to a 

time window. The latter concerns the allowable time interval within each period for delivering 

the service. Practical examples concerning the time window include the case in which it may 

not be feasible to provide service to a customer outside typical working hours (i.e. early in the 

morning or late at night), or the case in which individual customers are available for service 

only after the end of a business day (e.g. after 17:00). In addition to the above characteristics, 

the MPVRPTW addresses simultaneously a set of consecutive periods (planning horizon); 

that is, all known customers with period window which starts or ends within the planning 

horizon are considered for assignment in the appropriate period and vehicle, and are also 

planned/ routed targeting efficiency.  

In the current dissertation we study the above problem and propose two new exact strategies 

to provide efficient lower bounds to the MPVRPTW. To do so we take advantage of the 

special structure of the multi-period problem. We validate the efficiency gains by comparing 

against benchmarks used by other approaches. Additionally, we develop schemes to obtain 

the integer optimal solution, which are relevant to the multi-period setting. We also propose a 

simple pruning heuristic in order to accelerate the solution procedure. The latter is suitable for 

multi-period vehicle routing problems that are solved over long horizons using a rolling 

horizon framework. 
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Rolling horizon routing 

We also address vehicle routing problems in long-term horizons (say of length  ). For this 

setting, we propose a rolling horizon framework in which the solution procedure of the 

MPVRPTW is embedded. In this framework, initially we solve a single MPVRPTW in a 

planning horizon of selected length (say  ) by taking under consideration all known customer 

orders with period window that starts or ends within this horizon. Based on the resulting 

solution, the assignments and routes of the first   periods of the horizon are implemented. 

The remaining customer orders, along with newly arriving ones, are considered for the next 

planning horizon by solving again a new MPVRPTW. These steps are repeated until the long-

term horizon is exhausted. 

Considering this rolling horizon framework, we address two distinct cases:  

The quasi-static case, in which all customer orders within the long term planning horizon   

are considered to be known. When using a rolling horizon scheme with planning horizon of 

length   and implementation horizon of length    the solution cycle will be repeated every   

periods. In this case, each time we solve the MPVRPTW for   periods, the only new 

customer orders considered are those of the last   periods of this planning horizon.  

The dynamic case, in which new customer orders arrive during every period. In this case, not 

all orders to be served within the planning horizon are known in advance. However, there is 

full knowledge of the customer orders of the next period to be planned.  

To apply rolling horizon routing, significant modifications are proposed to both the model and 

the solution approach of the MPVRP; these modifications concern the ability to postpone 

serving clients from one planning horizon to the next. Based on these modifications, the 

current dissertation investigates in depth the effects of the two critical parameters of the 

rolling horizon scheme: the implementation horizon ( ) and the planning horizon ( ). 

Theoretical principles are established for the quasi-static case. These principles, and other 

significant insights, are then studied through an extensive experimental investigation 

conducted for both the quasi-static and the dynamic cases mentioned above. 

A special case of practical significance 

This dissertation also addresses a special case of rolling horizon routing, which we have 

encountered in practice. In this case, some customer orders have been pre-assigned to periods 

and vehicles (inflexible orders), while some others arrive dynamically and may be assigned to 
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any period of the planning horizon, within, of course, their period window (flexible orders). 

We propose the appropriate modifications to the MPVRP model and the solution approach. 

Furthermore, an extensive experimental investigation is conducted in order to obtain 

significant insights in the parameters of the rolling horizon scheme and in the solution 

approach. 

Structure of the Dissertation 

The remainder of the dissertation is organized as follows: 

Chapter 2 presents and discusses the related problems in the literature, such as the Vehicle 

Routing Problem with Time Windows (VRPTW), the Periodic Vehicle Routing Problem 

(PVRP), the Inventory Routing Problem (IRP) and the Multi-Period Vehicle Routing Problem 

(MPVRP). The similarities and differences of these problems with respect to the problems 

studied in this dissertation are discussed. Furthermore, Chapter 2 reviews significant literature 

on the column generation method, identifies research gaps, and highlights the contributions of 

this dissertation. 

Chapter 3 describes the mathematical formulation of the MPVRPTW. It also presents the 

remodeling of the problem into a framework amenable to column generation. Significant 

background technical information regarding the column generation method is provided.  

Chapter 4 explores new alternative column generation techniques that target improved 

computational times by exploiting the multi-period structure of the problem. In order to 

evaluate these techniques, new test instances have been developed based on the Solomon 

benchmarks with different patterns regarding the period windows of the customer orders. 

Conclusions are presented based on the analysis of the test results. 

Chapter 5 presents the Branch and Price (B&P) framework for the MPVRPTW. Initially, the 

generic B&P techniques for the VRPTW are presented. These techniques are extended in 

order to take into consideration the multi-period aspect of the current problem. Two new B&P 

techniques are presented along with a heuristic that provides solutions in an efficient manner 

both in terms of the computational time and the value of the objective function.  

Chapter 6 provides a formal description of the MPVRPTW within a rolling horizon 

framework. It includes several enhancements developed to apply the MPVRPTW in cases 

with limited resources. We study both the quasi-static and the dynamic MPVRP. For the first 

case, we propose and discuss three theoretical statements concerning the implementation 

horizon   and the planning horizon  . Subsequently, we investigate experimentally the 
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effects of   and   on the quality of the solutions obtained for a large range of experimental 

cases and input parameters. 

Chapter 7 investigates the problem variation concerning the mix of flexible and inflexible 

orders. This problem is solved on a rolling horizon using appropriate modifications in the 

column generation scheme. The efficiency of the proposed method is validated through an 

extensive experimental study, which indicates that significant cost savings can be achieved by 

considering wider planning horizons in the planning process. 

Finally, Chapter 8 presents the conclusions of this dissertation, the theoretical and practical 

contributions, along with directions for further research. 
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Chapter 2: THEORETICAL BACKGROUND 

As already mentioned in Chapter 1, this dissertation focuses on long horizon routing 

problems. These fall into the general category of vehicle routing problems (VRPs) and to 

variations, such as the Periodic and the Inventory Routing Problems. The dissertation focuses 

on two major classes of problems: (a) The multi-period routing problem, and b) long horizon 

routing problems that are solved using the multi-period problem in a rolling horizon approach 

(both in its quasi-static and dynamic form).  

The related theoretical background is discussed in Section 2.1 below. Section 2.2 provides a 

targeted discussion on the essentials of the basic techniques employed; i.e. column generation, 

elementary shortest path with resource constraints and Branch-and-Price, respectively. These 

techniques form the foundation of the new methods proposed to derive exact solutions for the 

aforementioned problems. Finally, Section 2.3 highlights the contributions of the dissertation 

in the area of multi-period routing problems. 

2.1 RELATED PROBLEMS IN THE LITERATURE 

The following review focuses on topics related to the current work: Section 2.1.1 overviews 

the VRPTW which forms the basis of the multi-period routing problem. Section 2.1.2 presents 

significant periodic routing problems found in the literature. Section 2.1.3 drills down into the 

area of multi-period routing problems, which are highly related to the dissertation topic, and 

highlights the related similarities and differences. 

2.1.1 THE VEHICLE ROUTING PROBLEM WITH TIME WINDOWS 

The Vehicle Routing Problems (VRP) is one of the most studied problems in both Operational 

Research and Logistics and it is related to many theoretical and practical transportation 

problems (Clarke and Wright, 1964; Golden and Assad, 1998; Laporte and Osman, 1995). 

The VRP falls into the general category of network optimization problems, and is a 

generalization of the classic Traveling Salesman Problem (TSP) (Christofides, 1979; 

Cornuejols and Nemhauser, 1978; Gendreau et al., 1997). Specifically, the VRP consists of 

finding a set of routes to serve a number of geographically dispersed customers at minimum 

cost. It was introduced by Dantzig and Ramser (1959), who proposed the mathematical 

formulation and a solution approach for a practical problem of gasoline delivery to service 
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stations. Since then, a large number of researchers have introduced various theoretical and 

practical aspects into the related mathematical models. 

The VRP is an NP-hard problem (Lenstra and Kan, 1981) and, therefore, practical (large) 

problem instances cannot be solved to optimality within reasonable time. An insightful survey 

of significant results in VRP-related research is given by Toth and Vigo (2002). Additionally, 

the latest advances in VRP research, problem variations, significant methodological 

approaches, and practical applications are presented in Golden et al. (2008). It is noted that 

the VRP usually refers to its most common variation, the Capacitated VRP (CVRP) (Toth and 

Vigo, 2002). In CVRP the customer demand is deterministic, and the available fleet is 

considered to be homogeneous with vehicles of a certain capacity. All vehicles start from the 

same depot and each customer should be serviced within a single visit (i.e. multiple visits are 

not allowed). The scope of the problem is to create the least cost routes that serve all 

customers and respect capacity constraints. Other well-known variations of the VRP are the 

following: 

 VRP with Time Windows (Cordeau et al., 2002) 

 VRP with Pickup and Delivery (Toth and Vigo, 2002; Daganzo and Hall, 1993) 

 Distance Constrained VRP (Toth and Vigo, 2002) 

 Multi-Depot VRP (Bianco et al., 1994; Carpaneto et al., 1989) 

 Heterogeneous Capacitated VRP (Taillard, 1996) 

 VRP with Backhauls (Toth and Vigo, 2002; Golden et al., 1988 ) 

 Periodic VRP (Tan and Beasley, 1984; Christofides and Beasley, 1984)  

The Vehicle Routing Problem with Time Windows (VRPTW), in addition to the constraints 

of the CVRP, requires that customers are served within a short time period (time window). 

Note that usually only the start of the service is required to be included in the time window. 

Furthermore, a maximum vehicle travel time is specified, which is an upper limit of the total 

time each vehicle can operate. As stated in Larsen (2001): 

"The VRPTW contains several NP-Hard optimization problems implying that 

VRPTW is also NP-Hard. Among the NP-Hard problems contained as 

special cases are TSP (Garey and Johnson, 1979; Lenstra and Kan, 1981), 

Bin Packing (Garey and Johnson, 1979) and VRP (Lenstra and Kan, 1981)." 

The seminal work by Cordeau et al. (2002) provides a comprehensive description of the 

problem and of the related solution approaches. Since the VRPTW is the basis of the 
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problems studied here, the related mathematical formulation by Cordeau et al. (2002) is 

discussed subsequently.  

Consider a directed graph         , a set of customers             and a fleet of 

homogeneous vehicles  . The graph contains      vertices, that is,     customers plus the 

two starting and ending positions of the vehicle fleet; let vertices   and     denote these 

positions, respectively. The entire set of vertices             is denoted as  . The set of 

arcs   represents the direct connections among all vertices, including the starting and ending 

positions. Each arc      , where    , has an associated cost     and a travel time    . All 

vehicles have the same capacity   and each customer is associated with a demand   . Each 

customer   must be served within a certain time window        . In case a vehicle arrives 

before the opening time of a time window, it must wait until     to start serving the 

corresponding customer, while service cannot be provided in case the vehicle arrives after the 

ending time   . Finally, each customer is associated with a deterministic service time    , 

which, for simplicity and without loss of generality, is incorporated in the traversing time     

of the corresponding arcs. 

The model presented below contains two sets of decision variables,   and  . The variable     

for each vertex   denotes the time when vehicle   starts to serve customer   . For each 

arc      , where               and each vehicle  , the variables      are defined as: 

      
                                 

           

   (2.1) 

The mathematical formulation of the VRPTW is: 

          

         

     
 

 
(2.2) 

s.t.       

      

         (2.3) 

      

   

         (2.4) 

      

    

      

   

              (2.5) 

          

   

        (2.6) 
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         (2.7) 

                                    (2.8) 

                     (2.9) 

                        (2.10) 

The objective function (2.2) represents the actual cost of traversing the network's arcs by the 

available vehicles  . Constraint (2.3) ensures that each customer is visited by a single vehicle 

and exactly once. Constraints (2.4) and (2.6) state that each vehicle will start and end at the 

depot. Constraint (2.5) is the flow conservation constraint, that is, if a vehicle serves a 

customer, it is also required to depart from that customer. Constraint (2.7) relates to the 

vehicles capacity  . Constraint (2.8) ensures that customer   is served after        . Note that 

  represents a large number and it is used in order to linearize the non-linear constraint 

                                 . Inequalities (2.9) represent the time window 

constraints, and relationship (2.10) represents the binary conditions for the problem variables. 

The methods available to solve many types of the VRP can be grouped into three main classes 

(Cordeau et al., 2002): (a) Heuristic algorithms, (b) metaheuristics, and (c) exact approaches. 

Cordeau et al. (2002) present an extended review of the aforementioned classes, while 

Gendreau et al. (2008) present a comprehensive review of metaheuristics for several VRP 

variations including the VRPTW. Below we briefly review the most important solution 

approaches for the VRPTW. 

Heuristic Approaches 

Due to the complexity of the VRPTW, heuristic approaches were initially used in order to 

obtain feasible, but, in general, sub-optimal solutions. Heuristics still maintain an important 

role: (a) in providing good, feasible initial solutions to other methods (e.g. metaheuristics) or, 

(b) as embedded solution mechanisms in hybrid approaches and metaheuristics that provide 

quick solutions or local improvements. There are four significant classes of heuristics for the 

VRPTW:  

1. Route construction heuristics start from an empty set of vehicles and a set of unrouted 

customers and iteratively combine routes with customers. Usually they are based on 

greedy procedures, in which the next best move is selected and implemented (Solomon, 

1986; Solomon, 1987; Potvin and Rousseau, 1993). 
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2. Route improvement heuristics start from an initial feasible solution and operate on 

neighborhood solutions, i.e. solutions that are obtained by performing a single “move" 

(i.e. node swapping, arc interchange, etc). The first related references are those of Russell 

(1977), Cook and Russell (1978), and Baker and Schaffer (1986). Subsequently, several 

authors developed a wide range of route improvement heuristics, including Solomon et al. 

(1988), Savelsbergh (1985, 1990, 1992), Kindervater and Savelsbergh (1997), Cordone 

and Calvo (1996), and Thompson and Psaraftis (1993). 

3. Two – phase Heuristics: They are usually classified in two groups: (a) Cluster-first, route-

second, and (b) Route-first, cluster-second methods. In the former, the customers are first 

grouped into clusters taking into consideration resource capabilities and limitations; 

subsequently, a specific vehicle is assigned and routed for each cluster. In the latter case, 

initially a single, large route is constructed (using other heuristic approaches) that includes 

all customers and, then, it is divided into feasible vehicle routes.  

4. Composite heuristics are combinations of route construction and improvement methods 

(e.g., Kontoravdis and Bard, 1995; Russell, 1995; Cordone and Calvo, 1997). 

Metaheuristics 

Many authors have worked on avoiding the drawbacks of heuristic algorithms (e.g. reaching 

local minima) by adding further intelligence. Metaheuristics may overcome local minima by, 

for example, operating on large solution neighborhoods, exploring infeasible solutions, 

“travelling” to solutions stochastically, etc. In general, metaheuristics can be classified in 

three main classes (Toth and Vigo, 2002): (a) local search, i.e. simulated annealing (Chiang 

and Russell, 1996; Tan et al., 2001), tabu search (Taillard et al., 1997; Tan et al., 2001), (b) 

population search, i.e. genetic search (Mester et al., 2007; Homberger and Gehring, 2005), 

and (c) learning mechanisms, i.e. ant colony systems (Gambardella et al., 1999). A 

comprehensive literature review on metaheuristics developed for the VRPTW is provided in 

Cordeau et al. (2002) and Toth and Vigo (2002), and has been further extended and updated 

by Gendreau et al. (2008). 

Exact Approaches 

Exact approaches are based on network optimization and linear/integer/mixed programming. 

There are three main research directions for exact approaches (as stated in Larsen, 2001): 

Dynamic programming, Lagrangian relaxation, and column generation. Dynamic 

programming has been used by Kolen et al. (1987) to solve problems of up to 15 customers. 
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The other two methods are based on the decomposition principle, i.e. the main problem is 

decomposed into two (or more) distinct problems exploiting the special structure of VRPTW. 

The interested reader could find more information in Huisman et al. (2005).  

In Lagrangian relaxation (Geofrion, 1974; Fisher, 1985) selected constraints are relaxed. That 

is, these constraints are removed from the constraint set and are converted to terms of the 

objective function, each multiplied by a penalty factor (the corresponding Langrangian 

multiplier  ). In this case, the master problem consists of finding the values of the 

Langrangian multipliers (as well as the objective solution). In the VRPTW case, the 

subproblem is a shortest path problem with resource constraints (selected among the 

remaining constraints and related to route feasibility). Lagrangian relaxation has been 

addressed by Kohl (1995) and Kohl and Madsen (1997).  

In column generation, the VRPTW is formulated through two dependent problem structures: 

(a) The Master Problem (MP), which is usually formulated as a set partitioning or set 

covering problem, and b) the sub-problem, which is a shortest path problem with time 

windows and capacity constraints (SPPTWCC). The use of column generation in VRPTW is 

overviewed in Kallehauge et al. (2005). The two problems interact by iteratively passing 

solutions to each other until the optimum is reached. Specifically, the SPTWCC operates on a 

modified cost matrix, which is based on the real costs combined with the dual prices obtained 

from the MP. In turn, the MP incorporates the new feasible and negative-cost columns 

(routes) generated by the SPPTWCC, and is re-solved. This procedure is repeated in an 

iterative manner until no more feasible negative-cost columns are generated, and the optimum 

linear bound is found. To obtain integer optimal solutions, the entire procedure is embedded 

in a branch and bound scheme. A detailed description of the method is given in Section 2.2.1.  

2.1.2 PERIODIC ROUTING PROBLEMS 

In addition to single-period (single day) routing problems, increased attention has been given 

to problems dealing with routing environments that incorporate several periods/days. The 

most known classes of periodic problems in the literature include: (a) The Inventory Routing 

Problem (IRP) (Dror et al., 1985; Campbell and Savelsbergh, 2004), and (b) The Periodic 

Vehicle Routing Problem (PVRP) (Newman et al., 2005; Christofides and Beasley, 1984). In 

these settings, the cost function concerns the overall horizon (several periods/days), and 

decisions to be made include both the assignment of customers to certain periods and the 
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routing of the customers within each period. In both the IRP and the PVRP, the frequency and 

timing of visiting a customer has major impact on the total routing cost. 

The Inventory Routing Problem 

IRP combines inventory management with vehicle routing problems in a multi-period 

environment. Products are consumed by the customers at certain consumption rates. Each 

customer's storage capacity cannot be exceeded, and the fleet should serve all customers 

efficiently without allowing stock outs. The objective of the problem is to create the 

minimum-cost routes over the planning horizon, in order to replenish the customers 

efficiently. Based on this, many different variations can be formulated by incorporating 

different practical aspects such as inventory costs, stock out penalties, etc. Extended reviews 

can be found in Campbell et al. (1998) and Nori (1999).  

The recent work of Bertazzi et al. (2008) overviews "simple" Inventory Routing Problems 

that involve a single product, a finite planning horizon, and deterministic consumption rates. 

Campbell and Savelsbergh (2004) present a two phase solution approach, in which customers 

to be served are selected first, and then routes are being generated for each period. Jaillet et al. 

(2002) address the IRP with satellite replenishment facilities, using a rolling horizon approach 

to estimate the total expected annual cost. The customers have a variable consumption rate 

and the cost of serving a customer is fixed (see Bard et al., 1998). Using a rolling horizon 

framework, the authors estimate the cost for visiting customers in a repeated manner in order 

to minimize the annual delivery cost. Bertazzi et al. (2005) test different customer delivery 

policies as well as two different ways of decomposing the problem in order to minimize the 

total delivery cost over the time horizon. Lau et al. (2000; 2002) deal with time windows; in 

this case, the problem is decomposed into two sub-problems; the first defines the quantities to 

be delivered to customers with respect to inventory related costs, while the second constructs 

the routes for those customers selected by the first subproblem. 

The presence of inventory and consumption considerations differentiates the IRP from the 

topic of this dissertation. Additional basic differences include:  

 In IRP each customer is served more than once based on the rate of consumption, 

available capacity and routing aspects; in the problems discussed in this dissertation 

each customer is visited exactly once 

 IN IRP customers are known a priori; in our (dynamic) case only a limited number of 

the customers are known (i.e. customers appear dynamically over time). 
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The Period Vehicle Routing Problem 

PVRP is a variation of VRP. The additional characteristics of PVRP are: 

 The existence of a planning horizon  , i.e. a set of     consecutive periods (days) 

 The existence of a set of alternative schedules ( ), i.e. combinations of days, during 

which a customer may be served.  

 The frequency of service (  ) per customer  ; that is, customers may require to be 

served more than once within the planning horizon.  

The above characteristics are discussed in Francis et al. (2008): The customers in PVRP are 

served multiple times over a certain time horizon (several days). Each schedule of the set   of 

possible schedules is defined by a vector of     elements, where each element     is defined 

as: 

     
                                   

          

  (2.11) 

Note that when selecting a schedule   for a customer, then this customer will be visited in 

each   for which       . Based on the frequency of service (  ), not all schedules are 

compatible with customer  . That is, every customer   is compatible with a subset of 

schedules,     which satisfy the customer's frequency specifications. PVRP was introduced 

by Beltrami and Bodin (1974) and most recent algorithmic advance has been achieved by 

Baldacci et al. (2011). Several extensions have been proposed since, most of which embody 

additional operational or practical issues, such as multiple depots (Cordeau et al., 1997; 

Hadjiconstantinou and Baldacci, 1998), and intermediate facilities for replenishment 

(Angelelli and Speranza, 2002). An interesting variation of the problem (PVRP with Service 

Choice) was introduced by Francis et al. (2006), in which the frequency of visits is not fixed 

but it is constrained to be no less than a lower service level limit; however visits may be 

performed in excess of this limit (i.e. when providing better service). 

Several solution methods have been proposed for the PVRP based on heuristics, 

metaheuristics and mathematical programming techniques. Figure 2.1, from Francis et al. 

(2008), overviews the evolution of PVRP models and solution methods. 
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Figure 2.1: Evolution of models and solution methods for the PVRP (Francis et al., 2008) 

 For example, column generation has been used both in exact and heuristic approaches. 

Pirkwieser and Raidl (2009) deal with the PVRP with time windows and provide the first 

exact approach using column generation. In this implementation only the linear bound is 

provided. Mourgaya and Vanderbeck (2007) use a column generation heuristic in order to 

solve the PVRP. Their approach consists of three stages, where initially customers are 

allocated to periods (days) to be serviced, then customers are assigned to the available 

vehicles, and, finally, the routing sequence of each vehicle is optimized. The first two stages 

consist of the tactical planning, and is the focus of the paper in order to minimize Euclidean 

distances among the customers assigned to each vehicle (in favor of geographical clustering) 

and to maintain a balanced workload among the vehicles. The third stage is not considered by 

the authors. In this respect, customer sequencing is not an objective of the problem.  

Although there are many similarities between PVRP and the class of problems studied in this 

dissertation, including a) the assignment of customers to periods, b) the simultaneous solution 

of multiple periods, and c) considering the cost over the entire multi-period horizon, there are 

also distinct differences:  

 In PVRP the customers can be visited more than once, while in our case each 

customer is visited exactly once 

 In PVRP the customers are scheduled based on a predefined frequency (service 

patterns), while in our case each customer may be assigned to a certain set of 

consecutive periods (period window)  

 In PVRP all customers are known a priori in contrast to our (dynamic) case where 

only a limited number of customers are known (i.e. customers appear dynamically 

over time).  
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Other Related Problems 

Other problems in the literature that consider multi-period environments include those 

addressing the combination of production and distribution. Gunnarsson and Rönnqvist (2008) 

introduced and solved a planning and distribution problem in a rolling horizon framework; 

Ravichandran (2007) proposes an ordering policy to optimize the expected operating profits 

through several periods (weeks). The problem is solved through multi-period dynamic 

programming. Zäpfel and Bögl (2008) address and solve an integrated vehicle routing and 

crew scheduling problem over a weekly horizon taking under consideration resource 

constraints (both vehicle- and personnel-related). 

2.1.3 MULTI-PERIOD ROUTING PROBLEMS 

In this Section we focus on problems of the literature that are highly related to this 

dissertation. We call these problems "multi-period routing problems" and we distinguish them 

from those overviewed in the previous Section. 

Many researchers consider multi-period routing problems in which the customers become 

known progressively, and they approach them in a rolling horizon framework. In Figure 2.2, 

we classify multi-period vehicle routing problems in two different categories: 

 The first category contains the MPVRP, in which all customers in the planning horizon of 

the next   periods are known. This problem can be considered as a special case of the 

PVRP.  

 The second category is the Dynamic MPVRP, in which new customer requests arrive in 

each period of the planning horizon. Thus, when approaching this problem by solving an 

MPVRP for   periods in a rolling horizon framework, not all customers to be routed 

within these   periods are known. For a formal description of both cases, see Chapter 6.  

Note that in the literature, another dynamic multi-period case is reported which regards the 

dynamic arrival of customers combined with the capability of modifying the schedule while 

vehicles are en-route (Angelelli et al., 2009; Wen et al., 2009). This case is highly related to 

the DVRP (Dynamic Vehicle Routing Problem); newly arrived customers can be either served 

by the vehicles that are en route (current schedule) or can be postponed for next periods based 

on their period window flexibility. 
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Figure 2.2: Related problems with the multi period routing problem 

The existing literature in the field of multi-period routing problems is limited, as also stated 

by Bostel et al. (2008) and Wen et al. (2009). This limited literature refers to both single and 

multiple vehicle cases. Table 2.1 summarizes the main characteristics of the existing 

references on the MPVRP. 

Table 2.1: Multi-Period Vehicle Routing Problems 

 
Multiple 

Vehicles 

Time 

Windows 

Period Window  

(# of periods) 

Solution 

Procedure 

Fixed 

Routes 

Teng et al. (2006) 
  1 to 3 

Heuristic/  

Column Generation 
 

Angelelli et al. (2007)   1 or 2  Heuristic  

Andreatta and Lulli (2008)   1 or 2 Markov Process  

Tricoire (2006; 2007), 

Bostel et al. (2008) 
  1 or 2 

Metaheuristic/Column 

Generation 
 

Wen et al. (2010)   
1 to 15 

(avg. 2.5) 
Heuristic  

Angelelli et al. (2009)   1 or 2 Heuristic  

Athanasopoulos and Minis 

 (2010) 
  5  Heuristic  

Teng et al. (2006) solved a single-vehicle multi-period routing problem that is based on the 

travelling salesman subset-tour problem (Mittenhal and Noon, 1992). In this case, customers 

are served once within certain predefined time periods. An additional profit is associated if 

service occurs within the predefined time periods. A column generation procedure is proposed 

and its efficiency is compared against heuristic methods. 

Angelelli et al. (2007) considered a single-vehicle multi-period problem, and minimized the 

cumulative distance (cost). In their setting, customer requests arrive at the beginning of each 

period, and can be served in the next two consecutive periods. Different strategies for the 

allocation of customers (i.e. as-soon-as-possible, as-late-as-possible, and more sophisticated 

combinations) have been proposed and evaluated.  

Andreatta and Lulli (2008) considered a special case of the multi-period routing problem with 

stochastic demand. Service is provided by a single vehicle either the day following the arrival 

PVRP DVRPMPVRP D-MPVRP
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of the request (urgent service) or the subsequent day (regular service). The problem was 

formulated and solved by an aggregate Markov model using rewards.  

Tricoire (2006; 2007) and Bostel et al. (2008) have studied another case of the MPVRP in 

which a certain number of customer requests are served over a horizon of   periods. Each 

request is served within a period window and a certain time window. A limited number of 

uncapacitated vehicles, starting from different locations (depots), are available for service. All 

vehicles have to respect certain labor rules, such as break intervals and maximum shift time. 

The problem is addressed both by a metaheuristic (memetic) algorithm and by an exact 

column generation approach. In the latter, the problem is divided in smaller problems 

(considering the next   periods) and is solved iteratively in a rolling horizon framework. 

Although this problem presents many similarities with our case, there are also many 

differences in the way the problem is approached and analyzed. Additionally, the current 

work addresses the generic case of the multi-period routing problem, based on which we 

investigate alternative column generation strategies for exploiting the special structure of 

multi-period problems. 

Angelelli et al. (2009) expanded their research in MPVRP to address a dynamic setting with 

multiple vehicles, in which requests arrive as time unfolds and can be routed either in the 

period received or in the following one. A variable neighborhood search heuristic (see 

Mladenovic and Hansen, 1997) has been adapted with two different strategies: One that 

considers only the first period, and one that considers the first and the subsequent periods. 

Various objective functions have been proposed per strategy, which seek to maximize the 

number of customers as well as routing efficiency. 

Wen et al. (2010) also address the MPVRP in a multiple vehicle setting. The problem was 

solved using the above variable neighborhood search heuristic along with a tabu search 

procedure (see Cordeau et al., 1997). Alternative objective functions were addressed, 

including distance minimization, customer satisfaction and/or workload balancing.  

Athanasopoulos and Minis (2010) solved a special case of the MPVRP, in which mandatory 

(inflexible) and flexible orders co-exist. The mandatory orders must be served within a certain 

period, and the flexible ones must be served within the entire planning horizon. This problem 

was addressed in two phases: Initially, predefined routes were constructed (to serve the 

mandatory customers) and, then, flexible customers were allocated in these routes at the 

appropriate periods of the planning horizon. 
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2.2  BRANCH AND PRICE THROUGH COLUMN GENERATION 

In the present Section we describe the Branch-and-Price method, an exact solution approach 

for vehicle routing problems, which is based on the column generation method combined with 

Branch-and-Bound. Section 2.2.1 reviews significant references for employing the column 

generation method to solve vehicle routing problems. Section 2.2.2 presents related references 

for the subproblem embedded within the column generation method (i.e. the shortest path 

problem with resource constraints). Finally, Section 2.2.3 presents the overall Branch-and-

Price procedure that combines the aforementioned methods and provides integer optimal 

solutions to the routing problem. Note that these methods are further elaborated upon in 

Chapter 3 (column generation and shortest path problem with resource constraints), and 

Chapter 5 (Branch-and-Price).  

2.2.1 COLUMN GENERATION  

A formal historical review of the column generation method is provided by Desrosiers and 

Lubbecke (2005). Ford and Fulkerson (1958) were the first to point out the advantages of 

decomposing the structure of linear programming problems. Later, Dantzig and Wolfe (1960) 

formalized their well-known decomposition scheme which, basically, generalized the column 

generation method. The first practical application using Column Generation was addressed by 

Gilmore and Gomory (1961; 1963) for the cutting stock problem. They provided a strategy to 

deal with a large linear program by splitting it into a master problem and several sub-

problems; in this scheme, information to the master problem is added in a repetitive manner 

by solving the subproblems. Luenberger (1989), Bradley et al. (1977) and Desaulniers et al. 

(2005) discuss the theoretical background of the decomposition and column generation 

methods. Additionally, Desaulniers et al. (2005) present research directions, as well as many 

applications of the column generation method. 

Column generation is regarded as one of the most promising exact methods for addressing 

vehicle routing problems and, thus, it has attracted considerable attention by the related 

community. Desrosiers et al. (1984) and Agarwal et al. (1989) dealt with the VRPTW without 

capacity constraints, and the VRP, respectively. Desrochers et al. (1992) were the first to deal 

with the VRPTW. Since then a large number of references on the subject can be found (Kohl, 

1995; Larsen, 2001; Feillet et al., 2006; Chabrier, 2006). A survey on the applications of 

column generation for the VRPTW is provided in Kallehauge et al. (2005). A formal and 

analytical description of the column generation for the MPVRPTW is presented in Chapter 3. 
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2.2.2 SHORTEST PATH PROBLEM WITH TIME WINDOWS AND CAPACITY 

CONSTRAINTS (SPPTWCC) 

In vehicle routing problems, the SPPTWCC is typically the subproblem in the column 

generation framework, and, in general, it controls the efficiency of the method. The most 

common approaches to deal with the Elementary SPPTWCC are based either on Dijkstra 

(1959) algorithm (label setting), or on the Bellman-Ford algorithm (label correcting). While 

label correcting approaches create labels by processing nodes in an iterative manner, label 

setting algorithms select the next node to expand based on the lowest resource consumption. 

A label setting algorithm has been used by Larsen (2001) and Kohl (1995) in order to 

generate feasible routes (proposed ones) to be passed to the master problem. Note that in this 

case the master problem selects the best combination of routes among those proposed by the 

subproblem, in the context of column generation. Feillet et al. (2004) and Chabrier (2006) 

utilize a label correcting algorithm based on Desrochers et al. (1988; 1992) in order to 

generate proposed routes for the master problem. Both sets of authors have proposed 

modifications in order to include elementarity into the Desrochers et al. (1992) algorithm.  

Non-Elementary Shortest Path with Time Windows and Capacity Constraints 

(SPPTWCC) 

Due to the complexity of the ESPPTWCC, many researchers have studied the relaxed version 

of the problem, which results from eliminating the elementary constraints and, thus, allowing 

cyclic paths. Note that infinite cycling is anyway prohibited due to time and capacity 

constraints. This relaxation has been addressed by pseudo-polynomial solution algorithms 

(Desrochers et al., 1992; Desrosiers et al., 1995). Since then, a number of researchers used the 

SPPTWCC formulation to develop column generation algorithms for the VRPTW (Kohl, 

1995; Larsen, 2001). In such formulations, the lower bound obtained was usually weaker that 

the lower bound obtained from elementary formulations. Thus, to improve the lower bounds, 

many researchers tried to deal with cycling using k-cycle elimination. 2-cycle elimination was 

initially developed by Houck et al. (1980) and Kolen et al. (1987). Their methods were 

embedded in the formulations of Desrochers et al. (1992), Kohl (1995), and Larsen (2001). 

Irnich (2001) and Irnich and Villeneuve (2003) developed the idea of k-cycle elimination. 

They also showed that by eliminating longer cycles, the lower bound obtained by the column 

generation process was drastically improved. k-cycle elimination is further discussed in 

Ziegelmann (2001), and Irnich and Desaulniers (2005). 
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Elementary Shortest Path with Time Windows and Capacity Constraints (ESPPTWCC) 

The elementary version of the SPPTWCC problem does not allow cycling, and, therefore, (a) 

no closed loops can be generated, and (b) no customers can be served more than once within 

the same trip. The problem has been proven to be NP-hard (Dror, 1994; Kohl, 1995) due to 

existence of the negative arc costs (see below) and the resource consumption property. The 

problem was initially solved by Beasley and Christofides (1989). 

Based on the efficiency of the results obtained in the k-cycle elimination studies, Chabrier et 

al. (2002), Chabrier (2006), Feillet et al. (2004) and Feillet et al. (2005) have studied the 

elementary version of the SPPTWCC in order to obtain better lower bounds. Since 

computational complexity prevents the solution of large-scale problems (large number of 

customers, wide time windows, etc), attention has been paid to the development of intelligent 

dominance criteria, which reduce the search space without sacrificing optimality.  

Boland et al. (2006) and Righini and Salani (2005) merged the non-elementary with the 

elementary SPPTWCC in order to utilize the strong features of each method; they proposed to 

solve the SPPTWCC and add elementary constraints to certain customer nodes as the solution 

procedure progresses. Some of the most promising approaches to-date for the VRPTW have 

been provided using the partial elementarity principle (Desaulniers et al., 2006) or full 

elementarity (Feillet, 2005).  

Related references to our multi-period setting include the following: In Pirkwieser and Raidl 

(2009) new columns, which are generated by each subproblem, are transferred to all other 

subproblems without solving each subproblem separately. Note that the authors do not 

elaborate more on the strategy and whether or not some columns may be eliminated for some 

periods due to infeasibilities in schedule and/or visit frequency. Mourgaya and Vanderbeck 

(2007) propose a "cyclic generation strategy", in which one subproblem is solved and the 

generated columns are provided to the other subproblems. Note that in both references, the 

subproblems to be solved generate feasible columns to all periods, which is not the case in our 

problem. 

2.2.3 BRANCH AND PRICE 

When solving the relaxed Multi-Period Routing Problem with Resource Constraints (e.g. time 

windows and capacity constraints), the methods described in Chapter 3 and 4 provide a lower 

bound (LB) of the solution. In case this LB corresponds to an integer solution, the optimal 
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solution to the problem has been found and no further exploration of the solution space is 

necessary. In case the LB corresponds to a fractional solution, then it is a bound of the 

minimum cost of the optimal solution, and further investigation of the solution space is 

necessary to obtain the integer optimum. 

