

UNIVERSITY OF THE AEGEAN

SCHOOL OF BUSINESS

DEPARTMENT OF FINANCIAL AND MANAGEMENT ENGINEERING

POSTGRADUATE STUDIES PROGRAMME IN

"FINANCIAL MANAGEMENT ENGINEERING"

FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS: ENHANCEMENT

AND IMPLEMENTATION OF AN OPTIMAL APPROACH

AUTHOR:

LAZAROS AMANATIDIS

SUPERVISING COMITEE:

Ι. MINIS

A. PLATIS

V.ZEIMPEKIS

CHIOS, 2010

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

2

To my beloved wife

Acknowledgments

Firstly, I would like to thank my Professor Ioannis Minis for giving me the opportunity to

undertake the present master thesis, for his valuable supervision and guidance.

I gratefully thank Ninikas Georgios, PhD Candidate of the University of the Aegean, for

encouragement, countless discussions and for his help with writing the thesis. Their support

was really significant for me.

I would also like to acknowledge the support and there courses made available to me

through the DeOPSys Lab of the Financial and Management Engineering (FME) Department

of the University of the Aegean

Finally, I would like to thank my family and friends for their support during all this process.

Thank you

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

4

Περίληψη (In Greek)

Η προτεινόμενθ διπλωματικι εργαςία εςτιάηει ςτο πρόβλθµα Κακοριςμοφ τθσ

Επιςκεψιµότθτασ ςε ∆ίκτυο ∆ιανοµισ με ςτόχο τθν μεγιςτοποίθςθ του κζρδουσ ςε

ςυγκεκριμζνο χρονικό ορίηοντα. Σο πρόβλθμα περιγράφεται από μοντζλο ακζραιου

προγραμματιςμοφ και επιλφεται µε τον αλγόρικμο διαδοχικϊν ορίων (Branch and

Bound) για τθν εφρεςθ των βζλτιςτων λφςεων και µε προτεινόμενο ευρετικό

αλγόρικμο για τθν επίλυςθ προβλθμάτων πρακτικοφ μεγζκουσ.

Σο ςυγκεκριμζνο πρόβλθμα ζχει επιλυκεί προθγουμζνωσ από προπτυχιακι

διπλωματικι εργαςία που αναπτφχκθκε ςτο εργαςτιριο ΢υ΢ΠαΛ του

Πανεπιςτθμίου Αιγαίου. ΢τθ προςπάκεια αυτι, το πρόβλθμα επιλφκθκε για

προβλιματα πρακτικοφ μεγζκουσ με ευρετικό αλγόρικμο. Η προςζγγιςθ βζλτιςτθσ

επίλυςθσ του προβλιματοσ αυτοφ με τθ μζκοδο των διαδοχικϊν ορίων

περιορίςτθκε μόνο ςε ζνα μικρό πλικοσ πελατϊν λόγω τθσ μεγάλθσ

πολυπλοκότθτασ του προβλιματοσ (μεγάλο πλικοσ μεταβλθτϊν και περιοριςμϊν).

΢υνεπϊσ, ςτο πλαίςιο τθσ παροφςασ Διπλωματικισ εργαςίασ υλοποιιςαμε το

πρόγραμμα με εργαλεία C++ και ςυνειςφζραμε ςτα εξισ:

 Επίλυςθ υφιςταμζνων προβλθμάτων ςε ταχφτερουσ υπολογιςτικοφσ

χρόνουσ

 Επίλυςθ προβλθμάτων μεγαλφτερθσ κλίμακασ ςυγκριτικά με τθ δυνατότθτα

του προθγοφμενου αλγορίκμου.

Επιπρόςκετα, ςτα πλαίςια τθσ παροφςασ διατριβισ αναπτφχκθκε κατάλλθλθ

εφαρμογι με δυνατότθτα γραφικοφ περιβάλλοντοσ χριςτθ, θ οποία πζρα από τθν

υλοποίθςθ του αλγόρικμου, παρζχει γραφικό περιβάλλον με πραγματικοφσ

γεωγραφικοφσ χάρτεσ για τον κακοριςμό των δεδομζνων ειςόδου αλλά και τθν

οπτικοποίθςθ των παραγόμενων αποτελεςμάτων (διαδρομι και κόςτοσ αυτισ).

Αναλυτικότερα, θ κεντρικι ιδζα του όλου εγχειριματοσ είναι ο κακοριςμόσ τθσ

ςυχνότθτασ με τθν οποία πρζπει να γίνονται οι επιςκζψεισ ςτουσ πελάτεσ δοκζντοσ

ςυγκεκριμζνου δικτφου διανομισ και ςτόλου οχθμάτων ϊςτε να μεγιςτοποιείται το

ςυνολικό κζρδοσ.

Ο κακοριςμόσ τθσ ςυχνότθτασ επίςκεψθσ ςτον κάκε πελάτθ προχποκζτει να

γνωρίηουμε τι ανάγκεσ ζχει ο κάκε πελάτθσ του δικτφου, δθλαδι τθ ηιτθςθ. ΢το υπό

μελζτθ πρόβλθμα θ ηιτθςθ δεν είναι ζνασ ςτακερόσ αρικμόσ αλλά μεταβάλλεται με

βάςθ το πλικοσ των επιςκζψεων που πραγματοποιοφνται. Για τθν ακρίβεια, για

κάκε πελάτθ υπάρχει μια ελάχιςτθ ηιτθςθ και θ δυνατότθτα πραγματοποίθςθσ

πρόςκετων πωλιςεων ςε κάκε επίςκεψθ μετά τθν πρϊτθ. Επιπλζον, υπάρχει και

ζνα μζγιςτο πλικοσ δυνατϊν επιςκζψεων, πζραν του οποίου δεν κα

πραγματοποιείται καμία πϊλθςθ. Η ηιτθςθ, όπωσ και το μζγιςτο και ελάχιςτο

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Περίλθψθ (In Greek) 5

πλικοσ επιςκζψεων για κάκε πελάτθ που ανικει ςτο δίκτυο είναι ςτοιχεία που

ανικουν ςτα δεδομζνα του υπό μελζτθ προβλιματοσ.

΢τθ μελζτθ του προβλιματοσ εφρεςθσ ρυκμοφ επιςκεψιμότθτασ ςε δίκτυο λιανικισ

για τθ μεγιςτοποίθςθ του ςυνολικοφ κζρδουσ ζγιναν οι ακόλουκεσ παραδοχζσ:

o Εάν το πλικοσ των επιςκζψεων ςτον πελάτθ i ιςοφται με το ελάχιςτο

δυνατό
 τότε θ ηιτθςθ κα είναι

 και ιςοδυναμεί με το ελάχιςτο

πλικοσ προιόντων που πρζπει να παραδοκοφν ςτον πελάτθ για να

καλυφκοφν οι ανάγκεσ του ςτο υπό εξζταςθ χρονικό διάςτθμα.

o Κάκε επόμενθ επίςκεψθ κα οδθγιςει ςε αφξθςθ τθσ ηιτθςθσ με ςτακερό

ρυκμό .

o Όταν ο πελάτθσ δεχκεί το μζγιςτο αποδεκτό πλικοσ επιςκζψεων,
, τότε

θ αντίςτοιχθ ηιτθςθ
 κα ζχει φτάςει ςτο άνω όριο τθσ για το

ςυγκεκριμζνο χρονικό διάςτθμα.

o Κάκε επόμενθ επίςκεψθ ςτον πελάτθ i μετά τθν
 δεν κα επιφζρει καμία

αλλαγι ςτθ ηιτθςθ οφτε και κα οδθγεί ςε νζεσ πωλιςεισ προιόντων.

Σελικό ηθτοφμενο είναι ο προςδιοριςμόσ του πλικουσ επιςκζψεων ςε κάκε πελάτθ

ϊςτε να μεγιςτοποιείται το κζρδοσ εντόσ ςυγκεκριμζνου χρονικοφ ορίηοντα (π.χ. 5

θμζρεσ).

Σο παραπάνω πρόβλθμα αποτελεί ζνα δυαδικό πρόβλθμα γραμμικοφ

προγραμματιςμοφ. ΢τόχοσ μασ είναι θ επίλυςθ του χρθςιμοποιϊντασ ζνα αλγόρικμο

με μικρι πολυπλοκότθτα και υψθλι υπολογιςτικι ταχφτθτα, ϊςτε να είναι εφικτι θ

επίλυςθ ςε ικανοποιθτικό χρόνο ςτιγμιότυπων που ςυναντϊνται ςτθ

κακθμερινότθτα. Ζχοντασ τα παραπάνω ωσ ςτόχο, θ προτεινόμενθ λφςθ ςυνίςταται

από το ςυνδυαςμό τθσ μεκόδου διακλάδωςθσ και περιοριςμοφ (branch and bound)

με τθ μζκοδο τθσ revised simplex και τεχνικζσ χαλάρωςθσ περιοριςμϊν (relaxation).

΢υγκεκριμζνα, τα βιματα που ακολουκοφνται για τθν επίλυςθ του προβλιματοσ

που περιγράφθκε παραπάνω, ζχουν ωσ εξισ:

1. Λιψθ των δεδομζνων του προβλιματοσ:

a.
 : αρχικι ηιτθςθ για κάκε πελάτθ, θ οποία αντιςτοιχεί ςτον ελάχιςτο

αποδεκτό αρικμό επιςκζψεων

b.
 και

: ο ελάχιςτοσ και μζγιςτοσ επιτρεπτόσ αρικμόσ

επιςκζψεων για κάκε πελάτθ που ανικει ςτο υπό εξζταςθ δίκτυο

διανομισ

c. : ρυκμόσ αφξθςθσ τθσ ηιτθςθσ ανά πελάτθ μετά τισ πρϊτεσ

επιςκζψεισ

d. : Σο γινόμενο τθσ απόςταςθσ ςε km μεταξφ κάκε ηεφγουσ πελατϊν που

ανικουν ςτο δίκτυο διανομισ ι μεταξφ αποκικθσ και πελάτθ

πολλαπλαςιαςμζνο επί το δοκζν κόςτοσ ανά km. ΢υνικωσ οι

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

6

ςυντεταγμζνεσ που κακορίηουν τθ κζςθ του κάκε πελάτθ δίνονται και θ

απόςταςθ υπολογίηεται με χριςθ τθσ εξίςωςθσ:

 .

e. : Σο κζρδοσ ανά μονάδα πωλθκζντοσ προϊόντοσ.

2. Εκφράηουμε το πρόβλθμα με μακθματικζσ εξιςϊςεισ, ωσ εξισ:

3. Μετατροπι του προβλιματοσ ςε κανονικι μορφι με τθ προςκικθ τεχνθτϊν

μεταβλθτϊν, πλεονάςματοσ και περικωρίου όπου απαιτείται. ΢υγκεκριμζνα, οι

περιοριςμοί 1, 2, 3 και 4 είναι ιςότθτεσ οπότε απαιτείται θ προςκικθ μιασ

τεχνθτισ μεταβλθτισ ςε κακζναν από αυτοφσ, ο περιοριςμόσ 6 και το δεφτερο

μζροσ του περιοριςμοφ 7 είναι ανιςότθτεσ με μικρότερο ι ίςο οπότε απαιτείται

θ προςκικθ μεταβλθτισ περικωρίου ςε κάκε ζναν από αυτοφσ ενϊ ςτουσ

λοιποφσ περιοριςμοφσ που είναι ανιςότθτεσ με μεγαλφτερο ι ίςο, χριηει

αφαίρεςθ μεταβλθτισ πλεονάςματοσ και πρόςκεςθ τεχνθτισ μεταβλθτισ. ΢ε

αυτό το ςθμείο πρζπει να ςθμειωκεί ότι ςε κάκε περίπτωςθ που αρνθτικι τιμι

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Περίλθψθ (In Greek) 7

εμφανίηεται ςτο δεξί ςκζλοσ ανιςότθτασ, πρϊτα πολλαπλαςιάηουμε με -1 και

ςτθ ςυνζχεια ακολουκοφμε τθν παραπάνω διαδικαςία.

4. Χαλάρωςθ του αρχικοφ προβλιματοσ με τθν αφαίρεςθ των περιοριςμϊν που

αφοροφν τθν απαίτθςθ οι λφςεισ να λαμβάνουν μόνο τισ τιμζσ 0 ι 1, οπότε

αρκεί οι λφςεισ να είναι ακζραιεσ μεταβλθτζσ και όχι δυαδικζσ όπωσ ιταν ςτθν

αρχικι ζκφραςθ του προβλιματοσ.

5. Επίλυςθ του προβλιματοσ χρθςιμοποιϊντασ τθ Revised Simplex μζκοδο. Η

διαφορά τθσ μεκόδου αυτισ από τθν κλαςςικι simplex ζγκειται ςτο ότι θ μεν

αρχικι μορφι υπολογίηει και αποκθκεφει όλουσ τουσ αρικμοφσ που αποτελοφν

το ταμπλό άςχετα με το αν απαιτοφνται ενϊ θ Revised Simplex χρθςιμοποιεί τθ

μζκοδο Gauss – Jordan για τον υπολογιςμό του αντίςτροφου του πίνακα και

από εκεί και πζρα οι μόνεσ πράξεισ που απαιτοφνται είναι πολλαπλαςιαςμοί

πινάκων που γίνονται με χριςθ πολφ περιοριςμζνων υπολογιςτικϊν πόρων.

