UNIVERSITY OF THE AEGEAN
SCHOOL OF BUSINESS

DEPARTMENT OF FINANCIAL AND MANAGEMENT ENGINEERING

POSTGRADUATE STUDIES PROGRAMME IN

"FINANCIAL MANAGEMENT ENGINEERING"

FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS: ENHANCEMENT
AND IMPLEMENTATION OF AN OPTIMAL APPROACH

AUTHOR:
LAZAROS AMANATIDIS

SUPERVISING COMITEE:
I. MINIS
A. PLATIS
V.ZEIMPEKIS

CHIOS, 2010

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

To my beloved wife

Acknowledgments

Firstly, | would like to thank my Professor loannis Minis for giving me the opportunity to
undertake the present master thesis, for his valuable supervision and guidance.

I gratefully thank Ninikas Georgios, PhD Candidate of the University of the Aegean, for
encouragement, countless discussions and for his help with writing the thesis. Their support
was really significant for me.

I would also like to acknowledge the support and there courses made available to me
through the DeOPSys Lab of the Financial and Management Engineering (FME) Department
of the University of the Aegean

Finally, I would like to thank my family and friends for their support during all this process.

Thank you

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

NepiAnyn (In Greek)

H mpotewopevn SmAwpatiky gpyacio eotidlel oto mpoPAnua Kaboplopol 1ng
ErmokePpuotntag oe AlKTuo ALOVOUNG HE OTOXO TNV UEYLOTOMOLNON Tou KEPSOUG o€
OUYKEKPLUEVO XPOVIKO opilovta. To mpoPAnua meplypAdeTal and HLOVIEAO AKEPALOU
TIPOYPOUMOTIOMOU Kol EMAUETOL HE TOV aAyoplBuo Stadoxikwv oplwv (Branch and
Bound) ywa tnv elpeon twv BEATIOTWV AUCEWV KAl HUE TIPOTELVOLEVO EUPETLKO
aAyopLBuo yla tnv eniluon mpoBANUATWY POKTLKOU UeYEBOUG.
To ouykekpluévo TPOPBANUA €xel €TUAUBOElL TPONYOUUEVWG QO TPOTTUXLAKN
SumMAwpatiky epyaciocc mou avamtuxbnke oto epyaotipo ZuillaA Tou
Mavemotnuiov Awaiou. Itn mpoonmdaBela autr, To MPOPANUA emAUONKE yla
TipoPANUaTa TMPAKTIKOU PeYEBOUC pe eUPETIKO aAyoplOuo. H mpooéyyilon BEATIOTNG
emiluong tou mpoPARpATO¢ autoU pE T HEBOSO Twv Sladoxikwv opiwv
neploplotnke HOVO 0Ot €va HIKPO TANBo¢ meAatwv AOyw TNG MEYAANG
TIOAUTIAOKOTNTOG TOU TPOBANRHatog (LeydAo MANB0G LETABANTWY KaL TIEPLOPLOUWV).
JUVETIWG, OTO TAQLOLO TNG Tapouca AUTAWHOTIKAG £pyaciag UAOTIOLOOUE TO
TipOypappa e epyaleia C++ Kal cuvelodEpape ota €ENG:

e Emiluon udlotapévwy TPOPBANUATWY OE TOXUTEPOUG UTIOAOYLOTIKOUG

XPOVoUuC
e EmiAuon mpoPANUATWY HeyaAUTEPNG KAILAKOG CUYKPLTIKA HE TN Suvatotnta
TOU MponyoUevou alyopiBuou.

EmunpooBeta, ota mAaiowa tng mapovcag Siatplfrg avamtuxdBnke KatdAAnAn
epappoyn pe dSuvatrotnta ypadikou meplBAAAovtog xprotn, n onoila Tépa anod tnv
uAomoinon Ttou alyoplbuou, Tapéxel ypadlkd TePIPBANAOV PE TPAYUATIKOUG
YEWYPAPLKOUG XAPTEC yla Tov KaBoplopo twv debopévwyv el06dou aAAd Kol ThV
OTITLKOTIOLNON TWV MOPAYOUEVWV amoteAeopdTwy (Stadpour Kat KGOTOG AUTHC).