Branch and Bound (B&B) is a simple generic algorithm that explores the solution space in 

order to provide integer solutions. In the problems related to this dissertation, B&B 

guarantees that the optimal integer solution will be obtained if all the columns (routes) are 

known. In the case of Column Generation (CG), in which only a small portion of the total 

feasible columns (routes) is available, B&B cannot guarantee optimality. A straightforward 

implementation of the B&B procedure on the final optimal (lower bound) solution does not 

guarantee that the optimal integer solution will be found, since only a subset of the feasible 

routes (columns) has been generated by the subproblem. Thus, in order to be able to obtain 

the optimal integer solution, the column generation method should be applied to each node of 

the B&B tree, allowing new columns (routes) to be created. This procedure is called Branch 

and Price (Barnhart et al., 1998; Desrosiers et al., 1995; Soumis, 1997; Danna and Le Pape, 

2005) and was initially proposed by Desrosiers et al. (1984) for the VRPTW. In addition to 

the exact B&P approach many researchers have proposed mixed approaches in order to speed 

up the solution procedure. Danna and Le Pape (2005) proposed a mixed scheme, which uses 

B&P, an MIP heuristic solver and a metaheuristic, while Jepsen et al. (2008) used the Chvatal 

rank-1 cuts (subset row inequalities) in order to obtain better lower bounds through a branch-

and-cut-and-price algorithm. A more detailed description of the technical background of B&P 

is provided in Chapter 5. 

2.3 RESEARCH CONTRIBUTION 

Our contribution to the study of multi-period routing problems provides insights in the 

mathematical formulation, the exact column generation approach, the multi-period related 

acceleration techniques, the theoretical understanding of the multi period setting, as well as 

into significant practical aspects of the problem (limited resources, predefined routes). 

Although elements of this problem have been investigated in the literature, the dissertation 

addresses new aspects of the problem and makes the following contributions: 

1. We propose a decomposed mathematical formulation for the generic case of the multi-

period routing problem. This formulation generalizes the one presented in Bostel et al. 
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(2008), and, as such, can be used as the basis for describing several variations of multi-

period routing problems. 

2. By understanding and taking advantage of the special structure of the multi-period 

problem, i.e. (a) the independence of the column generation subproblems per period and 

(b) the flexibility of customers to be routed in several alternative periods, we developed 

two different strategies to solve the subproblems, the most "costly" part of the column 

generation method. These strategies are: (i) one subproblem is solved, and the generated 

columns are transferred to the others; (ii) a single, unified subproblem is solved, 

considering all periods simultaneously. All required modifications to the classical column 

generation approach for solving multi-period problems are studied and discussed. 

3. We compare these two strategies with two existing approaches, whereby each subproblem 

is solved separately and sequentially, or in parallel. Specific instances, which address 

different patterns of period flexibility, were created in order to benchmark the 

aforementioned strategies. We show that significant computational savings can be 

achieved by using the proposed strategies, especially in cases in which customers have 

increased period flexibility. These savings are relevant to both determining the lower 

bound, and the optimal integer solution. This result has been obtained through extensive 

experimental investigation that uses Solomon benchmarks (and their extended versions), 

in order to generate appropriate test cases for large numbers of consecutive periods and 

different customer period window patterns. 

4. Additionally, a simple pruning heuristic is proposed in order to accelerate the solution 

procedure. The performance of this heuristic, with respect to the efficiency of both the 

final solution and the required computational time, indicates its suitability for solving 

multi-period vehicle routing problems in long horizons using a rolling horizon framework. 

5. As far as the rolling horizon framework is concerned, we focused on two arrival patterns 

of customer requests: (a) the quasi-static (MPVRP), and (b) the Dynamic MPVRP. For the 

first case, we propose and discuss three theoretical statements concerning the 

implementation horizon ( ) and the planning horizon ( ), which are key parameters in 

the rolling horizon implementation. These statements establish the principles of applying 

the proposed methods to solve routing problems in long-term time horizons.  

6. In order to address significant practical aspects, we modify the MPVRPTW model to take 

into consideration cases in which not all customer orders can be served within the 

planning horizon (e.g., the number of the consecutive periods that are simultaneously 

considered in each MPVRPTW). This new modification is achieved by introducing 
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appropriate penalty functions for the unserved customers taking into account their period 

flexibility. Five such penalty functions are proposed, analyzed and compared.  

7. Significant experimental results were obtained considering both cases: (a) the quasi-static 

(MPVRP), and (b) the Dynamic MPVRP. For these cases, larger planning horizons result 

in lower routing costs, validating the appropriateness and the efficiency of the proposed 

methods. The experimental results follow the same pattern for different time windows, as 

well as for different geographical distribution of customer orders. The above conclusions 

are also validated through appropriate statistical analysis. 

8. We also apply our multi-period approach to the case of the multi-period routing problem 

with pre-assigned customers, which has significant practical applications. A new solution 

approach is provided, based on a modified version of the column generation procedure 

proposed for the general MPVRPTW. Extensive experimental investigation indicates that 

significant cost savings can be achieved by considering wider planning horizons in the 

planning process. 
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Chapter 3: THE MULTI-PERIOD VEHICLE ROUTING 

PROBLEM WITH TIME WINDOWS 

The problem addressed here is related to environments in which a fleet of vehicles serves a set 

of customers over a multiple-period (planning) horizon. In this environment, every 

assignment has some time-related flexibility, i.e. it can be assigned/routed to one or more 

periods within the planning horizon. The challenge that arises is to simultaneously assign 

customers to periods (days) and route the vehicles to serve these customers. The objective of 

the problem is to minimize the total cumulative routing cost throughout the planning horizon.  

The described problem is related to the well-known VRP and PVRP cases. However, VRP 

requires that each customer is served within a single period, while PVRP has a predefined 

periodic visit pattern for every customer. The problem has been formulated here as the general 

Multi-Period Vehicle Routing Problem with Time Windows (MPVRPTW). Versions of the 

MPVRP with or without time windows have been addressed in the literature by Angelelli et 

al. (2007), Tricoire (2006) and Wen et al. (2010). In this dissertation we present alternative 

exact solution methods that use column generation and exploit the special multi period 

structure of the problem (see Chapter 4). 

This chapter has dual purpose, that is: (a) To define the general mathematical model of the 

MPVRPTW and (b) to present the basic column generation solution method that that forms 

the foundation of the novel alternative approaches discussed in Chapter 4. In the remainder of 

this Chapter, Section 3.1 presents the mathematical model of MPVRPTW and Section 3.2 

describes the basic column generation method for solving the MPVRPTW. Section 3.3 

presents the solution mechanism for the Elementary Shortest Path Problem with Time 

Windows and Resource Constraints (ESPPTWCC), which is the core component of the 

column generation framework in our case. Finally, Section 3.4 presents a conceptual synthesis 

of the overall column generation method for the MPVRPTW. 

3.1 MATHEMATICAL FORMULATION 

Our formulation for the MPVRPTW is based upon the formulation of the VRPTW presented 

by Cordeau et al. (2002) and by Wen et al. (2010) for the MPVRP. Cordeau et al. (2002) 
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model is further expanded to accommodate: (a) the multiple periods, and (b) the period 

window constraints of the customers. 

Consider a planning horizon of     periods and let    be the current period. Also assume that 

all customers should be served over the next   periods, that is in the planning horizon 

           . For simplicity, and without loss of generality, the current period (planning 

period) is set to      and, the planning horizon is simplified to      . The basic notation of 

the problem is given below. 

  Set of   consecutive periods (planning horizon) 

          Available customers (orders) at the beginning of period 1 

            Set of vertices, including the starting and ending depot. Every vehicle 

route starts from the starting depot (node  ) and finishes at the ending 

depot (node    ). Two nodes are used for the depot in order to 

allow a vehicle to remain inactive within a period, i.e. establish a 

        connection (see Cordeau et al., 2002)  

                Set of arcs connecting all vertices (nodes) in   

      
    

   Period window of customer   ; where     
    

     Note that 

when a customer requests service within    
    

   , where   
    , this 

customer’s period window will be reduced to    
    1 

    Cost for traversing arc                

    Time for traversing arc               including the service time of 

customer  . For nodes   and     the service time equals zero. 

   Demand of customer         

   Set of      available vehicles per each period         

  
 
 Capacity of vehicle   during period   

        Time window of customer  , same for each period within   ; for nodes 

  and    ,         is the earliest time each vehicle can leave the 

                                                 

 

1
 In Chapter 6 the more generic case, where   

   , is discussed along with alternative solution procedures. 
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depot, and         is the latest time each vehicle can return to the 

depot.  

Two sets of variables are used for the model:       equals one if route   of period   traverses 

arc       and zero otherwise;      represents the start of service for customer (node)   by 

vehicle   within period  .      is set to zero if node   is not served by a vehicle (say    within 

a period (say  ).  

The problem’s objective is to minimize the total cumulative routing cost over the planning 

horizon, and is given by: 

                  

              

  (3.1) 

Constraints 

        

                 

        (3.2) 

        

                 

        (3.3) 

      

         

              (3.4) 

      

       

        

          

                   (3.5) 

          

       

              (3.6) 

         

            

   
 
             (3.7) 

                                               (3.8) 

        

         

              

         

                 (3.9) 

                                (3.10) 

                               (3.11) 

Objective function (3.1) expresses the total routing cost over the entire planning horizon. 

Constraints (3.2) and (3.3) specify that each customer will be visited once (one route and 

during one period only) within the corresponding period window for that customer. 
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Constraints (3.4) and (3.6) specify that each vehicle departs from the starting depot ( ) and 

ends at the ending depot (   ). Constraints (3.5) are the flow conservation constraints for 

every route. Constraint (3.7) secures that the capacity of each vehicle is not violated. Note that 

subtour elimination constraints are not needed in this model, due to the time windows and the 

variables     . Constraints (3.8), (3.9) and (3.10) ensure that each customer is served within 

its time window. Note that   represents a large number, which should be larger than     

                  for each arc      . Finally, Constraints (3.11) force the flow variables 

to assume the binary values      . 

The solution procedure that is described in the present dissertation is based on the Column 

Generation (CG) method which decomposes the linear relaxation of the above problem to a 

Master Problem (MP) and several subproblems (SP). Since MP integrality constraints have 

been relaxed, the latter is solvable using linear programming techniques; integer solutions are 

provided through a Branch and Price framework based on the lower bound provided by the 

CG method (See Chapter 5). Also note that, although the decomposition of problem (3.1)-

(3.12) into a Master Problem and the relevant subproblems, is fundamentally based on the 

Dantzig-Wolfe decomposition (Dantzig and Wolfe, 1960), a more straightforward approach 

will be used following the approach of Desrochers et al. (1992) and Desaulniers et al. (2005). 

3.2 LOWER BOUNDS THROUGH COLUMN GENERATION 

This section discusses the essential features of the MPVRPTW within a column generation 

framework. This decomposition is inspired by related approaches proposed by some authors 

to address the VRPTW (Desrochers et al., 1992; Larsen, 2001; Feillet et al., 2005, Chabrier, 

2006), the PVRP (Mourgaya and Vanderbeck, 2007; Pirkwieser and Raidl, 2009) and the 

MPVRPTW (Tricoire, 2006; Tricoire, 2007; Bostel et al., 2008). 

3.2.1 THE PROPOSED MASTER PROBLEM 

In the decomposed model, the Master Problem (MP) includes linking Constraints (3.2) and 

(3.8), which cannot be treated independently by the subproblems. The reason is that these 

constraints cannot be separated either per period     or per vehicle     , since each is 

expressed as a sum over all periods and vehicles. It is also noted that in the model of Eqs 

(3.1)-(3.12) the vehicle constraints are not defined explicitly as a separate set of constraints 

but are rather implied by the existence of the set    for each period. That is, the objective 
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function, as well as the constraints, are defined for a limited set of vehicles per period  , of 

size     .  

The MP is a Set Partitioning Problem, since every customer should be serviced exactly once. 

Desrochers et al. (1992) recommended the Set Covering formulation for the VRPTW, which 

allows visiting each customer more than once. This modification was later adopted by many 

researchers (Feillet et al., 2005) and allows for simpler initial solutions to the linear relaxation 

of problem. In addition, as stated in Feillet et al. (2005) the set covering formulation is also 

preferable with respect to convergence, since the shadow prices related to Constraint (3.16) 

are always non-negative, which is not true in the Set Partitioning formulation. The latter 

property stabilizes the solution process (i.e. providing for smoother convergence of the 

shadow prices to their optimal values), thus leading to more efficient computations of the 

shadow prices.  

Note also that the Set Covering formulation Problem is optimal with respect to the Set 

Partitioning Problem. Although Set Covering allows customers to be assigned to more than 

one vehicle, it is straightforward to show that in the optimal solution every customer will 

participate only once. For example, consider a solution that includes two routes that contain a 

common customer. There is always a better solution (with lower routing cost) in which the 

common customer has been eliminated from one of the former two routes. This property 

holds when the triangular inequality holds. Based on this fact, even if the linear programming 

solution procedure travels through solutions with multiple visits to customers, finally it will 

conclude to a solution that visits each customer just once (Feillet et al., 2005).  

For the reasons stated above, in this work we adopt the Set Covering formulation.  

Let         denote the periods of the planning horizon and    the set of all feasible 

routes for period p. Coefficients    
  are defined as: 

   
 

  
                                                 
          

   (3.12) 

Variables   
 
 are defined as:  

  
 

  
                                               
          

   (3.13) 

If   
 

 denotes the cost of route   of period  , then the objective function of the Master 

Problem is of the following form: 
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  (3.14) 

   
 

    

        (3.15) 

     
 

    
 

  

    

 

   

      (3.16) 

  
 

        (3.17) 

The objective function (3.14) minimizes the total cumulative routing cost. Constraints (3.15) 

restrict the number of vehicles to be used in each period to the available fleet, and Constraints 

(3.16) are the set covering constraints. Eliminating binary Constraints (3.17) relaxes the 

problem and permits it to be solved using well known linear programming techniques.  

In the aforementioned formulation, we have assumed that all feasible routes for every period 

(  ) are known a priori. Given, however, that the    sets will not be known in their entirety, 

we denote as   
  a subset of   . Every set   

  for every period   contains feasible routes for 

this period. Additionally, the initial collection of sets   
  should contain a feasible initial 

solution. Note that, in our case, due to the limitation on the number of vehicles (Constraints 

3.16) the use of the trivial initial solution that comprises one route per customer (i.e.,       

       ) is not feasible. The problem involving the   
 , instead of the   , sets is called the 

Restricted Master Problem (RMP).  

In order to better explain the definition of the MP and its relationship to the RMP, an 

illustrative example is given in Fig. 3.1; the figure shows the form of the coefficient matrix of 

the linear model along with the Right Hand Side (RHS) vector. Note that each element of the 

first   elements (  ) of the RHS represent the number of available vehicles per period  . The 

first     rows represent the period constraints (3.15), while the next     rows represent the 

set-partitioning constraints. Thus, each column comprises a vector of         elements. The 

first     elements of every column are all zeros except from one element that is related to each 

period and is equal to one. For example, for period 3, the vector of the     elements is 

            . The remaining     elements represent the actual route as described in (3.12). 

Dark areas are the known routes per period, forming the RMP constraint set. The latter 

contains only a limited number of the spectrum of feasible routes per period (blue plus grey 

areas, MP).  
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Figure 3.1: Master Problem (MP) and Restricted Master Problem (RMP). Set partitioning formulation. 

In order to reach optimality for the MP by solving the RMP, we should be able to generate 

good quality columns that are not known (from the grey areas), include them to the current 

RMP (blue areas) and solve the new updated RMP. This could be done iteratively until the 

optimal solution is obtained. The role of the subproblems is precisely the generation of these 

new columns (routes per each period), as discussed in Section 3.2.2. This can be repeated 

until no new columns (routes) with negative reduced cost can be provided by the 

subproblems. Then the optimal lower bound has been obtained.  

It is noted that solving the subproblem is equivalent to selecting a new basic variable in a 

classic simplex procedure. The termination criterion is also equivalent; that is, all reduced 

costs are non-negative or no new columns with negative shadow prices can be generated by 

the subproblems. This will be further explained in Section 3.2.2. Luckily, and as practice has 

shown, only a portion (hopefully restricted) of the total feasible routes of     will be 

generated prior to reaching optimality. 

Bostel et al. (2008) and Tricoire (2007) have proposed a similar decomposed formulation for 

a special case of the multi-period routing problem with multiple depots. In their model a 

different constraint on the vehicle availability is proposed: Instead of defining a set of 

available vehicles per period, they define a (larger) set of "resource-days". Each "resource-

day" represents a combination of periods and vehicles, i.e. the availability of one vehicle 

during one period. In their formulation, one subproblem is solved per each resource-day. That 

1
0
1

…  0 ...
1
…
1
0

1

1
2
…

…
n
…
…
…

N

1 1 1 1 1 1      …       1 1 1 

1
1
1

1
1
…
1
1

1

=

1 1 1 1 1      …       1 1 1 

1 1 1 1 1 1      …       1 1 1 

V1

V2

VP

……

…

C
us

to
m

er
P

er
io

d
s 1

2

P

…

Master Problem (MP)

Restricted Master Problem (RMP)



Chapter 3 - The Multi-Period Vehicle Routing Problem with Time Windows 

32  DeOPSys Lab 

is, given   periods and   vehicles (same number of vehicles per period) a total number of 

    subproblems need to be solved. This increases significantly the complexity of the 

formulation and, indeed, of the solution algorithm in relation to the one proposed above. 

3.2.2 THE SUBPROBLEMS 

As already discussed, the MP and the RMP consider only the linking constraints. All the 

remaining problem constraints are transferred to the subproblem(s) and they form the 

Elementary Shortest Path Problem with Time Windows and Capacity Constraints 

(ESPPTWCC).  

Note that the solution provided by the current RMP is optimal with respect, of course, to the 

columns (routes) that are contained in the   
  sets. In order to check if this solution is globally 

optimal for the MP, we should calculate the reduced costs (    
 

) of each non-basic route 

      of each period   (note that    contains also the routes that do not yet exist in the 

current RMP). The reduced cost for each column related to route   and period   is given by 

the following equation:  

   
 

   
 

     
 

  

   

               (3.18) 

where    and    are the shadow (dual) prices related to customer Constraints (3.17) and 

period Constraints (3.16), respectively. The calculation of Eq. (3.18) for every route contained 

in the current RMP is straightforward, since all elements are known.  

In the classical simplex procedure, having calculated all reduced costs, and in order to insert a 

route    in the basic solution (i.e. make a non-basic variable, basic), its reduced cost (    
 

) 

should be negative. It is already known that the reduced cost   
  
 

 of each non-basic route 

     
  in every period   (routes in the blue area of Fig. 3.1) is non-negative, and, therefore, 

should not be considered for inclusion in the basis of the current RMP. Thus, routes      
  

that have not yet been included in the RMP (grey areas of Fig. 3.1) should be generated, along 

with their reduced costs. To do so, for each period   a minimization problem (subproblem) is 

solved, in which the route    
  with the minimum reduced cost (     

 
) is derived, that is: 

     
 

    
        

   
     

 
       (3.19) 

Then, the overall minimum reduced cost   
   
     

, over all periods is calculated: 
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   (3.20) 

Note that thus far, this procedure resembles a typical iteration of the classical simplex 

procedure. The twist is that the routes    (i.e. columns) are not known. Consider the following 

reformulation of the routing cost of route   in period   with respect to the arc cost 

coefficients: 

  
 

     
 

   

   

                  (3.21) 

where      denotes that customer   is the next customer to be visited after customer   in 

route   of period    and     is the cost traversing arc      . Combining Eq. (3.21) and Eq. 

(3.18) we obtain: 

   
 

     
 

   

   

     
 

  

   

        
 

    

   

        (3.22) 

Thus, Eq. (3.19) for the subproblem per period   becomes: 

     
 

    
  

      
 

   
 

   

      (3.23) 

Cost factors    
  are the modified costs coefficients of each arc      , which can be negative.  

   
   

      

   

  
  

  

                
        
     
   

.  
(3.24) 

Note that the coefficients     
 

 in Eq. (3.23) are not known. The scope of each subproblem is to 

define the values of coefficients     
 

 that minimize the subproblem, i.e. the minimal (shortest) 

path, and the relevant reduced cost.  

In order to further transform Eq. (3.23) into a double-index mathematical formulation, 

coefficients    
 

 are substituted by the arc variables    . Consider for example, a route that 

visits customers 2, 4 and 6 from a set of six customers, that is                where D 

represents the depot, and the route’s related cost   . The equivalent representation of this 

route, in terms of the coefficients    
 

 is               . Note that the depot is not represented 

in the    
 

 coefficients. This route is also defined by the arc variables        ,     and     and 

the relevant route cost (                  ). Note that the subscript ( ) for vehicle is 
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dropped for each subproblem, since the vehicles are identical and the relevant constraints 

remain in the RMP. Then, Eq. (3.23) takes the following form: 

        
 

          

    

        

     (3.25) 

Note that Eq. (3.25) is solved per each period  . Initially and in order to respect period 

windows, in the subproblem of each period   -Eq. (3.25)- only the feasible customers (i.e. 

customers that are allowed to be routed in period  ) are included. The set of the feasible 

customers per each period is represented as   . Based on that, there is no need to include 

additional constraints for period window feasibility. Of course, a customer will participate in 

as many subproblems as the periods in its period window. Additionally, the cost, modified 

cost and time matrix consisting of coefficients    
 ,     and     are defined independently    

and contain only the links among the customer set           . 

In the RMP only feasible routes are allowed to be inserted, and thus Eq. (3.25) should be 

restricted to generate only feasible routes. For that, Constraints (3.26) to (3.32) are added to 

each subproblem (see below). Note that these constraints secure the feasibility of a single path 

(route), are derived from the original problem formulation (3.1) - (3.12), and are defined for 

each period    .  

     

   

    (3.26) 

     

        

         

           

       (3.27) 

         

   

    (3.28) 

                                        (3.29) 

                        (3.30) 

        

                

   

 

(3.31) 

                    (3.32) 

Also note that, without loss of generality, we can drop subscript ( ) from variables      since 

every subproblem regards a specific period  .  

The objective function of (3.25) expresses the route with the minimum modified cost for 

period  . Constraints (3.26) and (3.28) specify that the route starts and ends at the depot. 
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Constraints (3.27) are the flow conservation constraints. Constraints (3.29) and (3.30) ensure 

that every customer will be served within its time window. Constraint (3.31) respects the 

capacity of the vehicle assigned to the route. Finally, Constraint (3.32) forces the flow 

variables to assume binary values      . 

Note 

By observing the original problem formulation (3.1) to (3.12), subproblem independence can 

be defined both per period and per vehicle. For problems for which identical vehicles are 

considered, only one subproblem needs to be solved per period, as in the case of VRPTW 

(Kallehauge et al., 2005, Larsen, 2001, Desrochers et al., 1992), where only one period is 

considered. This is also the case in the current problem, in which the subproblem per period   

is different only with respect to the customers available to be routed. The solution of each 

subproblem will provide candidate routes that can be assigned to every available vehicle in 

the related period.  

3.3 THE ESPPTWCC – SOLUTION PROCEDURE 

The subproblem described above is an Elementary Shortest Path Problem with Time 

Windows and Capacity Constraints (ESPPTWCC). Thus, existing, efficient algorithms for the 

ESPPTWCC can be utilized. The method that has been implemented in the present research is 

based on the label correcting algorithm of Feillet et al. (2004). The column generation 

scheme, which comprises the RMP and the subproblems, has two significant characteristics.  

 It is guaranteed to converge to the optimal solution (optimal lower bound) 

 Since each subproblem is NP-hard, practical convergence of the column generation 

scheme to the optimal solution depends on the speed (efficiency) of solving the 

subproblems.  

Note on complexity 

Although the shortest path problem (SPP) is polynomial [e.g. it can be solved in O(nm) by the 

Bellman-Ford algorithm], the inclusion of the time-window and capacity constraints turns 

ESPPTWCC into an NP-Hard problem. By relaxing the elementarity constraints, i.e. 

SPPTWCC, the problem remains NP-hard, but can be solved in a pseudo-polynomial time. A 

detailed description of the complexity of the ESPPTWCC is provided in Larsen (2001).  
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Therefore, in practice, optimality depends strongly on the computational efficiency of solving 

ESPPTWCC. As a consequence, our effort in this part of the research has focused on ways to 

improve the efficiency of the algorithm to solve ESPPTWCC in order to be able to solve to 

optimality problems of practical importance. To do so, we have enhanced the algorithm 

considerably by: 

 Incorporating successful improvements from a wide spectrum of work from the 

literature (discussed below), and 

 Developing novel improved column generation structures, based on the intrinsic 

characteristics of the multi-period problem in hand (see Chapter 4) 

The label correcting algorithm of Feillet et al. (2004; 2005) adopted as the basis of the 

solution algorithm, along with several other improvements incorporated in our work, are 

described below.  

Solution Procedure 

Each partial path     ending at node    is associated with a label                    , 

representing the accumulated reduced cost, time, and demand between the origin and the last 

node     of partial path  . Note that in (E)SPPTWCC, in contrast to the generic single-source, 

single-destination shortest path problem (Cormen et al., 2003), each node is associated with 

more than one labels, due to the resource consumption (time, demand) limitations. The 

existence of multiple labels is the major reason for the high complexity of the problem. In 

order to reduce the number of these labels, we use dominance criteria.  

Initially the method starts from label           , corresponding to the origin node, and 

extends to all other graph nodes (except to node    ). When extending label     

              , to a node  , then the new label      representing partial path    ending at node   

is given by the following equations: 

                 
    (3.33) 

                          (3.34) 

               (3.35) 

In order for this label to be created, it has to be feasible, i.e.: 

         (3.36) 



The MPVRP and Its Applications 

Dept. of Financial & Management Engineering     37 

        (3.37) 

In label correcting algorithms, labels are extended based on a procedure which scans all nodes 

iteratively. Each label (    ) is extended to all other nodes and checked for feasibility. If not 

feasible, the new label is discarded. When a label      has already been extended to all its 

feasible successor nodes, then it is considered as processed and can be deleted (or 

characterized as processed and kept for supporting dominance criteria, see below). The label 

extension procedure is repeated until there are no more unprocessed labels. Note that we have 

not yet considered the constraint to not re-visit the same vertex. This means that cycles are 

allowed and, therefore, the algorithm, so far, solves the non-elementary case. Infinite cycling 

is prohibited from the accumulation of resources (time and distance constraints).  

When a partial path is extended to the ending node (n    then a full feasible path has been 

generated. This path is a potential solution to the minimization problem. The minimum cost 

path among all feasible paths is the optimal solution. 

Table 3.1 lists all the improvement procedures employed in our work, and identifies the 

relevant references in the literature. Note that the techniques mentioned in the following 

references constitute common improvement techniques that are employed by several authors, 

including Feillet et al. (2005). These improvement procedures are described below. 

Table 3.1: Improvement Procedures for (E)SPPTWCC 

Improvement Procedure Source 

Elementarity Feillet et al. (2004), Chabrier (2006)  

Buckets/Storing Processed Labels Larsen (2001), Chabrier (2006)  

Dominance Criteria Dumas and Desrosiers (1986), Desrochers (1988), Feillet 

et al. (2004), Chabrier (2006)  

Limited Discrepancy Search (LDS) Feillet et al. (2005)  

Preprocessing  Kontoravdis and Bard (1995), Desrochers et al. (1992)  

Early Termination Criterion Larsen (2001), Chabrier (2006)  

Elementarity 

In order to extend labels strictly to nodes that have not yet been visited (elementary paths), 

Beasley and Christofides (1989) initially proposed the use of some additional elements in the 

labels. Feillet et al. (2004) were the first to implement this idea. Consider a vector    , 

containing     binary elements (where     is the size of all nodes excluding the starting and 

ending ones), that represent partial route   ending at node  . All elements of     initially are 

set to zero.  
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The new labels, proposed by Feillet et al. (2004), are                       . When a label 

    is extended to node  , the      vector of the new label      is equal to     except from the 

    element of      which is set to 1. That is the case if   is visited for the first time in the 

partial path. In order to avoid re-visiting the same customers (elementarity), an additional 

feasibility check related to Eqs. (3.36) and (3.37) is included. That is, if node   has already 

been visited in the partial path   (i.e. the     element of     is equal to 1), then label     is not 

extended to node   (i.e. the new label      is not created).  

Buckets (expand labels per each node) 

For each customer (node)  , there exists a set of non-processed labels,     , which is called 

the bucket of node  . Every label in      corresponds to a partial route that ends at node  .  

Initially, only the set corresponding to the depot,     , is non empty, containing one label, 

  . Then this label is extended to every node   creating partial paths      . Thus, one label 

per node   is created and inserted in the corresponding     . As mentioned above, labels that 

have been extended are characterized as processed and can be discarded. All newly created 

labels are tagged as non-processed. This is repeated for every      in an iterative procedure 

until all labels have been processed. When there are no more unprocessed labels in all buckets 

the operation is terminated. Note that for node    , all labels created are directly inserted in 

       if they satisfy the criterion of negative reduced cost, otherwise they are rejected. 

Storing of Processed Labels 

In our algorithm we have followed the work of Chabrier (2006), in which labels that have 

been extended to all successors are kept in the set of processed labels      , separately for each 

node  . Storing the labels in       supports the solution process since these labels are (a) 

considered in the dominance checks, and (b) are useful in the LDS procedure discussed 

below. 

Dominance Criteria 

Since the ESPPTWCC is NP-hard, many authors have developed dominance criteria that 

discard labels. Discarding labels improves the computational, as well as the memory, 

efficiency of the problem solved. The simplest dominance criterion is used by Dijkstra's 

algorithm for the solution of the single-source, single-destination SPP with positive arc costs. 

A label      dominates another label       ending at the same node  , through different partial 
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paths    and    , respectively, when             . This process has proven to provide the 

optimal solution. In the present case and due to the additional resource consumption 

characteristics, this straightforward dominance criterion requires extension. Dominance 

criteria for the SPPTWCC were developed initially by Dumas and Desrosiers (1986), and 

Desrochers (1988) who proposed the following:  

              (3.38) 

            (3.39) 

            (3.40) 

All three should be satisfied simultaneously and there should be at least one strict inequality. 

Although these criteria are appropriate for the SPPTWCC case, they are not sufficient for the 

elementary case, i.e. they do not guarantee optimality. Desrochers (1988), Feillet et al. (2004) 

and Chabrier (2006) have suggested an additional criterion for the case of the ESPPTWCC.  

            (3.41) 

The basic idea is that a label that has visited or includes more nodes cannot dominate another 

label with fewer nodes, since the latter may lead to a better solution by visiting the customers 

that have already been included in the former. This additional dominance makes it harder for 

a label to dominate another, leads into maintaining numerous labels in each node, and, thus, 

increases complexity. Separately, Feillet et al. (2004) and Chabrier (2006) proposed 

modifications in order to reduce the search space (discard more labels) without sacrificing 

optimality. 

In their procedure, the binary vector     was modified in order to contain the non-feasible 

nodes (i.e. those that cannot be extended due to feasibility) in addition to the already visited 

nodes. Both these types of nodes are characterized as unreachable for the associated label    . 

The inclusion of the non-feasible nodes in the vector     provides a more robust 

implementation by discarding more unnecessary labels from the search space. That is, a label 

can discard another label, even if they have not visited the same customers, but both labels 

have the same successors. More robust dominance criteria related to Eq. (3.43) are provided 

by Chabrier (2006). 
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Limited Discrepancy Search 

Limited Discrepancy Search (LDS) was initially developed for Constraint Programming by 

Harvey and Ginsberg (1995). Feillet et al. (2005) successfully incorporated LDS into the 

solution procedure for the ESPPTWCC and, also, managed to solve several problem instances 

related to the Solomon benchmarks (1987) that were not solved previously.  

Given a problem of     customers, a number of the   closest neighbors is defined, i.e. 

neighbors with the minimum modified arc cost (   
 ). The   closest customers to each node   

are included in set     . Note that the depot is always considered as a good neighbor. Also, 

for node   (i.e. the starting depot)      . Every label in      and, thus, every partial route 

 , is characterized by a cumulative penalty. Extending a label to a node   that is not included 

in      imposes a penalty (   ) equal to 1, otherwise the penalty equals zero.  

Initially, the allowable cumulative penalty (  ) for a partial route δ that corresponds to a label 

  , is set to zero and therefore labels are extended only to good neighbors. That is 

           =0 and therefore only arcs with       are selected. After extending all labels, and 

if there are routes with negative costs, the ESPPTWCC terminates and passes these routes to 

the RMP. If there are no routes with negative cost,    is increased by 1 and labels with 

              are also allowed. An upper limit (       ) is defined, up to which    can be 

increased. If the         has been reached by     and the subproblems have not generated any 

negative cost routes, then the operation terminates.  

Preprocessing  

Large time windows increase the complexity of the problem, since more customers can be 

served by a single route and the possible combinations increase dramatically. For this reason, 

many researchers have suggested to use preprocessing procedures prior to starting the solution 

process in order to narrow the time windows of customers (without sacrificing feasibility), 

and, therefore, tighten the solution space.  

Kontovardis and Bard (1995) proposed a simple criterion, in which each time window         

of node   can be replaced by                                       , where     is the 

travel time between customers   and  , and           is the time window of the depot. That is, 

the starting time of a time window is set to the earliest time that a vehicle can reach the 

corresponding customer directly from the depot, and the ending time is set to latest time a 

vehicle can depart from the customer in order to arrive to the depot on time. 
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Desrochers et al. (1992) proposed an iterative procedure in order to further tighten the time 

windows. The procedure includes 4 rules. Given the time window         of customer  , and 

considering customers   and   as the predecessor and successor nodes of    define the 

following: 

 Minimal arrival time from the predecessors of node  : 

                                  

 Minimal arrival time to successors: 

                                 

 Maximal departure time from predecessors: 

                                 

 Maximal departure time to successors: 

                                 

These four rules are applied iteratively until there exist no more adjustments of the time 

windows. The second and third rules were also derived by Cyrus (1998). Note that these 

operations are feasible when the triangular inequality holds. This is the case here, since time 

is always increasing when customers are added to routes. 

Early Termination Criterion 

Many researchers have proposed to terminate the subproblem solution procedure when a 

certain number of negative cost routes has been reached. Note that although this termination 

does not guarantee that the optimal solution to the subproblem has been reached, optimality of 

the global decomposition algorithm is still maintained. This is because: (a) the global 

algorithm iterates between RMP and the subproblems, and, eventually, the global optimum 

can be achieved, and (b) reaching the optimal solutions of the subproblems in each iteration is 

computational expensive.  

Early termination is used by the majority of researchers dealing with the column generation 

procedure. Note that the efficiency of the early termination criterion with respect to different 

numbers of generated negative cost routes have been studied in Larsen (2001) for VRPTW 

instances. 
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3.4 COMBINING RMP WITH THE SUBPROBLEMS  

Figure 3.2 illustrates the structure of the global column generation algorithm for the multi 

period routing problem. When solving an RMP, the associated shadow prices are generated, 

in addition to the actual solution (cost and relevant routes). These shadow prices are passed to 

the   subproblems, and are used to compute the modified costs    
 ,       .  

These costs are the elements of the cost matrix in the ESPPTWCC. Shadow prices    are also 

incorporated in the cost matrix, through the starting depot's modified costs, thus    
      

  ,     . 

On the other hand, solving each subproblem generates a set of negative cost routes. Each of 

these routes is translated to a column, i.e. the equivalent representation of the route when 

variables    
 

 variables are used. Note that the customer sequence of these routes has to be 

maintained separately. These routes are provided to the RMP and added to the existing routes 

– columns of the problem. The solution process terminates when no more routes with 

negative cost can be generated by any subproblem, which mirrors the classical termination 

procedure for the simplex method. In this case, the minimum cost solution from the last RMP 

is returned as optimal.  

Notes on Complexity 

The following should be noted regarding the complexity of the solution algorithm for the 

MPVRPTW: 

 The Simplex method used for the RMP has an exponential worst-case complexity, 

although in practice performs efficiently for several cases (Papadimitriou and 

Steiglitz, 1998). 

 As stated in Chapter 2, the ESPPTWC is NP-Hard (Dror, 1994; Kohl, 1995). 

 As noted by Kallehauge et al. (2005), the “behavior of the dual variables plays a 

pivotal role in the overall performance”; Which in accordance with the number of 

columns generated at each iteration of the Column Generation (Larsen, 2001), affects 

the coordination of the RMP and the ESPPTWCCs, and also the number of iterations.   

 The Branch & Price method (see Chapter 5), although in practice performs better that 

exhaustive search, it has an exponential worst case complexity that is driven by the 

problem size.  

From the above references, it is concluded that the complexity of the  algorithm for the 

MPVRPTW is of exponential worst case complexity. 
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Figure 3.2: Column generation procedure for multi-period problems 

Optimality of Lower Bound 

The Column Generation procedure solves the relaxed multi period routing problem optimally. 