6. Επιπλζον, ςτθν υπό μελζτθ περίπτωςθ το πρόβλθμα πάντοτε περιζχει τεχνθτζσ

μεταβλθτζσ, ςυνεπϊσ απαιτείται θ χριςθ είτε τθσ μεκόδου του μεγάλου Μ (Big

M) είτε των δφο φάςεων (Two Phase) για τθν επίλυςθ του. Επειδι θ μζκοδοσ

των δφο φάςεων είναι καταλλθλότερθ για υλοποίθςθ ςε υπολογιςτικά

ςυςτιματα και οδθγεί ςε πιο ακριβι ςυςτιματα, επιλζχκθκε θ χριςθ τθσ ςτθν

ςυγκεκριμζνθ περίπτωςθ. Με βάςθ τθ μζκοδο αυτι, αρχικά ςχθματίηουμε ζνα

πρόβλθμα ελαχιςτοποίθςθσ χρθςιμοποιϊντασ μόνο τισ τεχνθτζσ μεταβλθτζσ και

το επιλφουμε. Εάν το προκφπτον πρόβλθμα και όλεσ οι τεχνθτζσ μεταβλθτζσ

λαμβάνουν μθδενικι τιμι τότε το αρχικό πρόβλθμα ζχει εφικτι λφςθ και όλεσ οι

ςτιλεσ που αντιςτοιχοφν ςε τεχνθτζσ μεταβλθτζσ μποροφν να αγνοθκοφν

ειδάλλωσ δεν ζχει εφικτζσ λφςεισ.

7. Χριςθ τθσ λφςθσ που βρζκθκε ςτο προθγοφμενο βιμα και του προβλιματοσ ςτο

οποίο αφαιρζκθκαν οι περιοριςμοί των μεταβλθτϊν από δυαδικζσ ςε ακζραιεσ

για τθν εκκίνθςθ του αλγόρικμου branch και bound.

Με βάςθ τα παραπάνω αναπτφχκθκε θ εφαρμογι V-RED. Η αρχικι τθσ μορφι ιταν

μια απλι παρακυρικι εφαρμογι που ζκανε χριςθ τθσ οκόνθσ τερματικοφ για τθν

πλθκτρολόγθςθ των δεδομζνων και τθν εμφάνιςθ των αποτελεςμάτων. ΢τθν

ςυνζχεια αναπτφχκθκε ζνα εξελιγμζνο παρακυρικό περιβάλλον για τθν διεπαφι με

το χριςτθ όπου θ ειςαγωγι των δεδομζνων γίνεται με χριςθ γεωγραφικϊν

ςυντεταγμζνων και θ απεικόνιςθ τόςο των δεδομζνων ειςόδου όςο και των

αποτελεςμάτων πραγματοποιείται ςε διαδραςτικοφσ γεωγραφικοφσ χάρτεσ.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

8

Εικόνα 1 V-RED Interface

Η εφαρμογι ελζγχκθκε για τθν ορκότθτα των αποτελεςμάτων που παράγει και τθν

καλι τθσ λειτουργία μζςω ςυγκρίςεων των παραγόμενων αποτελεςμάτων που

αφοροφςαν ςτιγμιότυπα του προβλιματοσ που ιταν ιδθ γνωςτά τα αναμενόμενα

αποτελζςματα.

΢τθν ςυνζχεια θ εφαρμογι χρθςιμοποιικθκε για τον υπολογιςμό των

αποτελεςμάτων ςτιγμιότυπων που είχαν εξεταςτεί ςε προθγοφμενθ διπλωματικι

εργαςία (Αςθμακόπουλοσ, 2001), όπου χρονομετρικθκε ο χρόνοσ (CPU time) που

απαιτείται για τθν παραγωγι των αποτελεςμάτων με τθν νζα υλοποίθςθ του

αλγορίκμου και ζγινε ςφγκριςθ των χρόνων αυτϊν με τουσ αντίςτοιχουσ τθσ

προθγοφμενθσ υλοποίθςθσ. Με βάςθ τα αποτελζςματα θ νζα εφαρμογι ζχει πολφ

καλφτερουσ υπολογιςτικοφσ χρόνουσ.

Επιπλζον όπωσ φαίνεται ςτον πίνακα 1, δοκιμάςτθκε θ επζκταςθ τθσ χριςθσ τθσ

εφαρμογισ και ςε μεγαλφτερου μεγζκουσ προβλιματα, τόςο όςο αφορά το πλικοσ

των πελατϊν όςο και το χρονικό ορίηοντα. Περαιτζρω ζρευνα απαιτείται για τον

ςαφι προςδιοριςμό των άνω ορίων για τθ ςυγκεκριμζνθ υλοποίθςθ του

αλγορίκμου και μελζτθ τθσ ςυμπεριφοράσ του ςε πιο πολφπλοκα ςτιγμιότυπα του

προβλιματοσ.

Πίνακασ 1 9 - 12 Πελάτεσ Αποτελέςματα

 9 ΠΕΛΑΤΕΣ 10 ΠΕΛΑΤΕΣ 11 ΠΕΛΑΤΕΣ 12 ΠΕΛΑΤΕΣ

ΗΜΕΡΕ΢
ΧΡΟΝΟ΢

(Sec)
ΚΕΡΔΟ΢

(€)
ΧΡΟΝΟ΢

(Sec)
ΚΕΡΔΟ΢

(€)
ΧΡΟΝΟ΢

(Sec)
ΚΕΡΔΟ΢

(€)
ΧΡΟΝΟ΢

(Sec)
ΚΕΡΔΟ΢

(€)

1 4,40 3920,33 10,20 4220,33 30,80 4795,14 98,50 5487,10

2 12,20 6716,66 35,20 7316,66 120,60 8270,27 444,10 14914,20

3 30,60 9512,99 93,40 10412,99 245,90 11745,41

4 54,90 12309,32 158,40 13509,32 406,60 14845,74

5 93,80 15105,65 235,00 16487,65

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Abstract 9

Abstract

The focus of the current master thesis is set on the definition of the frequency of

service in a distribution network by maximizing the profit in a specific time window.

The problem is modeled using integer mathematical programming and is solved

using the Brach and Bound algorithm in order to find the optimal solution.

This problem has already been solved within an Undergraduate thesis developed by

the DeOpSys team of the University of the Aegean by Asimakopoulos (2006). In that

effort the focus was given in solving practical sized problems using a specific

heuristic algorithm. The actual solution of the problem using the Branch and Bound

algorithm was narrowed down to a small number of clients due to the high

complexity of the problem (number of variables and constraints).

Therefore, primary goal of this thesis is to enhanced solution method in order to

have better computational times than the previous approach and be able to solve

larger problems.

More specifically, we developed a software tool in C++ that implements the above

mentioned algorithm and provides:

 Better solution times for problems being solved by Asimakopoulos (2006)

application

 Solution of bigger problems while keeping the same algorithm

Finally, a windows application as interface of the algorithm was implemented. This

application provides interface for entering the project’s input data and

representation of coordinates in geographical maps (Google maps) as well as

generation of the results (route and cost) on the same maps.

Keywords

Retail distribution network, branch and bound, tsp

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

10

Περίλθψθ (In greek) .. 4

Abstract ... 9

Figures ... 12

Tables... 13

1 Introduction ... 14

2 Theoretical Background ... 17

2.1 Introduction ... 17

2.2 Distribution Networks ... 17

2.3 Optimization Techniques ... 18

2.3.1 Linear Programming Theory .. 18

2.3.2 Branch and Bound ... 22

3 The Optimal Solution for computing the frequency of service in retail distribution

networks .. 29

3.1 Introduction ... 29

3.2 Description of the Problem ... 30

3.3 Optimization Method .. 35

4 Experimental Results .. 39

4.1 Introduction ... 39

4.2 Results ... 40

4.2.1 2 - 4 Customers .. 40

4.2.2 5 - 6 Customers .. 40

4.2.3 7 - 8 Customers .. 41

4.2.4 Solution of new instances of more than 8 Customers .. 42

4.3 Execution Time versus Number of Clients ... 42

5 Software Development .. 43

5.1 Introduction ... 43

5.1.1 Use Case Model ... 44

5.1.2 System’s Modules .. 46

5.1.3 Sequence Diagram ... 47

5.2 Software Description ... 49

5.3 V-RED Algorithm .. 51

5.3.1 Constraints ... 52

5.3.2 Optimizer ... 53

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Abstract 11

5.3.3 Two Phase Method .. 54

5.3.4 Simplex Method .. 54

5.3.5 Branch and Bound Method ... 55

5.4 Software Validation and Testing ... 57

5.5 Testing Process .. 57

6 Discussion and Further Research ... 60

7 References .. 62

Α. Appendix ... 64

Α.1 Software Requirement Analysis .. 64

Α.2 Software Specification Process .. 65

Α.3 Stages of Development.. 66

Α.4 Implementation Tools ... 67

Microsoft Visual Studio .. 68

Microsoft Visual C++ .. 68

Microsoft .NET Framework .. 69

Α.5 Test Cases .. 70

Test Case 1: 2 Customers 1 Day ... 70

Test Case 2: 2 Customers 2 Days .. 73

Test Case 3: 3 Customers 2 Days .. 78

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

12

Figures

Εικόνα 1 V-RED Interface .. 8

Figure 1 Vehicle Routing Problem ... 14

Figure 2 Revised Simplex Method ... 21

Figure 3 Branch and Bound Flowchart ... 24

Figure 4 BFS Search in Binary Tree ... 26

Figure 5 DFS Search in Binary Tree ... 27

Figure 6 Relation of demand to visits per client ... 29

Figure 7 Relation of Income to Visits .. 30

Figure 8 Solution Steps ... 38

Figure 9 Execution Time Comparison 5 Customers ... 41

Figure 10 Execution Time Comparison 6 Customers ... 41

Figure 11 Execution Time Comparison 7 Customers ... 42

Figure 12 Execution Time Comparison 8 Customers ... 42

Figure 13 Time spent for each stage of component based engineering ... 43

Figure 14 Use Case Model .. 45

Figure 15 System's Modules ... 46

Figure 16 System's UML sequence diagram ... 48

Figure 17 V-RED Interface & Console Application .. 50

Figure 18 Branch and Bound Calls .. 55

Figure 19 V-RED Flow Chart .. 56

Figure 20 Testing Process ... 58

Figure 21 Requirements Analysis Process ... 66

Figure 22 Excel Solver Results for 2 customers 1 day .. 72

Figure 23 V-RED Results for 2 customers 1 day .. 73

Figure 24 Case 2 - 1 Route .. 73

Figure 25 Excel Solver Results for 2 customers 2 days ... 76

Figure 26 V-RED Results for 2 customers 2 days .. 77

Figure 27 Excel Solver Results for 3 customers 2 days ... 80

Figure 28 V-RED Results for 3 customers 2 days .. 81

Figure 29 Route for Case 3-2 .. 81

file:///C:/Users/Lama/Dropbox/EAP/Thesis_Amanatidis_Final_111021.docx%23_Toc306926051
file:///C:/Users/Lama/Dropbox/EAP/Thesis_Amanatidis_Final_111021.docx%23_Toc306926054

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Tables 13

Tables

Πίνακας 1 9 - 12 Πελάτες Αποτελέσματα ... 8

Table 1 Two - Four Customers Results .. 40

Table 2 Five - Six Customers Results ... 40

Table 3 Seven - Eight Customers Results .. 41

Table 4 Nine - Twelve Customers Results ... 42

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

14

1 Introduction

Over the past decade, the traditional purchasing and logistics functions have evolved

into a broader strategic approach to materials and distribution management known

as supply chain management (Choon Tan, 2001). Furthermore, transportation and

distribution of goods are key issues faced by the supply chain management sector,

since they affect the total cost of the product and the quality of customer service

(Eskigun et al., 2005). This is the reason that all companies aiming at being

competitive on the market give special attention to the analysis of the supply chain

in order to improve the customer service level without an uncontrolled growth of

costs (Ambrosino and Scutellà, 2005).

Based on the needs of the supply chain sector, many researchers the last 40 years

have widely developed distribution network models in supply chain systems usually

having as objective to find capacities, location of new facilities and the best flow of

material in the network (Ghezavati, Jabal-Ameli and Makui, 2009).A common

objective in designing such a distribution network is to determine the least cost

system design such that the demands of all customers are satisfied and frequency of

service is maximized without exceeding the predefined cost level (Amiri, 2006).This

kind of optimization problems have high degree of complexity and belong to the

class of NP-hard optimization problems, in which computational time increases

exponentially with the problem’s size (Goel and Gruhn, 2008).

One of the most interesting problems in this sector is the Vehicle Routing Problem

(VRP), which is a transportation problem where goods are delivered from a central

depot to a set of customers, as shown in Figure 1. Several constraints, such as vehicle

capacity, allowed working period (e.g. driver’s shift), time windows imposed by

customers where the service can be performed, etc., should be satisfied. The aim is

to design a set of minimum cost routes starting and ending to a depot of a fleet of

vehicles serving a set of customers with known demands and service costs (Laporte,

1992).

Figure 2 Vehicle Routing Problem

However, many variations on this classical problem exist; usually created by having

different constraints, like the one studied in this thesis, where it is added an extra

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Introduction 15

parameter that is the frequency of service to each customer. More specifically, we

are solving a problem, related to VRP, which concerns the frequency of service in

retail distribution networks. The problem herein presented is about the design of a

set of minimum cost routes starting and ending at a depot for a vehicle serving a

variable number of times a group of variable customers and where minimum

demands and service costs are given. The algorithm’s output is the optimal route

based on the set of constraints that include but are not limited to the total time of

travel (route length), the maximum capacity of each vehicle and the optimal number

of visits to each customer.