AVOAUTIKOTEPQ, N KEVIPIKN LOEQ TOU OAOU EYXELPNUATOG €lval 0 KABOPLOUOG TNG
ouxvoTNTAG UE TNV omola MPEMEL va yivovtal ol emokEPEL; 0TOouG TTEAATEG H0BEVTOC
OUYKEKPLUEVOU SIKTUOU SLVOUAG KAl OTOAOU OXNUATWY WOTE VAL LEYLOTOTIOLE(TAL TO
OUVOALKO KEPSOG.

O kaBoplopog tng ouxvotntag emiokePng otov kdBe meAdtn mpolmoBétel va
YVWPIL{oU UE TL avAyKeG £XeL 0 KABe eAdtng tou Siktuou, SnAadn t INTnon. Z1o umno
HeAETn mPOPBAnua n Intnon Sev eivat évag otabepog aplBuog oAAd petaBarAetal pe
Baon 1o mMARBoG Twv emokEPewV TOU Tpaypatomnolovvtal. Ma tnv akpifela, yia
KABOe TeAATn UTIAPXEL Mo eAdaxlotn {Atnon kot n duvatotnta mpaypatonoinong
MPOoBeTWV MWANCewWV o€ KABe emiokedn HeTA TNV Tpwtn. EmutAéov, umdapxel kat
éva péylwoto mARBog Suvatwv emokEPewv, TEpav Tou omoiou bev Ba
Tpayuatonoleital kapia nwAnon. H ZAtnon, Omwg Kol To HEYLOTO KoL €AAXLOTO

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

TANBog emokéPewv yla kaBe meAdtn mou avrkel oto Siktuo eival otolxela mou
avAkouv ota dedopéva Tou UTO HEAETN TTPOPARLATOC.

ZTn UEAETN TOU TPOPBARUATOC eUpeEONG PUBUOU eMIOKEPLUOTNTOG O SIKTUO ALOVLIKNAG
yla TN LEYLOTOTIONON TOU GUVOALKOU KEPSOUG €yvav oL akOAoUBEeG tapadoxEg:

o Eav to mAnBog twv emokéPewv otov TEAATN i LooOUTAL ME TO EAAXLOTO
duvaton; .~ TOTe n {Atnon Ba eivau D kau oo8uvapei e to eNdyioTo
mANBo¢ TpoldvTwy Tou TPEMEL va mapadoBolv otov meAdTn yla va
KaAudBOoUV oL avAyKEG TOU OTO UTIO £EETOION XPOVIKO SlaoTnua.

o KaBe enoduevn eniokePn Ba odnynoet o avénon tng Intnong D; pe otabepd
pubuo k;.

o Ortav o nehdtng dexBel to peyloto anodekto mnbog emokéPewy, n; , TOTE
n avtiotoyn {Atnon D; _ Ba €xeL ¢dtdcel oto Avw OpLO TG ywa TO
OUYKEKPLUEVO XPOVLKO SLACTN .

0 KdaBe emopevn enioken otov meldtn i petd tnv n; Sev Ba emudEpet kapia

aAAayn otn {ntnon ouTe Kal Ba o8nyel o€ VEEC WA CELG TTPOLOVTWV.