Indeed, the solution procedure to the ESPPTWCC (See Section 3.3) provides optimal 

solutions to the subproblems and, thus, returns the columns (routes) with the minimum 

negative reduced cost. In case an optimal solution to the current RMP has been reached, the 

subproblems will not be able to return columns with negative reduced cost. Thus, there is no 

column (route) that exists in any    that can further improve the lower bound. 

Note that since the column generation procedure operates on the relaxed RMP, integer 

optimality is not guaranteed. In order to obtain the optimal integer solution, the column 

generation procedure is embedded in a Branch and Price framework of Chapter 5. 

 





The MPVRP and Its Applications 

Dept. of Financial & Management Engineering     45 

Chapter 4: ACCELERATING TECHNIQUES FOR THE 

MPVRPTW 

In this Chapter, we propose alternative solution methods for the ESPPTWCC subproblems, 

exploiting the structure of the multi-period setting. As such, we focus on improving the 

solution framework presented in recent work to address different, but related, problems in the 

literature. The techniques presented in this Chapter improve the computation of the lower 

bound. In Chapter 5 we present enhancements regarding the evaluation of the optimal integer 

solution.  

Considering the lower bound, two novel variations of the column generation method are 

developed targeting improved computational times and, thus, solutions of higher quality 

within a certain computational time period. In addition, the classical solution approach of 

Chapter 3 has been implemented in a parallel algorithm. All methods (i.e. the classical 

method, the two variations, as well as the parallel version) are compared in terms of 

computational times.  

The proposed variations explore the solution space of the ESPPTWCC subproblems taking 

advantage of two major characteristics of these problems: 

(a) Flexibility of customers; customers are allowed to be routed in different periods. This may 

lead to routes that are common in different periods 

(b) Subproblem independence; each subproblem provides solutions that do not affect the 

other subproblems.  

In order to illustrate the possible extend of common routes among periods, consider a problem 

with   customers and 2 periods. From these   customers, let the subset (  ) contain all 

customers that can be routed in period 1, and the subset    contain all customers that can be 

routed in period 2. The common customers in these two subsets, which can be routed in both 

periods are noted as           . Additionally let      be the upper bound of the 

number of customers that can be inserted in any route due to feasibility constraints. The 

number of common routes      in the two periods is given by the following equation: 

       
    

 
 

    

   

  
     

           

    

   

  (4.1) 
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Note that Eq. (4.1) does not consider the visiting sequence of customers, thus route [D-1-2-D] 

is the same as [D-2-1-D]. 

Figure 4.1 presents the ratio 
    

  
 of the sets    and      for 1 to 10 customers, taking      to 

be equal to the maximum number of customers per customer set. For example, for        

and         , the ratio is: 

    

  
 

 
     

           
    
   

 
   

         
    
   

 
 

  
        

 
   

 
  

         
 
   

 
 

 
     

Although, ratio         is below 25% in the most of the example cases, the proposed 

accelerating methods succeed in significant computational time reductions.  

 

Figure 4.1: Common routes ratio for different sizes of set    and      

Using the proposed methods we are trying to identify and exploit the common routes that are 

created among different periods, thus eliminating the computational effort needed to generate 

the same routes per period.  

Below, each one of the proposed methods is presented highlighting its differences with the 

classical solution procedure (Chapter 3). 

4.1 UNIFIED SUBPROBLEM METHOD 

This acceleration method replaces the   subproblems of the classical solution method 

(Chapter 3) with a single (multi period) subproblem. The latter provides the necessary 
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columns (routes) to the RMP for all periods of the planning horizon. The idea behind this 

approach is that many of the partial paths, as well as final routes, that are generated during the 

solution of each subproblem (ESPPTWCC) are feasible in more than one periods. Thus, 

instead of solving separate subproblems to generate routes per period, we generate those by 

solving one common subproblem. The single subproblem is artificially constructed to take 

into consideration all customers within the planning horizon. Furthermore, it maintains 

additional information regarding the feasibility of the partial paths (or full routes) in the 

available periods of the planning horizon. 

Note that the reduced cost of Eq. (3.21) includes the shadow price (    which is relevant to 

period  . Since the subproblem is common for all periods, inclusion of the shadow prices (    

of each period   in the objective function is not possible. Thus, these shadow prices are 

eliminated from Eq. (3.21), forming the relaxed version of it:  

        
 

   
 

   

  (4.2) 

Below we discuss all modifications to the standard approach that are proposed in order to 

implement the unified method.  

Modification of Labels 

In order to consider period feasibility, each label     of a partial path   ending at node   is 

modified by the addition of new elements. The new modified 

label                           includes an additional vector     of   binary elements     
 

). 

Each of these elements is equal to 1 if label     is feasible for period  , or 0 otherwise. The 

starting label    is feasible for all periods and, thus,    
      

          . When extending 

label     to a node  , vector      for the new label      is given by the following equation: 

 
   
 

  
       

 
           

    
  

     
    (4.3) 

where    
    

   is the period window of customer  . Thus, each label is associated to the 

periods comprising the period window of each customer. 

Label Feasibility (for partial paths) 

In the Unified method feasibility considers vector    . A label is feasible if Eqs. (3.36) to 

(3.37) hold and, additionally if the corresponding path ( ) can be routed in at least one period. 

That is, if at least one element    
   . If    

         then the associated label     can 
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be eliminated, since it is infeasible for every period and cannot be extended to other feasible 

labels. In that case, label     can be fully discarded.  

Solution Feasibility (for final routes) 

Keeping a label        for a route that reached the ending depot is not as straightforward as in 

the classical solution procedure (Section 3.2), due to the exclusion of the shadow prices      

from the relaxed reduced cost equation. As mentioned above, shadow prices    have not been 

considered in the relaxed reduced cost (         of a label       , which has been accumulated 

up to node    . Note also that based on these shadow prices, a feasible label        with 

negative relaxed reduced cost (        , may not be of negative (actual) reduced cost (         

for every period  . In this case, for each label       ,   different reduced costs are calculated, 

one per period. Each of these reduced costs considers the shadow price    of the relevant 

period  :  

       
 

                  (4.4) 

These reduced costs        
 

 are stored separately. For every     and for each label        

for which        
   , the relevant       

 
 is updated to 0, in order to exclude it from the 

feasible routes of period  .  

Based on the above formulation, each label        with           is discarded immediately, 

since it will remain positive for every     (note that          ). A stricter bound is to 

eliminate labels        for which the following holds (this bound is used in our 

implementation): 

           
 

        (4.5) 

Dominance Criteria 

For the Unified method, in addition to the dominance criteria (presented in Section 3), the 

following should also hold, in order for a label      to dominate another label       ending at 

the same node  : 

   
 

  
    
 

        (4.6) 

That is, labels can be checked for dominance only for the periods for which both labels been 

compared are feasible. Note that Eq. (4.6) should be checked for every period    . That is, 
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for each label pair,   dominance checks are performed. If a label      dominates another label 

      for a period  , then, instead of eliminating      , the element  
    

 
 relevant to period   is 

set to zero. Thus, label       is maintained for all other periods, while it will not be extended 

for period  .  

The following property is significant in the Unified method.  

The dominance criteria of Eq. (3.38) are valid when using the relaxed reduced costs without 

considering the relevant periods and the associated shadow prices. 

Proof: In order for a label      to dominate another label       for period  , Eq. (3.38) should 

hold. That is, 

  
   
 

   
    
 

    
        

         
     

    (4.7) 

Thus, since the shadow prices have been eliminated from the equation, it holds      and, 

therefore the dominance criteria using the relaxed reduced costs are applicable.  

Limited Discrepancy Search (LDS) 

Working with a single subproblem, instead of   independent ones, affects also the 

implementation of LDS. In the classical implementation, for every customer   the   closest 

customers are selected and set as "good neighbors",       for every    . This allows a 

directed search to be implemented over the node graph of the most promising arcs. Since the 

concept of different periods is not present in the Unified method, sets       are defined over 

a different customer set.  

Consider a case in which customers   and   are close but cannot be routed in the same period. 

Since in the Unified strategy all customers are considered jointly, LDS would have included 

customer   into        thus creating an infeasible connection. In order to avoid this,       is 

defined to include only the customers that can be routed in the periods in which customer   is 

feasible, i.e. periods    
    

  .  

For example, consider customers     and   with period windows             and      , 

respectively (see Fig. 4.2). If only one good neighbor is allowed per customer, then in the case 

of     , this allowable neighbor will be selected among customers   and   in the Unified 

strategy. In contrast, in the classical method the good neighbors of customer   will be defined 

per period (i.e. per subproblem) and, thus, for period 2, the good neighbor would be customer 

  and for period 3 it would be customer  . 
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Figure 4.2: Feasible periods per Customer 

Termination Criteria 

We terminate the solution procedure of the Unified method when at least 500 feasible 

columns (routes) with negative reduced cost have been determined for any of the periods. 

Note that at any point during the solution procedure, vector        holds the information 

regarding period feasibility of each label       . The calculation of the number of the final 

negative cost solutions per period is performed using the information in these vectors.  

4.2 CLONING METHOD 

The Cloning method exploits further the customer flexibility intrinsic to this problem, i.e. the 

flexibility of customers to be routed in alternative periods of the planning horizon. Similar 

techniques to the Cloning method have been mentioned by Pirkwieser and Raidl (2009) and 

Mourgaya and Vanderbeck (2007) for the PVRP.  

The key idea is to select and solve only a subset of the subproblems, called hereafter the 

parent subproblems, and transfer a selected feasible part of their solution (e.g. 

columns/routes) to the remaining subproblems (hereafter called the linked subproblems). 

More specifically, consider   subproblems, one for each period. We select        

subproblems to solve. To each parent subproblem      , there is a set of linked subproblems 

     such as                  . Routes generated by each       are considered for 

inclusion in their linked subproblems     . Note that these routes are feasible in terms of time 

windows, capacity, elementarity, etc. but they may contain customers not allowed to be 

included in the linked subproblems. If the solution of a parent subproblem       generates at 

least one feasible column (route) for a subproblem     from the subset     , then the latter is 

considered as solved, i.e. it is not solved separately. These columns are also included in the 

RMP for period    . Thus, the explicit solution of every subproblem is avoided. It is noted, 

however, that in the last iteration of the method, all subproblems will be solved separately in 

order to secure optimality.  
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Finally, note that since only a subset of the subproblems are solved explicitly, different or 

fewer columns are returned for the linked subproblems. Therefore, this method traverses 

through different extreme solutions of the RMP's convex hull as compared to the classical 

approach.  

Significant issues of the Cloning method are discussed below. 

Cloning routes to other subproblems 

Consider two periods,    and    with shadow prices    
 and    

, respectively, where the 

following holds:    
    

  . Note that          . Solving the subproblem for period 

   generates a set of feasible columns (routes) for this period. In order to determine if these 

routes can be included in period     in addition to feasibility their reduced cost should be 

negative. This is checked by recalculating their reduced costs as follows: 

   
      

      
    

    
      

      
  (4.8) 

Only the routes with negative reduced cost (   
    ) and which are feasible in period    are 

maintained and included in the RMP for period   . 

Optimality 

Not solving explicitly all subproblems may lead to suboptimal solutions. There are two main 

considerations that should be investigated concerning optimality:  

Consideration 1: Solution of all subproblems in the final iteration 

The parent subproblems may not generate feasible columns (routes) for all linked 

subproblems. Thus, it is necessary to solve each subproblem explicitly in the final iteration. 

Justification: Continuing the previous example, every generated solution will have reduced 

cost equal to    
      

      
 where     is the relaxed reduced cost (as described in Section 

4.1). Considering only the negative cost solutions and given that    
        

      
; that is, 

the generated routes have relaxed reduced cost (   
  ) lower than    

. However, if the shadow 

price    
 of a linked subproblem is larger (    

    
), then those feasible routes of 

subproblem    with negative-cost in the interval (   
    

  will not be generated by the 

solution of subproblem   . This is illustrated in Fig. 4.3, in which the costs of all columns 

(routes) generated by the subproblem of period    are located in interval  . Routes with costs 

inside interval   will be ignored by this subproblem as non negative. Interval   contains 

routes with positive reduced cost for both periods (subproblems). 
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Figure 4.3: Illustrative example of the Cloning strategy suboptimality 

Thus, in case a parent subproblem does not generate any feasible route for a linked 

subproblem, this linked subproblem should be solved independently in order to guarantee 

optimality. 

It is noted that maintaining all routes with reduced cost less than    
 would have included all 

feasible solutions of period 2, but would also have increased considerably the computational 

time for solving the subproblem of period  .  

Consideration 2: Dominance Criteria Validation 

The dominance criteria are valid for the routes of both the parent and the linked subproblems. 

Thus, (a) additional criteria are not needed, and (b) all feasible routes related to the linked 

subproblems (with reduced cost less than    
, as discussed above) will be generated. 

Justification: Consider two labels,      and      , ending at the same node    and two periods: 

Period    related to the parent subproblem, and period     related to the linked one. Consider 

the following two cases: 

(a) Label      is feasible only in period    and label       is feasible in periods    and    . 

In order for the former label to dominate the latter, Eq. (3.41) should hold, that is 

          . Since label      is feasible only in period   , it includes at least one 

customer that cannot be serviced in period    , thus, Eq. (3.41) is not valid and label 

      will not be discarded. 

(b) Both labels are feasible in periods    and    . In this case, both labels can lead to 

feasible solutions to the linked subproblem. If label       is dominated, then it can be 

discarded since its successor labels will always be dominated by the successors of 

label     . That is also valid if the linked subproblem was solved explicitly.  

Thus, all feasible solutions to a linked subproblem, with reduced cost less than    
, may be 

generated by its parent subproblem. 

C

0
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4.3 IMPLEMENTATION OF PARALLEL SOLUTION 

In this case we solve the   subproblems of the classical solution procedure (Section 3.2) in 

parallel. Consider Fig. 4.4 which presents the sequential and the parallel procedures. In both 

cases, if there are negative-cost columns generated by any of the subproblems, then the RMP 

and the subproblems are solved again.  

For the parallel implementation we used an 8-core Windows XP machine (with 8 matlab 

workers, i.e. parallel processors). Since in our case the number of parallel processors is 

greater than the maximum number of periods (    ), it is possible to distribute all 

subproblems to the independent processors. The minimum computational time to solve the 

subproblems lies between          and    
 
   (of the sequential case), where    is the 

computational time to solve the subproblem of period  . Note that in practice the minimum 

computational times cannot be reached due to computational overheads (such as distributing, 

collecting and merging variables and data to/from the processors). 

 

Figure 4.4: Sequential procedure of the classical column generation and the parallel approaches for the Multi-

period problem. 

4.4 COMPUTATIONAL TECHNIQUES FOR SOLVING THE SUBPROBLEMS 

Vectorization of looping procedures (   vertices) 

In order to (a) fully exploit the strength of the Matlab
®
 software, i.e. to use vectorized 

operations, and (b) avoid its weaknesses, i.e. loop procedures (such as for, while, etc), we 
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used matrix operations to expand each bucket     , i.e. the set of all labels ending at customer 

 . Note that matrices in Matlab
®
 are stored as vectors in continuous memory space and can 

efficiently be managed as vectors.  

A common (but expensive) approach to expand each label in a bucket would be to proceed 

with two embedded for-loops, as shown in Fig. 4.5:  

for each label in B( ) 

for each node   

if feasibility constraints are satisfied (i.e.,    ,   has not been visited, etc) 

 expand label to node   

end 

end 

end 

Figure 4.5: Pseudocode for label extension using looping procedures 

In order to vectorize the label extension code, each set      is represented by a two-

dimensional matrix that includes the information related to all non-processed labels. Every 

row of      corresponds to a label     and contains all information pertinent to this label (Fig. 

4.6). Thus, the matrix of set      is of size    , where   is the number of the labels 

contained in      and   is the number of items that are stored in each label.  

 

Figure 4.6: Set      representation in a 2-D matrix. 

Each label is extended to all other nodes. The newly created labels are kept in a three-

dimensional matrix,     , of size      , where   is the size of the customer set.  
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Figure 4.7 presents an illustrative example of     . Note that each label from set     , when 

extended, creates labels that are stored in the     part (grey area) of     . Infeasible labels 

are not loaded to the related buckets     . Feasibility takes under consideration elementarity, 

time windows, capacity and the unreachable nodes. 

Successors  

A drawback of the vectorized loop procedures is that all matrices should be compatible in size 

in order to perform classical algebraic operations. Therefore, we cannot reduce the size of 

     based on the feasible successor list per each label, in order to achieve faster 

computational times and less memory utilization. A successors list of a label    contains all 

other customers that this label can be extended to, that is, all customers for which vector    is 

equal to zero (i.e. is not unreachable).  

 

 

Figure 4.7: Set      representation in a 2-D matrix. 

 

For example, let      contain only two labels,      and      . Suppose also that      cannot be 

extended to customer   and       cannot be extended to customers    and     (for feasibility 

reasons). Since customer   is unreachable (note that the information is kept in the unreachable 

nodes vector      ) from label       there is no need to extend label      to customer  . Thus, 

the dimension   of      could be reduced by 1. Following the same argument for label      , 
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  could be reduced by 2. However, this would result in a conflict regarding the size of     . 

To address this issue, a different approach is used in order to create a common successor list 

for all labels in each     . 

Based on the information maintained in the vector of unreachable nodes, if a node   is 

unreachable for all labels of     , then node   can be discarded from the label extension 

process. As a result, dimension   is reduced by one. Considering all common unreachable 

nodes of     , size   is reduced accordingly. This operation leads to less memory utilization 

and faster matrix operations. 

Dominance Criteria 

Newly created labels are checked using dominance criteria in a two-stage procedure. Consider 

a newly created label     in     . This is compared against (a) the remaining non-processed 

labels in     , and (b) the processed labels in     . A circular process is used as follows: 

Initially a label     is checked if it dominates, or is dominated by, other labels within bucket 

    . If label     is not dominated by any label within bucket     , it is checked if it 

dominates, or is dominated by, labels within the bucket P   .  

In this process a new label can eliminate labels from sets      and     , and can also be 

eliminated by the labels in these sets. When a non-processed label     is eliminated by a label 

within     , then label     is not extended further, contributing to computational time 

reduction. If every label was only checked with the non-processed labels (i.e. set     ) at 

every iteration, then numerous labels would have been extended that are not needed. 

Maintaining sets      eliminates these labels. Eliminating labels from     , using either the 

labels within      or within P      minimizes the number of labels to be extended and, 

therefore, reduces computational time of the dominance procedure. 

Matrix operations were also used for the implementation of the dominance criteria. In these 

operations, it is possible to reduce dimension   of      or P   , as in the label extension 

process (see vectorization of loop procedures), by eliminating the common unreachable nodes 

of all labels within      (or P   ). Unfortunately, the frequent iterative call of the dominance 

procedure may lead to the opposite results. The calculation of the common unreachable 

nodes, in each iteration, consumes more computational time than the time savings coming 

from the computational operations with reduced matrix sizes. In our implementation, these 

buckets are reduced based only on the unreachable nodes that stem from the preprocessing 

phase (See Chapter 3.3). 
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4.5 TEST INSTANCES AND BENCHMARK RESULTS 

The aforementioned methods were tested and compared to the classical column generation 

method. For this purpose, a number of original test instances for the MPVRP were generated 

and are described below. In the following, the results of each method are labeled as follows: 

Classical column generation procedure (FULL), Unified method (UNI), Cloning method 

(CLONE), and Parallel method (PARA). 

4.5.1 TEST INSTANCES 

The Solomon Benchmarks 

The original test instances for the MPVRP were created based on the Solomon Benchmarks. 

The latter comprise 6 problem sets (R1, C1, RC1, R2, C2, RC2), with each letter representing 

a different geographical distribution of customers (R: random, C: Clustered, RC: mixed). 

Each problem set comprises multiple problem instances; for example, the R1, C1 and RC1 

problem sets comprise 12, 9 and 8 test instances, respectively. Furthermore, in each problem 

set, significant characteristics of the test instances, i.e. the number of clients (100), the 

customer coordinates, the demand, and the service times are identical. The difference between 

the instances in a set is the “tightness” of the customer time windows. For the R1 set, Figures 

4.8 and 4.9 illustrate the different time windows per test instance.  
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Figure 4.8: Time windows of R101 – R106 instances 

 

 

Figure 4.9: Time windows of the R107 – R112 instances 
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The example above shows that the various instances correspond to different time window 

patterns, ranging from narrow to wide time windows for most customers. In all cases, 

however, there are customers with time windows that extend to almost the entire time period. 

Instances R101 to R104 contain customers with narrow time windows, mixed with customers 

with wide time windows in different proportions. Instances R105 to R108 present the same 

pattern but with larger time windows. Instances R109 to R111 include customers with almost 

equal time windows. R112 presents a special case of large time windows. In this case, the 

majority of the time windows are placed in the middle of the available time period.  

The average length of the time windows of all customers included in each problem instance of 

sets R1, C1 and RC1 are presented in Table 4.1, both in absolute units and as a percentage 

(%) of the maximum allowable time period.  

Table 4.1: Average time windows per test instance (maximum allowable time: 230, 1236 and 240 for the R1, C1 

and RC1 instances, respectively) 

Probl. 
Average  

TW/Cust. 
% of  

Tmax 

 
Probl. 

Average 
TW/Cust. 

% of 
Tmax 

 
Probl. 

Average 
TW/Cust. 

% of 
Tmax 

R101 10,00 4%  C101 60,76 5%  RC101 30,00 12% 

R102 57,39 25%  C102 325,69 26%  RC102 71.08 30% 

R103 102,99 45%  C103 588,49 48%  RC103 109.80 45% 

R104 148,31 64%  C104 852,94 69%  RC104 156.54 65% 

R105 30,00 13%  C105 121,61 10%  RC105 56.38 23% 

R106 72,39 31%  C106 156,15 13%  RC106 60.00 25% 

R107 112,99 49%  C107 180,00 15%  RC107 88.10 37% 

R108 153,31 67%  C108 243,28 20%  RC108 111.62 47% 

R109 58,89 26%  C109 360,00 29%     

R110 86,50 38%         

R111 93,10 40%         

R112 117,64 51%         

Generation of MPVRP benchmarks  

Multi-period benchmark test instances with 50 customers were created based on the R1, C1 

and RC1 Solomon benchmarks. In order to transform the latter to multi-period problems, we 

have introduced a period-window for each customer as follows: 

 The planning horizon is set to five (5) consecutive periods 

 For each Solomon instance, the first 50 customers were selected and separated into 5 

groups (10 customers per group in a sequential manner). Each of these groups was 

assigned a different period-window.  
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 Nine period-window patterns were developed in order to simulate different multi-period 

situations. Thus, for each Solomon test instance, nine different instances for the MPVRP 

were generated. 

Table 4.2 presents the period windows per pattern for each group of ten customers. 

Table 4.2: Period-window patterns 

  Pattern 

Group Customers 1 2 3 4 5 6 7 8 9 

1 1 to 10                                                       
2 11 to 20                                                       
3 21 to 30                                                       
4 31 to 40                                                       
5 41 to 50                                                       

Figure 4.10 illustrates the differences among the nine patterns. In this Figure, the grey areas 

represent the period windows per pattern and per customer group. 
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Figure 4.10: Period window patterns 

These patterns represent different degrees of customers' flexibility. Patterns 1 and 9 can be 

considered as extreme cases for the multi-period problem: Pattern 1 allows no flexibility (the 
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period window length equals one period), while Pattern 5 allows full flexibility (period 

window length covers all periods). Thus,  

 Pattern 1 can be solved by five independent VRPTWs, and  

 Pattern 9 can be solved either using one single subproblem (in this case the   

subproblems are identical), or by solving a VRPTW with available vehicles equal to 

the sum of the vehicles per period [i.e. solving a VRPTW with           ]. In this 

way, the final solution will result in a number of routes which can be distributed 

arbitrarily to periods, since all customers are feasible to all periods. Of course, none of 

the other patterns can be directly solved using the VRPTW formulation. 

Taking into account the nine MVPVRP instances for each Solomon instance, 261 multi-

period test instances are defined as follows: 

 From the R1 set: 12 test instances x 9 patterns = 108 MPVRP instances 

 From the C1 set: 9 test instances x 9 patterns = 81 MPVRP instances 

 From the RC1 set: 8 ten instances x 9 patterns = 72 MPVRP instances 

All solution methods were applied to each of the 261 instances to obtain the optimal solution 

of the relaxed problem (lower bound). For each problem, the optimal solution was found by 

each method spending, of course, different computational effort (time). Thus, the analysis of 

the results concerns the efficiency (in computational time) of the alternative solution methods 

with respect to the following characteristics: (a) customer geographical distribution, (b) time 

window duration, and (c) period window pattern.  

4.5.2 INITIAL SOLUTION 

Although an initial feasible solution is not necessary in the set-covering formulation, we 

provide one here, since it (a) helps the column generation procedure to converge faster, and 

(b) provides initial values of the shadow prices that are closer to their final optimal values. 

Note that in the case of unlimited fleet, a trivial initial solution can be used (e.g. one route per 

customer). In our case of limited number of vehicles, however, a solution needs to be 

constructed to respect the maximum number of vehicles. This initial feasible solution was 

generated based on the classical insertion algorithm suitably enhanced to accommodate the 

periodic characteristics of our problem, i.e. 
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1. All customers are sorted based on their period flexibility; i.e. customers with period 

windows that expire sooner are placed on top of the list. Customers with the same 

expiration period are sorted in descending order based on their distance from the depot  

2. For every customer   a single visit route (          is defined along with its cost 

   .  

3. Starting with the most urgent and furthest from depot customer   (that is the customer on 

top of the list), the first actual route     is defined for the first feasible period in the 

planning horizon (note that the customers are sorted based on their period window). The 

next customer say ( ) in the list is selected and entered into route   between the customers 

that define arc       with the lowest cost increase, that is: 

   
       

                       
       

                          (4.9) 

4. When a route can no longer accommodate a customer    from the list, due to the time 

constraint, a new single visit route      is created using step (3) with the remaining 

unassigned customers  

5. This process continues until the maximum number of available vehicles for the selected 

period has been reached, or all customers have been assigned to routes. If there are 

unassigned customers that cannot be served within the next periods, the procedure 

terminates without a feasible initial solution. Otherwise, 

6. The next period is selected. Steps (3) to (5) are repeated for the selected period 

7. The process terminates when either all customers have been assigned to periods and 

routes, or when there are unassigned customers that cannot be served (infeasible 

solution). In the latter case the operation terminates with no solution. 

4.5.3 TEST RESULTS  

The instances were solved using an 8-core Windows-XP machine. As already mentioned, the 

Parallel method used the default Matlab
®

 parallel procedure (with 8 matlab workers, i.e. 

parallel processors).  

With respect to the early termination criterion of the subproblems (Section 3.3), the maximum 

number of negative cost columns to be generated by each subproblem was set equal to 500. 

Analytical results are presented in Appendix A. Note that in the Unified method, termination 

occurs when at least 500 feasible columns have been found for any period.  
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In the Cloning method, the subproblem of the first period is solved initially. If it generates 

feasible columns to the subproblems of any following period, then these subproblems are not 

solved explicitly. In case there are no feasible columns for a period, then the subproblem of 

this period is solved and the generated columns are considered for possible linked 

subproblems. For every subproblem of period  , the subproblems of periods         are 

considered as the linked subproblems.  

In LDS: Parameter    which defines the good neighbors was set equal to 10. Furthermore, the 

cumulative penalty (       ) was set equal to           , where      is an upper bound 

on the maximum number of customers that can serviced by a route.      is equal to 

        
      

  , where (Feillet et al., 2005): 

     
  is the maximum number of customers that can be served by a vehicle without 

violating the vehicle capacity constraint. Defining as    every subset of  :  

    
           

  
    

    

    

     
  is given by a similar formula with respect to the service time of each customer.  

 Factor Analysis I: Time Windows, Period Window Patterns, Methods 

Tests were conducted in order to evaluate the efficiency of each alternative solution method 

with respect to (a) the size of the time windows and (b) the different period window patterns. 

The test instances were separated into three categories based on the average time window 

length (see Table 4.1): Small (10% to 30% of the available time), medium (30% to 50%) and 

large (50% to 70%). 

The results for each TW category (small, medium or large) are presented in Fig. 4.11. This 

figure presents, for each method, the cumulative computational time for all problems in a TW 

category. Note that, this cumulative time value refers to all problem sets (R1, C1, RC1) and 

all patterns.  
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Figure 4.11: Cumulative computational time per method and TW category 

As expected, instances with larger time windows result in increased computational times. In 

addition to this obvious observation, and as shown in Fig. 4.12, for all three TW categories 

the methods present similar behavior. That is: 

 The classical solution method has the highest cumulative computational time among 

all solution methods  

 As far as the remaining three methods, they succeed in reducing computational time 

by 36%, 40% and 43% on average, compared to the classical method, for the small, 

medium and large TW categories, respectively  

 The Cloning method appears to be the most efficient method for small and medium 

time windows and is slightly outperformed by the Unified method for the large time 

window instances. The cloning method exhibits 46% time reduction on average in all 

three TW categories. 

 The Unified method is the least efficient among the three alternatives for small and 

medium time windows. However, it appears to be the most efficient for large time 

windows, resulting in a time reduction of 51% compared to the classical approach. 

Note that patterns with wider period windows are more computationally expensive, and this 

effect may not be apparent in the results of Fig. 4.11. To further investigate this, Table 4.3 and 

Fig. 4.12 present results on total computational time per solution method and period-window 

pattern. Every percentage value in the Table and the Figure represents the time increase or 

decrease of the relevant solution method compared to the classical solution approach. In Table 

4.3, the computational time of the classical approach is also presented per pattern. Again, the 

instances of all problem sets (R1, C1, RC1) have been considered jointly.  
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Table 4.3: Comparison of computational time of strategies (% difference from the FULL method) 

  
Difference (%) 

Pattern FULL (sec) CLONE UNI PARA 

1 122 -3% 120% 12% 

2 647 -13% 106% -22% 

3 1.495 -27% 75% -27% 

4 2.253 -23% 28% -27% 

5 2.829 21% 44% -24% 

6 7.938 -29% -27% -34% 

7 12.167 -52% -58% -37% 

8 12.285 -53% -60% -38% 

9 14.725 -67% -74% -36% 

Total/Average 54.460 -46% -44% -35% 

Considering the computational times over all patterns, the Cloning method seems more 

efficient with 46% savings compared to 35% savings of the Parallel method. Although the 

Unified method seems efficient enough (44% reduction on average), it presents the most 

diverse behavior regarding the period window patterns: It presents the least efficient results 

for narrow period windows (with even 2 times greater computational time for pattern 1 

compared to the classical method); however, for the larger period window patterns it 

outperforms significantly all other alternatives, succeeding in a 74% reduction for pattern 9. 

This behavior can be explained by the fact that in the initial patterns, customer flexibility is 

restricted. Thus, extended labels are usually associated with a limited number of periods; as a 

result, a large number of labels have to be processed for the same subproblem, increasing 

computational complexity.  

 

Figure 4.12: Computational time (% difference from the classical method) 
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Factor Analysis II: Customer Patterns, Period Window Patterns, Methods 

Table 4.4 presents (a) the number of the solved instances over all the multi-period instances 

per problem sets, and (b) the cumulative computational times per problem set and solution 

method. Fig. 4.13 illustrates these results. All three alternative methods succeed in reducing 

the cumulative time across instances of the same problem set, compared to the classical 

solution procedure. The Cloning method presents the highest overall reduction in the 

cumulative computational time (46%) in comparison to the classical approach. For the R1 and 

C1 instances, the cloning method remains the best alternative with time savings of 49% and 

48% respectively. For the RC1 instances, the Unified method appears to be the most efficient, 

resulting to the highest time savings (49%). 

Table 4.4: Computational times per problem set (hrs) 

Problem Set 
Solved 

Instances 
FULL CLONE UNI PARA 

R1 105 7,76 3,99 4,22 5,36 

C1 73 1,47 0,77 1,29 0,85 

RC1 71 5,90 3,34 3,04 3,64 

Total 249 15,13 8,10 8,55 9,85 

 

 

Figure 4.13: Cumulative computational times per problem set and method (hrs) 

Figure 4.14 presents the normalized computational times per problem set (e.g. R1, C1 and 
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method (100%). As discussed above, the Cloning method provides the largest time savings 

consistently, although the Unified method is slightly better in the RC1 instances. 

 

Figure 4.14: Normalized cumulative computational times of alternative methods with respect to the classical 

approach (100%) 

The time savings of all three alternative methods are further analyzed below, based on Figs. 

4.15 to 4.17. Again, the computational times of the proposed alternative methods have been 

normalized with respect to those of the classical solution procedure (100% for each pattern).  

 

Figure 4.15: Cumulative computational times per pattern for the R1 Instances 
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In the R1 instances (Fig. 4.15), the Parallel and the Cloning methods appear most efficient. 

The Parallel method is more efficient in the narrow period windows, while the Cloning 

method outperforms the former in wide period windows. Furthermore, the Unified method 

outperforms all other alternative methods for the final three patterns with wider period 

windows.  

 

Figure 4.16: Cumulative computational times per pattern for the C1 Instances 

For the C1 instances (Fig. 4.16), the Parallel method appears to be the most efficient. 

Although the Cloning method outperforms the classical approach, its behavior is not as 

consistent (in comparison to the Parallel one). The Unified method presents the least efficient 

results among the three methods; even the classical method outperforms the Unified method 

for the majority of the period window patterns.  

For the RC1 instances (Fig. 4.17), the Parallel method presents the most consistent behavior 

compared to the classical method. On the other hand, the Cloning method, while for some 

narrow period-window patterns, outperforms the Parallel method, it presents the least efficient 

results for the moderate period window instances (pattern 5 and 6). Again, the Unified method 

presents the least efficient results among all solution methods (including the classical 

approach) for narrow period windows, while outperforms all methods for wider period 

windows.  
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Figure 4.17: Cumulative computational times per pattern for the RC1 Instances 

Summary of conclusions from the analysis 

Table 4.5 summarizes the results obtained by the analysis. The Table presents the best 

alternative method with respect to the various problem attributes (geographical distribution of 

customers, time windows interval and period window pattern). Period window patterns were 

categorized in three sets: Narrow (patterns 1 to 3), medium (patterns 4 to 6) and wide 

(patterns 7 to 9). 

Table 4.5: Comparison of alternative methods per factor 

  Method 

  CLONE UNI PARA 

Problem 

Set 

R1    

C1    

RC1    

Time 

Window 

Category 

Narrow    

Medium    

Wide    

Period 

Window 

Pattern 

Narrow (1 to 3)    

Medium (4 to 6)    

Wide (7 to 9)    

The Table indicates that the Cloning method is the most efficient in uniformly distributed 

(R1) and clustered (C1) problem sets, and in small and medium time windows. The Unified 

approach performs better in the mixed customer distribution instances (RC1), which are the 

hardest instances to be solved, and in instances with wide time windows and period windows. 

Finally, the Parallel implementation of the classical approach outperforms the other 
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alternatives in narrow and medium period windows, where the customer flexibility is limited. 

More specifically:  

 The Cloning method: 

o Appears to be the most efficient method as far as the total cumulative 

computational time is concerned (see Table 4.3).  

o Is efficient in R1 and C1 sets with narrow and medium period windows, 

respectively. Although, specifically in C1 sets, it presents an inconsistent behavior 

as far as the different period window patterns are concerned ( see Fig. 4.16) 

o In RC1 sets the method is outperformed by the Unified method and also presents 

an inconsistent behavior regarding the period window patterns (Fig. 4.17).  

o Finally, the Cloning method appears to be efficient in wide period windows 

regardless the geographical distribution of the customers, and ranks among the two 

most efficient methods (along with the Unified method). 

 The Unified method: 

o Presents the least efficient results in narrow period windows for all three problems 

sets. 

o In patterns with wide period windows, and especially in R1 and RC1 problem sets, 

the Unified method outperforms all other methods. 

o Specifically, in C1 instances, it is the least efficient among all methods, including 

the classical approach, regardless the period window pattern.  

 The Parallel method: 

o Appears to be efficient in the narrow period windows, in which the most routes are 

different per period. Solving all subproblems simultaneously speeds up 

significantly the classical approach.  

o In patterns with wide period windows, it is less efficient and is outperformed by 

the other alternative methods. This is because common routes are exploited and 

duplicate ones are created. Note also that the Parallel method follows similar 

behavior (although more efficient) to the classical approach in all three problem 

sets. 
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Chapter 5: BRANCH AND PRICE: OBTAINING INTEGER 

SOLUTIONS 

In order to obtain integer solutions for the Multi-Period Vehicle Routing Problem with Time 

Windows (MPVRPTW), we embedded the Column Generation approaches described in 

Chapters 3 and 4 within a branch-and-price (B&P) scheme. B&P divides the feasible solution 

space into subspaces, by avoiding selected fractional values of the problem variables (Lawler 

and Wood, 1966; Lee and Mitchell, 2001). The solution space is repeatedly divided until 

integer solutions are obtained, in a similar way to the classical branch-and-bound (B&B) 

procedure.  