The herein discussed model has been developed by the DeOpSys team of the

University of the Aegean; where in Asimakopoulos (2006) thesis was presented a

MATLAB tool for maximizing the total profit earned by delivering goods to the retail

network’s customers during a specified time window and within the capacity of the

used depot. In that implementation, no results were returned when handling more

than eight customers and the overall execution time seemed to grow exponentially.

The idea in this second approach of the problem is, to develop for the given

optimization method a new algorithm that keeps the same mathematical model but

can be executed for more clients and days giving results faster than the previous

implementation. In other words the goal is to minimize the execution time by

lowering the algorithm’s complexity. If this can be achieved then a fully functional

software application for vehicles routing could be developed.

Therefore, primary goal of this thesis is to optimally solve the problem for a greater

number of clients. More specifically, research will be performed on the restrictions

and parameters that raise the problem's complexity and computational time in order

to find ways to minimize it.

Finally, a set of methods and techniques will be implemented to get the optimal

solution faster and for a larger set of clients. The implementation will be a software

application that takes all the delivery network's parameters as input data and

returns the optimal routing solution. Emphasis is given on the reduction of the

computational time on order to be applicable on a software application.

Thesis Structure

The remainder of the thesis is structured as follows:

In Chapter 2 the theoretical background of the presented method is analysed,

starting from general notions like Delivery Networks and Linear Programming Theory

to the crucial for this method, Branch and Bound algorithm and the optimization

methods for computing the rate of visits in retail distribution networks developed by

other researchers.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

16

In Chapter 3 the proposed solution for computing the frequency of service in retail

distribution networks is presented by describing the problem and formalizing it

through mathematical equations that describe the objective function and the

restrictions that are set.

In Chapter 4 the usage of V-RED is described along with experimental results of its

application in comparison with those provided from the previous implementation by

Asimakopoulos (2005).

Chapter 5 contains information about the requirements analysis and software

architectural design of the software tool – V-RED, the implementation process

followed for developing V-RED, its main components, the algorithm used to

implement each step of the method and the modeled behavior of the system under

normal and exceptional circumstances.

Finally, in Chapter 6 are presented the conclusions of the overall thesis and an

evaluation of the performance of the newly developed tool, along with directions for

future research.

In the Appendix are presented the processes to certify the correctness and the

reliability of the developed software along with test scenarios that prove that the

provided results are always the same given specific inputs and exactly those that

were expected to be based on the analytical solution of the problem.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Theoretical Background 17

2 Theoretical Background

2.1 Introduction

This chapter deals with the theoretical background needed to analyze the problem

of the definition of optimum visit rates in distribution retail networks and develop a

software tool that will be able to solve the problem in a timely manner. For this

purpose basic notions of distribution networks and linear programming theory are

studied. Special focus is given to the Branch and Bound method including its policies

and characteristics and the Revised Simplex Method. Finally, are presented the most

common optimization methods for computing the frequency of service in retail

distribution networks.

2.2 Distribution Networks

Companies need to be competitive in order to be sustainable; a common way to

accomplish that is by analyzing the supply chain in order to improve the customer

service level without an uncontrolled growth of costs. This is achieved through the

optimization of the flows of goods through the producer network, also called in the

literature distribution network, from the supply points to the demand points,

essentially the customers of the retailer when we refer to retail distribution

networks. More precisely, the goal is to select the optimum numbers, locations and

capacities of plants and warehouses to open so that all customer demand is satisfied

at minimum total costs of the distribution network (Amiri, 2006).

Distribution network design problems are core problems for every company because

they involve strategic decisions which influence tactical and operational decisions. In

particular, they involve facility location, transportation and inventory decisions,

which affect the cost of the distribution system and the quality of the customer

service level (Crainic and Laporte, 1997).

A distribution network analysis has two main axes: the optimization of the flows of

goods: where we consider an existing distribution network, and we aim to optimize

the flows of goods through the network; and the improvement of the existing

network: where the goal is to choose the best configuration of the facilities that

consist the network in order to minimize the overall cost while the company’s goals

are satisfied. Usually, distribution network problems involve both kinds of analysis

(Ambrosino and Scutellà, 2005).

In our case, given a specific retail distribution network, comprising of a depot, a

vehicle and a variable number of customers residing in different locations, we aim to

find the optimum route and number of visits in order to have the maximum sales

within a specific time window and with minimum overall cost. Thus, it is a problem

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

18

of optimization of the flows of goods through the network. It has its bases in the

well-known Travelling Salesman Problem (TSP) that belongs to the combinatorial

optimization domains and has been in depth studied in operations research and

theoretical computer science. In the TSP given a list of cities and their pairwise

distances, the task is to find a shortest possible tour that visits each city exactly once.

In our case we have a few twists on this basis. First of all we can and should make

multiple visits to our customers\cities; secondly, we want to know not only the

shortest path but also the optimal number of visits to maximize profits.

2.3 Optimization Techniques

2.3.1 Linear Programming Theory

The general linear programming problem in standard form can be stated as follows

(Kolman and Beck, 1980):

Find values x1, x2,…xn which will

Maximize z=c1x1+c2x2+…+cnxn

Subject to the constraints

 a11x1+a12x2+..a1nxn≤b1

a21x1+a22x2+..a2nxn≤b2

……..

am1x1+am2x2+..amnxn≤bm

xj≥0,j=1,2,…,n

Where the inequalities represent the constraints and the function z is the objective

function.

A linear programming problem in standard or canonical form can be compactly

described by matrix notation. Let

 , x=

 ,

 and

c=

 then the linear programming problem can be written:

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Theoretical Background 19

Find vector

Maximize z=cT

Subject to the constraints

A

An inequality constraint (≤ form)can be converted into an equality constraint using

slack variables, that are positive numbers that are added to the left side of an

inequality so that they effectively ‘take up the slack’ between the left side and the

right side of the inequality.

When we have constraints with equalities “=” the artificial variable technique is used

to transform the problem in standard form. This technique introduces a dummy

variable, called artificial variable into each constraint that is in equality form and

assigns an overwhelming penalty to having added this positive artificial variable by

changing the objective function.

In case that we have constraints with inequalities in “≥” form, we add an artificial

variable as in the equalities case and subtract a surplus variable from its left side.

The Simplex Method

The Simplex Method is "a systematic procedure for generating and testing candidate

vertex solutions to a linear program" (Gill, Murray and Wright, 1982). The algorithm

to solve the general linear programming problem in its standard form, using the

Simplex Method is briefly depicted below (Hilier and Lieberman, 2005):

 1st Phase-Initialization:

a. Introduce slack variables.

b. Select the decision variables to be nonbasic variables

c. Select the slack variables to be the initial basic variables

 2nd Phase-Optimality Test:

a. Are all the coefficients of the row corresponding to the objective function

nonnegative?

b. If yes, then the current solution is optimal and the process stops.

c. If not, then go to next iteration (see 3rd phase).

 3rd Phase-Iteration:

a. Determine the entering basic variable by selecting the variable with the

negative coefficient having the largest absolute value.

b. Determine the leaving basic variable by applying the minimum ratio test

(minimum of ratio side divided by corresponding positive element of pivot

column).

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

20

The Two Phase Method

There are two methods to solve linear programming problems that are not in the

standard form, namely the big-M method and the two-phase method. These

methods are used in cases that the linear programming problem contains constraints

that are in “equality” or “greater than” form. The only deference between the big-M

method and the two-phase method is in the formulation of the objective function

and the ease of use in computer based calculations. The algorithm of this method is

described below (Hilier and Lieberman, 2005):

 1st Phase-Initialization: Revise the constraints of the original problem by

introducing slack, surplus and artificial variables as needed to obtain an obvious

initial solution for the artificial problem.

 2nd Phase: Find an optimal solution for the artificial problem.

min z= , subject to revised

constraints

If phase 1 ends with all artificial variables driven to zero, then the second phase

can be launched.

 3rd Phase: Find an optimal solution for the real problem, drop the artificial

variables and starting from the optimal solution obtained at the end of phase 2,

use the simplex method to solve the real problem.

The Revised Simplex Method Procedure

Revised Simplex Method is a modification of the well-known simplex method. The

Revised Simplex Method describes linear programs as matrix entities and presents

the Simplex Method as a series of linear algebra computations. Instead of spending

time updating dictionaries at the end of each iteration, the Revised Simplex Method

does its heavy calculation at the beginning of each iteration, resulting in much less at

the end. Based on the nature of data of the initial problem, iterations of Revised

Simplex Method can but not necessarily are, faster than the standard simplex’s

iterations.

The general rule is that large and sparse linear programming problems are solved

faster and with the Revised Simplex Method, because it is based on calculations

made directly on the inverse of the basis matrix. This is the feature that gives

consistent advantage in cases where the number of constraints is much lower than

the number of variables and results in minor time and memory requirementsInvalid

source specified..

If we represent the m non zero values in a basic solution, in other words the basic

variables, as a vector xB and the corresponding columns of A (see section 3.3.1) are

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Theoretical Background 21

used to create an m x m matrix B and the result of the objective function is the cB

=

 vertex then it follows that:

and

Using the above notations the Revised Simplex algorithm consists of the following

steps, as visualized in Figure 2:

Figure 3 Revised Simplex Method

1. Define the entering variable by choosing the variable that will cause the

greatest increase in the objective function.

2. If all the parameters of the objective function are non-negative then an

optimal solution has been found, so stop execution.

3. Determine the departing variable by choosing the variable with the smallest

non-negative κ-ratio.

1. Determine Entering
Variables

2. Is a Better Solution
Available?

Current Solution is
Optimal

STOP

3. Does a Valid θ-ratio
Exist?

No Feasible Solution
exists

STOP

4. Determine Departing
Variable

5. Determine New Basic
Solution and Perform

Next Iteration

NO NO

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

22

If there is not any value with non-negative θ-ratio the problem does not have

a feasible solution, so stop execution.

IF θ-ratio

4. Determine the new B-1 from the previous one and the departing and entering

variables.

5. Determine the new xB and go back to step 1.

2.3.2 Branch and Bound

Branch and Bound (B&B) is by far the most widely used tool for solving large scale

NP-hard combinatorial optimization problems. It is used in cases that we cannot

afford to enumerate all possible combinations and get the solution. It is a divide and

conquer method where we divide a large problem into a few smaller ones, which is

the “branch” part. The conquering part is done by estimating how good solution

could be given by the selected node’s sub-tree, which is the “bound” part.

The idea is to partition the feasible region into more manageable subdivisions and

then, if required, to further partition the subdivisions. For each subdivision a new

linear program can be solved by adding one additional constraint. This constraint

marks the subdivision’s space. The decision on the subdivisions is based on the non-

integer variables of the solution. Each non integer variable partitions the solution

space into two subdivisions. This procedure is repeated until an integer solution is

obtained.

The efficiency of the method depends strongly on the node-splitting procedure and

on the upper and lower bound estimators. Ideally the procedure stops when all

nodes of the search tree are either pruned or solved. At that point, all non-pruned

sub regions will have their upper and lower bounds equal to the global minimum of

the function.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Theoretical Background 23

In general, there are a number of ways to divide the feasible region, and as a

consequence there are a number of B&B algorithms. Thus, B&B is an algorithm that

each time that is implemented needs several parameters to be filled in and there are

numerous available choices for each case. These parameters should be carefully

chosen in order to get the desired behavior. This is the reason that several

techniques for the design of efficient B&B algorithms have emerged over the years.

Definitions

 Node: represents any partial or complete solution. Partial solution is represented

with a node when each tree level defines a specific part-variable of the problem.

 Leaf node: a complete solution where all variables are known and no other

branching is possible. Every leaf node has associated an actual value of the

objective function along with the corresponding values for all the variables of the

problem. Leaf nodes are also those that have given an infeasible solution.

 Bud node: a partial solution, either feasible or infeasible. It is a node that might

grow further but we don’t know it for sure, yet.

 Bounding function: Each bud node has associated a bounding function. The

bounding function is used to estimate the best value of the objective function

that we could get by growing the specific node. It is an estimator of the values

that we will compute for the child nodes and it is very important to be an

optimistic estimator. Thus when we have a minimization problem it must

underestimate the actual best achievable result and the opposite in the

maximization case.

 Branching, growing or expanding a node: is the process of creating the child

nodes of a bud node. For every possible value range we create a child node. If we

have a binary tree then when we branch we always create two child nodes one

for the zero value and one associated to the value one. If we have an integer

programming problem, for each variable that is not integer we create a child

node with its floor value and one for the corresponding ceil value.

 Incumbent: the currently best feasible solution. Each time that we find a feasible

solution we compare it with the incumbent and in case that is better than the

current incumbent we update it with the new value. Usually when the process

begins we don’t have an incumbent and thus, the first feasible solution found

becomes the incumbent.

 Partitioning policy: the rules used to decide when and how the branching will be

effectuated.

 Node selection policy: the rules to select which is the next node to be visited.

 Variable selection policy: the rules to select which variables should be analyzed

and how in order to create branches.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

24

 Fathoming: when should be stopped the growth of a node, it depends on the

current solution and its magnitude relation with the incumbent along with the

type of variables that constitute that solution.

 Terminate rule: when should we terminate the algorithm execution either a

solution has been found or not.

Algorithm

Let us have an integer linear programming problem, to solve it we will use the

Branch and Bound algorithm (Forrest and Tomlin, 2007), as it is depicted in Figure 3.

 Step 1: Having an integer programming model we create its linear

programming relaxation by dropping the requirement that all variables must

be integers.