TeAko {NTOUHEVO €lval 0 IPOOSLOPLOUOG Tou TMARBoUC emokEPEWV o€ KABE MeAATn
WOTE VO UEYLOTOTIOLETOL TO KEPSOG EVTOC CUYKEKPLUEVOU XpovikoU opilovta (m.x. 5
NUEPEG).
To napamdvw TPOPANUa amotedel éva Suadikd TPOPANUA YPAUULKOU
TIPOYPOUUATIOMOU. 2TOXOG HaG elval n EMAUCN TOU XPNOLUOTIOLWVTAG EVa aAyOpLOUO
HE ULKPN TIOAUTTAOKOTNTA Kot UPNAR UTIOAOYLOTLK TaxUTNTA, WOTE VA £lval EDLKTH N
€MAUON O©E KOVOTIOINTIKO XPOVO OTWYULOTUTIWV TIOU CUVOVIWVIAL OTn
KaOnuepwvotnta. Exovrtag Ta mapandvw wg otoxo, N MPOTEWVOUEVN AUCh cuvioTatol
oo To ouvéuaopo ¢ nuebodou StakAadwong kat meploptopou (branch and bound)
ue tn nEBodo tng revised simplex kot TexVIKEG XaAdpwaong epLopLoUwY (relaxation).
JUYKEKPLUEVA, Ta Bripata mou akoAouBouvtal yla tnv emiluon tou MpoBARUATOC
TIOU TEPLYPADNKE TOPATIAVW, EXOUV WG EENG:
1. AQqYn twv dedopévwy Tou pofARUaTOC:

a. D{: apxwn Zitnon yua kdBe meAdtn, n onoia avtiotolyel otov AdxLOTO

arodekto aplBuo emokeewv n;

Ko 0 €AAXLOTOC KOL MEYLOTOG ETUTPEMTOC apPLOUOG

Imin L .
ETUOKEPEWV yla KABe TEAATN TOU QVAKEL OTO UMO &&€tacn Oiktuo
Slavoung

c. ki puBuog avgnong tng TAtnong avd meAdTn UETA TG MPWTEG ny;
ETUOKEPELG

d. ¢;j: To ywopevo tng anootaong o km petagy kdbe {evyoug meAatwy mou

avkouv oto Oiktuo Stavopng 1N petafl amobnkng Kal TEAATN

noAamAaclacpévo ent to 80Bév kdotog ava km. ZuviBwg ol

MepiAnyn (In Greek)

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

OUVTETAYUEVEG TIoU KaBopilouv tn B€on Tou kKABe meAatn Sivovtal Kot N
anootoon umoAoyiletal e Xpnon ™ng eflowong:
Vg —x)2 + (v — y1)2
e. p:To képdog ava povada nwAnbevtog mpoiovTog.
2. Ekdppaloupe 1o MPOPANUA HUE LABNUATIKEG EELOWOELS, WG €ENG:

max Z Zyl -ng . |ki|p— ZZZCU Xij

i€V, =1 i€V]EV

under constraints:

Z x]%_yld=0

JEV,i%]

z xh—yt=0

JEV,i%j

jev

Zx]% =1

jev

NI

lES iES JES

z Z cUxUSC

€V JEV,i#j

nq

d
z Vi SN,
d=1
nq

d
Z Vi Z Mg
d=1

3. Metatponn tou TPOoPANUATOG O KOVOVLKA Hopdn PE TN TPoodbnkn TeEXVNTWV
HETAPBANTWY, TTAEOVACUATOG Kol MEPLOWPILOU OOV ATALTETAL. JUYKEKPLUEVA, OL
neploplopot 1, 2, 3 kat 4 eival LoOTNTEC OMOTE ATALTETAL N MPOCOAKN HLOG
TEXVNTACG METAPANTAG 0€ KaBEvav amd autoug, 0 TMEPLOPLOUOC 6 Kal To SeUTEPO
HEPOC TOU TIEPLOPLOUOU 7 lval avioOTNTEC UE UKPOTEPO N L00 OomoTE amaltteltal
n mpooBnkn petaPfAntng meplBwpilou oe kABe €vav amd AUTOUG €VW OTOUG
AOUTOUG TIEPLOPLOUOUG TIOU E£lval avioOtnNTeG HE HeyaAUTepo f (oo, xpnlel
adaipeon HeTaBANTAC TAEOVAOUATOG KAl POoOeon TexvnTAG METAPBANTAG. €
0UTO TO onUElo MPEMEL va onUelwOel OTL o€ KABE TMEPIMTWON TTOU APVNTIKA TLUA

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

eudaviletal oto 6e€l okéNog aviocotntag, mpwta moAanmAactalovpe pe -1 Kat
OTn OUVEXELA aKoAouBoUpe TNV mapanavw Stadikacia.