Additionally B&P allows the generation of new proposed columns, i.e. routes, by solving the 

subproblems at each node of the B&P tree. That is the fundamental distinction between B&P 

and the classical branch-and-bound (B&B) procedure. Thus, the term "price" refers to the 

pricing procedure that generates new columns (routes). 

In this Chapter, we first discuss existing B&P methods initially proposed for the VRPTW 

(Section 5.1). Section 5.2 proposes ways to adapt the existing VRPTW B&P methods to the 

MPVRPTW. Section 5.3 proposes a heuristic technique to explore the B&P tree in an 

efficient manner and obtain near optimal solutions with significant computational savings. 

Finally, in Section 5.4 we test all aforementioned methods using the testbed developed and 

presented in Chapter 4. 

5.1 THE GENERIC BRANCH AND PRICE FOR THE VRPTW 

Figure 5.1 describes the generic B&P procedure. Following the classic B&B procedure, B&P 

procedure starts with obtaining the overall Lower Bound (  ), as described in Chapter 3 and 

4. At this initial stage, the Global Upper Bound (GUB), i.e. the best known integer solution, is 

set equal to a large number ( ) or equal to the cost of any initial feasible integer solution (e.g. 

obtained by a heuristic). If the    corresponds to an integer solution, the algorithm terminates 

and the    is the optimal integer solution. In case the solution is not integer, the Branching 

Policy is triggered. Given a fractional solution, the Branching Policy divides the feasible 

solution space into subspaces, by avoiding fractional values of the selected problem variables. 

Each subspace is explored (i.e. solved using the column generation method) independently 
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and can lead to additional solution space division, in cases where fractional solutions are 

obtained. Each one of these subspaces represents a new node of the B&P tree structure. Each 

B&P node that is explored is deleted and the new nodes that are created are added to a list of 

the remaining unexplored nodes (      ). In case a better integer solution (than the integer 

solution found so far) the GUB is updated to these integer solution. Continuing the method, 

another policy (Node Selection) is triggered in order to select the next node, among the 

available unexplored nodes, to be explored. The algorithm terminates when no more 

unexplored nodes exist or when the LB of all remaining nodes is larger than the GUB 

(pruning of B&P nodes). Note that every B&P node is characterized by its predecessor (father 

node) LB. Based on that, a node with LB larger than the current GUB cannot further improve 

the solution, since its solution will always be larger than the predecessors' node LB. 

 

Figure 5.1: Branch and Price procedure 

Branching Policies 

Branching policy is used when a fractional LB solution is found for the current B&P node. 

The policy is used to select the variable to partition the solution space. Some commonly used 
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2005): 
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Branching on the Number of Vehicles 

This was proposed initially by Desrochers et al. (1992). Given a solution with a fractional 

number of vehicles equal to  , the solution space is divided into two subspaces.  

Let              be the cumulative vehicle flow from arc       in the final fractional 

solution; that is the number of vehicles passing through arc      .     provided by the routes 

in the final fractional solution of the RMP. Based on    , two independent subspaces are 

created. The first is defined by an additional constraint,            , while the second by 

           . Note that these constraints can be easily incorporated in the RMP 

formulation, and define two new nodes. 

Although an integer number of vehicles may be obtained, using this policy, the actual LB 

solution may still be fractional, with respect to the flow variables. For that reason, this 

strategy is generally used together with other strategies.  

Branching on Flow Variables 

Given a solution with a fractional variable     , the first subspace is defined by the additional 

constraint,       , while the second is defined by,       . Thus, the first constraint forces 

vehicle   to pass through arc      , while the latter forbids it.  

Since in the classical VRPTW, vehicles are considered to be identical, this branching cannot 

be incorporated in the B&P procedure easily. That is, because branching on a specific vehicle 

  is not possible since all vehicles are dealt through the same common subproblem and the 

vehicles are not independently identified in the master problem. In order to incorporate it, one 

subproblem per vehicle needs be solved. Due to this reason, branching on single flow 

variables is not widely used.  

Branching on Sums of the Flow Variables 

This branching strategy was proposed by Halse (1992) and Desrochers et al. (1992). Given a 

fractional solution of a B&P node, the sum of the vehicle flows                is 

calculated. Selecting a fractional    , the first subspace is defined by constraining arc       to 

be excluded by the solution, while the other subspace         constrains arc       to be part 

of the solution.  

A major advantage of this strategy is that it can be easily implemented, without adding the 

new constraints explicitly to the RMP formulation, but instead by modifying the cost matrix 
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of the subproblem. Considering the first subspace, (a) all routes containing customers   and   

not in a consecutive manner are discarded from the current RMP of the father node, and (b) 

all cost coefficients          and           are set to  . These two modifications will 

allow connections only from customer   to customer   to be created. In the second subspace, 

the routes containing the arc       are discarded, and only the coefficient     is set to  . 

Selection of Branching Variable  

Regardless of the branching policy, a decision needs to be taken regarding the most promising 

variable to branch on. Simple heuristics are typically used in order to select the branching 

variable among the set of fractional variables. The most common approach is to branch on the 

variable with the most fractional value (that is the value  , for which (       is closest to 

0.5). 

Node Selection Policy 

The node selection policy consists of the method to search and solve the known nodes of the 

branch-and-price tree, that is the set of the known fractional solutions. There are several 

policies, the majority of which mimics tree search methods, such as depth-first, best-first, 

width-first and depth first with backtracking (see Larsen, 2001; Lee and Mitchell, 2001). One 

of the most widely-used approaches is the Best-First approach. In a set of unexplored branch-

and-bound nodes, every node has been assigned with a metric, which is either the lower 

bound of the CG solution corresponding to the parent node, or the lower bound corresponding 

to the node itself. In the latter case, tighter bounds are assigned to the nodes and if a good 

GUB value exists, many nodes may be discarded prior to expansion. On the other hand, 

calculation of these lower bounds consumes considerable computational time. Based on this 

metric, the node with the lowest LB is selected to be explored next.  

5.2 BRANCH AND PRICE FOR THE MULTI-PERIOD ROUTING PROBLEM 

Branching techniques 

The branching and node selection policies proposed for the VRPTW (Section 5.1) are 

modified properly in order to manage the additional degree-of-freedom introduced by the 

flexibility of serving customers in multiple, adjacent, periods. Note that, as a consequence, all 

decision variables (       of the original formulation of the problem, contain an additional 

subscript (   denoting the associated period to the decision variable.  
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One of the most widely used branching methods for the VRPTW is the "branching on the sum 

of the flow variables over vehicles". This method is used either on its own, or together with 

other branching methods (see Section 5.1). In the remainder we discuss our adaptation of the 

above method for solving the MPVRPTW. 

Consider a fractional lower bound and let                   be the cumulative vehicle 

flow of arc       in period  , and                be the cumulative vehicle flow of arc 

      over all periods. We select to branch on the most fractional     . In order to implement 

this, one can select either of two branching methods for the B&P tree (see Fig. 5.1):  

 2br method: Two B&P nodes are created: The first concerns the subspace defined by 

the additional constraint       , and does not allow arc       to exist within period   

in any of the solutions within the defined subspace; however, this arc is allowed to 

exist in all other periods. The second B&P node is defined by       , which forces 

arc       to be part of the solution within period  .  

     method: This method creates at least 2 B&P nodes. The actual number of nodes 

to be created depends on the branching arc       and the feasibility of customers   and 

  to be routed within the said periods. The first     B&P nodes are defined by      

   one per each period  , respectively. Each node forces arc       to be part of the 

solution within the relevant period  . Note that in cases in which customers   and   are 

not both feasible within a period, arc       is also not feasible. Thus, the related 

subspace is not explored, and, therefore, the B&P node that corresponds to this period 

is not created. An additional B&P node is generated for the subspace in which     

 , and arc       does not participate in any solution. In this B&P node, arc       is 

excluded from all periods of the planning horizon. 

Figure 5.1 illustrates the two branching methods using a sample problem with 3 periods. In 

this example, it is assumed that customers   and   are feasible in all three periods, and       is 

the only arc with fractional flow within period    . Given the initial lower bound (LB), the 

2br method will divide the solution space three times, resulting in 6 subspaces; that is, 

       and       , with the other subspaces created in a similar way in case fractional 

solutions with respect to arc       continue to appear within period 2 (       and        ) 

and 3 (       and       ). On the other hand, the     method will result directly in 4 

subspaces. Three subspaces are defined by               , and one is defined by       
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(i.e.                 ). Note that in Fig. 5.2, the highlighted subspaces are identical, 

since               .  

 

Figure 5.2: Multi period Branch and Price techniques 

The motivation of examining both methods is as follows: Considering a full exploration of 

both trees, the     method is expected to be more efficient than the 2br method, since the 

former does not explore certain subspaces (e.g.        and       ). For example, in the 

2br method and for instances with wide period windows, the branch tree node        does 

not define a "strong" partition of the solution space, since fractional variables are still allowed 

for periods other that period  . That is, a fractional solution which we branched upon may be 

replicated by traversing arc       within other periods, resulting to similar fractional solutions.  

On the other hand, if an integer solution has been found at one of the nodes of the     

method, its successors will not be created. For example, if an integer solution is obtained in 

the subspace defined by       , the four successor subspaces will not be created by the     

method. In this case, 2br is expected to be faster. 

Implementation Issues 

Both branching methods can be implemented without modifying/adding additional constraints 

to the RMP, or the subproblems. This can be achieved by: (a) Modifying the time matrix of 

each period appropriately in order to avoid creating new routes that contain the "forbidden" 

arcs (note that for each period a separate time and cost from/to matrix is maintained, see 

LB

ij1 ij1

ij2 ij2

ij3 ij3

LB

ij1 ijij2 ij3

2br technique P+1 technique

ijp

ijp



The MPVRP and Its Applications 

Dept. of Financial & Management Engineering     77 

Section 3.2), and (b) removing the existing routes within the RMP that violate the additional 

constraints of the relevant B&P node. 

Let      be the travel time of traversing arc       in period  ,    be the set of feasible 

customers within period  , and   be the planning horizon (periods      ).  

 Considering subspace (      ), (a) all routes within the RMP that is relevant to 

period   and contain arc       are discarded (removed from the RMP of the said B&P 

node), and (b) the coefficient      is set to  . Thus, traversing arc       is not allowed 

in period  . 

 Considering subspace (      ), we disregard (remove from the RMP of the said 

B&P node) the following (a) all routes within period   that contain either customer (  

or  ), or both customers not in a consecutive manner (i.e. arc       does not exist), and 

(b) all routes of the other periods that contain either customer   or  . Additionally, all 

travel time coefficients       and      ,              are set to  , except from the 

coefficient      of period  . Thus, traversing arc       will always be part of the 

solution within period  . 

 Especially in the     method, and for the subspace defined by constraint      , 

all routes containing arc       within all periods are discarded, and the coefficients      

for every period   are set to  . Thus, traversing arc       is not allowed in any period.  

The special case of Unreachable Nodes in the ESPPTWCC 

In our implementation, we utilize the concept of unreachable nodes proposed by Feillet et al. 

(2005). In this concept, every label contains a binary vector with one element per customer. 

The unreachable nodes, i.e. the already visited nodes, as well as the "non-feasible to be 

visited" nodes due to constraint limitations, are set equal to 1 within this vector. Thus, a label 

can be extended only to nodes that are not included in its related set of unreachable nodes.  

Note, however, when branching is implemented with the aforementioned modifications (i.e. 

setting values      to  ), the triangular inequality may no longer be valid. For example, 

consider a case with 3 customers in which the only fractional solution is related to arc       

and, thus, branching on this arc is performed. Note that the period subscript has been dropped, 

since it is not relevant in this example. Considering the subspace defined by the additional 

constraint      , all    ,     are set to   while     remains as is. Given partial path 

       , the associated unreachable vector     is equal to          (Each unreachable vector 
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    contains all customers excluding the depot and thus         
     

     
  , where    

    if 

customer   either has already been visited or cannot be visited due to resource limitations). 

That is, path   will be extended to node 3 only, and a new partial path            will be 

defined. 

Up to this point the whole procedure has been implemented properly; that is, arc       is part 

of the generated paths. However, since the associated label      inherits the unreachable 

vector from its predecessor, customer   cannot be visited (note that    
    and, thus, 

    
    ). In such case, partial path    will be prohibited to be extended to other remaining 

nodes (e.g. node 4); this, of course, precludes feasible solution regions and may lead to 

suboptimalities.  

In order to address this situation, the time matrices are not modified. Instead, we store the 

information of the branching decisions (i.e. which arcs to prohibit from traversing in certain 

periods) in a separate binary matrix     for each period  , with elements: 

       
                                    
          

    
(5.1) 

Thus, when solving a subproblem, a label     is allowed to be extended to another label      

only if the relevant       equals to one; otherwise the extension is not performed. 

5.3 HEURISTIC PRUNING FOR BRANCH AND PRICE 

Although B&P is not exhaustive (but exact), it may be excessively expensive, or, even, 

computationally intractable. For example, even in cases in which the optimal solution has 

been obtained, in order to prove optimality the method still needs to solve a subset of the 

remaining B&P nodes (e.g. those with lower bound lower than the integer solution) (see 

Section 5.3).  

To obtain efficient integer solutions faster, we propose a heuristic pruning technique which 

discards non-promising nodes (subspaces) of the B&P tree. The goal is to solve less B&P 

nodes, while obtaining efficient integer solutions. Note that for these solutions optimality 

cannot be proven. 

Recall that when solving a node (  ) of the     tree we obtain a lower bound    . 

Additionally, an upper bound of the integer solution of node   may be calculated (denoted as 

   ) by solving a Branch and Bound problem, using only the columns (routes) that exist in 
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the current RMP (    
 

   ). The latter may be calculated using the default integer 

programming methods of the CPLEX environment. Given the current best known integer 

solution up to that point (i.e. Integer Upper Bound    ), the following metric for each node 

( ) may be calculated: 

   
       

       
 (5.2) 

If     is larger or equal to               , the corresponding B&P node is discarded by 

the fathoming rules of the classic B&P procedure. That is, an improvement on     is not 

feasible, and node   is discarded without creating any child nodes. Note that this procedure is 

maintained within the proposed heuristic. 

If both     and     are lower than the current     (i.e.     ), then a new better integer 

solution has been obtained (   ) and is set as the new    . In this case, node   will always be 

further explored, since an improvement on     is possible.  

The proposed heuristic pruning technique is triggered when       . In such cases, 

            and the value of    provides an insight on the current quality of the B&P 

node, i.e. its ability to improve the current best integer solution (   ). Note that in the exact 

B&P approach, node   is explored further (not discarded). In our proposed heuristic we select 

to discard node ( ) when the potential for improvement of the best integer solution up to that 

point (     appears to be limited  The potential for improvement of     is assessed by the 

relative distance between     and     as compared to the distance between      and      

The greater the relative distance is, the greater the potential for improvement appears to be. 

Based on this argument, node   is discarded when this relative distance is low, or, 

equivalently,    is lower than a threshold value        . 

This argument is illustrated in Figure 5.2. Given node (   and its corresponding     and    , 

if the current best integer solution (   ) is relatively closer to    , then the exploration of 

node   is not expected to improve    (the current best integer solution) significantly, since 

the interval           is narrow. Additionally, even if there is a better integer solution 

within this interval, the cost improvement will be limited (Fig. 5.3a). Conversely, if     is 

close to     then the exploration of node   provides a more significant potential for obtaining 

a better integer solution than the current     (Fig. 5.3b). 
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Figure 5.3: Example of the heuristic pruning technique 

In the extreme case of    , all B&P nodes will be explored, resulting in an exact B&P 

procedure. In the other extreme case        all nodes are discarded and, thus, Branch and 

Bound is performed only on the columns obtained by the solution of the global lower bound 

(Chapter 3.2). The latter case       has been utilized by Tricoire (2006). 

5.4 BRANCH AND PRICE TESTING 

The parameters used and choices made in our implementation are as follows: 

 Exploration of the B&P nodes is performed using a best-first node selection policy, 

that is, the node with the lowest lower bound is explored next (note that each node is 

characterized by the lower bound of their parent node) 

 All column generation parameters remain the same as in Section 3.3.5 

 The Cloning method was utilized for obtaining the lower bound of each instance 

(except in 5.4.3 where both the classical column generation and the Cloning method 

are compared) 

 When branching on the sum of flow variables and periods, and if more than two arcs 

are competing for branching, then we select the one that is feasible in less periods; this 

way, fewer B&P nodes need to be explored 

 Each test instance is terminated when the computational time exceeds a time limit (set 

to 1 hr in our implementation).  

In Subsection 5.4.1 we validate the implementation of the B&P method by solving suitably 

modified Solomon benchmarks, for which the optimal solutions are known. Subsection 5.4.2 

presents comparison tests of the proposed B&P methods (     and    ) regarding 

computational efficiency. Subsection 5.4.3 presents comparison tests of the B&P scheme 

when using the classical column generation approach and when using the cloning method. 

Finally, Subsection 5.4.4 analyzes the efficiency of the proposed heuristic pruning technique 

(Section 5.3) with respect to different values of the threshold  .  

LBn IBnIUB0

LBn IBnIUB0

(a)

(b)
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5.4.1 VALIDATION OF THE BRANCH AND PRICE IMPLEMENTATION  

In order to validate our branch-and-price implementation, we solve appropriate instances from 

those presented in Chapter 4. Specifically we select the instances of pattern 9, in which the 

period windows of all customers span the entire planning horizon. In addition, note the 

number of available vehicles (within all periods) is large enough to satisfy the demand for 

each instance.  

Recall that all instances of Chapter 4 were based on the Solomon benchmarks for single 

period VRPTW, which were converted to MPVRP instances by applying a period window to 

each customer. Given that in the selected instances the period windows span the entire 

planning horizon, the optimal solution of the MPVRP is the same as the one of the VRPTW, 

which is known for the selected problems (Larsen, 2001). The goal of the validation testing 

for our MPVRP solution approach is to obtain these optimal solutions in the MPVRP setting. 

Table 5.1 presents the problem instance, the lower bound and the relevant computational time, 

the integer solution obtained, the total B&P nodes created, the nodes explored until the 

optimal solution is reached, the B&P node in which the first occurrence of the optimal 

solution was detected and the computational time for the completion of the algorithm. In 

instances where the "integer solution" fields are empty, the optimal integer solution was 

obtained directly by the lower bound calculation and, thus, B&P was not needed. For the 

instances that are not reported, the algorithm either terminated by the time limit or by resource 

(memory) overflow, and the optimal integer solution was not obtained. 

Table 5.1: Validation of the branch and price algorithm using Solomon benchmarks 

Problem Vehicles 
per 

Period 

Lower Bound  Integer Solution  

# Set Cost Time Cost 
Total  

Nodes 
Nodes  

Explored 
First 

Occ.(1) Time (sec) 

9 r101 4 1043.4 6.14 1044.0 6 6 2 27.47 

18 r102 3 909.0 35.63 (2)         

27 r103 3 769.2 34.37 772.9 141 141 1 2553.61 

45 r105 3 892.1 10.46 899.3 559 199 86 1379.16 

54 r106 3 791.4 26.92 793.0 43 13 13 233.83 

62 r107 3 707.3 79.37 711.1 95 46 18 1763.34 

90 r110 2 695.1 38.60 697.0 109 43 19 1019.18 

117 c101 2 362.4 38.58 (2)         

126 c102 3 361.4 138.72 (2)         

135 c103 2 361.4 742.25 (2)         

153 c105 2 362.4 65.35 (2)         

162 c106 2 362.4 39.87 (2)         
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Problem Vehicles 
per 

Period 

Lower Bound  Integer Solution  

# Set Cost Time Cost 
Total  

Nodes 
Nodes  

Explored 
First 

Occ.(1) Time (sec) 

171 c107 2 362.4 66.90 (2)         

180 c108 2 362.4 92.11 (2)         

189 c109 2 362.4 215.32 (2)         

225 rc104 2 545.8 1568.86 (2) 
    261 rc108  2 541.2 1967.52 598.1 9 5 1 3633.01 

(1)
 
Number of nodes explored to initially reach the optimal integer solution. 

(2) Optimal solution reached by the Column Generation method directly. 

For all instances solved, the solutions obtained for the MPVRPTW were identical to the 

optimal integer solutions reported in the literature for the VRPTW. This provides a strong 

indication for the validity of our B&P (and CG) implementation. 

5.4.2 COMPARISON OF BRANCH AND PRICE TECHNIQUES (    AND    )  

We tested both proposed branching techniques (    and    ) described in Section 5.1 and 

compared the results obtained in terms of computational efficiency, using the 66 instances 

that required the use of B&P and were solved by both techniques.  

Appendix B.1 presents detailed results of the two B&P methods regarding these 66 instances. 

Table 5.2 summarizes these results presenting the average computational time per instance, 

the average number of nodes explored, and the average number of nodes explored until the 

optimum was initially reached (first occurrence of optimal solution). 

Table 5.2: Aggregate B&P results for the 66 instances solved by both techniques (    and    ) 

Method 
Average Time 

(sec) 
Nodes 

Explored 
First 

Occ.(1) 

    384.8 44.5 27.1 

2br 391.8 46.5 21.0 
(1)

 
Number of nodes explored since the optimal integer solution was initially reached 

It is clear from these aggregate results, as well as the detailed ones in Appendix B.1, that the 

average performance of the two techniques with respect to computational times and number 

of nodes explored is almost identical. Note that the     method appears to converge to the 

optimal integer solution by solving fewer nodes, as evidenced by the reduction in the number 

of nodes explored until the optimal integer solution was initially reached. However, no 

method outperforms significantly the other one, in the average sense. 
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5.4.3 COMPARING FULL AND CLONE METHODS WITH B&P 

Based on the results of Chapter 4, for the B&P implementation we selected  

 the CLONE over the UNI method, since it appears to: (a) yield the most efficient 

cumulative computational times and (b) be the most consistent across all patterns and 

client geographical distributions.  

 The 2br branching technique. 

We compared the efficiency of the B&P scheme that uses the CLONE method versus the 

B&P scheme that uses the reference method (FULL).  

Table 5.3 presents the number of test instances that converged either to the optimal integer 

solution, or obtained an integer solution within the time limit (one hour of computational 

time). The first column presents the instances for which the optimal integer solution was 

obtained directly by solving the relaxed problem with the column generation method without 

the use of B&P. The second column presents the instances that converged to the optimal 

integer solution using B&P, while the third column presents the instances that converged to 

an integer solution but terminated due to the time limit. The remaining instances did not 

obtain an integer solution within the one hour time limit and were not tested further. Note that 

most of these latter instances belonged to the RC1 configuration. 

Table 5.3: Instances with an integer solution using the FULL or CLONE method 

Method 
Integer 

 by CG 

Integer  

by B&P 

Integer Solution  

(optimality not verified) 
Total 

FULL 89 70 37 196 

CLONE 92 72 37 201 

Figure 5.4 analyzes the average ratio of the B&P computational times using the CLONE 

method versus the FULL method over all client geographical distributions per period window 

pattern. Two different ratios are presented: (a) The IB ratio that concerns all 196 instances for 

which an integer solution was obtained by both methods, and (b) The IC ratio that concerns 

only the instances which were solved to optimality by B&P. 
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Figure 5.4: Average computational time ratio (CLONE vs. FULL) 

The IB ratio curve shows that the CLONE method results in significant gains in determining 

the optimal (or a suboptimal) integer solution, especially as the width of the period window 

increases. The IC ratio curve indicates that the efficiency gains of the CLONE method are 

moderated when it is used in the B&P scheme. This is attributed to the fact that the savings, 

stemming from determining the lower bound, are moderated by the other B&P operations, 

such as the generation of the B&P nodes.  

Figure 5.5 presents the average ratio of the number of B&P nodes explored by the CLONE 

versus the FULL method per each period window pattern and across all client distributions. 

Two different ratios are presented: The first concerns all instances for which both methods 

determined the optimal integer solution within the time limit using B&P. The second concerns 

those instances for which an integer solution was reached but the B&P scheme was 

terminated due to the time limit. In the latter case, since CLONE is more efficient, it is 

expected to explore a greater number of nodes within the same time interval. This is verified 

by the second ratio in Fig. 5.5. This also seems to be the reason that five more instances were 

solved by the B&P using the CLONE method vs. the FULL (see Table 5.3). The first ratio 

verifies that in reaching the optimal solution, approximately the same number of nodes is 

explored by either B&P method. 
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Figure 5.5: Nodes explored per period window pattern 

5.4.4 TESTING OF PROPOSED HEURISTIC PRUNING TECHNIQUE 

In order to analyze the proposed heuristic technique described on Section 5.3, different values 

for the threshold (ι) were tested. Recall that given a value for the threshold ι      , the B&P 

nodes for which      are maintained and explored further. The rest are discarded.  

The analysis was based on the set of 66 problem instances for which the optimal solutions 

were obtained by both B&P techniques. Analytical results are reported in Appendix B.2. 

Tables 5.4 and 5.5 present the aggregate results of the analysis for different values of (ι) 

using the     and 2br techniques, respectively. Specifically the two Tables present the 

average percent cost difference with the optimal integer solution, the average number of 

nodes explored per problem, the average number of nodes explored until the best integer 

solution was initially reached, the average computational time per problem, and the number of 

instances for which the optimum was not obtained. (Note that the cost difference statistic in 

Tables 5.4 and 5.5 considers only the instances for which the optimal integer solution was not 

obtained. The other statistics consider all instances). 

Table 5.4: Performance of pruning heuristic for different values of threshold   using the     branching 

method (66 instances solved) 

  
Instances in which 
optimal was not 

reached 
Cost Difference 

Nodes Explored Average Comp. 
Time per Instance 

(sec) Average  First Occ.
(1)

 

1.00 25 0.456% 1.0 1.0 23.2 

0.99 6 0.389% 10.6 3.7 163.8 

0.95 5 0.354% 12.1 3.6 169.3 
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Instances in which 
optimal was not 

reached 
Cost Difference 

Nodes Explored Average Comp. 
Time per Instance 

(sec) Average  First Occ.
(1)

 

0.85 4 0.182% 14.2 3.7 176.9 

0.75 3 0.193% 17.3 4.1 191.0 

0.50 - - 22.5 5.4 226.4 

0.00 - - 44.5 27.1 384.8 
(1)

 
average number of nodes explored since the optimal integer solution was obtained.  

Table 5.5: Performance of pruning heuristic for different values of threshold   using the     branching method 

(66 instances solved) 

  
Instances in which 

optimal was not reached 
Cost Difference 

Nodes Explored Average Comp. 
Time per Instance 

(sec) Average  First Occ.
(1)

 

1.00 25 0.456% 1.0 1.0 22.8 

0.99 5 0.233% 10.0 3.6 142.4 

0.95 5 0.233% 10.6 3.7 145.7 

0.85 5 0.233% 14.3 4.4 171.2 

0.75 4 0.151% 17.1 5.4 187.9 

0.50 1 0.351% 22.3 6.8 215.0 

0.00 - - 46.5 21.0 391.8 
(1)

 
average number of nodes explored since the optimal integer solution was obtained.  

From Tables 5.4 and 5.5 it is clear that the proposed heuristic method presents similar results 

under both the 2br and the P+1 B&P techniques. 

As far as the solution quality is concerned, the heuristic results in very limited deviations from 

the optimal integer solutions. Even with    , only in 25 out of 66 instances the optimal 

solution was not reached. The maximum cost deviation over all instances in both cases was 

equal to 2.07%. Note that even for        the average deviation from the optimal integer 

solutions is very limited and equal to 0.233%.  

In terms of computational time, the proposed heuristic results in significant computational 

time savings. For example, for     a good solution is reached within 6% of the time 

required to obtain the optimal solution (that is, for    ). Even for      , the 

computational time required (for the heuristic to terminate) equals 59% and 55% of the full 

optimal solution time, respectively. 

Figure 5.6 presents graphically the results of Table 5.4 with respect to the computational time 

needed and the quality of the solution obtained for different values of   using the     

method. In this Figure: (a) the computational time is normalized with respect to the 

computational time of the full B&P method (100%), and (b) the cost difference is the average 
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percent cost difference with respect to the optimal integer solution. (Again for the cost 

difference we considered only the instances for which the optimal integer solution was not 

obtained).  

 

Figure 5.6: Computational times and deviation from optimal integer solution for different values of   (  

  method) 

The results obtained validate the efficiency of the heuristic pruning technique, since 

 The optimal integer solution is almost always obtained for       in approximately 

60% of the time required by the full B&P 

 The deviation of the solutions of the heuristic from the optimal integer solutions are 

very limited and controllable by the value of ι. Even for      the cost deviation is 

less than 0.5%, while the time savings are 94% with respect to the full B&P. 

 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

0.30%

0.35%

0.40%

0.45%

0.50%

1.00 0.99 0.95 0.85 0.75 0.50 0.00

C
o

m
p

u
tatio

n
al Tim

e
 (se

c)

D
e

vi
at

io
n

 f
ro

m
 O

p
ti

m
al

 I
n

te
ge

r 

λ

Comp Time Cost Difference





The MPVRP and Its Applications 

Dept. of Financial & Management Engineering     89 

Chapter 6: ENHANCEMENTS FOR APPLYING THE MPVRPTW 

IN A ROLLING HORIZON FRAMEWORK 

In this Chapter we discuss important enhancements that are required in order to address 

problems of practical significance using the MPVRPTW methods presented in Chapters 4 and 

5. Specifically, we focus on the following issues: 

 Employing MPVRP in rolling horizon planning (see Section 6.1). 

 Developing fundamental understanding of rolling horizon planning using a special quasi-

static case (see Section 6.2) 

 Addressing the case in which not all customer orders can be satisfied within the planning 

horizon (see Section 6.3). 

 Testing the MVRP in a rolling horizon environment for both the special quasi-static case, 

and the more general dynamic case (see Section 6.4). 

6.1 THE ROLLING HORIZON PLANNING PROCESS 

In order to be able to address long-term horizons using the MPVRPTW we utilize a rolling 

horizon framework in which the solution procedure of the MPVRPTW is embedded (see Fig. 

6.1). Consider an environment in which each customer order   arriving in period   can be 

served within a period window    
    

  , where   
   , ; that is, the order may be served after 

(and not including) the period of arrival. The long term time horizon defined by the latest 

expiration time of any unserved order,   
       (where   is the set of unserved orders) is 

denoted as    Note that   depends on    but for simplicity this is not indicated explicitly in the 

  symbol. 

Denote the current period as    and assume that we have elected to solve MPVRPTW for the 

period interval [          , where       . This latter time interval is the planning 

horizon. The fact that we consider a planning horizon [          , which is a subset of 

the long term horizon   may be attributed to the following reasons: 

 The available information on customer orders to be serviced in distant periods from 

the current period may be limited, and, the period windows of these customer orders 

may not be overlapping with the customer orders within the selected planning horizon. 
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Thus, there is no point in considering these periods within the planning horizon, since 

they will not affect the planning of the selected planning horizon. 

 The horizon   may be long, so that solving the MPVRPTW over   may be 

computationally intractable, due to the associated large number of orders. 

Let                 denote the multi period routing problem to be considered over the 

planning horizon [           of length  . The customer orders to be considered in this 

problem (set     are those for which the period window has opened within the planning 

horizon; i.e.                 
         and (    ). 

Given this set up, the related planning process is as follows: Customer orders are assigned 

over the next   periods             using                . The orders assigned in 

periods              , where    , are selected for service. The remaining orders, 

assigned in the time interval [               are considered again for routing 

combined with the new customer orders that arrive during the execution of periods    

        . This rolling (planning) horizon process is shown in Fig. 6.1, where   is the 

length of the implementation period. 

 

Figure 6.1. Planning process 

The length   of the planning horizon is selected in order to balance the quality of the 

combinations, and resulting routes, formed by the known customer orders within the horizon, 

versus the computational effort required to solve the problem. 

Unallocated Orders
from Periods

[pc-(P-M-1),…, pc]

New Orders
(feasible in [pc+1,…, pc+P])

Routed in Periods 
[pc+1,…, pc+M]

Routed in Periods 
[pc+M+1,…,pc+P]

Orders to be routed in the next planning 
horizon [pc+M+1,…,pc+M+P]

MPVRPTW(P,pc+1)
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6.2 THEORETICAL INSIGHTS FOR A SPECIAL CASE OF ROLLING HORIZON 

PLANNING 

6.2.1 NOTATION 

Consider a routing problem over a long term horizon of   periods, in which all customer 

orders are known throughout the horizon. Let also the sole objective of this problem be the 

minimization of the routing cost.  

Consider, now, solving the above problem by a rolling horizon scheme with planning horizon 

of length   and implementation horizon of length    Thus, the rolling horizon cycle will be 

repeated every   periods. We call this case “quasi-static”, since each time we solve a 

MPVRPTW, the only new clients considered are those of the last   periods of the planning 

horizon. No new customer orders arrive dynamically. Using this special case, we will develop 

some interesting theoretical insights. Prior to this, we will introduce necessary notation. 

 Let            be the optimal solution of the multi-period problem              

   and           be the related optimal cost; that is the cumulative routing cost 

considering all periods of the planning horizon:                  
            
      , where 

       denotes the routing cost of period  . Given this notation, we denote as   
  
  the final 

cost of the entire long-term horizon plan for a planning horizon of   periods and an 

implementation horizon of   periods. For convenience we assume that   is an integer 

multiple of  . Then, 

  
  
              

 

   

 
 

   

 (6.1) 

Consider any set of feasible customers within period  , and the optimal w.r.t. cost solution for 

serving these customers. If there are multiple optimal solutions for this set of customers, we 

arbitrarily select one. We denote as    the set that contains the optimal solutions (i.e. 

combinations of routes) for all subsets of customers that are feasible within period  . Note 

that for each different customer subset there is only one solution in   . 

6.2.2 THEORETICAL INSIGHTS 

In the current Section we propose important statements regarding rolling horizon planning for 

long term quasi-static routing problems.  
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The first statement compares the monolithic solution of the full routing problem (for the   

period horizon) with any solution obtained by a rolling horizon scheme. 

Statement 1 

Given that all customer orders to be served within the long-term horizon (  periods) are 

known, the cost   
  
  of the optimal solution of                 is always lower than or 

equal to the final implemented cost   
  
  obtained by any rolling horizon scheme with 

planning horizon of     periods, and implementation horizon  . 

The justification of this statement has as follows: 

Consider the solution of a problem provided by a rolling horizon scheme, which solves a 

sequence of problems                 for                . The current 

period is considered to be     . This solution, with cost   
  
 , is also a feasible solution of 

the monolithic problem               The justification of this has as follows: 

 The feasible space of              may be formed by considering (a) all feasible 

distributions of customer orders among the periods of horizon    and (b) for each 

period all feasible routes of the corresponding set of customer orders. 

 Consider the optimal solution of             . For each period   of horizon    

the optimal solution contains the optimal routes of the customer orders allocated to 

that period; these routes belong to set    defined in the previous Section. If we denote 

by         the set of routes of period   within the solution of             , then 

                       .  

 Consider now, the solution of the same problem derived by a rolling horizon scheme 

with planning horizon of   periods, and denote by         the set of routes of period 

  that belong to this solution. Since the solution of each                is 

affected (constrained) by the part of the solution implemented up to period  , it holds 

that the solution of the first period           , while the solutions of subsequent 

periods belong to subsets (  
 ) of each   , e.g.           

                 
  

  . 

Based on the above, the resulting cost        of each period  , which corresponds to the set 

of routes        , is always less than or equal to the cost        of        , and, ; therefore, 

the cost    
               

   
   
    of the optimal solution         is always lower 
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than or equal to the cost    
  obtained by the rolling horizon solutionwith planning horizon of 

  periods (   
     

  
 ). 

Example 1 

To illustrate this fact, consider a simple example with 2 periods only, and two different 

planning horizons (    and    ). Let also the implementation horizon be equal to 

one      .  

 For the case with    , two single period problems are solved, and the final cost of 

the two-period problem is   
  
                

  For the case with    , one two-period problem is solved, and the final cost is given 

by   
  
               .  

For period 1, the feasible routes are the same for both cases. For period 2, however, and for 

the case with    , the feasible set of routes, along with the routing cost        is restricted 

by the routing result of the first period problem        . Thus, for     the feasible set of 

period 2 is the set    of optimal solutions of all sets of customer orders that are feasible in 

period 2 (see Section 6.2.1 above). For     the feasible set of period 2 is a subset of   , 

since the available set of feasible solutions has been restricted by the i solution of period 1. 