Figure 4 Branch and Bound Flowchart

 Step 2: Solve the corresponding linear programming problem.

o Step 2.1: If no feasible solution exists, then the algorithm stops. The

response returned is that the initial integer linear problem does not

have a feasible solution.

 Step 3: Compare the optimal solution to the best known feasible solution.

o Step 3.1: If all the variables of the solution are integer then this is a

possible optimal solution of the initial problem. Check if the found

solution is greater from the last known feasible solution (for a

maximization problem, the opposite in case of minimization). If yes,

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Theoretical Background 25

then set the current solution as the best solution we know

(incumbent) else fathom the branch.

o Step 3.2: If not all the variables of the solution are integers, check if

the found solution is greater from the last known feasible solution (for

a maximization problem, the opposite in case of minimization). If yes,

then divide this subproblem further and repeat.

Consequently, a subproblem is fathomed in the following cases:

 The relaxation of the subproblem has an optimal solution but it is not greater

of the current best solution (in case of maximization).

 The relaxation of the subproblem has no feasible solution.

 The relaxation has an optimal solution with all the variable values integer (or

binary in case of binary problem).

A subproblem is branched when the solution found is greater (in case of

maximization) than the incumbent but not all the variable values are integer (or

binary for binary problems). The way that is branched is defined by the variable

selection policy.

Partitioning policy

As we discussed above the partitioning policy deals with all the issues related to

branching a node of the tree. Based on the selected policy it is set the condition

based on which the branching will take place. There are several partitioning policies

to select from. The selection depends on the problem type and often is more

empirical than rule based.

Variable Dichotomy

Suppose that solving the relaxed linear problem returns an optimal solution where

not all variables are integer. The idea in variable dichotomy is to create for each non

integer variable two branches, one corresponding to the ceiling value of the

variable , let it be d+1 and the other to the floor value , d. The linear problem

of each branch will be updated by adding a new constraint, and .

We then repeat the procedure for each of the two linear problems obtained(Dakin,

1965).

Generalized-Upper-Bound Dichotomy (GUB)

Suppose that solving the relaxed linear problem returns an optimal solution where

there are one or more fractional variables and the initial problem contains the

constraint , then exist and such that and

 ,
, (Beale and Tomlin, 1970). This way each time we branch by creating

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

26

two sets of possible values, all variables that can get the value 0 go to the set and

the rest to the set.

Multiple branches for bounded integer variable

If the optimal solution computed by solving the relaxed linear problem contains

fractional variables then equations and corresponding branches

can be created. Each branch will have where (Land and Doig, 1960)

. Actually, this method creates branches for each fractional variable. The number of

branches per variable is defined by all the possible integer values that the variable

can get. It is very slightly better than the full enumeration of the possible solutions.

Node selection policy

Node selection policy refers to the way that the next node to be visited in the B&B

tree will be selected. The selected node contains the next sub-problem that will be

solved in the process to find a global optimum for the initial problem. It is a critical

policy due to the fact that strongly affects the computational time of the algorithm.

Many general and problem specific policies have been proposed in the literature.

Here in we present the most commonly used both due to their low computational

complexity and their good results in practical size problems.

Breadth-First Search method

The Breadth-First Search method is a FIFO way of traversing a tree, since we examine

each level’s nodes and then continue to the next level, starting from the top of the

tree and moving towards the leafs.

Figure 5 BFS Search in Binary Tree

Depth-First Search with Backtracking method

This method examines in depth the tree, branch by branch and each time that

encounters a leaf node goes to the closest unexplored node till no unexplored nodes

have been left. Starting from the root node selects a child node and examines it; the

process is repeated till no unexamined children exist. Then it goes back to one or

more past levels to find the next unexamined node and start the same process again,

essentially it is a LIFO method, as shown in Figure 5.

Root

1

3 4

2

5 6

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Theoretical Background 27

Figure 6 DFS Search in Binary Tree

Best-Bound method

This policy examines the linear objective value of the nodes and chooses the one

that has the best value. All nodes that have linear objective value less than the

incumbent will be fathomed. It is based on the principle that if the value of the linear

problem is less than the incumbent then no integer value of the variables will give a

greater result and thus there is no need to examine its children nodes. This policy

minimizes the total number of explored nodes.

Sum of Integer Infeasibilities method

The sum of integer infeasibilities at a node is calculated as:

Based on this policy the node to be visited is the one having either minimum sum of

infeasibilities in the maximization problem or maximum sum in the opposite case. If

the solution is feasible the sum of the infeasibilities is equal to zero and no further

branching of the node is needed.

Variable selection policy

After having defined how are we going to examine the nodes we have to define the

rules based on which from a node we will create children nodes. Clearly it is a critical

the choice of branching variables and obviously affects the running time of the

algorithm. Many different approaches have been developed and tested on different

types of integer programs. Some common approaches are listed below.

Driebeck-Tomlin Penalties(Driebeek, 1966)/ (Tomlin, 1971)

Penalties give a lower bound on the degradation of the objective value when the

under examination node will be branched. The penalties are the cost of the dual

pivot needed to remove the fractional variable from the basis. Once the penalties

have been computed, a variety of rules can be used to select the branching variables.

A penalty can be used to eliminate a branch if the LP objective value for the parent

node minus the penalty is worse than the incumbent integer solution. Penalties are

out of favor because their cost is considered too high for their benefit.

Root

1

3 2

4

6 5

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

28

Pseudo-Cost Estimate (Benichou et al., 1971)

Pseudo-costs provide a way to estimate the degradation to the objective value by

forcing a fractional variable to an integral value. Pseudo-costs attempt to reflect the

total cost, not just the cost of the first pivot, as with penalties. This is a sophisticated

rule in the sense that it keeps a history of the success of the variables on which

already has been branched. Pseudo-costs are not considered to be beneficial on

problems where there are large percentages of integer variables.

Pseudo-Shadow Prices (Land and Powell, 1979)

Similar to pseudo-costs, pseudo-shadow prices estimate the total cost to force a

variable to an integral value. The branching variable is chosen using criteria similar to

penalties and pseudo-costs.

Strong Branching (Applegate et al., 1995)

The idea of Strong Branching is to test which of the fractional candidates gives the

best progress before actually branching on any of them. This test is done by

temporarily introducing a lower bound and subsequently an upper bound for the

examined variable with fractional LP value, and solving the corresponding linear

relaxations.

Most/Least Infeasible Integer Variable (Brunetta, Conforti and Fischetti, 2000)

In this approach, the integer variable whose fractional value is farthest from (closest

to) an integral value is chosen as the branching variable.

Priorities Selection (Smith, 2004)

 Variables are selected based on their priorities. Priorities can be user-assigned, or

based on objective function coefficients, or on pseudo- costs. This policy strongly

depends on the kind of problem to be solved and has been used mainly in

telecommunications problems.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

The Optimal Solution for computing the frequency of service in retail distribution
networks

29

3 The Optimal Solution for computing the frequency of service in retail

distribution networks

3.1 Introduction

This problem was initially introduced by Asimakopoulos (2006) as an Undergraduate

thesis developed by the DeOpSys team of the University of the Aegean. The main

idea is to define the frequency of service over a given set of customers and fleet of

vehicles in order to maximize the total profit.

To define the frequency of service we need to know the product needs of each

customer assigned to the route, or in other words the demand. In our case, the

demand is not a constant number but it is proportional to the number of visits to the

client. To be more precise, we have a minimum demand for each client and the

possibility of extra sales after the first visit. However, there is an upper limit to the

possible number of visits to each client during a specific time window. This upper

limit is given as input.

This limitation arises from the fact that there is a specific amount of available

products to sale and at the same time when the rate of demand reaches its peak all

next visits to the same client will not add any surplus of profit. This relationship

between the frequency of service to a customer and the rise of the demand is shown

in Figure 6.

Figure 7 Relation of demand to visits per client

The following assumptions that form our operating scenario are considered:

o If the number of visits equals the minimum possible,
 then the demand

is
 that is the initial demand of this client covering the customer’s needs for

the referred time frame.

o Each subsequent visit will cause an increase on the demand with a

standard slope .

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

30

o When a customer has been serviced for the maximum required number of

visits, i.e.
, then the demand

 would be the maximum possible for

that specific customer and time frame.

o All subsequent visits after the
 will not affect the demand.

The objective is to define the number of visits per client in order to maximize the

overall profit in a specific time horizon (e.g. 5 days). Figure 7 represents the period

and incremental income from a client in relation to the number of visits. The

following assumptions are considered regarding the incomes involved:

o Let I denote the total income of a specific client in a predefined time period.

The value of this income is proportional to .

o Thus, I where p is the profit parameter.

o Incremental incomes are given by the equation:

 .

o When
 then

 .

Figure 8 Relation of Income to Visits

From the above, it is obvious that by visiting each customer
times the sold

goods are maximized and thus the profit. However visiting each customer

times is not easy to realize when there is limited number of available vehicles and

there are time constraints.

Based on the above considerations, the following section describes a simplified

version of the problem, focusing on the function that describes the profit and the

limitations that are set by the problem constraints. Furthermore, the mathematical

formulation of the problem will be presented and analyzed.

3.2 Description of the Problem

Let be a network consisting of a set of nodes , being represented

by a graph and a set of links that interconnect the nodes, which we will call

edges from now on. The set of nodes represents the customers of the retail network

that should be visited with the exception of node 0 that represents the depot that is

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

The Optimal Solution for computing the frequency of service in retail distribution
networks

31

the base of the fleet of vehicles. Every edge is related to the cost to go

from node to node , except when that . Let be the time

window being analyzed and the number of time periods in which is divided.

Based on the duration of each time period is defined the maximum distance that

can be driven in that time period by any track of the fleet.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

32

Definitions

Graph describing the retail network

is the set of vertices, representing all the customers of the

network plus the depot

A
is the set of edges, representing the possible routes for

going from one customer to the other or the depot

 represents all the customers of the retail network

 is the time window horizon

Is a time period of T. Each route should be completed in

one time period and not more.

Is a customer represented by a node of graph G,

and thus a selling point where goods are delivered.

 Is a unitary profit assigned to each unit of goods.

Is the cost to go from node to node , or in

other words the cost of the vehicle to drive from customer

 to customer .

Is the number of times that the customer will get

delivery of goods during a specific time window, .

Is the maximum number of visits to customer , after

which no extra profit will be earned.

Is the minimum number of visits to customer , to keep

the required service level.

Is the demand corresponding to
 visits to the

customer.

 Is the demand of customer during time period

Is the increase of demand rate, for each visit after the

minimum number of visits.

Is the maximum total cost that can be spent during a time

period.

Is the capacity of the vehicle in terms of units of sellable

goods.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

The Optimal Solution for computing the frequency of service in retail distribution
networks

33

Objective function

The following model has been developed by the DeOpSys team of the University of

the Aegean (Asimakopoulos, 2006). The objective function aims at the optimization

(i.e. maximization) of the total profit gained by delivering goods to the customers

during a specified time window and within the overall planning horizon (e.g. shift).

Thus, the objective function is formed by two main parts and can be written in a very

simple form as follows:

Assuming that cost is denoted as and there is a decision variable that

represents the product of distance between customer and customer and the cost

per unit of distance, then the total cost can be seen as:

Let
 be the initial demand of customer ,

 a binary decision variable that gets as

value 1 when the customer will be visited the day ,
 the minimum number of

visits to customer , the raise of demand , after the first
visits and the profit

per unit, then the income part of the objective can be stated as:

Consequently, the mathematical expression describing this objective is presented

below:

Now by breaking down each of the two parts of the objective function we can get a

more detailed view of its components.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

34

Firstly, to compute the incomes we need to know the number of visits

 that

will be effectuated to each customer, during the time window and how many of

those are above the minimum,

 The two cases are distinguished

because on those visits that are above the minimum we should apply the

incremental factor to get the extra sales that we will due to visiting the customer

more times than the essential. Thus the sum of incremental incomes and period

incomes will be:

This way we have computed the incomes from one customer and all the days of the

time window in question. By applying , we can calculate the total income for

all the customers of the retail distribution network that is being examined.

Secondly, in order to compute the total cost we need to compute the cost of going

from node to node multiplied to the existence or not of this edge in the route of

the specific time period as
 , then compute it for all route edges ending at node

by findint the

 and the same for all edges starting from node as and

finally computing the total of all time period comprising the specified time window

as

 .

Constraints

 (3.1)

 (3.2)

 (3.3)

 (3.4)

 (3.5)

 (3.6)

 (3.7)

 (3.8)

 (3.9)

 (3.10)

Constraint specifies if the vehicle visits customer during time period then no other

edge contained in the route will end to this node in the same time period. Next, constraint

 ensure that If the vehicle visits customer during time period then no other edge

contained in the route will start from this node in the same time period. Constraints

and ensure that only one edge contained in the route of a specific time period starts

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

The Optimal Solution for computing the frequency of service in retail distribution
networks

35

from and ends to the depot. Constraint specifies that each time period’s route should

not contain cyclic paths. Constraint force that the total cost of a time period’s route

cannot be greater than the limit cost C set by the problem’s initial data. Constraint

(3.7)specifies that the number of visits to each customer should be between a minimum of

 and a maximum of

.The constraint guarantee that no day the capacity of

the vehicle is surpassed by the goods that should be delivered based on the designed route.

Here should be noted that:

This constraint is not taken into consideration in the herein proposed solution. Finally,

constraints (3.9) ensure that each edge either it is contained to the route

corresponding to time period or not, thus the variables are binary and constraint (3.10)

that each customer either gets a delivery in time period or not, thus the variables are

binary.