4. XoAdpwon Tou apxlkoU TPoPANUaTOoG LE TNV adaipeon TwV MEPLOPLOUWVY TIOU
adopoulv Vv amnaitnon ot AVoelg va Aappavouv povo TG Tipég 0 1, omodte
apKel ol AUOELG va elval aképaleg HETOPANTEG Kal OxL SUASLKEG OwG ATV OTNV
opxLKn €kdpacn Tou PoPARUATOGC.

5. EmiAuon tou mpoPAnpatog xpnolponowwvtag tn Revised Simplex péBodo. H
Sladopd tng ueBOdou autng amd tnv KAAOoOoLKN simplex €ykeltal oto OTL N HEV
apxLkn popodn umoAoyilel kal anoBnkelel OAOUG TOUG aPLBUOUG TTOU AMOTEAOUV
TO TAUMAG ACXETA LE TO AV amaltouvtal evw n Revised Simplex xpnoluomnolet t
uEBodo Gauss — Jordan yla Tov UTTOAOYLOUO TOU QVTIOTPOdOU TOU TivaKa Kot
oo eKel Kal MEPO OL HOVEG TIPALELG TIOU QALTOUVTOL €ival ToANamAaclaopol
TILVAKWV TIOU yivovTal PE Xprion TTOAU TIEPLOPLOUEVWV UTIOAOYLOTLKWVY TIOPWV.

6. EMutA£ov, oTnV UTIO PEAETN TEPIMTWON TO MPOPANUA TTAVIOTE MEPLEXEL TEXVNTEG
HETAPANTEG, CUVENWG amatteital n xpron eite tng uebodou tou peydiouv M (Big
M) eite twv Vo Pacswv (Two Phase) yla tnv eniAuon tou. Emeldn n uébodog
Twv 6Uo o¢acswv eival KATtaAANAOTEPN yla UAOTMOINON O UTIOAOYLOTIKA
ocuotnuata kot odnyel oe Mo akplpr) cuotuata, eTAEXONKE n Xprion tTng otnv
OUYKEKPLUEVN Tepimtwon. Me Baon tn uEBodo autr, apxika oxnuatiloupe Eva
NMPOBANUA EAa)LOTOTIOINONG XPNOLLOTIOLWVTAC HOVO TLG TEXVNTEG METABANTEG KoL
To emA\Uoupe. EGv to mpokUmTov TPOPBANUA Kot OAEG OL TEXVNTEG UETAPANTEG
AapBavouv pndevikn TN TOTE To apXko MPOBANUa €xel ekt AUon Ko OAEC oL
OTHAEG TIOU OVTLOTOLXOUV OE TEXVNTEG HETAPBANTEG Wmopouv va ayvonBoulv
eLOAAMWG bev ExeL eDIKTEG AVOELG.

7. Xpnron t¢ Auong mou BpEBnke oto ponyoUHEVO Brua Kat Tou PoBARUATOC OTO
omoio adalpédnkav oL meploplopol Twv PeTaPANTWY amd SUASIKEG O AKEPALEG
yla tnv ekkivnon tou aiyoptBuou branch kat bound.

Me Baon ta napandvw avantoxdnke n epapuoyn V-RED. H apxtki tng popdn Atav
g arAn mopabuplky ebappoyn mou Kave xprion tng o0ovng TEPUATIKOU yla TNV
TANKTPOAOYynon Twv O&edopévwy Kal TNV €udAvion TwV OIMOTEAECUATWY. TNV
OUVEXELX avamtuxOnke éva eEeAlypévo mapabuplkd meptBaidov yia tnv Slemadn pe
TO XpNotn oOmou n elwoaywyn twv Sedopévwy yilvetal He xpAon Yewypadlkwv
OUVTETAYHEVWV KAl N QTELKOVION TOoO Twv debopévwv €l066ou 0600 KAl TWV
OTTOTEAECLATWYV TIPOYHOTOTIOLETAL 08 SLadPACTIKOUC YEWYPADLIKOUG XAPTEC.