Thus, every solution obtained by the planning horizon     can also be obtained by    , 

and the cumulative cost               is less than or equal to              . 

Statement 2 below is related to the length   of the planning horizon of a rolling horizon 

scheme that solves the long term problem of   periods (quasi-static case). One may assume 

that a longer planning horizon may provide more efficient solutions, since it allows for an 

increased number of customer combinations, thus leading to the formation of more efficient 

routes. Statement 2 indicates that this is not necessarily true. The quality of the solutions is 

strongly related to the period flexibility of the customers and their characteristics (time 

windows, etc). 

Statement 2 

Consider the quasi-static routing problem of   periods. The overall routing cost (  
  
 ) 

provided by a rolling horizon scheme with planning horizon of   periods is not necessarily 

lower than or equal to the overall routing cost (  
   
 ) provided by a rolling horizon scheme 

with planning horizon of   periods, where        for the same  . 
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This fact is illustrated by the following example (and verified experimentally in Section 6.4). 

Example 2 

Consider five consecutive periods and four customers with period windows as shown in Table 

6.1. Additionally, we consider that in each period only two customers may be routed and   is 

considered equal to 1. The related distances are provided in Table 6.2.  

Table 6.1: Customers and related period windows (example 2) 

Customer Period Window 

  [1,2] 

  [2,4] 

  [4,5] 

  [5,5] 

Table 6.2: Costs of arcs (example 2) 

Arc Cost Arc Cost 

                    
                    

                    
            

We compare two alternative planning horizons,     and    . Fig. 6.2 and Table 6.3 

present the final routes that will be generated from the alternative planning horizons. The 

relevant arc costs are shown in Fig. 4. 

  

        

Figure 6.2: Customers and related network (example 2) 

Table 6.3: Final routes per period for implementation horizon of     and   (example 2) 

Period 
        

Routes Cost Routes Cost 
1 - - - - 

2 [D-a-b-D]                   [D-a-D]         

3 - -   

4 - - [D-b-c-D]                   

5 [D-c-d-D]                   [D-d-D]         

Total         

a

cb

D

d

0.5
0.5

1

1 1

1

0.4

a

cb

D

d

0.5
0.5

1

1 1

1

0.4
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The final routing costs of each planning horizon are: 

    :   
   
                                          

    :   
   
                                      

Thus, for this example, the planning horizon of 2 periods results in better (lower) routing cost. 

Note, although, that with appropriate period windows, this situation may be reversed. 

Statement 3 concerns the length of the implementation horizon   of a rolling horizon scheme 

for the quasi-static case. In practice it is typical to use the minimum possible   (i.e.     in 

our case). Note that if     the step of the rolling horizon scheme is modified appropriately 

to match  .  

Implementing only the first period of the solution          may seem the most appropriate 

tactic, due to the fact that there is no knowledge of the customer orders beyond period       

Thus, implementing the minimum possible part of the solution may offer the opportunity to 

incorporate in a better fashion the new orders of the next problem to be solved. This, 

however, turns out not to be necessarily true.  

Statement 3 

Consider the quasi-static case of the long term problem (  periods). If this problem is solved 

by a rolling horizon scheme with planning horizon      it is not guaranteed that     

(i.e. implementing only the part of the solution corresponding to the first period of the 

planning horizon) will lead to the minimum cost value    
 .  

This fact is illustrated by the following example. 

Example 3 

Consider the following problem with four periods and four customers with the period 

windows provided in Table 6.4. Additionally, we consider that in each period only two 

customers may be routed, and   is equal to 2. The related distances are provided in Table 6.5.  

Table 6.4: Customers and related period windows (example 3) 

Customer Period Window 

  [1,2] 

  [2,3] 

  [3,4] 

  [4,4] 
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Table 6.5: Costs of arcs (example 3) 

Arc Cost Arc Cost 

                    

                    
                    

            

Based on this information, Fig. 6.3 and Table 6.6 present the final routes that will be 

generated by using two different implementation horizons,     and    .  

For    : Since      in the first planning step of the first two periods only the first two 

customers are considered. Since customer   cannot be routed prior to period 2, both 

customers are planned for routing within the second period in order to minimize the routing 

cost. Thus, there are no clients routed in period 1. The second planning step considers periods 

2 and 3 and customers     and  . Since distance       is lower that      , customers   and   

are planned to be served together in period 3. Customer   is served alone in period 2 and is 

implemented during this second step. The next and final planning step considers periods 3 and 

4 along with customers b   and  . Similarly, in period 3 customers   and   are scheduled 

together in period 3 and customer   remains alone in period 4.  

For    : Using the same procedure but with implementing both planned periods, the final 

routes per period are shown in Table 6.6. 

  
        

Figure 6.3: Customers and routes for implementation horizons     and   (Example 3) 

Table 6.6: Routes and cost per period for implementation horizons     and   (Example 3) 

Period 
        

Routes Cost Routes Cost 

1 - - - - 

2 [D-a-D]         [D-a-b-D]                   

3 [D-b-c-D]                   [D-c-d-D]                   
4 [D-d-D]         - - 

Total           

a

cb

D

d

0.5

0.2

0.5

1

1 1

1

a

cb

D

d

0.5

0.2

0.5

1

1 1

1
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The final routing cost of each implementation horizon are: 

    :   
   
                                      

    :   
   
                                          

For this example using an implementation horizon with     results in lower routing costs 

if                              ; this in our example holds for appropriately large 

values of the arcs connecting the depot and the customers. 

6.3 MODIFYING MPVRPTW TO DEAL WITH LIMITED RESOURCES AND 

UNSERVED CUSTOMERS 

When addressing multi-period routing problems with a limited number of vehicles, not all 

customer orders can be routed within the selected planning horizon. Thus, the following 

important issues need to be considered: 

 How to deal with cases in which not all customers can be served with planning 

horizon  , due to resource limitations?  

 Which customers to exclude from the current plan in that case?  

 Even if the resources are adequate, depending on the problem model (e.g. the 

objective function), customers may be excluded in order to save routing costs; how 

can one deal with this matter? 

An additional important issue to be considered when using a rolling horizon framework 

within a multi-period setting, is the following: How to deal with the tendency of the rolling 

horizon to postpone the scheduling of customers; this results in customers the period window 

of which expires in the first period of the planning horizon (e.g. customers with   
      ). 

These issues are relevant when a rolling horizon framework is used to solve long term routing 

problems (both quasi-static and dynamic). In this case, customers excluded from the solution 

of the problem solved for a certain planning horizon will be considered by the problem(s) 

corresponding to subsequent planning horizon(s) (if allowed by the customers' period 

windows). This fact tends to “push” customers into the future, and may lead to unserved 

customers, due to resource or period window constraints.  

This situation describes cases, in which certain customers are selected against other 

customers, and the latter remain unserved due to resource limitations. In the subsequent 

planning horizons the period windows of these unplanned customers are becoming 
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progressively narrower, leading to more “expiring” customers. In case not all customers can 

be accommodated, the selection of which (expiring) customers to be left unserved is based 

strictly on routing costs. 

Below, the methods described in Chapters 4 and 5 for the MPVRPTW are further enhanced in 

order to address the aforementioned issues. 

6.3.1 ENHANCING THE OBJECTIVE FUNCTION 

As indicated previously, the objective function of MPVRPTW accounts strictly for the 

routing cost (see Chapters 3 and 4) and it regards cases in which all customers can be routed 

within the selected planning horizon (i.e. with enough resource capacity to facilitate all 

orders). For the case addressed in this Section, customers may be left unserved due to limited 

resources (time, demand, and limited fleet). Two related issues arise then: (a) Since the model 

proposed in Chapter 3 includes the constraint to serve all customers, and, if no adequate 

resources are available, then there is no feasible solution; (b) on the other hand, if the 

constraint for serving all customers is dropped, then customers may not be included in the 

solution solely based on routing cost (e.g. remote customers). To address these related issues 

we have introduced additional (penalty) terms in the objective function to prevent dropping 

selected clients. We have also used a way to artificially satisfy the constraint of serving all 

customers. 

Consider the case of using MPVRPTW in a rolling horizon setting. If the period window of 

an unserved customer is such that the latter may be re-planned in the next planning horizon, 

then dropping the said customer may not become an issue, since this customer will be 

considered again in the subsequent problem(s). If, on the other hand, the period window of the 

customer expires in the first period of the current planning horizon, then the customer will be 

left unserved, resulting to a severely negative impact to customer service. The proposed 

penalty function should take this fact into account and avoid dropping such “expiring” 

customers. 

Note that for simplicity, and without loss of generality, below and in the following Sections 

we consider that       in this case the above “expiring” customers should be served within 

the first period of the planning horizon. 

Consider the solution of a MPVRPTW in the planning horizon       and let    and    be 

the sets of expiring and non-expiring customers (derived from the feasible set of customers   
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within the planning horizon), which are left unassigned due to resource limitations. We 

propose the following straightforward modification of the objective function in order to 

simultaneously: 

(a) Maximize the number of customers served in all periods of the planning horizon, 

(b) Maximize the number of expiring customers served in period 1, 

(c) Minimize the multi-period routing cost. 

         
 
  

 

    

 

   

                (6.2) 

where    and    are the penalties for each expiring or non-expiring unassigned customer, 

respectively. In order to minimize the number of unserved customers, both penalties need to 

be set to large values. These penalties can be set to any value larger than           
  where 

   
 represents the cost of the unit route                . If the penalties are lower than 

the unit route costs (   
), there is possibility that in column generation the artificial routes – 

columns related to the penalties (e.g. leaving a customer unserved) may enter the final basis 

of the solution as opposed to the actual unit routes (however the grouping of customers to 

routes might prevent this behavior). 

Note that the proposed modification of Eq. (6.2) needs to be made only to the objective 

function of the Master Problem, Eq. (3.14). Thus,  

 Each unserved expiring or non-expiring customer is allocated to a virtual unit route 

                with artificial routing cost equal to    or   , respectively. Thus, 

Constraints (3.16) (e.g. each customer should be served once) still remain feasible by this 

artificial assignment.  

 The elements of these artificial columns (routes) that are relevant to the vehicle 

Constraints (3.15) are all equal to zero in order to not contribute to the number of used 

vehicles. Note that in a route (column) assigned to a specific period the relevant element 

of the vehicle constraint is equal to one in order to consider that one vehicle is used by the 

solution.  

 Although, the unserved customers contribute to the total final cost, by the assigned 

penalties, they do not interfere with the actual routing costs, since the routing costs are 

provided by the sequence of the assigned customer orders to each proposed route 

(column) within the Master Problem. 
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6.3.2 ADJUSTING THE PENALTIES    AND    TO PRIORITIZE EXPIRING 

CUSTOMERS 

 In order to ensure that an expiring customer will not be replaced by a non-expiring customer, 

we consider using the following inequality  

              (6.3) 

and we identify the appropriate values of       to ensure that expiring customers will be 

served, within the limits imposed by the resource constraints. That is, expiring customers may 

still remain unserved in cases in which the available resources are not adequate to facilitate 

them.  

In order to compute the values for       we consider a theoretical multi-period routing 

problem with two different solutions (1) and (2), the routing costs of which are given by      

and     , respectively, and    
   

     
   

 . In order for the objective function (6.2) to provide 

lower cost for solution (1) in comparison to solution (2), the following should hold:  

         
   

       
   

            
   

       
   

    (6.4) 

If we substitute    with            , then (6.3) becomes:  

 
       

               
   

   
   

   

   
   

   
   

 
   

                 

   
     

   
   

   
   

   
     

   
   

   
   

               
(6.5) 

        
           

     
  

   
     

    (6.6) 

Thus, in order for (6.3) to hold, we should define       to always be greater than the right 

hand side of the inequality. 

 The worst case of         is when          

 
   , and when        (i.e. none of 

the customers are visited). Thus             

 
    

 The worst case for    
     

 is when    
   

    , where    is the number of non-expiring 

customers, and    
   

   . Thus,    
     

   . 

 Similarly,    
     

  , since we have considered that    
   

     
   

  and      is 

always a positive integer. 
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Thus, by replacing the aforementioned equations to (6.5): 

           
     

  

   
     

    
    

 
        

 
        

 

   

           (6.7) 

          

 

   

          (6.8) 

Now since              
 , the difference (say δ) between the weights of the expiring and 

the flexible customers is given by the following inequality (  represents a small positive 

value):  

             

 

   

          
   

    
    (6.9) 

If   is set to this value, then the number of expiring customers that will be served is 

guaranteed to be maximized. Note that for short planning horizons, lower values of       

result in a larger number of unserved customers.  

6.3.3 ADJUSTING THE PENALTIES    AND    FOR ALL (EXPIRING AND NON-

EXPIRING) CUSTOMERS 

Using the aforementioned penalties we do not distinguish among non-expiring customers 

based the imminence of their expiration periods. Thus, the non-expiring customers to be 

assigned in period 1 will be selected solely based on their routing cost efficiency. This may 

lead to a myopic assignment of customers, without taking into consideration their flexibility 

(as defined by their expiration period), and may result in leaving customers with low 

flexibility unserved. The requirement of serving these customers in the next period(s) may 

increase the routing cost far beyond the savings incurred by excluding them from the original 

planning horizon. 

To moderate this issue, we propose five (5) alternative penalty functions that provide the 

exclusion penalty of each customer depending on the imminence of its expiration period. That 

is, the penalty   
 
 assigned to customer   depends on the customer’s expiration period (  

   

and on the shape of the penalty function  . Note that this function provides the penalties for 

all customers, expiring and non-expiring, taking into account (for          the analysis 

presented above for the difference of penalty values between the two types of customers. Each 
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of the penalty functions represents an alternative trade-off between routing costs and service 

level (maximization of served customers). 

Penalty function    : Ignoring the Period Window 

This penalty function assigns the same penalty to all customers regardless their expiration 

period; thus,         and              
   . This has the following implications: (a) 

Expiring customers are not treated with priority in case resource limitations prevent all 

customers to be routed within their period windows and the planning horizon considered, and 

(b) routing costs are favored since the objective function allows the selection between 

customers to yield more efficient routes (i.e. the customers that result in the minimum routing 

costs). 

   
          (6.10) 

Penalty function    : Forcing the Inclusion of Expiring Customers 

This penalty function respects the limitations of expiring customers. That is, the large penalty 

value of Section 6.3.2 is assigned to penalty    for each expiring customer. All other 

customers, regardless their expiration period, are treated equally with the same penalty value 

  .  

  
   

    

  

        
   

         
 

 (6.11) 

As a result, in every multi-period problem, all expiring customers within the initial period of 

the planning horizon are routed, if this is possible. Expiring customers may still be left 

unrouted, but this is due only to resource limitations, and not to customer selection (i.e. in that 

case no non-expiring customer will displace an expiring one in the solution).  

Penalty function          : Continuous Penalty Functions 

In these functions, the penalty assigned to each customer   is based on each customer's 

expiration period (  
 ). Expiring customers in period 1 are assigned with a penalty of value   , 

while all others are assigned with a penalty value within the interval         according to the 

selected penalty function.  

Note that in the case of penalty functions         expiring customers do not always 

displace non-expiring customers from the solution. This is because the penalties assigned to 
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the flexible customers increase as a function of the imminence of the customer’s expiration 

date beyond the value that secures their displacement by the expiring customers (that is the 

difference between the penalties of expiring and non-expiring customers is not always greater 

than δ). Also,          
  >1. The three penalty functions are provided below: 

   
   

   
    

   
   

   
    

 

 

                 (6.12) 

   
   

   
    

   
   

   
    

 

 

                 (6.13) 

   
   

   
    

   
   

   
    

             
     (6.14) 

Each function presents a quadratic, square and linear decrease of the penalty, respectively, 

with regard to each customer's expiration period (  
 ).  

Figure 6.4 illustrates the five different penalty functions. By using the appropriate function, 

we may direct the solution method into prioritizing expiring customers, as well as customers 

with limited flexibility (i.e. available number of periods to be routed). 
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Linear (   ) 

 

 

Figure 6.4: Penalty functions (γ = 1, ..., 5) 

Insights on the above Penalty Functions 

To gain some insight regarding the alternative penalty functions, a series of tests were 

conducted by solving multi-period routing problems with limited resources. The parameters 

taken under consideration in these tests are: 

 The scheduling horizon was set to five (5) periods 

 2 vehicles were considered available per period of the planning horizon  

 Only period window patterns 3 and 5 were considered, providing a moderate customer 

flexibility. Note that the following results consider both patterns cumulatively; more 

detailed results are provided in Appendix C. 

 The planning horizon was set to         . For    , a rolling horizon scheme was 

utilized in order to plan all five periods. 

 When rolling horizon planning was used, only the first period of each planning 

horizon was implemented (   ). The remaining customers (routed in periods 2 to 

 ) were considered again in the next planning horizon, until all periods were planned.  

For the testing process we generated 10 test instances based on the R1 (R101, R102, R105, 

R109, R110) and C1 (C101, C105, C106, C107, C108) test sets of Solomon. For each test 

instance we selected the first 50 customers and distributed them in the scheduling horizon of 

the 5 periods (10 customers per period) in a sequential manner. Each instance was tested for 

each one of the proposed penalty functions (γ       ). For each planning horizon and each 

penalty function, the full B&P method was used providing optimal integer solutions for the 

related MPVRPTW. For some instances, namely, R102, R109, R110 and C108, and for 

period window pattern equal to  , the B&P method did not reach the optimal solution within 

Pf

Pe

1 P2 …
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the allowable time limit. Thus, the analysis included only 16 combinations of test instances 

and period window patterns for a total of 400 (      ) experiments. 

In order to assess the performance of the different penalty functions, the following measures 

were defined: 

 The percentage of unserved customers: For each   and   combination we consider the 

total number of unserved customers w.r.t. the total number of customers over all 16 

experiments corresponding to this combination 

 The routing cost per served customer: The total implemented routing cost divided by 

the total number of served customers. 

The results are shown in Table 6.7 and Figs. 6.5 to 6.7. 

Table 6.7: Average test results for 16 test instances per penalty function and planning horizon 

 

Unserved Customers Routing Cost/Served Customer 

 

         

  1 2 3 4 5 1 2 3 4 5 

1 12.6% 4.8% 4.4% 4.4% 4.9% 14.37 15.90 16.88 16.88 16.31 

2 7.4% 4.4% 4.0% 4.0% 3.8% 13.42 14.86 15.28 15.40 14.90 

3 5.4% 4.4% 3.9% 3.9% 3.6% 13.33 14.42 14.68 14.67 14.43 

4 3.9% 4.1% 3.9% 3.9% 3.6% 13.62 14.43 14.56 14.56 14.32 

5 3.8% 4.0% 3.9% 3.9% 3.6% 13.56 14.07 14.54 14.54 14.30 

 
6.6% 4.3% 4.0% 4.0% 3.9% 13.66 14.74 15.19 15.21 14.85 

Figure 6.5 depicts the results of Table 6.7 w.r.t the ratio of unserved customers per planning 

horizon and penalty function. Figure 6.6 depicts the results w.r.t the unit routing cost per 

served customer.  

 

0

2

4

6

8

10

12

14

P=1 P=2 P=3 P=4 P=5

R
at

io
 o

f 
U

n
se

rv
e

d
 C

u
st

o
m

e
rs

 (
%

)

Penalty Function

γ=1 γ=2 γ=3 γ=4 γ=5



Chapter 6 - Enhancements for applying the MPVRPTW in a Rolling Horizon Framework 

106  DeOPSys Lab 

Figure 6.5: Ratio of unserved customers (%) 

 

Figure 6.6: Cost per served customer 

With respect to the length of the planning horizon, Table 6.7 and Fig. 6.5 illustrates that 

shorter planning horizons leave a larger number of customers unserved, for all penalty 

functions  , though without the same effect among the various penalty functions. Note that as 

the planning horizons increase, there is more flexibility in assigning customers to periods.  

With respect to the routing cost per served customer (Table 6.7 and Fig. 6.6), as expected, the 

larger planning horizons result in improved routing costs per served customer up to a certain 

value of   for all penalty functions.  

Figure 6.7 presents the average ratio of unserved customers and the average cost per served 

customer across all planning horizons (        ) for each penalty function (        ).  

 

Figure 6.7: Unnerved customers and cost per served customer (all five penalty functions) 
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With respect to the penalty function, according to Fig. 6.7 penalty functions             

result in an increased number of served customers since they prioritize not only the expiring 

customers but also the soon-to-be expiring customers, thus, forcing the latter to be routed 

earlier, if possible. It is reasonable to expect that for these penalty functions the routing cost 

per served customer may increase, as shown in Fig. 6.7 for      . Note that     results 

in the best routing costs, among these three penalty functions; it appears that the linear penalty 

function allows more flexibility in optimizing the routing costs. Overall, in a “Pareto optimal 

sense”, penalty function     seems to provide the most favorable results, and will be 

employed hereafter. 

6.4 EXPERIMENTAL INVESTIGATION OF ROLLING HORIZON ROUTING 

Having addressed issues of practical significance arising in rolling horizon planning, we have 

conducted an experimental investigation to study the significance of two critical parameters of 

such rolling horizon schemes: The length of the planning horizon  , and the length of the 

implementation horizon   (that is how many periods of the MPVRP. This study has focused 

on two distinct types of long term routing problems that differ in the degree of dynamism.  

 The first problem type is the quasi-static problem introduced in Section 6.2. In this 

case, all customer orders, the period window of which starts within the planning 

horizon (     
      ), are considered to be known.  

 In the second problem, customers become known at some point prior to the opening of 

their period window. In this case not all customer orders, the period window of which 

starts within the planning horizon, are known. Customer orders are revealed 

dynamically as time progresses. We call this problem, the dynamic rolling horizon 

routing problem.  

The experimental testbed for both the quasi-static and the dynamic routing problems was 

constructed as follows: 

 In terms of customer geographical distribution, we generated test instances of three types 

(random, clustered, and mixed), 3 test instances per type for a total of nine instances. The 

customer locations were selected from the extended Solomon benchmarks (Homberger 

and Gehring, 1999), which comprise 400 customers per problem  

 Each test instance encompasses a long term horizon of 30 periods and 300 customers (i.e. 

the first 300 customers from the corresponding 400-customer extended Solomon problem) 
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 All customer coordinates were normalized in order to make the travel times (arc costs) of 

the extended Solomon benchmarks similar to the travel times (arc costs) of the Solomon 

benchmarks, based on the following scaling functions: 

 
  

        
   

    
  

   
        

   

    
  

 (6.15) 

where     is the actual x-coordinate from the Homberger and Gehring benchmarks,     
  

 

is the maximum x-coordinate from the same set and     
    is the maximum coordinate 

from the relevant problem type (i.e. R1, C1 and RC1) of the Solomon benchmarks 

(identical notation is used in the scaling function of the y-coordinate). This scaling 

allowed us to use the same time windows and service times for the customer data of the 

extended Solomon benchmarks, as those used in the original Solomon benchmarks  

 For each instance, the characteristics of the customers (i.e., the time windows, the service 

times and the demands) were drawn from the relevant 100-customer Solomon benchmark, 

and were duplicated three times in order to obtain a total of 300 parameter sets. Each of 

these parameters, was allocated randomly and independently to the 300 customers of each 

corresponding instance 

 Pattern 3 was used for the period window, since it provides moderate flexibility to 

customers in this multi period setting 

 Two (2) vehicles were considered available per each period of the planning horizon in 

order to impose a strict limit on vehicle availability 

 For each test instance, two implementation horizons (     and    ) and two 

planning horizons (    and    ) were tested initially 

 The way customer orders are revealed varies per problem type: 

o In the quasi-static case, for each planning horizon we consider (only) those 

customers, of which their period window starts within the planning horizon. All these 

customers in the periods comprising the planning horizon are known. Thus, in each 

MPVRPTW the only new customer orders are those with period window starting at 

the last period of the planning horizon 

o In the dynamic case, we consider that each customer order becomes known one 

period prior to the opening of its period window. Thus, for each planning horizon 

starting at period       we consider the customer orders that have arrived (become 

known) up to period   . 
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The focus of our experimental investigation was to examine the effect of the planning horizon 

  and the implementation horizon   in rolling horizon route planning. This analysis focuses 

on two output attributes: (a) the customers served, and (b) the routing cost. In order to 

determine the effects of   and   on these attributes under a broad range of conditions, we 

used instances with a balanced mix of geographical distributions (R, C, RC) and different 

time window ranges (narrow, medium and wide). Thus, the results are considered to be 

unbiased with respect to these latter factors (geographical distribution and width of the time 

window).  

The solution approach throughout the experimental investigation was based on the following: 

 The rolling horizon scheme described above was utilized to solve each instance 

 At each step of this scheme we solved the related MPVRPTW employing the following 

parameters: 

o  The Cloning method was utilized for obtaining the lower bound 

o All column generation parameters remain the same as presented in Section 3.3.5 

o The linear penalty function was utilized (e.g.    ). 

o We implemented a Branch and Bound scheme on the columns generated by the CG 

algorithm while computing the lower bound of each MPVRPTW. 

Technical note: Transfer of routes within the first (implemented) period  

In cases in which the majority of customers have wide period windows, it is possible to 

identify routes in the final solution of a planning horizon, which are also feasible within the 

first period of the planning horizon (denoted as                 routes). If there are 

vehicles not used during this first period (have not been assigned to any route), then we select 

to transfer as many as possible of the said routes to the first period. That is, routes are 

assigned to period 1, starting from the                 route of the second period and 

moving to the subsequent periods. Transfer of routes terminates when all available vehicles of 

the initial period have been assigned to service. 

6.4.1 EXPERIMENTAL RESULTS FOR THE QUASI-STATIC ROLLING HORIZON 

ROUTING PROBLEM 

Table 6.8 presents the results obtained for the above test instances in the quasi-static case. For 

each instance, the Table presents the number of customers routed and the average routing cost 

per customer, over all 30 periods for     and  , and     and  . 
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Table 6.8: Comparative results for different planning and implementation horizons (quasi-static case) 

Instance P 
Routed Customers Routing Cost per Customer 

M=1 M=2 M=1 M=2 

L_r103 3 293 287 20.09 20.62 

 
5 293 292 19.26 19.43 

L_r106 3 299 298 19.54 20.03 

 
5* 299 289 18.31 18.17 

L_r109 3 299 294 19.77 20.13 

 
5 299 293 17.62 18.27 

L_c106 3 300 298 27.90 28.88 

 
5* 300 296 25.78 25.32 

L_c108 3 300 300 22.72 24.41 

 
5* 300 297 21.68 21.59 

L_c102 3 299 296 26.64 27.22 

 
5 299 298 24.40 24.52 

L_rc101 3* 283 240 28.86 31.98 

 
5* 283 241 28.36 28.88 

L_rc105 3* 293 253 26.84 27.95 

 
5* 294 267 25.52 27.28 

L_rc107 3 300 298 23.35 23.76 

 
5 300 300 21.00 21.16 

Average 3 296.2 284.9 23.97 25.00 

 5 296.3 285.9 22.44 22.74 

Time Narrow 292.0 275.7 25.04 25.85 

Windows Medium 297.5 284.0 22.43 23.24 

 Wide 299.3 296.5 22.13 22.51 

* Cases where implementation horizon     results in lower routing cost compared to    . 

In terms of the implementation horizon  , it is clear that     results in higher (or equal) 

number of routed customers in all cases. Furthermore, the value of     results in lower 

routing cost per customer in almost all cases, except in the cases where     resulted in a 

much lower number of served customers (also compare with Statement 3 of Section 6.2). 

These conclusions are validated by the average values of Table 6.8.  

In terms of planning horizon  , the larger planning horizon (   ) results in lower routing 

costs, having served slightly increased number of customers in comparison to    . These 

conclusions are also validated by the average values of Table 6.8. 

Since the data of Table 6.8 represent different problem types, with significant differences in 

geographical distribution and time window patterns, there are large variations in the final 

routing cost. In order to analyze the effect of planning parameters   and   over the different 
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problem types, we performed a paired difference t-test on the differences of the output 

parameters due to each of the selected factors (see Tables 6.9 and 6.10).  

Table 6.9: Paired difference t-test for factor   (2 levels) - α = 0,05 

 

Customers  Routing Cost 

P=3 P=5 Dif.  P=3 P=5 Dif. 

Mean 290.56 291.11 -0.56  24.48 22.59 1.90 

Variance 283.91 222.81 18.85  15.33 13.93 0.78 

Df 17 
 

  17   

t Stat -0.54 
 

  9.13   

P(T<=t) one-tail 0.30 
 

  0.00   

t Critical one-tail 1.74 
 

  1.74   

P(T<=t) two-tail 0.59 
 

  0.00   

t Critical two-tail 2.11 
 

  2.11   

The paired t-test of Table 6.9 for the effect of the planning horizon   indicates that:  

 For the customers served, the mean difference                of the customers 

served is not significantly different than zero (t value,             and single tail 

probability     ). Thus, the increased planning horizon     does not significantly 

increase the number of served customers, for a confidence level of 95%.  

 On the other hand, for the cost per served customer, the mean difference    

             of is significant (           and single tail probability 0.00). Thus 

the observed improvement of the cost metric by increasing the planning horizon     is 

significant. 

Table 6.10: Paired difference t-test for factor   (2 levels), α = 0,05 

 

Customers  Routing Cost 

M=1 M=2 Dif.  M=1 M=2 Dif. 

Mean 296.28 285.39 10.89  23.20 23.87 -0.67 

Variance 30.45 413.66 238.22  13.66 17.27 0.71 

Df 17 
 

  17   

t Stat 2.99 
 

  -3.36   

P(T<=t) one-tail 0.00 
 

  0.00   

t Critical one-tail 1.74 
 

  1.74   

P(T<=t) two-tail 0.01 
 

  0.00   

t Critical two-tail 2.11     2.11    

The paired t-test of Table 6.10 for the effect of the implementation horizon   shows that:  

 For the customers served, the mean difference                 of the customers 

served is significantly different than zero (           and single tail probability     ). 
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Thus, implementation horizon     increases significantly the number of served 

customers, for a confidence level of 95%.  

 On the other hand, for the cost per served customer, the mean difference    

             is not significant (             and single tail probability 0.00). 

Thus, there is no significant difference among the two different implementation horizons 

concerning the routing cost, for a confidence level of 95%.  

Figure 6.8 illustrates the variation of the cost per routed customer over the periods of the long 

term scheduling horizon for instance L_R109. The Figure presents the results per each 

combination of planning and implementation horizon. Similar results have been obtained for 

all other instances. In this Figure, the cost ratio value in a certain period is the ratio of the total 

routing cost from period 1 till the period under consideration, divided by the total number of 

customers routed till the said period.  

 

Figure 6.8: Cumulative unit cost per routed customer and period (L_R109 Instance) 

In Figure 6.8 the combination of     and     results in the best overall cost values 

throughout the long term horizon. The combination          provides better results than 

the two remaining combinations; however due to the implementation horizon value (   ) 

the number of served customers is reduced. Similar results are observed in the rest of the test 

instances as reported in Appendix D.1. 

15.00

16.00

17.00

18.00

19.00

20.00

21.00

22.00

23.00

24.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

C
u

m
u

la
ti

ve
 U

n
it

 C
o

st
  

p
e

r 
R

o
u

te
d

 C
u

st
o

m
e

r

Period

15.00

20.00

25.00

30.00

35.00

40.00

45.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

C
u

m
u

la
ti

ve
 U

n
it

 C
o

st
 

p
e

r 
R

o
u

te
d

 C
u

st
o

m
e

r

Period

P=3, M=1 P=3, M=2 P=5, M=1 P=5, M=2



The MPVRP and Its Applications 

Dept. of Financial & Management Engineering     113 

6.4.2 EXPERIMENTAL RESULTS FOR THE DYNAMIC ROLLING HORIZON 

ROUTING PROBLEM 

As mentioned previously, in the dynamic rolling horizon routing problem each customer 

order becomes known a certain number of periods prior to the opening of its period window. 

In the experimental investigation of this problem we assume the (most stringent) case in 

which the order becomes known one period prior to the opening of the order’s period 

window. Furthermore in the initial experiments:  

 as before, two planning horizon values are used (3 and 5 periods), and, 

 only the value  =1 is used for the implementation horizon. 

Note that  >1 is not deemed appropriate in the dynamic problem; given that new customers 

arrive in each period, a value of  >1 delays the planning of the arriving customers for  -1 

periods. This is illustrated in Table 6.11 which presents the related analysis for instance 

L_r103 and a long term horizon of 30 periods. It is clear that     results in significant 

fewer number of routed customers w.r.t  =1. 

Table 6.11: Example illustrating the effect of the implementation horizon in the dynamic rolling horizon case 

Instance P 
Routed Customers Unit Cost per Customer 

M=1 M=2 M=1 M=2 

L_r103 3 295 164 18.80 20.77 

 
5 294 164 19.14 20.09 

Table 6.12 presents the results of the experimental investigation, which was conducted based 

on the above parameters. The Table reports the instance name, the planning horizon used ( ), 

the total number of customers routed and the average routing cost per customer over the 30- 

period horizon. Appendix D.2 presents the detailed figures per instance and period of the 

planning horizon. 

Table 6.12: Comparative results using different planning horizons (dynamic arrival of customers) 

Instance 

Planning Horizon 

        

Routed Customers 
Unit Cost/ 

 Served Customer 
Routed Customers 

Unit Cost/ 
 Served Customer 

L_r103 295 18.80 294 19.14 

L_r106 299 17.60 299 18.19 

L_r109 299 17.91 299 17.91 

L_c106 300 25.09 300 25.14 

L_c108 300 24.68 300 24.98 
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L_c102 299 24.44 299 23.25 

L_rc101 290 25.71 283 26.39 

L_rc105 296 24.44 294 23.99 

L_rc107 300 22.02 300 20.60 

In terms of the planning horizon  , there is no strong evidence in favor of either value of  , 

neither in terms of the number of customers served nor in terms of routing cost per customer 

served. This is also shown by the results of the paired difference t-test presented in Table 

6.13. 

Table 6.13: Paired difference t-test for factor   (2 levels) 

 

Customers  Routing Cost 

P=3 P=5 Dif.  P=3 P=5 Dif. 

Mean 297.56 296.44 1.11  22.30 22.18 0.12 

Variance 11.28 31.28 5.36  11.00 10.57 0.57 

Df 8 
 

  8   

t Stat 1.44 
 

  0.49   

P(T<=t) one-tail 0.09 
 

  0.32   

t Critical one-tail 1.86 
 

  1.86   

P(T<=t) two-tail 0.19 
 

  0.64   

t Critical two-tail 2.31      2.31     

Based on the above results  it seems that wider planning horizons do not always succeed in 

improving routing costs. This may be attributed to the fact that wide planning horizons tend to 

spread customers over an increased number of periods without full knowledge of the future 

customers to appear.  

Dynamic rolling horizon case: A more detailed investigation of the effect of    

In order to further examine the effect of the planning horizon, we conducted a series of 

additional tests with   varying from 1 to 7. In these tests we used a wider period window 

pattern (7 periods). In each test we selected the first 360 from the 400 customers of each 

extended Solomon instance, and used an arrival rate of 12 customers per period with each 

customer order becoming known one period prior to the opening of its period window.  

Table 6.13 presents the average results per problem type. That is, the number of the served 

customers per period and the cost per customer has been averaged over the three test instances 

of the same problem type (random, clustered and mixed). Appendix D.3 presents the detailed 

results per instance. 

Table 6.14: Average results per planning horizon and problem type (dynamic arrival of customers) 
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Problem Type 

R1 C1 RC1 

Served  
Customers 

Unit Cost 
 per Customer 

Served  
Customers 

Unit Cost 
 per Customer 

Served  
Customers 

Unit Cost 
 per Customer 

1 356.7 21.2 360.0 34.8 347.0 24.2 

2 358.7 19.1 360.0 25.6 349.7 22.8 

3 357.3 16.9 359.7 22.5 347.0 21.5 

4 305.3
(1)

 15.5 358.7 20.8 348.7 20.6 

5 356.0 15.3 359.3 20.8 347.3 20.0 

6 356.0 15.8 358.3 20.5 348.7 19.4 

7 342.0 15.9 359.3 21.7 344.0 20.1 

(1) Low number of served customers is due to premature termination of the solution procedure at period 17. 

Figure 6.9 displays the average unit cost per routed customer for all planning horizon values, 

and for the three customer distribution types. Note that the served customers present a slight 

but not considerable. decrease as the planning horizon increases (see Figure 6.10).  