3.3 Optimization Method

The above described problem is a binary linear programming optimization problem

and our aim is to solve it using a low complexity and high velocity algorithm in order

to get quick solutions in practical sized instances of the problem. Aiming at this goal

the proposed solution combines branch and bound method with revised simplex and

relaxation techniques. More specifically, the steps followed to solve any instance of

the above problem are depicted below:

8. Get instance’s input

a.
 :Initial demand per customer, which is the demand corresponding to

b.
 and

: the minimum and maximum allowed number of visits

per customer.

c. : Rate of raise of demand for each visit to customer after the first

visits.

d. : Distance in km between each pair of customers per cost/km, usually

the coordinates of each customer’s location are given and the distance is

computed based on the equation .

e. : The incomes from each visit to any customer.

9. Formalize the problem in order to acquire the form shown in previous section:

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

36

10. Transform the problem in its augmented form by adding slack, artificial variables

and subtracting surplus variables as needed. Specifically, constraints 1,2,3,4 are

equalities and thus an artificial variable will be added to each of them; constraint

6 and the second part of 7 are less equal and thus only a slack variable will be

added for each one and all the rest are greater than and will be needed to

subtract a surplus variable and add an artificial. Here is noted that whenever a

negative value exists in the right part of the inequality, first we multiply it by -1

and then we start doing the above process. After all these transformations our

optimization problem will have the following form:

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

The Optimal Solution for computing the frequency of service in retail distribution
networks

37

11. Relax the initial problem by removing the constraint that demands the solution

variables to be binary variables.

12. Solve the relaxed problem using Revised Simplex Method. Original simplex

method calculates and stores all numbers in the tableau without needing all of

them. On the other hand the Revised Simplex Method is more efficient for

computing that does its heavy calculation at the beginning of each iteration. The

goal of this method is the ordering of all calculations so that no unnecessary

calculations are performed. It uses Gauss – Jordan to compute the inverse of a

matrix and the rest are simple multiplications between matrices.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

38

Figure 9 Solution Steps

13. Furthermore, in our case the problem always contains artificial variables and

thus we need to either use Big M method or Two Phase to solve it. In order to

have more accurate calculations through our software, the Two Phase method

was selected. Using this method first a minimization problem using only the

artificial variables is formulated and solved, if the result and all artificial variables

get a zero value then the initial problem has feasible solution and all columns

corresponding to artificial variables are dropped and the initial problem is solved

using revised simplex otherwise the problem does not have a feasible solution.

14. Use the solution along with the relaxed problems as initial values for the branch

and bound algorithm and start the branching and bounding process. This is done

by defining the branching policy and fathoming policy. Branching policy,

describes how is decided which branches should be created for each node, that

in our case is to create for each binary variable with value different from 0 or 1

two branches, one for each case. Fathoming policy defines how is decided which

branches should be fathomed based on the results that give, if the current

solution is less that the incumbent or no feasible solution was found then the

branch is fathomed.

15. If no solution has been found and we have reached a tree depth equal to the

number of unknown variables in the objective function then return the current

incumbent solution and terminate the execution.

Formalize
problem

Standard form

Augmented form

Relaxation

Solve
Branch

and
Bound

 Two Phase
Method

 Revised Simplex

Branch OR
Fathom

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Experimental Results 39

4 Experimental Results

4.1 Introduction

In this section are presented the results of the implemented method when

compared to the execution of the corresponding built-in libraries of MATLAB, as they

are presented in Asimakopoulos (2006) thesis. To be more precise, the source code

used in Asimakopoulos thesis was run with the same input data with the herein

presented software tool and the same environment in order to get the comparison

results. The goal is to prove that by implementing the Branch and Bound algorithm

using a middle level language as C++, we get faster and more reliable results than

using standardized high level development environments, as MATLAB. However, the

ultimate target is to achieve solutions of practical sized problems in meaningful

execution time.

The machine used to test the performance of the two applications has the following
profile:

 Intel Core Duo T2300 (1.66 GHz, 667 MHz FSB, 2MB L2 cache)

 2048 MB DDR 266

 Windows 7 Prof.

Performance was tested by counting CPU time for each routine of the algorithm and

excluding user time and I\O operations. I\O operations were not included due to the

different implementation of the two application, the one using input and output files

and the other providing results exclusively to the display.

Furthermore, to get reliable results each set of input data were executed 100 times

using each application and the average time was used as execution time, in order to

avoid external interferences that could cause misleading results.

Here, should be noted that the source code given, as basis for the comparison, when

run in MATLAB didn’t return any results for any case with more than 6 clients, thus

the corresponding values from Asimakopoulos’ thesis were used for the comparison.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

40

4.2 Results

4.2.1 2 - 4 Customers

 Table 2 Two - Four Customers Results

 2 CUSTOMERS 3 CUSTOMERS 4 CUSTOMERS

DAYS
V-RED
(Sec)

MATLAB
(Sec)

V-RED
(Sec)

MATLAB
(Sec)

V-RED
(Sec)

MATLAB
(Sec)

1 0,01 0,04 0,01 0,06 0,03 0,12

2 0,04 0,05 0,04 0,08 0,09 0,22

3 0,07 0,06 0,08 0,12 0,21 0,38

4 0,08 0,08 0,15 0,17 0,39 0,59

5 0,09 0,08 0,23 0,26 0,64 0,81

4.2.2 5 - 6 Customers

Table 3 Five - Six Customers Results

 5 CUSTOMERS 6 CUSTOMERS

DAYS
V-RED
(Sec)

MATLAB
(Sec)

PROFIT
(€)

V-RED
(Sec)

MATLAB
(Sec)

PROFIT (€)

1 0,07 3,43 2031,68 0,30 14,22 2831,68

2 0,38 65,54 3091,35 0,23 75,43 4703,35

3 0,99 145,55 4151,03 2,60 178,65 6575,03

4 1,88 287,54 5210,71 4,96 312,43 8446,70

5 3,15 642,86 6270,38 8,18 709,33 10318,38

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Experimental Results 41

Figure 10 Execution Time Comparison 5

Customers

Figure 11 Execution Time Comparison 6

Customers

4.2.3 7 - 8 Customers

Table 4 Seven - Eight Customers Results

 7 CUSTOMERS 8 CUSTOMERS

DAYS
V-RED
(Sec)

MATLAB
(Sec)

PROFIT
(€)

V-RED
(Sec)

MATLAB
(Sec)

PROFIT (€)

1 0,85 25,56 3356,43 2,61 30,42 3576,00

2 3,04 87,64 5612,32 6,65 98,62 6018,01

3 5,87 189,54 7534,78 18,60 204,45 8460,01

4 12,88 349,53 9145,65 27,32 379,73 10902,01

5 20,87 789,54 12126,03 29,14 986,42 13344,02

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

42

Figure 12 Execution Time Comparison 7

Customers

Figure 13 Execution Time Comparison 8

Customers

4.2.4 Solution of new instances of more than 8 Customers

Table 5 Nine - Twelve Customers Results

 9 CUSTOMERS 10 CUSTOMERS 11 CUSTOMERS 12 CUSTOMERS

DAYS
TIME
(Sec)

PROFIT
(€)

TIME
(Sec)

PROFIT
(€)

TIME
(Sec)

PROFIT
(€)

TIME
(Sec)

PROFIT
(€)

1 4,40 3920,33 10,20 4220,33 30,80 4795,14 98,50 5487,10

2 12,20 6716,66 35,20 7316,66 120,60 8270,27 444,10 14914,20

3 30,60 9512,99 93,40 10412,99 245,90 11745,41

4 54,90 12309,32 158,40 13509,32 406,60 14845,74

5 93,80 15105,65 235,00 16487,65

4.3 Execution Time versus Number of Clients

It was experimentally proven that the best results for the proposed branch and bound

method are given when using the new implementation of the proposed method.

Comparing the above described implementations, the new implementation method, seems

to need significantly less computational effort and it provides better computational results

even when the number of clients is increased. Moreover, tests have been done till 12 clients

and no hanging or long waiting for the results was verified. Further research and

appropriate, more complex, test cases are needed to verify the upper bound of the

problem’s size that can be handled by this implementation.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Software Development 43

5 Software Development

5.1 Introduction

In the previous sections the theoretic basis of a software tool capable of solving

maximization problems that can be described by chapter’s four equations was in

detail described. In this chapter we will focus on the software engineering process

used to implement the software. More specifically, we will describe the used

software engineering methods, in other words the structured approaches to

software development which include description of the system through graphical

models along with all the rules and constraints applied to the system’s model.

The herein described software will be analyzed based on the following axes:

1. Specification: what the system should do and its development constraints.

2. Development: production of the software system.

3. Validation: checking that the software is what the customer wants.

The software model used to develop this system is called Component-based and it

stands on the ground that the system is composed by components that are

developed independently and represent specific aspects and functionality of the

system and following are created interfaces to make the components interact to

each other and get the integrated system (Sommerville, 2007).

Figure 14 Time spent for each stage of component based engineering

In this case, as shown in Figure 13, after the specification of the requirements and

the development of individual components, there is a great amount of time spent in

the components integration and the system’s testing.

Final aim is to create a good software tool and by saying that we mean that it should

deliver the required functionality and performance to the user and should be

maintainable, dependable and acceptable. More analytically, maintainability is

needed in order to have a tool that can easily be updated so to evolve to meet

changing needs; depend ability so its computational steps and results can be

trustworthy and efficiency because it should not make wasteful use of system

resources (Xu, 2006).

Development
Integration and

Testing

30%
20%

50%

Specification

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

44

In the following sections will be described the step by step process that was followed

in order to create the desired software; starting from the initial requirements given

by the mathematical problem itself, the requirement analysis needed to find out

what was the functional specification that would fulfill the end user’s needs, and

finally the system’s design and architecture described using Unified Modeling

Language (UML) models.

5.1.1 Use Case Model

Use-cases are scenario-based techniques in the UML which identify the actors in an

interaction and which describe the interaction itself. A set of use cases should

describe all possible interactions with the system.

More specifically, a use case is a technique for documenting the potential

requirements of a new system or software change. Each use case provides one or

more scenarios that convey how the system should interact with the end user or

another system to achieve a specific business goal. Use cases typically avoid

technicalities, preferring instead the language of the end user or domain expert. Use

cases are often co-authored by requirements engineers and stakeholders(Zündorf,

2001).

A use case contains a textual description of all of the ways which the intended users

could work with the software or system. Use cases do not describe any internal

workings of the system, nor do they explain how that system will be implemented.

They simply show the steps that a user follows to perform a task(MacKinnon, 2003).

All the ways that users interact with a system can be described in this manner.

In the herein presented case each basic step of the process correspond to a use case

and there are both unilateral and bilateral communications among the components,

as shown in Figure 14.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Software Development 45

Figure 15 Use Case Model

The system aims in computing the optimum frequency of service in retail distribution

networks and in order to achieve this employs the following use cases:

 Problem Formulation: Responsible for handling inputs and based on the given

mathematical formulas transforming those inputs to a valid objective function

and constraints.

 Constraints Handler: It is used by the problem formulation and handles each

constraint in order to dynamically create all the relevant to the specific case

constraints.

 Objective Function Handler: It transforms the generic mathematic formula of the

objective function to an instance specific equation to be used in the following

steps.

 Solution Manager: It is the orchestrator of the optimization process which calls

the rest of the components when and if needed.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

46

 Branch and Bound Algorithm Handler: It handles the creation of branches and

the fathoming of those that are not helpful, given an initial solution of the

relaxed linear problem.

 Simplex Algorithm Handler: It is a standalone component used to solve general

optimization problems using the simplex algorithm, in cases that inequalities

with greater than or equalities exist in the given constraints, it is extended by the

Two Phase Method Handler.

 Two Phase Method Handler: It is used by the Simplex Algorithm Handler in order

to transform the optimization problem to its standard form.

5.1.2 System’s Modules

The herein described software was designed following the modular design

technique. The re-usable components were taken apart and set to be modules with

corresponding interfaces and a coordinator module was used to orchestrate the

process and provide the logic sequences and flow conditions, as shown in Figure 15.

Figure 16 System's Modules

Essentially, we have on top a Solution Manager module that handles I\O and calls

the rest of the modules as needed based on the results that each of them returns

and on the coded logic of the system.

Then we have three main components used to implement the optimization method

concerning the frequency of service in retail distribution networks. The first one is

the Problem Formulation module that gets from Solution Manager the initial inputs

and creates all the internal structures needed to represent the problem in a manner

that the rest of the components can handle it. More precisely, this component uses

two other modules the Objective Function and Constraints modules to achieve its

goals.

The Objective Function module is responsible for creating an array line containing

the objective function coefficients of the specific problem’s instance along with an

array containing the corresponding variable names.

Solution Manager

Problem Formulation

Objective
Function

Constraints

Simplex

Standard
Form

Two Phase
Method

Branch & Bound

Branching
Policy

Fathoming
Policy

Optimality
Check

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Software Development 47

The Constraints module does the same for all the problem’s constraints, saving them

to two arrays, one used for less than inequalities and one for equalities and greater

than inequalities. Again there is a vertex for the corresponding basic variables that

will be needed by the simplex module.

The Simplex module, as expected, implements the simplex algorithm, supported by

two sub-modules Standard Form and Two Phase Method. The first one is used for

problems that are in general standard form whether the second one is used when

greater than and equalities constraints exist.