MepiAnyn (In Greek)

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

e W
File Customers Vehicles Help
Project Loaded: ch6_2visuall Edit Project

The Vehicle KH-8013 will start form Depot AnoBryn and will pass from Customers: Amanatidis Lazaros. Mehdtng 1. Mehdng 2. Medéng 3 in the next 1 Days
The Proftt of each product will be 20 and the max Distribution Cost will be 1200

¥ Ml 3 B Agos. [map | Satelite | Hybid | Terain |

Achames
Mandra - - xaeva)
o0 l:?f\mfvm Kamatero, Marouy

Ne " h
persmos 0k Evetsinaligry PR

Kifissia
Keypore

Melissia NEG Mdpr Marman
Mekiooa) My

Megara
[& (84 Neod | Salamina

& At > Kolpos
Fwreowy oy Perama [0 Kalimea % Potason
C tsk - eind = 2 A { A Map Tele Atias - 7o o1 s

Nikea /(AcHS

Ewova 1 V-RED Interface

H edappoyn eAéyxOnke yla Tnv opBOTNTA TWV AMOTEAECUATWY TIOU TTAPAYEL KOL TNV
KaA NG Aewtoupylat HEOW OUYKPIOEWV TWV TIAPAYOUEVWY OTOTEAECUATWY TIOU
adopoloav oTLYULOTUTIA TOU TTIPOPRARMOTOG TTIOU NTav AdN YVWOTA To AVAUEVOUEVA
QTMOTEAECOTO.

ITNV OUVEXElWM n edapuhoyny XPNOLUOTOONKE ylo TOV UTOAOYLOMO TWV
OTIOTEAECUATWY OTLYULOTUTIWV TIOU €lXav £EETAOTEL O MPONYOUEVN SUTAWUATIKN
epyaocia (Aonuakomoulog, 2001), 6mou xpovouetprnBnke o xpovog (CPU time) mou
QITALTE(TOL YlO TNV Tapaywyr TwV QMOTEAECUATWY HE TNV VEA UAoToinon tou
oAyopiBuou kal €ywve oUYKPLON TWV XPOVWV OUTWV HE TOUG OVTIOTOLXOUC TNG
TiponyoueVNG uAomoinong. Me Bdon ta amoteAéopata n véa epapuoyn ExXeL TTOAU
KAAUTEPOUC UTTOAOYLOTIKOUC XPOVOUG.

ErmumAéov omwe daivetal otov mivaka 1, SOKIUACTNKE n €MEKTOON TNG XPHONG TNG
epappoyng kat og peyalutepou peyEBoug mpoBAnuata, T0co 600 adopd to ANB0g
TwV MeAaTwV 000 Kal TO XPOVIKO opilovta. MNepaltépw €peuva ATMALTETAL YO TOV
cadn TPOOoSIoPOHd TWV AVW OPLlWV Yyl TN OUYKEKPLUEVN UAOTONON TOU
oAyopiBuou Kot HeAETN TNG CUUMEPLPOPAC TOU OE TIO TIOAUTTIAOKQ OTLYLLOTUTIOL TOU
poPBANRUaTOGC.

Mivakag 1 9 - 12 NeAdteg AnoteAéopata

9 NENATEZ 10 NEAATEZ 11 NEAATEZ 12 NEAATEZ
umepes XPONOZ KEPAOR XPONO3 KEPAOZ XPONO3 KEPAOZ | XPONO: KEPAO3
(Sec) (€) (Sec) (€) (Sec) (€) (Sec) (€)
1 4,40 3920,33 10,20 4220,33 30,80 4795,14 98,50 5487,10
2 12,20 6716,66 3520 7316,66 120,60 8270,27 444,10 14914,20
3 30,60 9512,99 93,40 10412,99 245,90 11745,41
4 54,90 12309,32 158,40 13509,32 406,60 14845,74
5 93,80 15105,65 235,00 16487,65

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Abstract

The focus of the current master thesis is set on the definition of the frequency of
service in a distribution network by maximizing the profit in a specific time window.
The problem is modeled using integer mathematical programming and is solved
using the Brach and Bound algorithm in order to find the optimal solution.