 

Figure 6.9: Average cost per routed customer (per problem type) 

In terms of planning horizon  , in all problem types there is an appreciable decrease of the 

routing cost per customer up to a planning horizons of 4 periods. After that, and for all 

problem types, the unit routing cost reaches a plateau with a slight routing cost increase in the 

last two values of the planning horizon (6 and 7). This is also evident in Fig. 6.10 in terms of 

the grand average over all instances and problem types. The same Figure indicates that the 

total number of served customers does not exhibit significant variations among the different 

planning horizons.  
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In terms of problem type (R1, C1, RC1), it seems that all problem types present similar 

behavior regarding the unit cost change as the planning horizon increases from 1 to 7 periods; 

the C1 instances present the largest unit routing cost decrease. 

 

Figure 6.10: Routing cost per served customer and served customers per planning horizon (average over all 

instances and types) 

The above observations are validated by the Analysis of Variance (ANOVA) conducted for 

factor   and for the cost per customer (output). Two analyses were conducted in order to 

verify the initial favorable effect of increasing  , followed by the settling of the output value 

beyond a certain   value: The first analysis concerned the effect of   over all 7 levels 

(planning horizons from 1 to 7), while the second examined its effect over the last 4 levels 

(planning horizons from 4 to 7). The analysis used all nine test instances, and the results are 

shown in Tables 6.15 and 6.16, respectively. 

Table 6.15: ANOVA for factor   varying from 1 to 7 (7 levels) w.r.t. cost per served customer 

Groups Count Sum Average Variance     

1 9 240.511 26.723 40.000     

2 9 202.511 22.501 9.494     

3 9 182.895 20.322 8.613     

4 9 170.828 18.981 7.450     

5 9 168.514 18.724 7.946     

6 9 167.306 18.590 4.843     

7 9 173.285 19.254 9.058     

 
            

Source of Variation SS df MS F P-value F crit 

Between Groups 477.638 6 79.606 6.375 0.000 2.266 
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Within Groups 699.234 56 12.486       

              

Total 1176.872 62         

Table 6.16: ANOVA for factor   varying from 4 to 7 (4 levels) w.r.t. cost per served customer 

Groups Count Sum Average Variance     

4 9 170.83 18.98 7.45     

5 9 168.51 18.72 7.95     

6 9 167.31 18.59 4.84     

7 9 173.28 19.25 9.06     

ANOVA             

Source of Variation SS df MS F P-value F crit 

Between Groups 2.33 3 0.78 0.11 0.96 2.90 

Within Groups 234.38 32 7.32       

Total 236.70 35         

Tables 6.15 and 6.16 show that the effect of   observed in Figs. 6.9 and 6.10 is statistically 

significant, that is, wider planning horizons succeed in improving routing costs. However this 

effect indeed reaches a plateau for        , in which there is no significant variation of 

the cost per customer (the F-value is lower than the F-critical value). 

An additional analysis was conducted in order to test the effect of   on the number of 

customers served (planning horizons from 1 to 7). The results are presented in Table 6.17 and 

validate that there is no significant difference in the number of routed customers (F-value = 

0.76 vs. critical F-value = 2.27).  

Table 6.17: ANOVA Test for factor   (7 levels) w.r.t. Served Customers 

Source of Variation SS df MS F P-value F crit 

Between Groups 2338.16 6 389.69 0.76 0.60 2.27 

Within Groups 28547.11 56 509.77 
   Total 30885.27 62         
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Chapter 7: THE MPVRPTW WITH PRE-ASSIGNED 

CUSTOMERS 

In this Chapter we address an interesting problem that stems from practice. Consider an 

environment in which a fleet of vehicles serves two types of customer orders over a time 

horizon:  

 First, each vehicle should serve certain known customer orders pre-assigned to it, per 

period of the horizon. The sequence followed by a vehicle to serve these "inflexible" 

orders is not fixed. Furthermore, the sets of pre-assigned orders per vehicle vary, in 

general, from period to period of the horizon.  

 Secondly, within this horizon, the fleet serves "flexible" customer orders that arrive 

dynamically and are characterized by a certain period window, and a certain time 

window.  

The problem posed in this Chapter is to serve both the inflexible and the flexible customer 

orders with the minimum routing cost. This problem is solved on a rolling horizon basis in 

order to address the dynamics of arriving orders. 

There are significant operational parameters to be considered in this environment, which 

make the problem both interesting and complex. These include the following: 

 Assignment of flexible customer orders: As mentioned above, the flexible orders should 

be assigned to the vehicles serving the pre-assigned, inflexible customer orders. 

 Dynamic arriving process of flexible orders: A flexible order that arrives in the current 

period, say   , may be served in a period window    
    

   where   
    . This implies 

that not all flexible orders that may be served in period              are known in 

the current period   . However, all flexible orders to be served in period      are 

known in period   . 

The main concept of our proposed approach is outlined below. As in Chapter 6, each flexible 

order  , for which   
       must be assigned in period     , while all other flexible 

orders with expiration period   
        can be assigned within their respective period 

window interval    
    

  . Each pre-planned inflexible (or mandatory) customer order     

assigned to a specific vehicle    may be considered as an order with period window of a single 

period, i.e.   
     

 , and, is also assigned to a specific vehicle within the period of service. 
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The assignment of flexible orders is performed in the most cost effective manner. Having 

assigned all known flexible orders within the planning horizon              the orders in 

the first   periods of the planning horizon   are implemented. 

The importance of this special environment is discussed in the next Section. Note that the pre-

assignment of inflexible customer orders necessitates modifications to the multi-period 

models presented in the previous Chapters. Furthermore, to solve the resulting problem, 

certain modifications are required in the proposed method, including the column generation 

scheme. These are discussed in the subsequent Sections.  

7.1 PRACTICAL APPLICATIONS OF THE MPVRP WITH PRE-ASSIGNED 

CUSTOMERS 

The above planning problem is encountered in several supply chains. Typical examples 

include environments in which: (a) the planning (routing) process is performed in several 

batches throughout the day; in this case after each batch is scheduled, the related orders are 

assigned to certain vehicles, and (b) Fixed routes are predefined in an effort to estimate the 

expected workload in a, typically short-term planning horizon. (c) There are specific 

customers that demand a daily or periodic service (i.e. bank, grocery stores). Typically, such 

customers are pre-assigned to certain vehicles (e.g. that serve specific geographical areas). 

Additional customer orders that may become known are allocated taking under consideration 

these pre-assigned customers orders (inflexible orders).  

All these environments are further discussed below. 

Example 1: Strong dependence between routing and picking 

Consider an operational environment, in which the picking process is time consuming. 

Additionally, the customer orders arrive in batches, with the last batch arriving close to the 

start of delivery operations. In such a situation, the picking process (i.e. the collection of the 

items from the warehouse and their assignment to the vehicle loading zones), as well as the 

loading of the vehicles, start prior to obtaining the information on all customer orders to be 

delivered in the next scheduling period; this pre-emption is necessary in order to distribute 

evenly the picking and vehicle loading work, and avoid operational delays. For a certain batch 

of orders to be planned (flexible orders), the ones already assigned to vehicles are the 

inflexible ones.  
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Having pre-assigned customer orders to the vehicles, there is a possibility that not all flexible 

customer orders can be served within the same period (day). Thus, the planners need to select 

which orders to deliver during the next period and which to postpone for a later period. The 

customer orders that have not yet been assigned to vehicles can be considered as the flexible 

orders. Postponing some of the flexible orders necessitates to consider the MPVRP with pre-

assigned customers.  

Example 2: Periodic service of significant customers 

This case is related to environments, in which certain customers require daily or periodic 

service. Usually these customers are considered as key accounts, which provide significant 

revenue to the distribution business. Characteristic examples include: (a) Express courier 

services that serve bank branches requiring daily service, as well as (b) distribution of 

groceries, fresh, or perishable goods to minimarkets or supermarkets, to which the products 

are delivered in set frequency (e.g. every   days). The current operational practice is to serve 

these customers by predefined routes in order to simplify the warehousing and distribution 

processes while providing increased service quality. These customers are considered as the 

inflexible ones since they need to be serviced with high priority. Apart from these orders, 

there are also additional customer orders that are concerned as 2
nd

 priority orders. Based on 

each company’s service level agreement, these orders may be served within a period window 

of consecutive days upon their arrival, allowing the planners to provide a more cost effective 

distribution planning. 

Example 3: Next day delivery mixed with micro-logistics operations 

This third case is related to operational environments that are characterized by a mix of 

customer service levels. Such environments are, among others, courier services. A typical 

courier network consists of several service centers, which are responsible for the distribution 

and collection of parcels and letters using a dedicated fleet. The main tasks of a service center 

can be summarized in (a) deliveries, (b) pickups, and (c) bulk product deliveries. Tasks (a) 

and (b) are the inflexible orders, which arrive typically overnight or during the early morning 

prior to the beginning of the mandatory service period. Tasks (c) are flexible, arrive daily but 

should be served within the next   periods (days) after arrival. A mix of 80% inflexible and 

20% flexible calls is typical in many courier operations. Typical tasks belonging to the latter 

category (c) include several micrologistics activities, such as the distribution of high tech 

items, e.g. mobile phone sets, or internet kits, as well as bulk deliveries of advertising 

products and materials. For these tasks, the customers to be served should be informed at least 
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one period prior to the actual service delivery. Due to the large volume of batch arrivals of 

orders, and considering the nature of the product been delivered, it is both inefficient and 

unnecessary to serve all micrologistics orders within a single period. Thus, the flexible orders 

must be assigned to the periods of the planning horizon prior to knowing the inflexible orders, 

in order to be able to inform the customers regarding the day and time of the scheduled visit. 

In order to do this, one uses typical routes that the fleet vehicles are likely to travel during 

each period of the planning horizon. These routes may vary or be the same within the horizon, 

or may follow seasonal patterns. 

Example 4: Dealing with routing uncertainty in field service environments 

Another operational environment of relevance to the problem considered here concerns 

maintenance/repair services that are delivered on-site. In this environment, a group of repair 

persons provide services on location (e.g. appliance, or equipment maintenance).  

The inflexible calls typically are repair tasks that (a) are pre-scheduled in a certain day (i.e. 

for preventive maintenance) or (b) they need immediate attention (and generate increased 

revenue), while flexible calls are the ones that may not need to be addressed immediately but 

within a selected period window set by the customer. Pre-assignment of inflexible orders to 

specific vehicles (or driver) may be performed based on the equipment or skills required.  

In such operational environments, customer service is typically problematic, forcing 

customers to wait for unspecified time within the promise day of service delivery. The main 

reason for this difficulty is that service planners have no prior knowledge of the total picture 

of the pending tasks, as well as of the dependencies among them (priorities, adjoined orders, 

etc). The decisions are mostly based on experience and typically each day is taken as 

independent from the others, without taking into account the characteristics of the demand. 

7.2 MODIFICATIONS FOR THE MULTI-PERIOD ROUTING PROBLEM WITH 

PRE-ASSIGNED CUSTOMERS 

7.2.1 MODIFICATIONS IN THE MATHEMATICAL MODEL  

In this Section, we modify the mathematical formulation presented in Chapter 3 and Section 

6.3 in order to take under consideration the existence of pre-assigned customers. Hereafter for 

simplicity, and without loss of generality, the current period (planning period) is set to    

 , and the planning horizon is      .  
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Let    be the set of all inflexible customer orders, and    be the set of all known flexible 

orders, thus,        . Each inflexible customer    is assigned a period window 

   
    

           where    is the period within which customer    should be served. In 

addition, each inflexible order    is assigned to the route of the corresponding vehicle   from 

the available vehicle set       
      

      

    
 .  

In order to force inflexible customer orders to be served within a certain period by a 

designated vehicle, while the flexible orders can be served once within their assigned period 

window by any vehicle, Constraint (3.2) is modified into two separate constraints, one for the 

inflexible and one for the flexible customer orders, as follows: 

         
 

   

           (7.1) 

        

           

         (7.2) 

Constraint (7.1) specifies that each inflexible customer order should be served during the 

required (single) period and by the designated vehicle, while Constraint (7.2) specifies that 

each flexible customer will be served only once by any available vehicle and in any period   

within its period window   . Note that in the aforementioned business setting, it is possible to 

have vehicles (routes) without assigned inflexible orders. The proposed modifications are 

capable of handling such a situation, since these vehicles will contain only flexible customers 

considered by Constraint (7.2). 

7.2.2 MODIFICATIONS OF THE COLUMN GENERATION METHOD 

In order to consider the assignment of inflexible customer orders to vehicles, several 

modifications are required in the column generation method presented in Chapters 4, 5, and 6. 

Similar modifications were first discussed and presented by Ninikas and Minis (2011) for the 

Vehicle Routing Problem with Dynamic Pickups (VRPDP). 

Given the initial assignment of inflexible customer orders, the initial columns (routes) of the 

Restricted Master Problem (RMP) should, at least, contain these inflexible orders. Note that 

the RMP requires an initial feasible solution in order to be solved, and since the inflexible 

customer orders are pre-assigned to vehicles (i.e. they are feasible only within the pre-

assigned vehicles and periods), such routes need to be provided. Recall that in the cases 

without inflexible customer orders (discussed in Chapters 3 to 6) the following hold: 
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(a)  For the case of unlimited vehicle fleet, the initialization may be performed using the 

unit routes (i.e. routes that visit only one customer and return to the depot, since such 

routes are feasible, although trivial).  

(b) For the case of limited fleet, but without inflexible customers (see Chapter 3), the 

initialization may be performed through heuristics that provide an initial feasible 

solution to the underlying problem, in which all orders are served and the fleet size 

within each period is respected.  

(c) For the case of limited fleet, when using the modified objective function described in 

Chapter 6, the initial solution can be provided either using a heuristic (as described in 

case  ) or by using the virtual unit routes (columns) that are associated with the 

unserved customers penalty costs. 

All above initialization schemes cannot be utilized for the current case, since pre-assigned 

customer orders should be taken under consideration along their assignment to certain 

vehicles. We initialize the method using a trivial solution that includes the routes that contain 

only the inflexible orders assigned to the vehicles of each period, while the flexible orders are 

considered as unserved. The latter are treated as unserved in this initial solution, by using the 

visual unit columns that correspond to leaving these customers unserved (see Section 6.3).  

Since each available vehicle is associated with a set of inflexible customer orders, considering 

a single subproblem per period is not appropriate. The reason is that the inflexible customer 

orders assigned to each vehicle need to be treated in a way that prevents creating columns 

(routes) that contain inflexible orders pre-assigned to different vehicles. In order to address 

this issue, a straightforward modification is utilized that considers one subproblem per each 

period-route combination. For a relevant approach in the case of the multiple depot MPVRP, 

see Tricoire (2007).  

Modifications to the Subproblem 

In the current case, each subproblem is associated with a period  , a vehicle   
 , a set of 

inflexible customers   
                and a set of flexible customers   

     

        
    

   . In order to generate feasible columns (routes), the following modifications 

should be incorporated into the method presented in Section 3.3 and Chapter 4:  

 Each generated column (route) should include all inflexible customers of set   
 , i.e. the 

set corresponding to the appropriate vehicle. Thus, a label     related to this route is not 
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allowed to be extended to the depot if not all customers within   
  have already been 

served. 

 Additionally, each generated column (route) should not include any inflexible customer 

not associated with vehicle  . This is addressed by including in the subproblem 

corresponding to vehicle   
  only the corresponding feasible inflexible customers (i.e. 

  
 ). 

 In case a mandatory customer from set   
  becomes unreachable within a label    , this 

label is discarded and it is not extended further, since it cannot include all inflexible 

customers.  

Required modifications for the dominance criteria 

The existence of inflexible customers within each route requires the enhancement of the 

dominance criteria in order to consider the number of inflexible customers that have been 

served by the associated partial route   of a label     when it is compared to another label 

    . A straightforward modification would allow to compare for dominance two different 

labels ending at the same node (customer) only if the associated partial paths have served the 

same inflexible customers. Doing so, the dominance criteria would be applied only to a very 

limited number of labels, leading to an impractically high number of partial routes to be 

extended, and to prohibitive computational times. 

In order to overcome this issue, we enhance the labels by adding a cost factor      (equilibrium 

cost) that represents an upper bound (worst case) of the total modified cost required to visit all 

inflexible customers not yet served following partial route  . This is done by taking into 

account only connecting arcs which are feasible (and, thus, not included in unreachable vector 

    ; that is, 

          
               

    
     

      
                 

 
    

     
   

     
            

 (7.3) 

where    
  is the modified cost associated with arc      , while    

  is the element of the 

unreachable vector     within the partial route   that is associated to node (customer)   (note 

that when an element    
  is equal to 1, then order   has been already visited or cannot be 

visited by partial path  , while    
    denotes that customer   has not yet been included in 

the partial route  .  
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With this modification, label     becomes                              and the related 

dominance criterion used in the procedure of Section 3.3 is given by: 

              (7.4) 

Note that the additional dominance criterion does not violate optimality when the associated 

ESPPTWCC is solved within a full B&P framework, since it eliminates labels that lead to 

worst routes with respect to the reduced cost. 

7.3 EXPERIMENTAL INVESTIGATION OF ROLLING HORIZON WITH PRE-

ASSIGNED CUSTOMERS 

The experimental investigation of the present problem is similar in scope to the one described 

in Section 6.4; that is, it seeks to determine the significance of the length of planning horizon 

  in settings in which a part of the known customers has already been pre-assigned to certain 

vehicles. We investigate the dynamic rolling horizon routing problem, in which customers 

become known one period prior to the opening of their period window.  

The experimental testbed was constructed as follows: 

 The test instances described in Section 6.4. were used to define the customer geographical 

distribution, as well as the customer parameters (time window, demand, etc) 

 We considered three different period window patterns, that is 3, 5 and 7, in order to 

simulate various degrees of customer period flexibility in this multi period setting. 

 From the customer set of each instance, we randomly selected 180 customers as the 

inflexible ones. We distributed these customers in subsets of 6 to the 30 periods of the 

long-term horizon (one set per period). All inflexible customers were assigned the widest 

possible time window (equal to the maximum available routing time per period) in order 

to avoid routing infeasibilities and, also, to not limit the assignment of flexible orders to 

the vehicles due to limited resources (e.g. increased waiting times due to the time 

windows of the inflexible customer orders). Finally, to serve the customers of each period 

we used two vehicles with maximum service limit of 3 inflexible customers orders per 

vehicle; thus we developed two routes per period. 

 In addition to the inflexible customers, 6 dynamic customer orders arrived per period (e.g. 

180 flexible customer orders in total). To achieve a smooth initial transition, we employed 
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a “warm start” by considering dynamic orders from 3 past periods prior to period 1 (e.g. in 

the first period there are 18 dynamic customers that are considered for planning). 

 The output parameters studied concern the number of flexible customer orders served, and 

the additional cost per flexible customer order. This additional cost is derived by 

subtracting from the overall routing cost of each period, the original routing cost of the 

inflexible orders in the same period. To obtain the routing cost ratio, this additional cost is 

divided by the number of flexible orders served in this period. 

7.3.1 EXPERIMENTAL RESULTS 

Table 7.1 presents the results per problem type, period window pattern and planning horizon. 

The values presented in this Table are (a) the average number of served flexible customers 

over the entire horizon, and b) the average cost ratio (or unit cost) ; these averages were 

obtained over the three test instances of the corresponding problem type. (e.g. for R1 the 

values corresponding to the instances R103, R106 and R109 have been averaged). Appendix 

E presents the results per instance. 

Table 7.1: Average experimental results per problem type, period window pattern, and planning horizon 

  

Problem Type 

R1 C1 RC1 

Served  
Customers 

Unit Cost 
 per Customer 

Served  
Customers 

Unit Cost 
 per 

Customer 
Served  

Customers 

Unit Cost 
 per 

Customer 

 
Period Window Pattern 3 

1 176.0 13.8 180.0 19.6 162.3 12.0 

2 177.0 8.2 180.0 9.5 164.3 11.0 

3 177.0 7.0 180.0 8.0 163.0 10.2 

 
Period Window Pattern 5 

1 177.3 13.1 180.0 19.5 174.7 11.9 

2 177.3 7.1 180.0 8.3 176.3 9.5 

3 177.3 4.4 180.0 5.2 176.3 8.2 

4 177.3 4.1 180.0 4.1 176.0 5.7 

5 177.3 4.1 180.0 4.2 175.7 6.4 

 
Period Window Pattern 7 

1 177.3 13.0 180.0 19.5 174.3 11.4 

2 177.3 7.0 180.0 8.1 176.3 9.3 

3 177.3 4.1 180.0 4.6 176.7 6.8 

4 177.3 3.7 180.0 3.8 176.3 4.6 

5 177.3 3.2 180.0 3.2 175.3 4.0 

6 177.0 3.1 179.7 3.0 175.3 4.0 

7 177.0 2.9 179.7 3.0 175.3 3.8 
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For the three period window patterns, Figures 7.1, 7.2 and 7.3 display the average unit cost 

per routed dynamic customer order for all planning horizon values, and for the three customer 

distribution types. 

 

Figure 7.1: Average routing cost ratio per problem type (Pattern 3) 

 

Figure 7.2: Average routing cost ratio per problem type (Pattern 5) 
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Figure 7.3: Average routing cost ratio per problem type (Pattern 7) 

In terms of the planning horizon  , in all problem types and, specifically, in the period 

window patterns 5 and 7, the routing cost per customer decreases significantly in the initial 

range of   values. This decreasing trend reaches a plateau beyond a certain value of   (e.g 

    for Pattern 7). In terms of problem type (R1, C1, RC1), it seems that the decrease of 

the cost ratio is more pronounced for the R1 and C1 problems, while the RC1 problem type 

presents a more limited decreasing trend. 

Figures 7.4, 7.5 and 7.6 present the grand average over all instances and problem types per 

period window pattern. These Figures validate the significant decrease of the routing cost 

ratio with increasing values of the planning horizon. Furthermore, they indicate that the total 

number of served customers is not affected significantly by the planning horizon value.  
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Figure 7.4: Routing cost ratio and served customers per planning horizon (average over all instances) – Pattern 3 

 

Figure 7.5: Routing cost ratio and served customers per planning horizon (average over all instances) – Pattern 5 

 

Figure 7.6: Routing cost ratio and served customers per planning horizon (average over all instances) – Pattern 7 
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 The second test concerns the comparison of the routing cost ratio between the level 

corresponding to the medium range of   and the highest   level (e.g. 3, 5, 7 for 

patterns 3, 5 and 7, respectively).  

The hypothesis tested is the following: 

                                              

                                              

Since we are testing only for the difference of the cost ratio been higher than zero, the one-tail 

t-value is relevant. The degrees of freedom for all samples are equal to 8 (since each data set 

contains nine samples). Based on a 95% confidence level, the related t-value is:        
         

    . Table 7.2 presents the results of the paired difference t-tests.  

Table 7.2: Paired difference t-test analysis for factor   and routing cost ratio 

Pattern 3 

Routing Cost 

P=1 P=2 Dif.  P=2 P=3 Dif. 

Mean 15.12 9.60 5.53  9.60 8.42 1.18 

Variance 12.53 3.43 16.10  3.43 3.79 0.16 

t Stat 4.13 
 

  8.75   

Pattern 5 P=1 P=3 Dif.  P=3 P=5 Dif. 

Mean 14.82 5.95 8.88  5.95 4.92 1.03 

Variance 13.89 5.44 22.14  5.44 3.04 0.76 

t Stat 5.66 
 

  3.55   

Pattern 7 P=1 P=4 Dif.  P=4 P=7 Dif. 

Mean 14.64 4.05 10.59  4.05 3.24 0.81 

Variance 14.72 0.88 16.22  0.88 0.70 0.04 

t Stat 7.89 
 

  12.78   

For both t-tests the null hypothesis is rejected (the t-Stat value is larger than the        
         value 

in all paired differences). Thus, the routing cost ratio decreases significantly as the planning 

horizon widens in all tested period window patterns. 

 Using similar hypotheses, the paired difference t-test w.r.t. the number of served customers 

validates that   does not have a significant effect on the former. 

Indicative experimental results for a case with a large number of unserved customers 

We have also investigated cases in which only a limited number of flexible customers can be 

serviced. The scope of this investigation was to assess the proposed approach under such 
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extreme situations. To do so, we utilized pattern 7 and increased the assigned service time of 

each flexible customer order by 100% (w.r.t. the service time of the test instances discussed in 

Section 6.4). All other parameters used in the previous setting remained intact. Figure 7.7 

presents the grand average over all instances per period window pattern.  

 

Figure 7.7: Routing cost ratio and served customers per planning horizon (average over all instances) – Pattern 7 

In this case, the number of served flexible orders is limited compared to the total of 180 

flexible orders. Additionally, the routing cost ratio does not indicate significant variation. This 

is possibly due to the high ratio of unserved customer orders, which increases significantly the 
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presented in Figures 7.8 and 7.9, respectively. 

80

90

100

110

120

130

140

40

50

60

70

80

90

100

1 2 3 4 5 6 7

A
ve

rage
 Se

rve
d

 C
u

sto
m

e
rs

A
ve

ra
ge

 R
o

u
ti

n
g 

C
o

st
 R

at
io

Planning Horizon (P)

Average Cost Ratio Served Customers



The MPVRP and Its Applications 

Dept. of Financial & Management Engineering     133 

 

Figure 7.8: Average routing cost ratio per planning horizon and penalty function (average over all instances) – 

Pattern 7 

 

Figure 7.9: Average served customers per planning horizon and penalty function (average over all instances) – 

Pattern 7 
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As far as the planning horizon is concerned, the moderate planning horizon values seem to 

provide improved results in served customers per period, and slight improvements with 

respect to routing costs.  
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Chapter 8: CONCLUSIONS AND FUTURE RESEARCH 

8.1 CONCLUSIONS 

In this dissertation we studied the Multi-Period Vehicle Routing Problem with Time Windows 

(MPVRPTW). We provided the mathematical formulation of the MPVRPTW in conjunction 

with its remodeling into a framework amenable to column generation.  

Efficient lower bounds for the relaxed MPVRPTW 

Based on the insights in the column generation method, we developed two different exact 

strategies to provide lower bounds to the linear relaxation of the MPVRPTW:  

 The cloning strategy transfers feasible routes generated by one subproblem to the other 

subproblems of the column generation scheme. This strategy seeks computational savings 

by avoiding to solve explicitly the subproblem of each period 

 The unified strategy solves a single (unified) subproblem that considers all periods of the 

planning horizon. Period feasibility of each generated route is checked within this 

subproblem. 

These strategies take advantage of the special structure of the multi-period problem, such as 

the flexibility of customers to be routed in different periods, and the existence of routes that 

may be assigned to multiple periods. We studied the efficiency of the proposed methods 

(w.r.t. computational savings) against the classical adaptation of the column generation 

method to the multi-period setting, as well as against its parallel implementation. 

The two alternative methods (cloning and unified) succeed in reducing the computational 

time, compared to the above reference methods, with the exception of the clustered instances 

in the parallel implementation. Specifically, for the random and the clustered instances, the 

cloning method exhibits the best performance with time savings of about 50% with respect to 

the classical method. For the mixed test instances, the unified method appears to be the most 

efficient, resulting to the highest time savings (also about 50%). While for all problem sets, 

the parallel and the cloning methods appear to be the most efficient.  

Additionally, as expected, for narrow period windows the proposed algorithms do not provide 

substantial efficiency gains, due to the limited customer flexibility and the limited similarity 

between the subproblems. On the contrary, significant efficiency gains appear in wider period 
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windows (patterns 6 to 9), which are the most computationally expensive instances. The 

unified method exhibits the most diverse behavior regarding the period window patterns: It 

presents the least efficient results for narrow period windows (with even 2 times greater 

computational times for pattern 1 compared to the classical reference method); however, for 

the wider period window patterns, it outperforms all other algorithms, succeeding in a 62% 

reduction for pattern 9 with respect to the classical method. 

The efficiency of all methods seems to be more evident in clustered instances where there are 

computational savings even for moderate period windows. For the mixed instances, the 

parallel implementation presents more consistent performance compared to the other 

methods, while for the random instances efficiency gains are realized only for wide period 

windows. 

Integer Solutions for the MPVRPTW 

Integer solutions for the MPVRPTW are provided through a proposed branch-and-price 

implementation that is relevant to the multi-period setting. Two different strategies for 

exploring the branch-and-price tree have been discussed and tested: (a) The classical one, in 

which two branches are generated after each fractional solution, and (b) a slight modification 

that considers the multi-period characteristics of the problem by creating     branches. 

Additionally, a simple pruning heuristic is proposed in order to accelerate the integer solution 

procedure. This heuristic stops the extension of the branch-and-price tree for not “promising” 

branches, for which the lower bound is close to the best known global upper bound. Thus, it is 

able to provide near-optimal results, also in instances with wide period flexibility of customer 

orders. 

Based on the previous results, we selected to employ the cloning method in the B&P scheme 

and compared the efficiency of the latter against the B&P scheme that uses the classical 

reference method. For the cases for which an integer solution was obtained (within the 

computational time limit), the cloning method results in significant gains in determining the 

optimal (or a suboptimal) integer solution, especially as the width of the period window 

increases. For cases solved to optimality by B&P, the efficiency of the cloning method is 

moderated. This is attributed to the fact that the savings, stemming from determining the 

lower bound, are moderated by the other B&P operations, such as the generation of the B&P 

nodes. 
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To study the proposed pruning heuristic we focused on (a) those instances for which B&P 

determined the integer optimal solution, and (b) the instances for which an integer solution 

was found, but its optimality was not verified due to reaching the imposed time limit. The 

resulting cost deviation was found to be limited, below 1%, while the computational time has 

been reduced on the average by about 84% (category a) and 98% (category b). The significant 

benefits in computational times and the very limited deviation in the cost of the final solution 

indicated that the B&B heuristic is a very attractive alternative for large practical cases. 

Rolling horizon routing 

Having set the foundations of the addressing the generic MPVRPTW, we focused on 

problems solved over long-term horizons. For these cases we proposed a rolling horizon 

framework and studied two arrival patterns of customer orders: (a) the quasi-static, and (b) the 

dynamic MPVRPTW. Considering the quasi-static case, we proposed and discussed three 

theoretical statements concerning the implementation horizon (M) and the planning horizon 

(P), thus, establishing the principles of applying the proposed framework and methods. 

Specifically, it was established that:  

 The monolithic solution of the full multi-period routing problem (for the   period horizon) 

is always lower or equal to the final implemented solution obtained by any rolling horizon 

scheme with planning horizon of     periods, 

 The overall routing cost provided by a rolling horizon scheme with planning horizon of   

periods is not necessarily lower than or equal to the overall routing cost provided by a 

rolling horizon scheme with planning horizon of    periods, where       , and 

 Using a rolling horizon scheme with planning horizon      it is not guaranteed 

that     (i.e. implementing only the first period of the planning horizon) will always 

lead to a lower cost value compared to alternative implementation horizons with    . 

In order to address the MPVRPTW within a rolling horizon framework, we modified the 

model of the problem to take under consideration the case in which not all customer orders 

can be served within the planning horizon due to resource limitations. The problem is dealt 

through introducing penalty functions for the unserved customers, thus, balancing routing 

efficiency with the number of served customers within the long-term horizon. 

Significant experimental investigation was performed considering both arrival patterns of 

customer orders. For the quasi-static case, longer planning horizons result in lower routing 

costs, validating the appropriateness and the efficiency of the proposed methods. In terms of 
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the implementation horizon  , it is clear that     results in higher (or equal) number of 

routed customers in all cases, and, also, in lower routing cost per customer in almost all cases, 

except in the cases where     resulted in a much lower number of served customers. These 

experimental results follow the same pattern for different time windows, as well as for 

different geographical distributions of customer orders. The above conclusions were also 

validated through appropriate statistical analysis. 

For the dynamic rolling horizon routing case, and in all problem types, there is an appreciable 

decrease of the routing cost per customer up to a planning horizons of 4 periods. After that,  

the unit routing cost reaches a plateau with a slight routing cost increase in the last two values 

of the planning horizon (6 and 7). Also, the total number of served customers does not exhibit 

significant variations among the different planning horizons.  

All problem types (random, mixed, clustered) present similar behavior regarding the unit 

routing cost, as the planning horizon increases from 1 to 7 periods; the clustered instances 

present the largest unit routing cost decrease. The experimental results also indicated that 

there is no significant variation in the number of routed customers. 

The MPVRPTW with pre-assigned customers 

The MPVRPTW with pre-assigned customers is related to environments in which inflexible 

and flexible customer orders co-exist. For this case, we proposed the required modifications 

in both the MPVRPTW model and the solution approach (column generation). We considered 

the dynamic arrival pattern of customer orders and tested three different period window 

patterns (3, 5 and 7). Extensive experimental investigation indicated that significant cost 

savings may be achieved by considering wider planning horizons in the planning process. In 

terms of the planning horizon  , in all problem types and, specifically, in the period window 

patterns 5 and 7, the routing cost per customer decreases significantly in the initial range of   

values. This decreasing trend reaches a plateau beyond a certain value of   (e.g     for 

Pattern 7). In terms of problem type, it seems that the decrease of the routing cost ratio is 

more pronounced for the random and the clustered instances, while the mixed instances 

present a more limited decreasing trend. Furthermore, the total number of served customers is 

not affected significantly by the planning horizon value.  

For cases in which only a limited number of flexible customers can be served, we showed that 

the “flat” penalty function seems to provide improved results in both routing cost and served 

customers. 
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8.2 FUTURE RESEARCH 

In order to accelerate the exact column generation method for the MPVRPTW, additional 

techniques that have already been proposed in the literature for vehicle routing or other 

problems, such as stabilization of the dual variables, constraints aggregation or cutting planes 

(k-path cuts, subset-row inequalities), can be studied. 

Furthermore, intelligent heuristics, metaheuristics or hybrid approaches can be employed and 

compared to the methods proposed in this dissertation. For example, current research is 

focusing on hybrid approaches, in which column generation utilizes a heuristic or a 

metaheuristic (such as the tabu search) to solve the subproblems. These approaches may be 

promising in addressing large problem instances relevant to practical applications.  

Beyond alternative or new methods to address the MPVRPTW, an interesting research 

direction is to consider other relevant problems, including  

 The fully dynamic MPVRPTW, in which customer orders may arrive and be served 

during the execution of service to the customers (while vehicles are en-route). Column 

generation with the appropriate modifications may be utilized and tested for different 

planning horizons and penalty cost functions. 

 The development of a stochastic model that concerns historical data and is able to 

either forecast demands or identify geographical areas of high demand density. Such a 

model may be combined with the MPVRPTW with pre-assigned customers and used 

in environments in which flexible orders are known in advance, and inflexible ones 

become known just prior to, or during, delivery.  

In multi-period settings, the customer service level as defined by the actual period of service 

within the period window of each customer order, may be a significant operational quality 

indicator. Servicing the customer as early as possible within its period window may lead to 

increased customer satisfaction, while, on the other hand, it may increase operational costs. 

Enhancements of the MPVRPTW in order to balance service level and operational cost, may 

provide interesting results. A related noteworthy case concerns the incorporation of soft 

period windows to deal with the case of the limited resources and to minimize the number of 

unserved customer orders. In addition, the use of different penalties, not only based on 

expiration period, but also on the type of the customer,  may provide a tool for prioritizing 

certain customers (i.e. key accounts) that are considered more important by a managerial / 

marketing or sales point of view. 
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Finally, in order to evaluate practical aspects of the current research, an initial case study in a 

Greek major courier service provider has been implemented and reported in Athanasopoulos 

and Minis (2011). This initial study has shown encouraging results. However, further 

investigation of the practical implications of the proposed methods is encouraged as part of 

future research. 
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APPENDICES 

APPENDIX A: LOWER BOUNDS AND COMPUTATIONAL TIMES FOR ALL CG 

TECHNIQUES 

Table A.1 presents the results for the instances solved in Chapter 4. Specifically, Table A.1 

provides the problem ID, the period window pattern (1 to 9), the maximum allowable number 

of vehicles per period and: (a) the lower bound obtained and (b) the needed computational 

time for each one of the tested CG methods, i.e. the FULL, CLONE, UNIFIED and Parallel 

methods. Note that lower bound values highlighted in grey are different to the values 

provided by the other CG methods due to the presence of the LDS procedure within the 

column generation procedure. 