Finally, the Branch and Bound module uses three sub-modules, the Branching

Policy, Fathoming Policy and Optimality Check to implement the well-known

algorithm. The sub-modules are pretty much self-explanatory, Branching Policy,

used to decide which branches should be created for each node, Fathoming Policy

used to decide which branches should be fathomed based on the results that give,

and Optimality Check that handles the comparisons of current solution to

incumbent and the termination rules, in the case that no solution has been found

and we have reached a tree depth equal to the number of unknown variables in the

objective function then returns as result the current incumbent solution and

terminates the execution.

5.1.3 Sequence Diagram

UML sequence diagrams model the flow of logic within your system in a visual

manner, enabling you both to document and validate your logic, and are commonly

used for both analysis and design purposes(Glinz, 2000).

Sequence diagrams are typically used to model usage scenarios. Sequence diagrams

are typically used to model usage scenarios. A usage scenario is a description of a

potential way your system is used. The logic of a usage scenario may be part of a use

case, perhaps an alternate course. It may also be one entire pass through a use case,

such as the logic described by the basic course of action or a portion of the basic

course of action, plus one or more alternate scenarios(Bernardi, 2002).

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

48

Figure 17 System's UML sequence diagram

In Figure 16 is depicted the main flow of events for the system in a generic usage

scenario. As shown the Solution Manager initiates the process by posting the input

to the Problem Formulation and receives the partial results each time that Branch

and Bound object checks for optimality.

The Problem Formulation problem is used once per problem solved in order to

transform the given input to specific input data for the rest of the objects.

Essentially, based on the given mathematical model are created the appropriate

objective functions and constraints and saved in arrays in order to be easily handled.

Furthermore, the Simplex Handler is called for the solution of the initial relaxed

problem and each time that a new branch is created in order to generate the

solutions. Each solution is either set to be incumbent in case that is greater than the

current incumbent and fulfills the binary requirement for all the variables or it is

discarded through the fathoming policy of Branch and Bound Object.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Software Development 49

Finally, the Branch and Bound object besides checking each time the optimality of

the given solution creates the branches and validates the status for each node and

validates whether it should be fathomed or not. However, it is the main component

of the system and interacts with the Solution Manager till the end of the process

either it concludes with finding an optimal solution or by reaching the maximum

depth of the Branch and Bound tree.

5.2 Software Description

The V-RED application that is the software tool developed to compute the optimal

frequency of service in retail distribution networks, is a standalone application coded

in Visual C++ and with an add-on interface developed in Visual C#, to make the

whole process more user friendly.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

50

Figure 18 V-RED Interface & Console Application

As shown in Figure 17, the V-RED application initially was developed as a console

application where input data were given through the keyboard and output was

returned to the display. Subsequently, was added on the top level a window based

interface to simplify the input of data and make more descriptive the results that the

system generates. This was achieved adding a map based system for adding

customers and their positions and the same was done for the presentation of the

optimal route along with its expected cost. Essentially, in both cases the core

implementation it’s the same and there are no time consuming process because the

C++ code used in the standalone version is used as an embedded CLR in the C# code,

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Software Development 51

making the application to have the exact same performance. However, here we will

focus on the console application in order to describe the core system functionality

and not the features of the interface.

The V-Red application has an object oriented design, thus the components are

objects that communicate through interfaces and react to the specifics of the given

problem instance.

There are 3 main objects that constitute the backbone of the whole system and

several minor in order to implement needed functionality. Here we have to note that

no libraries were used for the implementation of either the Simplex or the Branch

and Bound Algorithm. The purpose of that was to have full access to each step and

ability to optimize the implementation of these algorithms based on the specific

problem’s features without having to load and handle libraries that are generic and

thus would bring heavy computational effort. Consequently, there is the core object

that implements the Simplex and Two Phase Algorithm, the object that implements

the Branch and Bound Algorithm and the Problem Formulation object that is

responsible for transforming the input data to a valid set of constraints and an

objective function. On top of those there is the Solution Manager that calls as

needed the rest of the objects and returns to the end user intermediate results,

error messages and\or the final solution.

5.3 V-RED Algorithm

In this section the algorithm used to implement the V-RED core application will be

presented. Furthermore, a graphical view of the algorithm is shown in the Flow Chart

of Figure 19. In order to make this section easier to read initially the backbone of the

system is presented as a basic algorithm and then each component is analyzed

through its own algorithm.

Begin V-RED Application

1. Read input data from file

2. Call Problem Formulation

2.1. For each customer

2.1.1. Read D, nmin, nmax, k , p, (x,y)

2.2. Read depot coordinates (x0,y0)

2.3. For each customer i and the depot

2.3.1. For each customer j and the depot

2.3.2. Compute distance cij=

2.4. Construct Objective Function

2.5. Call Constraint #1- Constraint #10

2.6. Save data to InitiaProblem.txt file

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

52

2.7. Call Branch and Bound (InitialProblem.txt)

3. Printout Error Messages

4. Printout Results

End V-RED Application

5.3.1 Constraints

Constraint #1

1. For each day d

1.1. For each customer i

1.1.1. For each customer j

Sum+= X[d][j][i]

Sum -Y[d][i]=0

Constraint #2

1. For each day d

1.1. For each customer i

1.1.1. For each customer j

Sum+= X[d][i][j]

Sum -Y[d][i]=0

Constraint #3

1. For each day d

1.1. For each customer j

Sum+= X[d][0][j]

Sum-1=0

Constraint #4

1. For each day d

1.1. For each customer i

Sum+= X[d][i][0]

Sum-1=0

Constraint #5

1. Compute combinations of possible S

2. For each day d

2.1. For each item i of set S

2.1.1. For each item j of set S different from i

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Software Development 53

SumPartA+=x[d][i][j]

 SumPartB+=y[d][i]

SumPartA[d]-SumPartB[d]<=1

Constraint #6

1. For each day d

1.1. For each customer i

1.1.1. For each customer j

Sum C[i][j]*x[d][i][j]<=C

Constraint #7

1. For each day d

1.1. For each customer i

Y[d][i]>=nmin[i]

Constraint #8

2. For each day d

2.1. For each customer i

Y[d][i]<=nmax[i]

Constraint #9 Binary variables

This constraint is initially relaxed to having all variables between 0 and 1 to start the

Branch and Bound Algorithm

5.3.2 Optimizer

Begin Optimizer (InitialProblem.txt)

1.1. Check for =, >= constraints

1.1.1. If yes Call Two Phase Method

1.1.2. Else Call Simplex Method

1.2. RETURN

End Optimizer

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

54

5.3.3 Two Phase Method

Begin Two Phase Method

Begin Phase 1

1.1. Create new objective function z=-Sum of(Artificial Var) and same constraints

1.2. Call Simplex Method

1.3. If method returns non FS solution or solution different from zero then return

non FS and Error Message “Phase 1 Failed”

Else if method returns solution equal to zero

1.3.1. Check if there are artificial variables in base

1.3.1.1.1. If yes then for each one check if the corresponding

right side is zero

1.3.1.1.1.1. If yes then Call Pivot to get them out of base

Else if none is in the base Call Phase 2

Else return non FS and Error Message “There are non-zero

artificial variables in base”

End Phase 1

Begin Phase 2

2.1. Replace Objective function with initial and keep table of Phase 1

2.2. Call Simplex Method

2.3. Get Results from Simplex Method

2.4. RETURN

End Phase 2

End Two Phase Method

5.3.4 Simplex Method

Begin Simplex Method

1.1. If the line corresponding to objective function has not any negative values

optimal solution found RETURN

Else if maximum number of allowed pivots reached STOP

Else select the first most negative value and mark its column as pivot column

1.2. Compute κ-ratio and mark the line with minimum value and positive divisor

as pivot line

1.3. Call Pivot for the item that corresponds to (marked line, marked column)

Begin Pivot

1.3.1. Divide pivot line by pivot element

1.3.2. For each line besides the pivot line compute new values as New line =

Old line – Pivot Item*Old line

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Software Development 55

End Pivot

1.4. Go to 1.1

End Simplex Method

5.3.5 Branch and Bound Method

The idea is to create a tree starting from the root node that is the initial relaxed

problem and each time that is solved, make two new branches one giving a 0 value

(left branch) and one giving the value 1 (right branch) to the first variable of the

problem that is not in binary form. Before creating the branches we check if the

currently examined node produced a non-feasible solution thus we need to fathom

the branch or the solution found is greater than or equal to the incumbent and in

that case the incumbent should be updated and again the branch fathomed.

Figure 19 Branch and Bound Calls

Begin Branch and Bound Method (Input.txt)

1.1. Call Optimizer(Input.txt) // read input data from file

1.2. Check optimality of current solution (returned by 1.1)

1.2.1. If all variables binary

1.2.1.1. Check incumbent and update if current >= incumbent

1.2.1.2. Fathom Branch

1.2.2. Else

1.2.2.1. Add new constraint =0// create left branch

1.2.2.2. Update Input File to “$count_0.txt”//save new problem’s data

1.2.2.3. Call Branch and Bound (“$count _0.txt”)//repeat algorithm

Add new constraint =1

1.2.2.4. Update Input File to “$count _1.txt”//save new problem’s data

1.2.2.5. Call Branch and Bound (“$count _1.txt”)//repeat algorithm

1.3. If no FS was returned then Fathom Branch

1.4. RETURN (when arrives here no other branches are available)

End Branch and Bound Method

BB(initial
Problem.txt)

BB(1_0.txt)

BB(2_0.txt)

BB(2_0.txt)

BB(1_1.txt)

BB(2_1.txt)

BB(2_1.txt)

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

56

Figure 20 V-RED Flow Chart

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Software Development 57

5.4 Software Validation and Testing

The principal objectives of testing are the discovery of defects in a system and the

assessment of whether or not the system is useful and useable in an operational

situation. Both verification and validation are concerned with establishing the

existence of defects in a program but not the source of that error(Sommerville,

2007).

More specifically, software testing is concerned with exercising and observing

product behavior that is a dynamic way of verifying the product. The ordinary

verification procedure consists in executing the system with test data and then

observe its operational behavior.

Attention should be given to the fact that testing can reveal the presence of errors

but not their absence. This actually, is also the only validation technique for non-

functional requirements as the software has to be executed to see how it behaves.

There are two types of testing(Sommerville, 2007):

 Defect testing that consists of tests designed to discover system defects. A

successful defect test is one which reveals the presence of defects in a

system. However, defect testing and debugging are distinct processes.

Debugging is concerned with locating and repairing these errors and involves

formulating a hypothesis about program behavior then testing these

hypotheses to find the system error

 Validation testing that is intended to show that the software meets its

requirements. A successful validation test is one that shows that one or more

requirements have been properly implemented.

Concluding, software testing can be implemented at any time in the development

process. Usually, most of the test effort occurs after the requirements have been

defined and the coding process has been completed. However, different software

development models will focus the test effort at different points in the development

process and will use different methodologies.

5.5 Testing Process

In this section the followed testing process will be presented, focusing on release

testing - where the complete system to be delivered as a black-box is tested. Of

course, it is well known that only exhaustive testing can show a program is free from

defects. However, exhaustive testing is impossible. Thus best practices are used in

selecting system tests. A general rule is that all functions accessed through menus or

user selection should be tested and where user input is required; all functions must

be tested with correct and incorrect input. However we should always keep in mind

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

58

that testing can show the presence of faults in a system but it cannot prove there are

no remaining faults(Sommerville, 2007).

Analyzing the testing process used to validate the V-RED software, shown in Figure

20, we see that the first step is to create test cases that will describe what features

of the system should be checked, what will be the exact input data and the expected

results. Here should be noted that test cases should be created not only for standard

situations but also for all those that is expected to return error messages. Test cases

aim to find situations that will reveal defects in the system, that’s why:

 Should be chosen inputs that force the system to generate all error

messages;

 Should be designed inputs that cause buffers to overflow;

 Each input or input series should be repeated a number of times;

 Invalid outputs should be forced to be generated;

 Computation results should be forced to be too large or too small

Figure 21 Testing Process

After creating the test cases, each one should be executed and the given results

compared to the correct ones. In case of complex systems that the expected results

cannot easily be computed, a different software tool should be used, that we already

know that works correctly, in order to create the comparison output data.

In cases of erroneous results, a debug session will be initiated to locate the errors in

the code or the logic of the system. To do so, first of all the test case and input data

causing the error will be used to step by step check the main variables and the

intermediate results in order to find out if it is an error caused by the way it was

coded the system or an error in the algorithm that is being implemented. In both

cases as soon as the error is located, an error repair is designed and implemented.

When the code is ready, it is going to be retested with all the available test cases and

Test
Cases

Execute
Test

Test
Results

Locate
Error

Design
Error

Repair

Repair
Error

Retest
Program

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Software Development 59

not only the one that caused the error, because it is not uncommon by fixing an

error to create some other bugs, in situations that previously the system worked

perfectly.

As the last step of software development the performance of the code should be

tested, or even better benchmarked. Generally speaking benchmark is a standard by

which something is evaluated or measured. In computing, benchmark is the act of

running a computer program, a set of programs, or other operations, in order to

assess the relative performance of an object, normally by running a number of

standard tests and trials against it. Benchmarking is usually associated with assessing

performance characteristics of computer hardware, but there are circumstances

when the technique is also applicable to software.

The key objective of software benchmarking is to help the developers completely

understand how the program performs during execution. This is usually achieved by

using an integrated set of performance and debugging profilers and then collecting

all crucial performance, memory and resource allocation information at runtime.

Final goal is to easily isolate and eliminate all performance issues, memory leaks and

resource leaks within the source code and certifying a specific standard of

performance in any situation.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

60

6 Discussion and Further Research

The focus of the proposed master thesis was set on the definition of the frequency

of service in a distribution network by maximizing the profit in a specific time

window. The problem is modeled using integer mathematical programming and is

solved using the Brach and Bound algorithm in order to find the optimal solution.

This problem had already been solved within an Undergraduate thesis developed by

the DeOpSys team of the University of the Aegean. In that effort the focus was given

in solving practical sized problems using a specific heuristic algorithm. The actual

solution of the problem using the Branch and Bound algorithm was narrowed down

to a small number of clients due to the high complexity of the problem (number of

variables and constraints).

Therefore, primary goal of this thesis was to optimally solve the problem for a

greater number of clients. More specifically, research was performed on the

restrictions and parameters that raise the problem’s complexity and solution time.

Finally, a set of methods and techniques were implemented in order to reduce the

complexity and get the optimal solution faster for a larger set of clients. The

resulting product is a software application, V-RED, that takes all the delivery

network’s parameters as input data and returns the optimal routing solution.

The benchmarking results lead us to the conclusion that is possible to use the Branch

and Bound Algorithm in practical sized problems but it needs very careful

implementation and customization of the tricky steps in order to have minimum

execution times.

 However, as seen the execution time depends more on the number of days that the

route contains than the number of customers. This happens due to the fact that the

number of customer adds an initial overhead to the system but this overhead

remains unchanged no matter how many days are in the route and it is probable that

we could prove that this amount grows by a stable parameter c.

On the contrary the overhead given by the number of days grows exponentially and

leads us to assume that there is a specific upper bound for the number of days that

we can get a scheduled routing using this algorithm.

It would be interesting to find out which specific functions of the designed system

are exponentially related to the problem size and even more important if there are

ways to narrow down the execution time and thus elevate the size of the solvable

problems by using more specific fathoming and branching policies.

Furthermore, by evaluating the time used by each constraint we can say that there

are two very time consuming constraints. The one refers to the cost per day and it is

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Discussion and Further Research 61

a limiting constraint in all the executed cases and even better it has a normal rate of

growth in relation to the problem size. The other one refers to cyclicity and using

computation of all possible combinations make the whole system much slower. It

probably would be a good idea for future research to remove the constraint from

the optimization problem and add it as a part of the fathoming policy used by the

Branch and Bound algorithm. This way the execution time would be minimized.

Finally, some issues about the mathematical modeling appeared to exist. First of all

the peculiar handling of the case of 2 customers and 2 or more route days where the

system instead of returning a positive result greater or equal to the one given to 2

customers 1 day it keeps giving negative profit. Investigating this case was found that

the distribution cost was greater than the income. If the minimum number of visits

(nmin) for at least one of the customers was zero (0), then the profit would have not

been negative.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

62

7 References

Ambrosino, D. and M. G. Scutellà (2005). "Distribution network design: New
problems and related models." European Journal of Operational Research165(3):
610-624.

Amiri, A. (2006). "Designing a distribution network in a supply chain system:
Formulation and efficient solution procedure." European Journal of Operational
Research171(2): 567-576.

Applegate, D., R. E. Bixby, et al. (1995). Finding cuts in the TSP (a preliminary
report).Technical Report 95-05, DIMACS, Rutgers University, New Brunswick, NJ
08903.

Beale, E. M. L. and J. A. Tomlin (1970). Special Facilities in a General Mathematical
Programming System for Non-convex Problems Using Ordered Sets of Variables.
Proceedings of the Fifth International Conference on Operations Research, Tavistock.

Benichou, M., J. M. Gauthier, et al. (1971). "Experiments in mixed integer linear
programming." Mathematical Programming1(76-94).

Bernardi, S., S. Donatelli, et al. (2002). From UML sequence diagrams and
statecharts to analysable petri net models. Proceedings of the 3rd international
workshop on Software and performance. Rome, Italy, ACM: 35-45.

Brunetta, L., M. Conforti, et al. (2000). "A polyhedral approach to an integer
multicommodity flow problem." Discrete Applied Mathematics101(1): 13-36.

Choon Tan, K. (2001). "A framework of supply chain management literature."
European Journal of Purchasing & Supply Management7(1): 39-48.

Crainic, T. G. and G. Laporte (1997). "Planning models for freight transportation."
European Journal of Operational Research97(3): 409 -438.

Dakin, R., J. (1965). "A tree-search algorithm for mixed integer programming
problems." The Computer Journal(8): 250 - 255.

Driebeek, N. J. (1966). "An algorithm for the solution of mixed integer
programming problems." Management Science21: 576-587.

Eskigun, E., R. Uzsoy, et al. (2005). "Outbound supply chain network design with
mode selection, lead times and capacitated vehicle distribution centers." European
Journal of Operational Research165(1): 182-206.

Forrest, J. J. H. and J. A. Tomlin (2007). "Branch and bound, integer, and non-
integer programming." Annals of Operations Research149(1): 81-87.

Ghezavati, V. R., M. S. Jabal-Ameli, et al. (2009). "A new heuristic method for
distribution networks considering service level constraint and coverage radius."
Expert Systems with Applications(36): 5620-5629.

Gill, P., W. Murray, et al. (1982).Practical Optimization Academic Press
Glinz, M. (2000). Problems and Deficiencies of UML as a Requirements

Specification Language.Proceedings of the 10th International Workshop on Software
Specification and Design, IEEE Computer Society: 11.

Goel, A. and V. Gruhn (2008). "A General Vehicle Routing Problem." European
Journal of Operational Research191(3): 650-660.

Hilier, F. S. and G. J. Lieberman (2005). Introduction to Operations Research,
McGraw Hill.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

References 63

Kolman, B. and R. E. Beck (1980). Elementary Linear Programming with
Applications.London, Academic Press.

Land, A. H. and A. G. Doig (1960). "An Automatic Method for Solving Discrete
Programming Problems." Econometrica(28): 497-520.

Land, A. H. and S. Powell (1979). "Computer codes for problems of integer
programming." Annals of Discrete Mathematics5: 221-269.

Laporte, G. (1992). "The vehicle routing problem: An overview of exact and
approximate algorithms." European Journal of Operational Research59(3): 345-358.

Lindgaard, G., R. Dillon, et al. (2006). "User Needs Analysis and requirements
engineering: Theory and practice." Interacting with Computers18(1): 47-70.

MacKinnon, N. and S. Murphy (2003). Designing UML diagrams for technical
documentation. Proceedings of the 21st annual international conference on
Documentation. San Francisco, CA, USA, ACM: 105-112.

Ritchie, D. M. (1993).The development of the C language.The second ACM
SIGPLAN conference on History of programming languages. Cambridge,
Massachusetts, United States, ACM: 201-208.

Smith, J. C. (2004). "Algorithms for distributing telecommunication traffic on a
multiple-ring sonet-based network." European Journal of Operational
Research154(3): 659-672.

Sommerville, I. (2007). Software Engineering, Addison-Wesley Publishing
Company.

Sommerville, I. and G. Dewsbury (2007). "Dependable domestic systems design: A
socio-technical approach." Interacting with Computers19(4): 438-456.

Sutcliffe, A., G. Papamargaritis, et al. (2006). "Comparing requirements analysis
methods for developing reusable component libraries." Journal of Systems and
Software79(2): 273-289.

Tomlin, J. A. (1971). "An improved branch and bound method for integer
programming." Opeations Research19: 1070-1075.

Xu, H., P. Sawyer, et al. (2006). "Requirement process establishment and
improvement from the viewpoint of cybernetics." Journal of Systems and
Software79(11): 1504-1513.

Zündorf, A. (2001). From use cases to code - rigorous software development with
UML.Proceedings of the 23rd International Conference on Software Engineering.
Toronto, Ontario, Canada, IEEE Computer Society: 711-712.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

64

Α. Appendix

Α.1 Software Requirement Analysis

Requirements in systems engineering and software engineering, encompasses those

tasks that go into determining the needs or conditions to meet for a new or altered

product, taking account of the possibly conflicting requirements of the various

stakeholders, such as beneficiaries or users.

“Requirements engineering is the branch of software engineering concerned with

the real-world goals for, functions of, and constraints on software systems. It is also

concerned with the relationship of these factors to precise specifications of software

behavior, and to their evolution over time and across software families”(Lindgaard,

2006).

The primary measure of success of a software system is the degree to which it meets

the purpose for which it was intended. Broadly speaking, software systems

requirements engineering (RE) is the process of discovering that purpose, by

identifying stakeholders and their needs, and documenting these in a form that is

amenable to analysis, communication, and subsequent implementation. There are a

number of inherent difficulties in this process. Stakeholders (including paying

customers, users and developers) may be numerous and distributed. Their goals may

vary and conflict, depending on their perspectives of the environment in which they

work and the tasks they wish to accomplish. Their goals may not be explicit or may

be difficult to articulate, and, inevitably, satisfaction of these goals may be

constrained by a variety of factors outside their control.

Requirements analysis is critical to the success of a development project.

Requirements must be documented, actionable, measurable, testable, related to

identified business needs or opportunities, and defined to a level of detail sufficient

for system design. Requirements can be functional and non-functional (Sutcliffe,

2006).

Below are depicted the initial requirements as provided by the DeOPSys research

team. The non-functional requirements of the herein discussed system can be

summarized as follows:

 The system should be able to make all computations based on each instance’s

inputs.

 The only given inputs should be:

o Initial demand per customer.

o Minimum and maximum allowed number of visits per customer.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Α. Appendix 65

o Rate of raise of demand for each visit to customer after the minimum

allowed number of visits.

o Coordinates of each customer’s location are given in order to compute

the distance between each pair of customers and between each customer

and the depot.

o Incomes from each visit to any customer.

 The system should be able to solve any linear optimization problem with the

objective function and constraints described in section 4.3.

 The mathematical algorithms used to solve the problem should be the Branch

and Bound Algorithm and the Simplex method.

As expected these data are general guidelines about what the software tool should

be able to do and not how is going to be implemented. The only non-habitual about

the given requirements is the fact that the algorithms that are going to be used to

solve the problem are well known and predefined. This happens due to the fact that

the final aim of the software tool is to verify the computational time needed when

using these algorithms and not to create an innovative product.

Α.2 Software Specification Process

A software requirements specification is a complete description of the behavior of

the system to be developed. In order to represent the herein defined system from

different perspectives three different models will be used. An external perspective

will be used to show the context of the system that is being modeled. This will be

achieved by designing the system’s use case model that is going to present all the

interactions that the users will have with the software. A behavioral perspective will

be given using a sequence diagram to show the main flow of events and critical

alternate flows and a structural perspective will be presented through the

architecture of the system where the functionality of the main system modules will

be described(Sommerville, 2007).

The steps taken in order to gather the requirements to build the system’s

architecture, as seen in Figure 21, can be summarized as follows:

1. Problem Definition: Crafting the problem statement is always the first step in

any design. Here the goal is to state succinctly, but accurately, the problem

keeping focused in what and why, but not how. Any design problem begins

with research of the area in order to get acquainted with the domain.

Another very important step of this process is the definition of all the terms

that are going to be used throughout the systems documentation, in order to

create a common base for the communication among the basic actors.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

66

2. Business Requirements: Concerns the features that either the end users

and/or the stakeholders of the project would like to see in the new system.

3. Software Model Description: System modelling helps the analyst to

understand the functionality of the system and models are used to

communicate with customers. Different models present the system from

different perspectives.

4. Requirement Analysis: Involves technical staff working with customers to find

out about the application domain, the services that the system should

provide and the system’s operational constraints.

5. Software Specification: The process of establishing the services that the

customer requires from a system and the constraints under which it operates

and is developed.

6. Requirements Specification: A detailed view of the requirements that gives

analytical descriptions of the system services and constraints that are

generated during the requirements engineering process.

7. Software Architecture: The design process for identifying the sub-systems

making up a system and the framework for sub-system control and

communication is architectural design. The output of this design process is a

description of the software architecture.

Α.3 Stages of Development

The software development life cycle is different for every project and every

development team, but there are key stages that must be carried out. The V-RED

application was developed using agile methods that reflect the close collaboration of

Figure 22 Requirements Analysis Process

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Α. Appendix 67

the development team to the end users and the frequent change of requirements

and functionality. Below are outlined the distinctive features of this development

method(Sommerville, 2007) :

 Customer involvement: The customer is closely involved throughout the

development process with primary role to provide and prioritize new system

requirements and to evaluate the iterations of the system.

 Incremental delivery: The software is developed in increments with the

customer specifying the requirements to be included in each increment.

 Adaptable: It is expected that the system requirements will change and thus the

system is designed so that it can accommodate these changes.

 Simplicity: Focus should be given on simplicity in both the software being

developed and in the development process used.

Perhaps the best-known and most widely used agile method is Extreme

Programming (XP) that takes an ‘extreme’ approach to iterative development where

new versions may be built several times per day. In order to achieve the standards

set by Extreme Programming, below are summarized the best practices that were

followed during the development:

 Small Releases : The minimal useful set of functionality was developed first

and releases of the system were frequent and incrementally added

functionality to the first release.

 Simple Design: Enough design was carried out to meet the current

requirements and no more.

 Test first development: A unit test is used for each new piece of functionality

before that functionality itself is implemented.

 Refactoring: The code was being refactored each time that code

improvements were found.

Concluding, the Extreme Programming agile method was used in order to have a

rapid development that would give early releases and would accommodate

requirements change.

Α.4 Implementation Tools

The V-RED application was developed as a standalone windows application using the

Microsoft Visual Studio 2010 as development environment and more specifically

Visual C++ and .NET framework 4.0. The reasons that led as to such decision were

from one hand the user friendly environment given from the Microsoft Visual Studio

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

68

and from the other hand the need to have fast code as it is given only by middle and

low level languages as C++ and the portability of the application given by the

framework on which was developed. Below are briefly described the main features

of the development tools that were used along with the analytical reasoning that

made us selected them for this specific implementation.