Table A.1: Lower Bounds and Computational Time 

Probl. Pat. 
Vehicle 

Limit 

Lower Bound Computational Time (sec) 

FULL CLON UNI PARA FULL CLON UNIF PARA 

r101 1 6 1541,30 1541,30 1541,30 1541,30 2,28 0,70 2,59 1,14 
r101 2 6 1253,90 1253,90 1253,90 1253,90 3,95 3,12 2,59 2,27 
r101 3 4* 1191,64 1191,64 1191,64 1191,64 4,99 3,45 4,11 3,33 
r101 4 4* 1144,33 1144,33 1144,33 1144,33 6,91 6,27 6,73 4,24 
r101 5 4* 1119,70 1119,70 1119,70 1119,70 7,43 5,83 5,41 5,89 
r101 6 4* 1048,37 1048,37 1048,37 1048,37 9,53 6,00 7,00 6,46 
r101 7 4* 1048,37 1048,37 1048,37 1048,37 12,18 10,48 6,09 6,66 
r101 8 4* 1048,37 1048,37 1048,37 1048,37 11,89 7,24 7,27 6,67 
r101 9 4* 1048,37 1048,37 1048,37 1048,37 19,05 6,91 6,96 8,24 

r102 1 4 1410,60 1410,60 1414,80 1410,60 2,00 2,83 3,57 2,69 
r102 2 3 1168,30 1168,30 1168,30 1168,30 5,78 4,15 6,90 4,17 
r102 3 3 1104,04 1104,04 1103,53 1104,04 8,92 9,33 11,96 6,84 
r102 4 3 1050,90 1050,90 1050,60 1050,90 23,08 18,88 19,68 15,29 
r102 5 3 1034,76 1034,76 1033,54 1034,76 30,22 23,63 29,79 24,86 
r102 6 3 923,15 923,15 923,15 923,15 17,98 12,42 14,45 12,79 
r102 7 3 914,00 914,00 914,00 914,00 22,32 15,83 15,57 14,07 
r102 8 3 914,00 914,00 914,00 914,00 28,17 15,49 16,72 18,13 
r102 9 3 914,00 914,00 914,00 914,00 30,00 17,19 15,43 20,10 

r103 1 4 1277,40 1277,40 1283,00 1277,40 1,64 1,78 4,69 1,44 
r103 2 3 1020,40 1020,40 1021,30 1020,40 6,42 6,94 14,39 6,28 
r103 3 3 965,10 965,10 965,10 965,10 18,53 15,99 26,89 15,12 
r103 4 3 870,67 870,67 870,67 870,67 55,15 33,71 64,44 40,38 
r103 5 3 858,20 858,20 857,98 858,20 79,19 86,17 129,04 72,67 
r103 6 3 785,97 785,97 785,97 785,97 64,90 53,04 64,87 40,02 
r103 7 3 774,23 774,23 774,23 774,23 50,61 40,76 31,74 26,50 
r103 8 3 774,23 774,23 774,23 774,23 62,15 37,33 39,00 32,71 
r103 9 3 774,23 774,23 774,23 774,23 74,81 33,85 28,09 33,89 

r104 1 2 1115,90 1115,90 1126,85 1115,90 3,35 3,25 9,16 2,57 
r104 2 2 831,70 831,70 831,70 831,70 31,39 37,61 49,85 24,02 
r104 3 2 788,91 788,91 788,91 788,91 118,05 111,14 169,78 91,98 
r104 4 2 N/A 
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r104 5 2 N/A 
       r104 6 2 630,43 630,43 630,43 630,43 1747,99 908,94 838,65 1273,22 

r104 7 2 624,08 624,08 624,08 624,08 1366,01 880,69 649,55 842,42 
r104 8 2 624,08 624,08 624,08 624,08 1440,61 841,43 800,14 974,95 
r104 9 2 624,08 624,08 624,08 624,08 2020,35 761,73 567,48 1243,58 

r105 1 3 1465,20 1465,20 1465,20 1465,20 0,85 0,79 1,85 1,40 
r105 2 3 1157,00 1157,00 1164,50 1157,00 2,57 2,34 4,84 2,30 
r105 3 3 1080,40 1080,40 1077,60 1080,40 6,25 4,88 8,07 4,73 
r105 4 3 1024,20 1024,20 1018,66 1024,20 11,16 10,60 14,34 8,84 
r105 5 3 1004,59 1004,59 992,60 1004,59 12,71 11,50 12,20 11,10 
r105 6 3 901,66 901,66 901,66 901,66 12,02 10,28 8,88 8,61 
r105 7 3 897,12 897,12 897,12 897,12 18,20 7,15 7,22 9,90 
r105 8 3 897,12 897,12 897,12 897,12 20,29 12,74 9,21 10,46 
r105 9 3 897,12 897,12 897,12 897,12 20,79 9,77 9,25 10,69 

r106 1 4 1320,40 1320,40 1323,60 1320,40 1,50 1,45 3,44 1,56 
r106 2 3 1041,95 1041,95 1041,95 1041,95 5,71 5,05 12,81 4,34 
r106 3 3 958,19 958,19 958,19 958,19 10,54 8,63 11,87 7,73 
r106 4 3 876,93 876,93 876,93 876,93 21,33 18,97 33,99 16,14 
r106 5 3 850,50 850,50 849,34 850,50 33,00 31,15 50,53 27,05 
r106 6 3 796,88 796,88 796,88 796,88 39,72 29,05 24,58 23,62 
r106 7 3 796,37 796,37 796,37 796,37 43,61 30,10 23,89 21,86 
r106 8 3 796,37 796,37 796,37 796,37 50,72 24,00 31,03 23,25 
r106 9 3 796,37 796,37 796,37 796,37 59,57 24,99 23,80 26,56 

r107 1 4 1221,00 1221,00 1225,20 1221,00 3,25 2,01 3,89 2,07 
r107 2 3 946,23 946,23 946,66 946,23 10,67 11,09 22,76 7,84 
r107 3 3 873,80 873,80 873,80 873,80 21,18 24,80 46,28 15,43 
r107 4 3 792,26 792,26 792,26 792,26 43,51 45,37 119,66 32,58 
r107 5 3 762,59 762,59 761,84 762,59 86,65 78,33 232,47 74,69 
r107 6 3 714,41 714,41 714,41 714,41 83,64 64,33 72,96 46,87 
r107 7 3 712,26 712,26 712,26 712,26 113,00 65,33 69,93 53,86 
r107 8 3 712,26 712,26 712,26 712,26 172,01 78,49 73,78 74,21 
r107 9 3 712,26 712,26 712,26 712,26 166,78 74,94 62,20 75,67 

r108 1 3 1113,70 1113,70 1123,65 1113,70 4,23 3,88 7,02 2,85 
r108 2 3 793,40 793,40 793,40 793,40 17,03 20,63 28,35 11,22 
r108 3 3 745,66 745,66 745,66 745,66 44,22 48,32 99,60 27,88 
r108 4 3 657,40 657,40 657,40 657,40 193,54 197,47 543,23 131,87 
r108 5 3 N/A 

       r108 6 3 599,70 599,70 599,70 599,70 2393,63 1846,30 2375,52 1737,70 
r108 7 3 599,70 599,70 599,70 599,70 3443,39 1429,92 1571,16 2261,83 
r108 8 3 599,70 599,70 599,70 599,70 4860,45 1709,37 1596,94 3318,27 
r108 9 3 599,70 599,70 599,70 599,70 4755,93 1934,00 1309,59 3930,01 

r109 1 3 1286,00 1286,00 1286,00 1286,00 1,40 1,39 2,97 2,20 
r109 2 3 1001,93 1001,93 1001,93 1001,93 5,33 5,28 6,79 37,46 
r109 3 3 908,95 908,95 908,95 908,95 11,60 9,37 11,67 18,89 
r109 4 3 829,89 829,89 829,87 829,89 21,83 15,85 20,54 33,42 
r109 5 3 812,86 812,86 812,86 812,86 20,28 18,10 17,69 31,68 
r109 6 3 781,27 781,27 781,27 781,27 21,94 14,28 14,97 20,85 
r109 7 3 780,34 780,34 780,34 780,34 32,51 21,43 18,59 26,06 
r109 8 3 780,34 780,34 780,34 780,34 43,22 19,55 16,52 29,12 
r109 9 3 780,34 780,34 780,34 780,34 43,52 21,58 20,69 24,38 

r110 1 3* 1237,77 1237,77 1237,77 1237,77 1,64 1,78 2,60 1,59 
r110 2 3* 927,68 927,68 927,68 927,68 9,61 8,27 10,80 7,43 
r110 3 2* 899,55 899,55 899,55 899,55 36,65 30,71 52,43 26,94 
r110 4 2* 850,48 850,48 850,48 850,48 61,93 57,17 135,11 41,80 
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r110 5 2* 846,53 846,53 846,53 846,53 77,43 80,26 181,05 59,67 
r110 6 2 709,63 709,63 709,63 709,63 95,81 58,71 69,15 53,46 
r110 7 2 700,06 700,06 700,06 700,06 65,36 42,40 40,50 35,55 
r110 8 2 700,06 700,06 700,06 700,06 91,98 46,07 43,37 46,76 
r110 9 2 700,06 700,06 700,06 700,06 77,86 38,95 32,86 34,99 

r111 1 3 1212,75 1212,75 1226,70 1212,75 1,88 1,96 4,35 1,71 
r111 2 3 915,66 915,66 915,66 915,66 9,97 9,81 15,69 7,22 
r111 3 3 851,60 851,60 851,60 851,60 22,66 17,84 31,55 15,61 
r111 4 3 759,41 759,41 759,29 759,41 47,38 32,17 88,30 36,56 
r111 5 3 736,29 736,29 736,28 736,29 118,25 101,80 160,54 106,94 
r111 6 3 701,29 701,29 701,29 701,29 90,44 51,41 53,66 50,80 
r111 7 3 701,29 701,29 701,29 701,29 100,83 60,04 58,03 48,13 
r111 8 3 701,29 701,29 701,29 701,29 137,38 80,27 61,13 62,00 
r111 9 3 701,29 701,29 701,29 701,29 165,64 78,57 62,08 75,68 

r112 1 3 1112,90 1112,90 1112,90 1112,90 2,99 2,86 8,51 2,72 
r112 2 3 815,23 815,23 815,23 815,23 13,82 12,52 35,91 9,74 
r112 3 3 749,17 749,17 749,17 749,17 33,95 35,61 76,95 21,41 
r112 4 3 669,55 669,55 669,55 669,55 85,06 99,81 117,77 52,69 
r112 5 3 644,35 644,35 644,35 644,35 332,13 401,95 561,26 330,84 
r112 6 3 619,85 619,85 619,85 619,85 337,61 202,77 237,22 199,95 
r112 7 3 619,85 619,85 619,85 619,85 346,97 243,34 289,61 192,90 
r112 8 3 619,85 619,85 619,85 619,85 537,72 283,26 250,78 284,49 
r112 9 3 619,85 619,85 619,85 619,85 647,97 256,85 193,63 338,56 

c101 1 2 455,30 455,30 455,30 455,30 3,42 2,25 3,66 2,78 
c101 2 2 367,40 367,40 367,40 367,40 8,24 7,42 8,17 5,79 
c101 3 2 367,40 367,40 367,40 367,40 16,04 9,46 12,67 10,02 
c101 4 2 367,40 367,40 367,40 367,40 11,47 11,46 12,34 8,36 
c101 5 2 367,40 367,40 367,40 367,40 30,73 13,87 16,66 21,09 
c101 6 2 367,40 367,40 367,40 367,40 26,85 14,31 13,83 16,80 
c101 7 2 367,40 367,40 367,40 367,40 28,42 15,46 19,52 15,95 
c101 8 2 367,40 367,40 367,40 367,40 54,20 19,85 22,28 30,61 
c101 9 2 367,40 367,40 367,40 367,40 38,54 18,58 16,57 17,92 

c102 1 3 454,30 454,30 454,30 454,30 3,43 3,15 8,49 3,20 
c102 2 3 366,40 366,40 366,40 366,40 23,75 15,76 25,37 18,04 
c102 3 3 366,40 366,40 366,40 366,40 27,32 22,05 48,60 17,60 
c102 4 3 366,40 366,40 366,40 366,40 36,42 24,01 44,56 25,78 
c102 5 3 366,40 366,40 366,40 366,40 44,16 33,38 33,12 29,44 
c102 6 3 366,40 366,40 366,40 366,40 93,12 36,37 43,96 53,79 
c102 7 3 366,40 366,40 366,40 366,40 72,47 43,69 45,87 37,66 
c102 8 3 366,40 366,40 366,40 366,40 74,22 40,30 41,83 38,23 
c102 9 3 366,40 366,40 366,40 366,40 151,13 63,49 68,82 71,00 

c103 1 2 446,42 446,42 446,42 446,42 4,98 5,01 14,32 4,16 
c103 2 2 366,40 366,40 366,40 366,40 123,50 49,66 167,96 80,06 
c103 3 2 366,40 366,40 366,40 366,40 121,13 135,61 312,35 76,02 
c103 4 2 366,40 366,40 366,40 366,40 159,94 185,25 185,76 102,12 
c103 5 2 366,40 366,40 366,40 366,40 144,26 155,49 372,38 93,79 
c103 6 2 366,40 366,40 366,40 366,40 245,08 104,49 239,43 128,22 
c103 7 2 366,40 366,40 366,40 366,40 254,65 175,96 537,15 128,74 
c103 8 2 366,40 366,40 366,40 366,40 545,36 235,95 444,50 321,44 
c103 9 2 366,40 366,40 366,40 366,40 904,25 141,25 137,84 472,39 

c104 1 2 422,69 422,69 422,69 422,69 48,89 48,51 92,81 48,15 
c104 2 2 N/A 

       c104 3 2 N/A 
       c104 4 2 N/A 
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c104 5 2 N/A 
       c104 6 2 N/A 
       c104 7 2 N/A 
       c104 8 2 N/A 
       c104 9 2 N/A               

c105 1 2 455,30 455,30 455,30 455,30 2,37 2,31 4,28 22,84 
c105 2 2 367,40 367,40 367,40 367,40 8,91 8,74 14,54 26,80 
c105 3 2 367,40 367,40 367,40 367,40 15,58 15,20 17,51 29,53 
c105 4 2 367,40 367,40 367,40 367,40 17,94 14,27 13,80 24,66 
c105 5 2 367,40 367,40 367,40 367,40 22,00 14,64 24,23 18,75 
c105 6 2 367,40 367,40 367,40 367,40 24,93 18,43 18,58 15,58 
c105 7 2 367,40 367,40 367,40 367,40 43,59 23,27 26,79 24,96 
c105 8 2 367,40 367,40 367,40 367,40 49,28 18,40 22,57 26,13 
c105 9 2 367,40 367,40 367,40 367,40 67,04 25,69 30,95 32,42 

c106 1 2 454,50 454,50 454,50 454,50 2,50 3,16 3,55 2,81 
c106 2 2 367,40 367,40 367,40 367,40 7,57 8,04 11,64 6,56 
c106 3 2 367,40 367,40 367,40 367,40 16,86 11,59 13,85 11,85 
c106 4 2 367,40 367,40 367,40 367,40 14,02 15,19 21,53 11,40 
c106 5 2 367,40 367,40 367,40 367,40 20,76 11,12 19,50 15,43 
c106 6 2 367,40 367,40 367,40 367,40 33,00 16,36 21,56 19,52 
c106 7 2 367,40 367,40 367,40 367,40 35,94 18,50 20,85 20,64 
c106 8 2 367,40 367,40 367,40 367,40 50,24 24,55 25,80 26,52 
c106 9 2 367,40 367,40 367,40 367,40 54,21 18,85 21,00 27,46 

c107 1 2 455,30 455,30 455,30 455,30 2,36 2,40 4,80 2,84 
c107 2 2 367,40 367,40 367,40 367,40 11,53 10,18 9,90 10,24 
c107 3 2 367,40 367,40 367,40 367,40 20,63 16,50 17,24 15,77 
c107 4 2 367,40 367,40 367,40 367,40 22,51 16,92 23,51 16,17 
c107 5 2 367,40 367,40 367,40 367,40 26,69 16,15 23,44 18,46 
c107 6 2 367,40 367,40 367,40 367,40 29,27 22,19 28,30 17,85 
c107 7 2 367,40 367,40 367,40 367,40 42,01 20,09 30,81 24,84 
c107 8 2 367,40 367,40 367,40 367,40 47,50 23,30 30,50 25,70 
c107 9 2 367,40 367,40 367,40 367,40 56,66 23,64 23,94 27,35 

c108 1 2 448,90 448,90 448,90 448,90 3,24 3,46 8,37 3,85 
c108 2 2 367,40 367,40 367,40 367,40 14,62 16,12 22,55 10,84 
c108 3 2 367,40 367,40 367,40 367,40 32,00 23,74 41,30 20,98 
c108 4 2 367,40 367,40 367,40 367,40 33,98 26,56 38,18 22,17 
c108 5 2 367,40 367,40 367,40 367,40 44,53 25,70 51,14 30,88 
c108 6 2 367,40 367,40 367,40 367,40 55,49 27,34 44,67 29,82 
c108 7 2 367,40 367,40 367,40 367,40 61,36 61,12 52,48 31,64 
c108 8 2 367,40 367,40 367,40 367,40 99,90 35,67 49,13 47,48 
c108 9 2 367,40 367,40 367,40 367,40 90,87 38,17 44,77 43,97 

c109 1 2 422,98 422,98 422,98 422,98 4,38 4,42 9,48 3,86 
c109 2 2 367,40 367,40 367,40 367,40 41,32 39,73 64,21 29,58 
c109 3 2 367,40 367,40 367,40 367,40 68,45 41,73 69,76 40,91 
c109 4 2 367,40 367,40 367,40 367,40 58,94 52,00 95,52 36,62 
c109 5 2 367,40 367,40 367,40 367,40 85,95 59,83 88,38 54,50 
c109 6 2 367,40 367,40 367,40 367,40 120,98 53,67 96,59 61,34 
c109 7 2 367,40 367,40 367,40 367,40 95,71 65,56 97,20 44,78 
c109 8 2 367,40 367,40 367,40 367,40 112,47 71,03 108,87 47,37 
c109 9 2 367,40 367,40 367,40 367,40 212,11 64,51 130,34 109,58 

rc101 1 4 1300,80 1300,80 1300,80 1300,80 1,13 1,14 1,97 1,97 
rc101 2 3 1061,38 1061,38 1061,38 1061,38 4,42 4,47 5,13 3,41 
rc101 3 3 995,29 995,29 995,29 995,29 7,01 5,32 6,11 5,37 
rc101 4 2 N/A 
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rc101 5 2 903,54 903,54 903,54 903,54 12,51 11,60 9,59 9,01 
rc101 6 2 855,02 855,02 855,02 855,02 13,23 9,26 8,79 7,48 
rc101 7 2 855,02 855,02 855,02 855,02 17,27 10,65 11,07 9,87 
rc101 8 2 855,02 855,02 855,02 855,02 25,59 11,58 12,71 12,96 
rc101 9 2 855,02 855,02 855,02 855,02 28,91 12,33 13,08 14,25 

rc102 1 3 1205,20 1205,20 1205,20 1205,20 1,82 1,79 4,82 1,96 
rc102 2 2 951,57 951,58 951,58 951,57 5,27 6,17 7,27 4,13 
rc102 3 2 895,47 895,47 895,48 895,47 8,41 10,96 9,20 6,28 
rc102 4 2 847,15 847,15 847,15 847,15 13,15 17,55 18,81 8,68 
rc102 5 2 726,81 726,81 726,82 726,81 22,03 21,56 14,47 16,04 
rc102 6 2 726,82 726,82 726,82 726,82 22,20 17,36 15,77 12,08 
rc102 7 2 726,81 726,81 726,81 726,81 44,92 18,40 18,65 21,60 
rc102 8 2 726,82 726,81 726,81 726,82 42,73 17,97 17,33 19,66 
rc102 9 2 726,82 726,82 726,81 726,82 47,40 24,23 24,25 21,49 

rc103 1 3 1140,60 1140,60 1140,60 1140,60 2,21 2,19 5,80 1,77 
rc103 2 2 869,32 869,33 869,32 869,32 12,92 18,11 17,22 8,14 
rc103 3 2 829,58 829,58 829,58 829,58 24,34 20,10 35,61 15,46 
rc103 4 2 750,38 750,38 750,38 750,38 54,47 44,06 54,99 36,43 
rc103 5 2 650,28 650,28 650,28 650,28 61,99 60,23 48,06 39,04 
rc103 6 2 650,28 650,28 650,28 650,28 140,78 68,50 97,78 75,09 
rc103 7 2 650,28 650,28 650,28 650,28 185,53 78,01 72,35 83,84 
rc103 8 2 650,28 650,28 650,28 650,28 153,80 64,96 53,04 61,46 
rc103 9 2 650,28 650,28 650,28 650,28 364,74 128,52 104,55 158,48 

rc104 1 3 1061,20 1061,20 1061,20 1061,20 3,31 3,18 16,05 2,59 
rc104 2 2 778,10 778,10 778,10 778,10 96,81 74,84 423,42 65,16 
rc104 3 2 721,80 721,80 721,80 721,80 230,80 94,73 973,99 170,71 
rc104 4 2 649,60 649,60 649,60 649,60 300,77 299,59 382,70 305,92 
rc104 5 2 550,80 550,80 550,80 550,80 436,99 1014,36 342,81 348,71 
rc104 6 2 550,80 550,80 550,80 550,80 680,42 990,32 606,68 413,14 
rc104 7 2 550,80 550,80 550,80 550,80 4123,99 1614,31 579,05 2807,22 
rc104 8 2 550,80 550,80 550,80 550,80 833,57 1229,37 447,24 469,30 
rc104 9 2 550,80 550,80 550,80 550,80 2272,42 303,41 219,39 1331,80 

rc105 1 3 1243,80 1243,80 1243,80 1243,80 1,87 2,09 2,99 2,03 
rc105 2 3 996,46 996,46 996,46 996,46 7,82 8,16 7,24 5,01 
rc105 3 3 942,76 942,76 942,76 942,76 11,04 8,92 12,59 6,88 
rc105 4 3 842,16 842,16 842,16 842,16 13,50 15,43 10,33 9,06 
rc105 5 3 766,56 766,56 766,56 766,56 21,41 12,16 20,00 15,23 
rc105 6 2 766,56 766,56 766,56 766,56 29,90 15,83 18,53 15,75 
rc105 7 2 766,56 766,56 766,56 766,56 37,42 18,31 16,06 18,31 
rc105 8 2 766,56 766,56 766,56 766,56 40,10 19,51 18,01 18,97 
rc105 9 2 766,56 766,56 766,56 766,56 44,23 20,52 18,24 19,53 

rc106 1 3 1133,80 1133,80 1133,80 1133,80 2,31 2,04 2,69 2,36 
rc106 2 2 885,80 885,80 885,80 885,80 8,24 7,20 10,11 4,87 
rc106 3 2 846,23 846,23 846,23 846,23 17,70 8,71 10,61 9,18 
rc106 4 2 779,23 779,23 779,23 779,23 24,20 17,07 14,21 12,90 
rc106 5 2 669,43 669,43 669,43 669,43 28,12 18,71 14,87 16,20 
rc106 6 2 669,43 669,43 669,43 669,43 36,15 21,46 21,12 18,32 
rc106 7 2 669,43 669,43 669,43 669,43 44,81 18,72 19,34 19,21 
rc106 8 2 669,43 669,43 669,43 669,43 50,36 25,64 23,47 22,49 
rc106 9 2 669,43 669,43 669,43 669,43 65,09 26,59 23,39 27,85 

rc107 1 3 1101,80 1101,80 1101,80 1101,80 2,66 2,74 8,11 2,54 
rc107 2 2 794,80 794,80 794,80 794,80 27,31 20,89 120,11 23,25 
rc107 3 2 788,53 788,53 788,53 788,53 100,02 69,76 106,16 66,44 
rc107 4 2 710,91 710,91 710,91 710,91 116,42 97,94 129,70 67,75 
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rc107 5 2 608,58 608,58 608,58 608,58 220,61 191,34 224,02 125,61 
rc107 6 2 608,58 608,58 608,58 608,58 392,10 172,52 134,12 200,84 
rc107 7 2 608,58 608,58 608,58 608,58 208,82 151,71 118,33 94,95 
rc107 8 2 608,58 608,58 608,58 608,58 390,99 126,47 98,14 182,68 
rc107 9 2 608,58 608,58 608,58 608,58 316,26 120,57 90,44 146,53 

rc108 1 3 1066,30 1066,30 1066,30 1066,30 4,16 4,03 22,11 3,33 
rc108 2 2 769,40 769,40 769,40 769,40 122,46 137,55 204,90 79,98 
rc108 3 2 745,43 745,43 745,43 745,43 440,60 277,22 382,05 334,54 
rc108 4 2 656,07 656,07 656,07 656,07 803,96 360,85 665,76 536,46 
rc108 5 2 546,17 546,17 N/A 546,17 808,90 933,02 1404,46 561,87 
rc108 6 2 546,17 546,17 546,17 546,17 1078,89 761,67 606,76 664,92 
rc108 7 2 546,17 546,17 546,17 546,17 1255,08 712,74 620,02 737,28 
rc108 8 2 546,17 546,17 546,17 546,17 2257,79 705,94 591,32 1351,21 
rc108 9 2 546,17 546,17 546,17 546,17 1928,54 590,74 462,31 1107,33 

* LDS is not used.
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We present here the original detailed results, which were summarized in Chapter 5.  

APPENDIX B.1: BRANCH-AND-PRICE RESULTS 

Table B.1 presents the results for the instances solved using B&P, and employs both branching methods (2br and P+1). Specifically, Table B.1 

provides the problem ID, the problem set, the period window pattern (1 to 9), the maximum allowable number of vehicles per period and, for 

each method, the cost of the integer solution, the total nodes created, the nodes explored, the number of nodes explored since the best integer 

solution was initially reached, and the time needed to calculate the integer solution. The analysis of these results is presented in Section 5.4.3. 

Table B.1: Results on     and     methods for obtaining integer solutions 

No 
Prob. 

Set 
Pat. 

Max 

Veh. 

P+1 method 2br method 

IB 
Total 

Nodes 

Nodes 

Explored 

First  

Occ.(1) 
IB Time IB 

Total 

Nodes 

Nodes 

Explored 

First  

Occ.(1) 
IB Time 

1 r101 1 6 1549.5 11 9 8 3.145 1549.5 11 9 8 4.219 

3 r101 3 4 1191.7 5 3 3 5.086 1191.7 5 3 3 4.986 

4 r101 4 4 1157.8 71 63 50 115.128 1157.8 71 63 50 114.49 

6 r101 6 4 1049 10 4 4 18.432 1049 9 7 4 29.608 

7 r101 7 4 1049 5 5 2 26.483 1049 7 7 2 33.462 

8 r101 8 4 1049 6 6 2 31.72 1049 9 9 2 46.334 

9 r101 9 4 1049 13 13 3 74.073 1049 23 23 2 134.524 

11 r102 2 3 1183.9 3 3 3 7.843 1183.9 3 3 3 7.539 

12 r102 3 3 1107.7 9 9 2 39.883 1107.7 9 9 2 40.468 

13 r102 4 3 1051.7 5 3 3 27.463 1051.7 5 3 3 27.007 
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No 
Prob. 

Set 
Pat. 

Max 

Veh. 

P+1 method 2br method 

IB 
Total 

Nodes 

Nodes 

Explored 

First  

Occ.(1) 
IB Time IB 

Total 

Nodes 

Nodes 

Explored 

First  

Occ.(1) 
IB Time 

14 r102 5 3 1040.1 15 9 8 93.641 1040.1 15 9 8 93.119 

15 r102 6 3 924.6 7 7 2 75.501 924.6 11 11 2 104.641 

19 r103 1 4 1278.5 9 9 4 7.334 1278.5 9 9 4 7.196 

21 r103 3 3 967.8 7 5 5 54.479 967.8 7 5 5 55.144 

22 r103 4 3 872.7 7 5 4 99.714 872.7 7 5 4 107.084 

23 r103 5 3 862.8 34 24 19 647.658 862.8 31 23 18 611.412 

24 r103 6 3 786.9 10 4 4 149.489 786.9 9 5 5 171.566 

25 r103 7 3 777.9 73 41 18 1145.506 777.9 25 19 8 533.84 

26 r103 8 3 777.9 90 26 17 813.423 777.9 65 41 26 1250.576 

27 r103 9 3 777.9 121 31 20 1091.584 777.9 119 77 46 2959.26 

28 r104 1 2 1126.5 7 7 4 15.374 1126.5 7 7 4 14.07 

30 r104 3 2 794.5 44 42 5 1621.897 794.5 23 23 4 894.932 

38 r105 2 3 1168.3 25 19 19 23.243 1168.3 23 17 17 22.86 

39 r105 3 3 1082.1 13 7 7 20.486 1082.1 11 9 4 24.41 

40 r105 4 3 1040.2 70 59 40 205.51 1040.2 71 65 58 230.134 

41 r105 5 3 1026.7 195 170 120 690.884 1026.7 153 121 84 465.756 

42 r105 6 3 914.2 686 531 192 2769.084 914.2 721 653 272 3059.804 

43 r105 7 3 904.3 261 145 98 914.757 904.3 227 199 54 1040.486 

46 r106 1 4 1320.8 3 3 3 2.804 1320.8 3 3 3 2.56 

47 r106 2 3 1046 5 5 2 18.318 1046 5 5 2 17.661 

48 r106 3 3 976 500 470 447 1880.641 976 441 433 94 1637.895 

49 r106 4 3 880.4 13 9 6 108.778 880.4 13 9 6 109.605 

50 r106 5 3 865.1 168 83 75 1101.317 865.1 63 49 30 664.597 

51 r106 6 3 798 4 4 4 90.385 798 5 5 5 105.669 

52 r106 7 3 798 5 5 5 109.338 798 15 15 8 284.421 
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No 
Prob. 

Set 
Pat. 

Max 

Veh. 

P+1 method 2br method 

IB 
Total 

Nodes 

Nodes 

Explored 

First  

Occ.(1) 
IB Time IB 

Total 

Nodes 

Nodes 

Explored 

First  

Occ.(1) 
IB Time 

53 r106 8 3 798 31 11 11 225.356 798 25 23 12 442.995 

54 r106 9 3 798 43 13 13 317.954 798 23 23 12 523.242 

55 r107 1 4 1221.4 3 3 3 3.524 1221.4 3 3 3 3.588 

56 r107 2 3 946.7 3 3 3 23.39 946.7 3 3 3 22.5 

57 r107 3 3 878.9 41 26 22 300.741 878.9 29 21 21 256.736 

58 r107 4 3 800.1 49 41 12 845.913 800.1 35 27 25 482.529 

59 r107 5 3 768.6 87 45 32 2001.875 768.6 55 43 24 2009.306 

64 r108 1 3 1126.5 33 19 16 31.039 1126.5 33 19 16 31.988 

66 r108 3 3 752.2 56 31 26 752.168 752.2 47 29 24 708.455 

74 r109 2 3 1005.6 17 13 9 37.992 1005.6 11 9 4 25.275 

75 r109 3 3 915.9 30 28 9 144.322 915.9 35 33 19 158.254 

76 r109 4 3 842.5 92 87 50 603.437 842.5 101 97 44 627.876 

77 r109 5 3 825.5 154 75 64 662.644 825.5 55 41 26 352.565 

82 r110 1 3 1242.7 23 13 12 11.777 1242.7 23 13 12 11.099 

84 r110 3 2 905 13 9 8 145.019 905 15 11 9 168.402 

88 r110 7 2 702 43 21 13 728.616 702 27 19 15 512.715 

91 r111 1 3 1216.6 7 7 4 8.783 1216.6 7 7 4 8.695 

92 r111 2 3 926.7 148 125 63 588.167 926.7 165 151 62 648.799 

93 r111 3 3 861.4 66 49 38 434.434 861.4 79 63 47 558.595 

94 r111 4 3 769.5 68 42 37 782.906 769.5 19 17 6 327.117 

101 r112 2 3 817.9 9 7 5 54.305 817.9 9 7 5 54.113 

102 r112 3 3 751.7 5 5 2 113.828 751.7 5 5 2 112.588 

127 c103 1 2 451.6 5 3 3 12.152 451.6 5 3 3 12.014 

172 c108 1 2 453.7 9 5 5 10.048 453.7 9 5 5 9.917 

181 c109 1 2 449.1 85 65 45 81.733 449.1 85 65 45 78.478 
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No 
Prob. 

Set 
Pat. 

Max 

Veh. 

P+1 method 2br method 

IB 
Total 

Nodes 

Nodes 

Explored 

First  

Occ.(1) 
IB Time IB 

Total 

Nodes 

Nodes 

Explored 

First  

Occ.(1) 
IB Time 

190 rc101 1 4 1399.8 241 241 22 82.268 1399.8 241 241 22 80.969 

199 rc102 1 3 1267.4 49 49 24 29.224 1267.4 49 49 24 28.368 

218 rc104 2 2 781 24 22 10 756.836 781 29 23 16 773.189 

236 rc106 2 2 892.1 15 11 7 53.299 892.1 25 23 7 108.359 

246 rc107 3 2 793.5 28 22 5 1021.212 793.5 35 33 12 1317.692 

254 rc108 2 2 770.6 11 6 6 431.697 770.6 9 9 9 491.354 

(1)
 
Number of nodes explored since the best integer solution initially reached 
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APPENDIX B.2: BRANCH-AND-PRICE HEURISTIC PRUNING RESULTS 

Table B.2 presents the results obtained by using the heuristic pruning technique with the     branching method for different values of the 

parameter   (                               ). Specifically, Table B.2 presents the problem ID, the problem set, the period window pattern 

(1 to 9), the maximum allowable number of vehicles per period, and, for each method, the cost of the integer solution, and its deviation from the 

cost of the optimal solution (%), the number of nodes explored, the number of nodes explored since the best integer solution was initially 

reached, and the time required to calculate the integer solution. The analysis of these results is presented in Section 5.4.4. 

Table B.2: Pruning heuristic results (    B&P method) 

# 
Prob. 

Set 
Pat. 

Max 

Veh. 
IB 

Cost Deviation Nodes Explored First Occurrence (1) IB Computational Time 

1.00 0.95 0.90 0.85 0.80 0.75 0.50 1.00 0.95 0.90 0.85 0.80 0.75 0.50 1.00 0.95 0.90 0.85 0.80 0.75 0.50 1.00 0.95 0.90 0.85 0.80 0.75 0.50 

3 r101 3 4 1191.7 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 3 3 3 3 3 3 1 1 1 1 1 1 1 3.0 5.4 4.9 5.4 5.1 5.2 5.2 

4 r101 4 4 1157.8 0.46% 0.16% 0.16% 0.16% 0.16% 0.16% 0.00% 1 9 9 9 15 17 27 1 7 7 7 13 13 11 4.0 20.3 20.5 20.0 34.0 36.0 52.8 

6 r101 6 4 1049 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 4 4 4 4 4 4 1 1 1 1 1 1 1 5.9 17.3 16.9 18.6 17.8 16.8 17.9 

7 r101 7 4 1049 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 5 5 5 5 5 5 1 1 1 1 1 1 1 6.3 26.1 25.2 27.1 27.2 26.2 25.7 

8 r101 8 4 1049 0.26% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 6 6 6 6 6 6 1 2 2 2 2 2 2 6.6 31.9 32.2 33.8 33.6 33.3 31.2 

9 r101 9 4 1049 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 7 7 7 7 7 7 1 1 1 1 1 1 1 7.9 47.4 43.9 46.2 47.2 44.1 44.1 

11 r102 2 3 1183.9 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 3 3 3 3 3 3 1 1 1 1 1 1 1 4.3 7.9 8.0 12.1 7.9 8.1 8.2 

12 r102 3 3 1107.7 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 3 3 3 3 3 5 1 1 1 1 1 1 1 7.9 18.4 18.0 18.6 18.8 18.3 26.2 

13 r102 4 3 1051.7 0.10% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 3 3 3 3 3 3 1 3 3 3 3 3 3 16.2 28.7 26.9 27.0 27.8 27.3 27.3 

14 r102 5 3 1040.1 0.05% 0.05% 0.05% 0.05% 0.05% 0.05% 0.00% 1 7 7 7 7 7 7 1 1 1 1 1 1 6 22.5 68.7 67.3 68.4 68.0 68.2 72.8 

15 r102 6 3 924.6 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 4 4 4 4 4 4 1 1 1 1 1 1 1 15.1 43.4 42.8 43.9 43.9 43.3 44.0 

19 r103 1 4 1278.5 0.08% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 7 7 7 7 7 7 1 4 4 4 4 4 4 1.6 5.9 5.1 5.5 5.6 5.3 5.3 

21 r103 3 3 967.8 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 5 5 5 5 5 5 1 1 1 1 1 1 1 16.9 55.1 53.7 55.3 54.5 54.5 55.3 

22 r103 4 3 872.7 1.16% 1.04% 0.00% 0.00% 0.00% 0.00% 0.00% 1 5 5 5 5 5 5 1 2 4 4 4 4 4 36.3 95.9 101.4 104.7 103.4 102.3 100.8 
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# 
Prob. 