Microsoft Visual Studio

Microsoft Visual Studio is an integrated development environment from Microsoft. It

can be used to develop console and graphical user interface applications along with

Windows Forms applications, web sites, web applications, and web services in both

native code together with managed code for all platforms supported by Microsoft.

Visual Studio includes a code editor supporting IntelliSense as well as code

refactoring. The integrated debugger works both as a source-level debugger and a

machine-level debugger. Other built-in tools include a forms designer for building

GUI applications, web designer, class designer, and database schema designer. It

accepts plug-ins that enhance the functionality at almost every level—including

adding support for source-control systems and adding new toolsets like editors and

visual designers for domain-specific languages or toolsets for other aspects of the

software development lifecycle.

Visual Studio supports different programming languages by means of language

services, which allow the code editor and debugger to support nearly any

programming language, provided a language-specific service exists. Built-in

languages include C/C++, VB.NET, C#, and F#. Support for other languages such as M,

Python, and Ruby among others is available via language services installed

separately.

Microsoft Visual C++

Selecting a programming language requires many different considerations to be

taken. The first step is to select the level of the programming language. The level

determines the proximity of the programming language to the hardware. In the

lower level languages, instructions are written as a direct interface with the

underneath hardware, while in high level languages a more abstract code is written.

Generally, high level code is more portable, thus it can be used in different machines

although sometimes a small number of modifications could be needed, whereas a

low level language is limited by the specific features of the hardware on which it was

written. Nevertheless, the undoubtable advantage of low level code is that it is faster

due to the fact that it is written taking advantage of the possibilities of a specific

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Α. Appendix 69

machine. A higher or lower level of programming is to be chosen for a specific

project depending on the type of program that is being developed.

There are languages that are clearly low level, like Assembly, whose instruction sets

are adapted to each machine the code is made for, and other languages are

inherently high level, like the Java, that is designed to be totally independent of the

platform where is going to run. However, the C++ language is in a middle position,

since it can interact directly with the hardware almost with no limitations, and can as

well abstract lower layers and work like one of the most powerful high level

languages.

Concluding, C++ has certain characteristics over other programming languages that

led us to select it for the V-RED development. The most remarkable are (Ritchie,

1993):

 Object-oriented programming: The possibility to orientate programming to

objects allows the programmer to design applications as communication

between objects rather than a structured sequence of code. In addition it

allows a greater reusability of code in a more logical and productive way.

 Portability: The same C++ code can be compiled in almost any type of

computer and operating system without making any changes.

 Brevity: Code written in C++ is very short in comparison with other

languages.

 Modular programming: An application's body in C++ can be made up of

several source code files that are compiled separately and then linked

together. Saving time since it is not necessary to recompile the complete

application when making a single change but only the file that contains it. In

addition, this characteristic allows to link C++ code with code produced in

other languages.

 Speed: The resulting code from a C++ compilation is very efficient, due

indeed to its duality as high-level and low-level language and to the reduced

size of the language itself.

Microsoft .NET Framework

The .NET Framework is Microsoft's comprehensive and consistent programming

model for building applications that have visually elevated user experiences,

seamless and secure communication, and the ability to model a range of business

processes.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

70

Α.5 Test Cases

To test the V-RED application as a whole were selected three test cases representing

the minimal input having two customers and just one day route, and two ordinary

cases, of two customers two days and three customers two days. It was also

effectuated a stress test with eight customers and five days that will be presented in

chapter 8.

Each test case consists of manually computing the objective function and constrains

and comparing it with those given by the V-RED software and then checking the

optimization results of the software compared to the results given by the Microsoft

Excel Solver 2010.

Microsoft Excel Solver is a numerical optimization add-in of Microsoft Excel. Solvers,

or optimizers, are software tools that help users find the best way to allocate scarce

resources. The resources may be raw materials, machine time or people time,

money, or anything else in limited supply. The best or optimal solution may mean

maximizing profits, minimizing costs, or achieving the best possible quality. There are

different optimization model that can be used with the Excel Solver. In this case the

linear optimization model was used to be able to confront the results with V-RED.

An optimization model in Microsoft Excel Solver has three parts: the target cell, the

changing cells, and the constraints.

 Target Cell: represents the objective or goal. We want to either minimize or

maximize the target cell.

 Changing cells: are the spreadsheet cells that we can change or adjust to

optimize the target cell.

 Changing cells: are the spreadsheet cells that we can change or adjust to

optimize the target cell.

Test Case 1: 2 Customers 1 Day

Input Data

Variables Customer 1 Customer 2

Depot Coordinates [200,-200]

Customer Coordinates [0,100] [0,200]

nmin 1 1

nmax 5 5

Demand D 20 30

Demand Raise k 20 20.2

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Α. Appendix 71

Profit per unit 20

Cost 1

Maximum Cost per day 1200

Distances C01=360.5

C02=447.2

C12=100

Problem Formulation

Objective Function

Under constraints:

Constraint #1:

Constraint #2:

Constraint #3:

Constraint #4:

Constraint #5

:

Constraint #6:

Constraint #7:

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

72

Excel Solver Results

Figure 23 Excel Solver Results for 2 customers 1 day

RULE x00 x01 x02 x10 x11 x12 x20 x21 x22 y1 y2 INEQ RIGHT computed

0 0 1 1 0 0 0 1 0 1 1

1 0 0 0 1 0 1 0 0 0 -1 0 = 0 0

1 0 0 0 0 0 0 1 1 0 0 -1 = 0 0

2 0 1 0 0 0 0 0 1 0 -1 = 0 0

2 0 0 1 0 0 1 0 0 0 0 -1 = 0 0

3 0 1 1 0 0 0 0 0 0 0 0 = 1 1

4 0 0 0 1 0 0 1 0 0 0 0 = 1 1

5 0 0 0 0 0 -1 0 -1 0 1 1 >= 1 1

6 0 360.5 447.2 360.5 0 100 447.2 100 0 0 0 <= 1200 907.7

7 0 0 0 0 0 0 0 0 0 1 0 <= 5 1

7 0 0 0 0 0 0 0 0 0 1 0 >= 1 1

7 0 0 0 0 0 0 0 0 0 0 1 <= 5 1

7 0 0 0 0 0 0 0 0 0 0 1 >= 1 1

OBJ 0 -360.5 -447.2 -360.5 0 -100 -447.2 -100 0 400 404 196 result 92.3

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Α. Appendix 73

V-RES Results

Figure 24 V-RED Results for 2 customers 1 day

Conclusions

As shown in Figures 22 and 23, both software tools return the same result and route

using different direction of movement. In Figure 24 is depicted the proposed route.

The expected optimal profit is 92.3.

Test Case 2: 2 Customers 2 Days

Input Data

Variables Customer 1 Customer 2

Depot Coordinates [200,-200]

Customer Coordinates [0,100] [0,200]

nmin 1 1

nmax 5 5

Demand D 20 30

Demand Raise k 20 20.2

Figure 25 Case 2 - 1 Route

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

74

Profit per unit 20

Cost 1

Maximum Cost per day 1200

Distances C01=360.5

C02=447.2

C12=100

Problem Formulation

Objective Function

Under constraints:

Constraint #1:

Constraint #2:

Constraint #3:

Constraint #4:

Constraint #5
:

Constraint #6:

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Α. Appendix 75

Constraint #7:

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

76

Excel Solver Results

Figure 26 Excel Solver Results for 2 customers 2 days

RULE x00_d1 x01_d1 x02_d1 x10_d1 x11__d1 x12__d1 x20__d1 x21__d1 x22_d1 y1__d1 y2__d1 x00_d2 x01_d2 x02_d2 x10_d2 x11__d2 x12__d2 x20__d2 x21__d2 x22_d2 y1__d2 y2__d2 INEQ RIGHT computed

0 0 1 1 0 0 0 1 0 1 1 0 0 1 1 0 0 0 1 0 1 1

1 0 0 0 1 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 = 0 0

1 0 0 0 0 0 0 1 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 = 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 -1 0 = 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 -1 = 0 0

2 0 1 0 0 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 = 0 0

2 0 0 1 0 0 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 = 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 -1 0 = 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 -1 = 0 0

3 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 = 1 1

3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 = 1 1

4 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 = 1 1

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 = 1 1

5 0 0 0 0 0 -1 0 -1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 >= 1 1

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 -1 0 1 1 >= 1 1

6 0 360.5 447.2 360.5 0 100 447.2 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <= 1200 907.7

6 0 0 0 0 0 0 0 0 0 0 0 0 360.5 447.2 360.5 0 100 447.2 100 0 0 0 <= 1200 907.7

7 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 <= 5 2

7 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 >= 1 2

7 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 <= 5 2

7 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 >= 1 2

OBJ 0 -360.5 -447.2 -360.5 0 -100 -447.2 -100 0 400 404 0 -360.5 -447.2 -360.5 0 -100 -447.2 -100 0 400 404 196 result -11.4

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Α. Appendix 77

V-RES Results

Figure 27 V-RED Results for 2 customers 2 days

Conclusions

As shown in Figures 25 and 26, both software tools return the same result and route

using different direction of movement. In Figure 24 is presented the proposed route

that is the same that was in Case 2-1 for each day although it gives as result a loss of

profit.

Ideally it should give a result that worst case would be equal to the one given in Case

2- 1. This doesn’t happen because this is a case that the given mathematical model

doesn’t cover. If we don’t have route for the 2nd day, then the sum of

incoming/outgoing vertices to the depot will be equal to zero that goes against

constraints #3 and #4. Furthermore, minor loss we would have even if the route

contained only one and not both customers, but again this time the cyclicity

constraint #5

 would not be satisfied. Thus, the model

used cannot give optimal results when customer number is 2 and route days are

more than 1.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

78

Test Case 3: 3 Customers 2 Days

Input Data

Variables Customer 1 Customer 2 Customer 3

Depot Coordinates [200,-200]

Customer Coordinates [0,100] [0,200] [200,300]

nmin 1 1 1

nmax 5 5 5

Demand D 20 30 40

Demand Raise k 20 20.2 30.3

Profit per unit 20

Cost 1

Maximum Cost per day 1200

Distances C01=360.5
C02=447.2
C03=500
C12=100
C13=282.8
 C23=223.6

Problem Formulation

Objective Function

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Α. Appendix 79

Under constraints:

Constraint #1:

Constraint #2:

Constraint #3:

Constraint #4:

Constraint #5
:

Constraint #6:

Constraint #7:

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

80

Excel Solver Results

Figure 28 Excel Solver Results for 3 customers 2 days

RULE x00 x01 x02 x03 x10 x11 x12 x13 x20 x21 x22x23 x30 x31 x32 x33y1 y2 y3 x00x01 x02 x03 x10 x11x12 x13 x20 x21 x22 x23 x30 x31 x32 x33y1 y2 y3 INEQ RIGHT computed

0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1

1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 -1 0 = 0 0

1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 -1 0 = 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 = 0 0

1 0 1 0 1 1 0 0 0 0 0 0 0 0 -1 0 0 = 0 0

1 0 1 1 0 1 0 0 0 0 0 -1 0 = 0 0

1 0 1 1 1 0 0 0 -1 = 0 0

2 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 -1 0 = 0 0

2 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 -1 0 = 0 0

2 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 = 0 0

2 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 -1 0 0 = 0 0

2 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 -1 0 = 0 0

2 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 -1 = 0 0

3 0 1 1 1 0 = 1 1

3 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 = 1 1

4 0 0 0 0 1 0 0 0 1 0 0 0 1 0 = 1 1

4 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 = 1 1

5 0 0 0 0 0 0 -1 0 0 -1 0 0 0 0 0 0 1 1 0 >= 1 1

5 0 0 0 0 0 0 0 -1 0 0 0 0 0 -1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 >= 1 2

5 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 -1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 >= 1 1

5 0 0 0 0 0 0 -1 -1 0 -1 0 -1 0 -1 -1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 >= 1 1

5 0 -1 0 0 -1 0 0 0 0 0 0 1 1 0 >= 1 1

5 0 -1 0 0 0 0 0 -1 0 0 1 0 1 >= 1 2

5 0 -1 0 0 -1 0 0 1 1 >= 1 1

5 0 -1 -1 0 -1 0 -1 0 -1 -1 0 1 1 1 >= 1 1

6 0 -360.5 -447.2 -500 -360.5 0 100 282.8 447.2 100 0 223.6 500 282.8 223.6 0 <= 1200 463

6 0 360.5 447.2 500 360.5 0 100 282.8 447.2 100 0 223.6 500 282.8 223.6 0 0 0 0 <= 1200 1184

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 <= 5 2

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 <= 5 2

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 <= 5 2

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 >= 1 2

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 >= 1 2

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 >= 1 2

OBJ 0 -360.5 -447.2 -500 -360.5 0 -100 -282.8 -447.2 -100 0 -223.6 -500 -282.8 -223.6 0 400 404 606 0 -360.5 -447.2 -500 -360.5 0 -100 -283 -447.2 -100 0 -223.6 -500 -282.8 -223.6 0 400 404 606 390 result 842

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Α. Appendix 81

V-RES Results

Figure 29 V-RED Results for 3 customers 2 days

Conclusions

As shown in Figures 27 and 28, both software tools return the same result and route

using different direction of movement. In Figure 29 is depicted the proposed route

that is the same for the first and second day. The expected optimal profit is 841.76.

Figure 30 Route for Case 3-2