Set 
Pat. 

Max 

Veh. 
IB 

Cost Deviation Nodes Explored First Occurrence (1) IB Computational Time 

1.00 0.95 0.90 0.85 0.80 0.75 0.50 1.00 0.95 0.90 0.85 0.80 0.75 0.50 1.00 0.95 0.90 0.85 0.80 0.75 0.50 1.00 0.95 0.90 0.85 0.80 0.75 0.50 

23 r103 5 3 862.8 0.13% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 14 14 14 14 14 16 1 6 6 6 6 6 6 69.2 421.0 416.6 423.1 418.6 418.5 457.7 

24 r103 6 3 786.9 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 4 4 4 4 4 4 1 1 1 1 1 1 1 66.2 149.6 146.8 150.5 147.9 148.0 148.3 

25 r103 7 3 777.9 0.19% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 25 25 25 25 25 29 1 14 14 14 14 14 18 35.0 750.0 745.8 751.9 740.7 748.2 842.5 

26 r103 8 3 777.9 0.36% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 21 21 21 21 21 21 1 17 17 17 17 17 17 46.6 664.6 656.1 656.6 653.9 657.4 656.5 

27 r103 9 3 777.9 0.19% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 25 25 25 25 25 25 1 20 20 20 20 20 20 36.8 886.7 876.6 872.3 874.9 877.0 878.9 

28 r104 1 2 1126.5 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 7 7 7 7 7 7 1 1 1 1 1 1 1 3.6 15.0 14.8 15.3 14.5 15.1 15.0 

30 r104 3 2 794.5 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 20 22 22 26 26 29 1 1 1 1 1 1 1 129.6 846.9 907.6 906.2 1033.9 1034.8 1149.6 

38 r105 2 3 1168.3 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 11 11 13 13 13 13 1 2 2 2 2 2 2 2.5 14.6 14.5 17.5 16.9 16.5 16.7 

39 r105 3 3 1082.1 0.35% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 7 7 7 7 7 7 1 7 7 7 7 7 7 5.4 20.6 19.9 20.2 20.1 20.4 20.8 

40 r105 4 3 1040.2 0.10% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 17 17 19 19 19 25 1 12 12 12 12 12 18 10.0 62.6 61.4 67.7 67.8 67.9 90.0 

41 r105 5 3 1026.7 0.21% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 11 13 34 34 42 88 1 2 2 2 2 2 2 11.9 58.6 66.9 148.6 149.3 180.1 369.6 

42 r105 6 3 914.2 0.28% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 57 57 57 57 131 177 1 29 29 29 29 41 75 10.6 347.8 341.6 338.4 343.9 761.0 1045.9 

43 r105 7 3 904.3 0.83% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 105 105 105 105 105 105 1 6 6 6 6 6 6 9.8 700.2 685.4 685.9 688.3 691.1 691.5 

46 r106 1 4 1320.8 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 3 3 3 3 3 3 1 1 1 1 1 1 1 1.4 2.7 2.6 2.6 2.7 2.8 2.6 

47 r106 2 3 1046 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 3 3 5 5 5 5 1 1 1 1 1 1 1 5.1 12.5 11.9 17.4 17.4 17.9 17.6 

48 r106 3 3 976 0.77% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 31 38 48 48 48 126 1 11 11 11 11 11 43 11.6 157.0 181.4 218.3 222.6 221.7 590.6 

49 r106 4 3 880.4 0.37% 0.37% 0.37% 0.37% 0.37% 0.37% 0.00% 1 11 11 11 13 13 7 1 1 1 1 1 1 6 23.0 113.6 112.1 111.4 123.9 124.7 92.8 

50 r106 5 3 865.1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 7 7 7 7 7 17 1 1 1 1 1 1 1 31.8 112.7 112.9 111.4 111.6 113.3 254.3 

51 r106 6 3 798 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 4 4 4 4 4 4 1 1 1 1 1 1 1 28.8 90.9 90.9 90.1 90.6 90.4 89.3 

52 r106 7 3 798 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 5 5 5 5 5 5 1 1 1 1 1 1 1 25.1 107.1 106.3 106.2 105.8 106.9 106.1 

53 r106 8 3 798 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 11 11 11 11 11 11 1 1 1 1 1 1 1 24.5 226.6 225.3 222.7 225.3 223.8 223.1 

54 r106 9 3 798 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 13 13 13 13 13 13 1 1 1 1 1 1 1 28.8 316.0 314.9 313.7 315.7 313.4 311.4 

55 r107 1 4 1221.4 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 3 3 3 3 3 3 1 1 1 1 1 1 1 2.1 3.6 3.8 3.6 3.7 3.6 3.6 

56 r107 2 3 946.7 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 3 3 3 3 3 3 1 1 1 1 1 1 1 11.7 22.9 22.9 22.5 23.4 22.6 23.0 

57 r107 3 3 878.9 0.15% 0.15% 0.15% 0.15% 0.15% 0.00% 0.00% 1 11 11 11 13 18 18 1 1 1 1 1 8 8 26.1 151.4 149.2 147.9 175.2 210.3 211.0 
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# 
Prob. 

Set 
Pat. 

Max 

Veh. 
IB 

Cost Deviation Nodes Explored First Occurrence (1) IB Computational Time 

1.00 0.95 0.90 0.85 0.80 0.75 0.50 1.00 0.95 0.90 0.85 0.80 0.75 0.50 1.00 0.95 0.90 0.85 0.80 0.75 0.50 1.00 0.95 0.90 0.85 0.80 0.75 0.50 

58 r107 4 3 800.1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 5 5 5 5 5 5 1 1 1 1 1 1 1 41.0 126.6 125.3 124.0 125.3 124.8 124.7 

59 r107 5 3 768.6 1.47% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 12 19 19 19 19 22 1 11 16 16 16 16 19 93.9 577.6 887.7 885.2 888.8 892.1 982.2 

64 r108 1 3 1126.5 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 11 11 11 11 11 11 1 1 1 1 1 1 1 4.0 18.6 18.5 18.5 17.9 17.6 18.5 

66 r108 3 3 752.2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 11 11 11 11 11 11 1 1 1 1 1 1 1 43.5 305.2 302.3 302.8 304.0 300.8 336.3 

74 r109 2 3 1005.6 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 7 7 7 7 7 7 1 1 1 1 1 1 1 5.8 21.3 22.0 21.2 22.1 22.3 27.2 

75 r109 3 3 915.9 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 10 10 10 14 14 18 1 1 1 1 1 1 1 10.1 52.1 51.2 52.0 73.0 74.6 108.7 

76 r109 4 3 842.5 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 18 18 18 18 18 32 1 1 1 1 1 1 1 18.1 146.9 146.4 145.8 146.4 145.4 299.6 

77 r109 5 3 825.5 1.50% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 13 13 15 15 18 22 1 6 6 6 6 6 6 25.1 155.8 153.7 173.9 175.1 201.9 267.9 

82 r110 1 3 1242.7 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 11 11 11 11 11 13 1 1 1 1 1 1 1 1.8 10.4 10.3 10.2 11.4 10.1 14.9 

84 r110 3 2 905 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 9 9 9 9 9 9 1 1 1 1 1 1 1 31.7 148.2 147.5 147.7 145.9 147.0 168.5 

88 r110 7 2 702 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 21 21 21 21 21 21 1 1 1 1 1 1 1 42.2 732.5 730.3 733.0 730.2 731.2 806.2 

91 r111 1 3 1216.6 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 5 5 5 5 5 5 1 1 1 1 1 1 1 2.1 6.8 6.8 6.5 6.9 7.1 7.0 

92 r111 2 3 926.7 0.11% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 23 23 23 31 33 41 1 3 3 3 3 3 3 9.5 119.4 116.6 119.1 156.5 160.9 240.7 

93 r111 3 3 861.4 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 10 10 10 10 10 26 1 1 1 1 1 1 1 19.9 94.3 93.7 92.8 96.0 94.2 300.3 

94 r111 4 3 769.5 2.07% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 13 13 13 16 18 22 1 4 4 4 4 4 4 50.0 227.4 226.4 224.5 303.0 357.2 486.6 

101 r112 2 3 817.9 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 5 5 5 5 5 5 1 1 1 1 1 1 1 13.7 43.4 43.9 43.2 43.2 42.0 48.6 

102 r112 3 3 751.7 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 3 3 3 3 3 3 1 1 1 1 1 1 1 35.4 72.3 71.8 71.1 71.7 71.6 76.9 

127 c103 1 2 451.6 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 3 3 3 3 3 3 1 1 1 1 1 1 1 5.4 12.3 12.3 12.2 12.7 12.2 12.6 

172 c108 1 2 453.7 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 5 5 5 5 5 5 1 1 1 1 1 1 1 3.4 10.0 10.2 9.8 10.2 10.3 10.3 

181 c109 1 2 449.1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 23 23 23 23 23 23 1 1 1 1 1 1 1 4.6 35.1 34.2 34.5 34.9 34.6 41.8 

190 rc101 1 4 1399.8 0.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 31 59 101 129 157 241 1 18 20 20 22 22 22 1.2 13.5 24.5 36.0 47.0 58.7 103.7 

199 rc102 1 3 1267.4 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 9 15 25 37 47 49 1 1 1 1 1 1 1 1.8 6.9 10.7 16.8 23.2 28.1 34.6 

218 rc104 2 2 781 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 8 8 8 8 8 10 1 1 1 1 1 1 1 75.0 348.3 342.9 343.0 345.0 344.8 418.6 

236 rc106 2 2 892.1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 5 5 5 5 5 5 1 1 1 1 1 1 1 7.2 30.9 30.3 30.8 30.5 30.4 31.4 

246 rc107 3 2 793.5 0.16% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 13 13 13 13 13 13 1 5 5 5 5 5 5 76.9 694.0 684.6 683.1 688.1 684.8 709.4 
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# 
Prob. 

Set 
Pat. 

Max 

Veh. 
IB 

Cost Deviation Nodes Explored First Occurrence (1) IB Computational Time 

1.00 0.95 0.90 0.85 0.80 0.75 0.50 1.00 0.95 0.90 0.85 0.80 0.75 0.50 1.00 0.95 0.90 0.85 0.80 0.75 0.50 1.00 0.95 0.90 0.85 0.80 0.75 0.50 

254 rc108 2 2 770.6 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 6 6 6 6 6 6 1 1 1 1 1 1 1 97.2 432.9 425.1 424.8 426.5 425.6 438.0 

(1)
 
Number of nodes explored since the best integer solution initially reached 
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APPENDIX C: DETAILED RESULTS ON THE EXPERIMENTS REGARDING THE PENALTY FUNCTIONS 

Table C.1 presents the analytical results for the instances solved in Section 6.3.3 concerning the utilization of different penalty functions in the 

multi-period vehicle routing setting. Specifically, Table C.1 provides the period window pattern (3 or 5), the planning horizon (1 to 5), and the 

routing cost (1), total cost (incl. penalties) (2), the number of customer orders considered in each MPVRPTW, the number of routed customer 

orders (3), and the number of unserved customer orders (4) within the planning horizon, as well as the unit routing cost per served customer (5) 

for each one of the penalty functions (               ). 

Table C.1: Pruning heuristic results (    B&P method) 
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(1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (1) (2) (3) (4) (5) 

  
R101 

                        
3 1 830,1 1654,7 34 16 24,41 1053,4 1671,2 38 12 27,72 1069,0 1590,1 39 11 27,41 1069,0 1590,1 39 11 27,41 1069,0 1590,1 39 11 27,41 

3 2 901,3 1508,5 38 12 23,72 1048,0 1619,5 39 11 26,87 1048,0 1619,5 39 11 26,87 1048,0 1619,5 39 11 26,87 1004,7 1557,3 40 10 25,12 

3 3 949,4 1480,2 40 10 23,74 1041,6 1621,9 39 11 26,71 1041,6 1621,9 39 11 26,71 1041,6 1621,9 39 11 26,71 992,3 1532,5 40 10 24,81 

3 4 1004,1 1503,6 41 9 24,49 1035,6 1631,9 39 11 26,55 1041,6 1621,9 39 11 26,71 1041,6 1621,9 39 11 26,71 992,3 1532,5 40 10 24,81 

3 5 1002,1 1483,0 41 9 24,44 1033,6 1557,2 40 10 25,84 1041,6 1621,9 39 11 26,71 1041,6 1621,9 39 11 26,71 992,3 1532,5 40 10 24,81 

  
R101 

                        
5 1 810,8 1655,8 34 16 23,85 1059,6 1635,7 39 11 27,17 1069,0 1590,1 39 11 27,41 1069,0 1590,1 39 11 27,41 1013,9 1514,3 40 10 25,35 

5 2 839,3 1546,6 37 13 22,68 1014,6 1624,1 39 11 26,02 1048,0 1619,5 39 11 26,87 1048,0 1619,5 39 11 26,87 1004,7 1557,3 40 10 25,12 

5 3 893,3 1514,3 38 12 23,51 1040,9 1612,4 39 11 26,69 1042,8 1623,1 39 11 26,74 1042,8 1623,1 39 11 26,74 991,9 1482,1 40 10 24,80 

5 4 969,0 1427,4 40 10 24,23 996,4 1535,7 39 11 25,55 997,4 1615,7 39 11 25,57 997,4 1615,7 39 11 25,57 945,4 1490,6 40 10 23,64 

5 5 964,4 1414,3 41 9 23,52 1001,6 1547,4 40 10 25,04 997,4 1615,7 39 11 25,57 997,4 1615,7 39 11 25,57 945,4 1490,6 40 10 23,64 
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R102 

                        
3 1 992,4 1460,4 42 8 23,63 1134,8 1445,3 45 5 25,22 1061,3 1308,8 45 5 23,58 1061,3 1308,8 45 5 23,58 1016,3 1500,0 43 7 23,63 

3 2 950,6 1356,9 43 7 22,11 1089,5 1292,9 46 4 23,68 1071,5 1292,7 46 4 23,29 1071,5 1292,7 46 4 23,29 1072,5 1234,2 47 3 22,82 

3 3 1055,6 1217,3 47 3 22,46 1091,1 1262,8 47 3 23,21 1087,1 1258,8 47 3 23,13 1091,1 1262,8 47 3 23,21 1087,1 1258,8 47 3 23,13 

3 4 1033,4 1194,3 47 3 21,99 1087,1 1258,8 47 3 23,13 1087,1 1258,8 47 3 23,13 1087,1 1258,8 47 3 23,13 1087,1 1258,8 47 3 23,13 

3 5 1033,4 1194,3 47 3 21,99 1087,1 1258,8 47 3 23,13 1087,1 1258,8 47 3 23,13 1087,1 1258,8 47 3 23,13 1087,1 1258,8 47 3 23,13 

  
R105 

                        
3 1 906,7 1505,4 39 11 23,25 1167,0 1469,1 45 5 25,93 1307,2 1486,4 46 4 28,42 1307,2 1486,4 46 4 28,42 1289,9 1458,3 46 4 28,04 

3 2 935,1 1305,2 43 7 21,75 1147,2 1483,3 45 5 25,49 1268,9 1373,8 47 3 27,00 1268,9 1373,8 47 3 27,00 1232,2 1380,5 47 3 26,22 

3 3 904,1 1255,0 43 7 21,03 1095,5 1427,2 45 5 24,34 1263,7 1377,4 47 3 26,89 1263,7 1377,4 47 3 26,89 1263,7 1377,4 47 3 26,89 

3 4 1047,3 1268,3 46 4 22,77 1169,2 1437,4 46 4 25,42 1255,8 1389,9 47 3 26,72 1255,8 1389,9 47 3 26,72 1255,8 1389,9 47 3 26,72 

3 5 1040,0 1262,2 46 4 22,61 1044,6 1299,3 45 5 23,21 1255,8 1389,9 47 3 26,72 1255,8 1389,9 47 3 26,72 1255,8 1389,9 47 3 26,72 

  
R105 

                        
5 1 842,9 1494,8 37 13 22,78 1311,2 1519,6 46 4 28,50 1307,2 1486,4 46 4 28,42 1307,2 1486,4 46 4 28,42 1016,6 1325,8 44 6 23,10 

5 2 837,8 1359,5 41 9 20,43 1258,8 1464,8 46 4 27,37 1267,4 1401,5 47 3 26,97 1267,4 1401,5 47 3 26,97 1152,5 1313,8 47 3 24,52 

5 3 950,0 1185,9 45 5 21,11 1084,8 1369,7 45 5 24,11 1204,9 1347,8 47 3 25,64 1204,9 1347,8 47 3 25,64 1204,9 1347,8 47 3 25,64 

5 4 1001,4 1201,2 46 4 21,77 1148,6 1376,4 46 4 24,97 1199,7 1342,6 47 3 25,53 1199,7 1342,6 47 3 25,53 1199,7 1342,6 47 3 25,53 

5 5 1001,4 1201,2 46 4 21,77 1054,2 1228,8 46 4 22,92 1199,7 1342,6 47 3 25,53 1199,7 1342,6 47 3 25,53 1199,7 1342,6 47 3 25,53 

  
R109 

                        
3 1 890,5 1293,1 42 8 21,20 1061,1 1091,2 49 1 21,66 1127,7 1127,7 50 0 22,55 1127,7 1127,7 50 0 22,55 1021,8 1072,7 49 1 20,85 

3 2 795,2 1223,4 42 8 18,93 1119,6 1119,6 50 0 22,39 1121,5 1121,5 50 0 22,43 1121,5 1121,5 50 0 22,43 1044,8 1095,7 49 1 21,32 

3 3 861,7 1070,5 46 4 18,73 1119,6 1119,6 50 0 22,39 1106,7 1106,7 50 0 22,13 1106,7 1106,7 50 0 22,13 1106,7 1106,7 50 0 22,13 

3 4 951,7 1002,6 49 1 19,42 1101,0 1101,0 50 0 22,02 1106,7 1106,7 50 0 22,13 1106,7 1106,7 50 0 22,13 1106,7 1106,7 50 0 22,13 

3 5 951,7 1002,6 49 1 19,42 1083,7 1083,7 50 0 21,67 1083,7 1083,7 50 0 21,67 1083,7 1083,7 50 0 21,67 1083,7 1083,7 50 0 21,67 
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R110 

                        
3 1 952,2 1174,7 45 5 21,16 1172,6 1172,6 50 0 23,45 1087,0 1087,0 50 0 21,74 1087,0 1087,0 50 0 21,74 1087,0 1087,0 50 0 21,74 

3 2 881,0 1021,5 47 3 18,74 1002,4 1002,4 50 0 20,05 1069,0 1069,0 50 0 21,38 1069,0 1069,0 50 0 21,38 1069,0 1069,0 50 0 21,38 

3 3 837,3 946,1 48 2 17,44 902,8 902,8 50 0 18,06 914,3 914,3 50 0 18,29 915,4 915,4 50 0 18,31 914,3 914,3 50 0 18,29 

3 4 900,0 900,0 50 0 18,00 900,0 900,0 50 0 18,00 900,0 900,0 50 0 18,00 900,0 900,0 50 0 18,00 900,0 900,0 50 0 18,00 

3 5 900,0 900,0 50 0 18,00 900,0 900,0 50 0 18,00 900,0 900,0 50 0 18,00 900,0 900,0 50 0 18,00 900,0 900,0 50 0 18,00 

  
C101 

                        
3 1 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 513,8 513,8 50 0 10,28 513,8 513,8 50 0 10,28 513,8 513,8 50 0 10,28 

3 2 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 

3 3 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 

3 4 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 

3 5 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 

  
C101 

                        
5 1 327,6 912,4 42 8 7,80 492,9 492,9 50 0 9,86 566,6 566,6 50 0 11,33 566,6 566,6 50 0 11,33 566,6 566,6 50 0 11,33 

5 2 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 423,4 423,4 50 0 8,47 398,8 398,8 50 0 7,98 433,6 433,6 50 0 8,67 

5 3 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 

5 4 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 

5 5 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 

  
C105 

                        
3 1 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 446,1 446,1 50 0 8,92 446,1 446,1 50 0 8,92 446,1 446,1 50 0 8,92 

3 2 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 

3 3 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 

3 4 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 

3 5 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 
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C105 

                        
5 1 327,6 912,4 42 8 7,80 467,8 467,8 50 0 9,36 502,8 502,8 50 0 10,06 502,8 502,8 50 0 10,06 502,8 502,8 50 0 10,06 

5 2 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 408,7 408,7 50 0 8,17 398,3 398,3 50 0 7,97 408,7 408,7 50 0 8,17 

5 3 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 

5 4 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 

5 5 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 

  
C106 

                        
3 1 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 469,9 469,9 50 0 9,40 469,9 469,9 50 0 9,40 469,9 469,9 50 0 9,40 

3 2 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 

3 3 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 

3 4 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 

3 5 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 

  
C106 

                        
5 1 327,6 912,4 42 8 7,80 467,8 467,8 50 0 9,36 596,7 596,7 50 0 11,93 596,7 596,7 50 0 11,93 607,1 607,1 50 0 12,14 

5 2 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 433,6 433,6 50 0 8,67 362,4 362,4 50 0 7,25 433,6 433,6 50 0 8,67 

5 3 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 

5 4 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 

5 5 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 

  
C107 

                        
3 1 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 445,9 445,9 50 0 8,92 445,9 445,9 50 0 8,92 445,9 445,9 50 0 8,92 

3 2 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 

3 3 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 

3 4 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 

3 5 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 
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C107 

                        
5 1 498,3 498,3 50 0 9,97 498,3 498,3 50 0 9,97 534,6 534,6 50 0 10,69 534,6 534,6 50 0 10,69 534,6 534,6 50 0 10,69 

5 2 417,8 417,8 50 0 8,36 397,9 397,9 50 0 7,96 504,1 504,1 50 0 10,08 509,0 509,0 50 0 10,18 504,1 504,1 50 0 10,08 

5 3 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 

5 4 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 

5 5 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 

  
C108 

                        
3 1 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 452,7 452,7 50 0 9,05 452,7 452,7 50 0 9,05 452,7 452,7 50 0 9,05 

3 2 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 

3 3 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 

3 4 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 

3 5 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 362,4 362,4 50 0 7,25 
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APPENDIX D: DETAILED RESULTS OF THE EXPERIMENTAL INVESTIGATION PRESENTED IN CHAPTER 6 

We present here the detailed results of the experimental investigation of Chapter 6. These results were summarized in Section 6.4.  

APPENDIX D.1: RESULTS FOR THE QUASI-STATIC INSTANCES  

Figure D.1 illustrates the cost per routed customer as it changes over the periods of the long term horizon. These figures correspond to the 

analysis presented in Section 6.4.1 regarding the quasi-static test instances. The cost value per customer at a certain period is the ratio of the total 

routing costs for all periods till the period under consideration, over the total number of customers routed till the said period (cumulative unit cost 

per customer). Results are presented per each combination of planning horizon ( ) and implementation horizon ( ). Each Figure presents 3 

graphs, one per each instance of the random, clustered and mixed instances tested, respectively.  

Random Instances Clustered Instances Mixed Instances 
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Figure D.1: Cumulative unit cost per routed customer and period for all instances of Section 6.4.1 
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APPENDIX D.2: RESULTS FOR THE DYNAMIC INSTANCES OF SECTION 6.4.2 (A)  

Figures D.2 illustrates the cost per routed customer as it changes over the periods of the scheduling horizon. These figures correspond to the 

analysis presented in Section 6.4.2 regarding the dynamic test instances with moderate planning horizon (3 and 5). The cost value per customer at 

a certain period is the ratio of the total routing costs for all periods till the period under consideration, over the total number of customers routed 

till the said period (cumulative unit cost per customer). Results are presented per each planning horizon ( ). Each Figure presents 3 graphs, one 

per each instance of the random, clustered and mixed instances tested, respectively.  
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Figure D.2: Cumulative unit cost per routed customer and period for all instances of Section 6.4.2 
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APPENDIX D.3: RESULTS OF THE DYNAMIC INSTANCES OF SECTION 6.4.2 (B) 

Table D.1 presents the results obtained for the dynamic test instances of Section 6.4.2 for all 

planning horizons (1 and 7) and for period window pattern #7. The Table presents the 

instance name, the value of the planning horizon used ( ), the total number of served 

customers, and the average routing cost ratio over the 30- period horizon. 

Table D.1: Comparative results using different planning horizons (dynamic arrival of customers) 

Problem P 
Served 

Customers 
Routing 

Cost Ratio 

L_r103 1 350 21.3 

 
2 356 19.1 

 
3 353 18.2 

 
4* 197 15.5 

 
5 349 15.9 

 
6 349 15.5 

  7* 307 15.8 

L_r106 1 360 21.5 

 
2 360 19.4 

 
3 359 16.4 

 
4 359 15.6 

 
5 359 15.5 

 
6 359 15.7 

  7 359 16.4 

L_r109 1 360 20.9 

 
2 360 18.9 

 
3 360 16.0 

 
4 360 15.5 

 
5 360 14.6 

 
6 360 16.2 

  7 360 15.6 

L_c106 1 360 37.7 

 
2 360 26.9 

 
3 360 22.6 

 
4 360 20.6 

 
5 360 21.4 

 
6 360 20.5 

  7 360 21.1 

L_c108 1 360 32.4 

 
2 360 23.5 

 
3 360 21.8 

 
4 360 20.9 

 
5 360 20.7 

 
6 360 21.1 

  7 360 22.6 
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Problem P 
Served 

Customers 
Routing 

Cost Ratio 

L_c102 1 360 34.3 

 
2 360 26.3 

 
3 359 23.0 

 
4 356 21.0 

 
5 358 20.2 

 
6 355 20.0 

  7 358 21.3 

L_rc101 1 337 24.7 

 
2 340 24.0 

 
3 332 23.8 

 
4 335 22.2 

 
5 336 22.5 

 
6 337 20.5 

  7 326 23.6 

L_rc105 1 344 24.2 

 
2 349 23.8 

 
3 349 22.0 

 
4 351 20.5 

 
5 346 19.5 

 
6 349 18.9 

  7 346 18.5 

L_rc107 1 360 23.7 

 
2 360 20.7 

 
3 360 19.0 

 
4 360 19.1 

 
5 360 18.2 

 
6 360 18.9 

  7 360 18.5 
* In this cases the solution procedure terminated prematurely (                             due to computational complexity 

Figures D.3, D.4 and D.5 illustrate the average routing cost ratio per each planning horizon, as 

presented in Table D.1. Each Figure presents 3 graphs, one per each instance of the random, 

clustered and mixed instances tested, respectively.  
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Figure D.3: Cumulative unit cost per routed customer and period (Random Instances) 

 

Figure D.4: Cumulative unit cost per routed customer and period (Clustered Instances) 

 

Figure D.5: Cumulative unit cost per routed customer and period (Mixed Instances)  
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APPENDIX E: DETAILED RESULTS OF THE EXPERIMENTAL INVESTIGATION 

PRESENTED IN CHAPTER 7 

We present here the detailed results of the experimental investigation of Chapter 7. Table E.1 

presents the results obtained for the dynamic test instances of Section 7.3.1 for all planning 

horizons (1 and 7) and for period window patterns #3, #5 and #7. The Table presents the 

instance name, the value of the planning horizon used ( ), the total number of flexible served 

customers, and the average routing cost ratio (only for the flexible customers) over the 30-

period horizon for each one of the period window patterns tested. 

Table E.1: Comparative results using different planning horizons (dynamic arrival of customers) 

Problem 

P
la

n
n

in
g 

H
o

ri
zo

n
 

Pattern #3 Pattern #5 Pattern #7 

Served  
Customers 

Unit Cost 
 per Customer 

Served  
Customers 

Unit Cost 
 per Customer 

Served  
Customers 

Unit Cost 
 per Customer 

L_r103 1 171 13,2 172 12,1 172 12,1 

 
2 172 7,5 172 6,6 172 6,6 

 
3 172 6,6 172 4,4 172 4,0 

 
4 

  
172 4,0 172 3,7 

 
5 

  
172 4,1 172 2,9 

 
6 

  
  172 2,8 

  7         172 2,8 

L_r106 1 178 14,4 180 14,2 180 14,0 

 
2 179 8,6 180 8,0 180 7,7 

 
3 179 7,5 180 4,6 180 4,4 

 
4 

  
180 4,4 180 4,0 

 
5 

  
180 4,4 180 3,8 

 
6 

  
  179 3,8 

  7         179 3,5 

L_r109 1 179 13,7 180 13,0 180 13,0 

 
2 180 8,4 180 6,7 180 6,9 

 
3 180 6,8 180 4,3 180 4,1 

 
4 

  
180 4,0 180 3,5 

 
5 

  
180 3,9 180 2,9 

 
6 

  
  180 2,8 

  7         180 2,6 

L_c106 1 180 20,5 180 20,5 180 20,5 

 
2 180 10,0 180 8,7 180 8,5 

 
3 180 8,6 180 6,2 180 5,2 

 
4 

  
180 4,1 180 3,8 

 
5 

  
180 4,8 180 3,3 

 
6 

  
  180 3,1 

  7         180 3,1 
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Problem 

P
la

n
n

in
g 

H
o

ri
zo

n
 

Pattern #3 Pattern #5 Pattern #7 

Served  
Customers 

Unit Cost 
 per Customer 

Served  
Customers 

Unit Cost 
 per Customer 

Served  
Customers 

Unit Cost 
 per Customer 

L_c102 1 180 20,1 180 20,1 180 20,1 

 
2 180 10,3 180 9,2 180 9,3 

 
3 180 8,4 180 5,4 180 4,9 

 
4 

  
180 4,6 180 4,5 

 
5 

  
180 4,7 180 3,8 

 
6 

  
  179 3,5 

  7         179 3,5 

L_c108 1 180 18,1 180 17,8 180 17,8 

 
2 180 8,1 180 6,8 180 6,6 

 
3 180 6,8 180 3,9 180 3,8 

 
4 

  
180 3,5 180 3,1 

 
5 

  
180 3,2 180 2,7 

 
6 

  
  180 2,4 

  7         180 2,4 

L_rc101 1 153 13,3 171 13,5 169 12,9 

 
2 155 12,7 175 11,6 175 10,6 

 
3 154 11,7 175 11,3 176 9,5 

 
4 

  
174 7,7 175 5,9 

 
5 

  
173 8,5 173 5,9 

 
6 

  
  173 5,7 

  7         173 4,9 

L_rc105 1 159 12,2 173 11,8 174 11,1 

 
2 162 12,2 174 9,9 174 10,5 

 
3 159 11,5 174 7,9 174 6,7 

 
4 

  
174 5,6 174 5,0 

 
5 

  
174 7,1 173 3,6 

 
6 

  
  173 3,8 

  7         173 3,9 

L_rc107 1 175 10,6 180 10,4 180 10,3 

 
2 176 8,4 180 7,0 180 6,8 

 
3 176 7,7 180 5,6 180 4,3 

 
4 

  
180 3,8 180 3,0 

 
5 

  
180 3,7 180 2,6 

 
6 

  
  180 2,5 

  7         180 2,4 

Table E.2 presents the results obtained for the dynamic test instances of Section 7.3.1 with 

respect to the penalty cost functions, for all planning horizons (1 and 7) and for period 

window pattern #7. The Table presents the instance name, the value of the planning horizon 

used ( ), the total number of flexible served customers, and the average routing cost ratio 
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(only for the flexible customers) over the 30-period horizon for each one of the penalty 

functions (             ). 

Table E.2: Comparative results using different penalty cost functions (dynamic arrival of customers) 

Problem 

P
la

n
n

in
g 

H
o

ri
zo

n
 γ=1 (flat) γ=2 (step) γ=3 (square) γ=3 (linear) 

Served  
Customers 

Unit Cost/ 
Customer 

Served  
Customers 

Unit Cost/ 
Customer 

Served  
Customers 

Unit Cost/ 
Customer 

Served  
Customers 

Unit Cost/ 
Customer 

L_r103 1 140 44,9 128 52,1 128 53,7 136 49,1 

 
2 145 44,3 137 48,7 133 50,8 141 47,1 

 
3 147 43,0 138 48,0 136 48,8 143 46,7 

 
4 150 42,3 139 46,8 137 48,6 140 47,4 

 
5 148 43,0 136 48,8 130 51,9 138 47,8 

 
6 147 43,8 139 47,4 133 50,3 138 47,7 

  7 147 43,3 136 47,8 131 51,3 136 48,8 

L_r106 1 142 43,7 141 46,4 130 53,8 140 48,1 

 
2 148 42,5 141 47,2 137 49,9 141 48,0 

 
3 148 42,6 140 47,2 137 50,0 142 47,2 

 
4 154 41,8 139 48,2 138 49,2 145 46,3 

 
5 152 42,6 140 47,8 139 48,7 144 46,8 

 
6 151 42,4 138 48,4 134 50,3 142 47,3 

  7 148 43,7 134 50,1 134 50,2 141 47,2 

L_r109 1 147 42,4 139 47,4 133 52,1 142 47,7 

 
2 150 41,5 138 47,6 137 49,7 147 45,3 

 
3 149 41,1 137 49,0 138 49,4 143 47,1 

 
4 156 40,6 144 46,3 136 49,3 142 46,8 

 
5 154 41,1 141 46,5 140 47,8 142 47,3 

 
6 153 41,4 145 45,2 141 46,7 142 46,6 

  7 146 43,7 135 49,2 131 51,2 136 48,9 

L_c106 1 146 58,6 141 69,8 135 77,7 143 74,0 

 
2 152 56,5 140 72,5 141 71,9 147 68,8 

 
3 153 57,5 139 72,6 140 70,9 145 69,7 

 
4 154 56,4 146 66,4 147 66,6 148 67,2 

 
5 151 56,8 138 71,0 140 69,2 142 69,9 

 
6 151 57,4 137 71,3 136 70,9 140 70,6 

  7 145 59,8 134 71,3 132 74,7 139 70,3 

L_c102 1 140 61,7 133 74,9 133 79,3 134 80,9 

 
2 143 60,2 133 73,5 136 75,7 137 78,8 

 
3 145 59,3 132 75,7 136 75,2 136 77,5 

 
4 149 58,5 137 71,6 137 72,9 139 74,7 

 
5 143 59,1 132 73,1 132 74,2 135 76,1 

 
6 143 59,8 132 71,8 133 73,8 133 76,9 

  7 139 61,8 128 74,9 129 77,8 130 77,1 

L_c108 1 152 56,2 148 65,4 137 74,4 147 68,6 

 
2 156 55,5 150 65,3 143 69,6 148 67,7 
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Problem 
P

la
n

n
in

g 

H
o

ri
zo

n
 γ=1 (flat) γ=2 (step) γ=3 (square) γ=3 (linear) 

Served  
Customers 

Unit Cost/ 
Customer 

Served  
Customers 

Unit Cost/ 
Customer 

Served  
Customers 

Unit Cost/ 
Customer 

Served  
Customers 

Unit Cost/ 
Customer 

 
3 160 53,4 150 63,8 150 63,9 150 66,3 

 
4 160 54,0 152 61,8 154 60,7 153 62,0 

 
5 156 55,4 144 65,7 145 65,4 147 63,8 

 
6 153 56,0 142 66,5 138 69,2 141 67,1 

  7 154 56,4 140 67,2 139 69,3 142 68,2 

L_rc101 1 98 78,3 98 80,5 93 87,2 97 83,2 

 
2 101 76,4 96 82,7 94 86,6 99 82,1 

 
3 100 76,7 96 82,2 94 86,0 99 81,5 

 
4 100 76,7 96 82,5 93 87,0 98 82,3 

 
5 103 75,1 97 81,6 96 84,0 97 83,0 

 
6 104 74,4 97 82,0 95 84,9 97 83,2 

  7 102 76,0 99 79,7 95 84,9 97 83,2 

L_rc105 1 104 73,6 102 78,1 100 80,6 104 77,2 

 
2 107 71,7 101 78,9 100 80,8 106 76,0 

 
3 106 72,4 102 77,6 100 80,5 105 76,8 

 
4 112 69,6 106 74,8 100 80,4 103 78,0 

 
5 113 69,4 104 76,5 100 80,7 105 77,0 

 
6 111 70,3 105 75,9 101 79,7 106 75,9 

  7 111 70,6 103 77,6 102 79,2 107 75,3 

L_rc107 1 110 69,2 105 75,8 101 79,9 107 74,9 

 
2 114 65,5 107 74,0 104 78,2 111 71,7 

 
3 117 65,3 107 73,8 105 76,5 111 71,8 

 
4 118 65,2 106 75,1 104 76,8 109 73,1 

 
5 116 65,8 112 70,6 104 76,8 109 73,3 

 
6 118 64,5 111 72,3 107 75,0 110 72,6 

  7 119 64,6 107 74,9 106 75,7 111 71,5 
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