This problem has already been solved within an Undergraduate thesis developed by
the DeOpSys team of the University of the Aegean by Asimakopoulos (2006). In that
effort the focus was given in solving practical sized problems using a specific
heuristic algorithm. The actual solution of the problem using the Branch and Bound
algorithm was narrowed down to a small number of clients due to the high
complexity of the problem (number of variables and constraints).

Therefore, primary goal of this thesis is to enhanced solution method in order to
have better computational times than the previous approach and be able to solve
larger problems.

More specifically, we developed a software tool in C++ that implements the above
mentioned algorithm and provides:

e Better solution times for problems being solved by Asimakopoulos (2006)
application
e Solution of bigger problems while keeping the same algorithm
Finally, a windows application as interface of the algorithm was implemented. This
application provides interface for entering the project’s input data and
representation of coordinates in geographical maps (Google maps) as well as
generation of the results (route and cost) on the same maps.

Keywords

Retail distribution network, branch and bound, tsp

Abstract -

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

TTEQIANWIN (IN BFEEK) vttt ettt ettt ettt et e e et e e e be e eteeeeabeeeabeeestseesabeeeesseesabeeensaeas 4
Y o1 o - [ot A T TSRO PO UUPOTOPRTORPTOPRI 9
FIGUIES ettt ettt e ettt e e e e s sttt e e e e e s e bbbt e e e e e e e e e btbaeeee e e e e e nbrbaeeeeeeeaannn 12
LI o] (=T U OO TPV PRRTRPR 13
R 1) {4 oo [¥ Lot i T o HO TSP P ORI PRSPPI 14
2 Theoretical BAaCKErOUNGoooiiiiiiiciie ettt e e e e e ree e e e naae e e eres 17
2.1 INEFOAUCTION ..ttt st sbe e saeesane e 17
2.2 Distribution NEtWOIKSooiiiiiiieiee e e s 17
2.3 Optimization TEChNIQUES.......ciiieiiie e bee e e 18
2.3.1 Linear Programming TR OIYcciivciiieiiiiiee e ceitee et ertee et e e evee e e sbee e e e 18
2.3.2 Branch and BOUNGcooeiiiiiiiiiieieesite sttt sttt s 22

3 The Optimal Solution for computing the frequency of service in retail distribution
NEEWOIKS ...ttt ettt ettt ettt et e st e ettt e st e e e bt e e s abe e s beeesabeesabeeenbeesabeeesabeesabaeenteesabeeennseenns 29
3.1 INEFOTUCTION ...ttt et e e s e e s bt e st e sateesbeeesareesas 29
3.2 Description of the Problemeooiiiiiice e 30
33 Optimization METhOdccuiiiiiee e e et 35

4 EXPEriMENntal RESUITS.....ueiie ettt e et e e e eate e e e ebeeeeeeraaeaeenns 39
4.1 INEFOTUCTION ...ttt ettt e e s e st e st e e saeeesbeeesareeeas 39
4.2 RESUILS ..ttt st ettt e e sn e sne e e 40
4.2.1 2 -4 CUSTOMEIS..uiiiiiiiiiiiiiiiict ittt srb s s bb e s s sab s e e sans 40
4.2.2 5 -6 CUSTOMEIS...eiiiiiiiiiieeee ettt e st e e s e e e s s nee e e s nane 40
4.2.3 7 -8 CUSTOMEIS...eiiiiiiieiieiee ettt e e st e s s e e s eneeeesnane 41
4.2.4 Solution of new instances of more than 8 CUStOMErsScccceeveeiiiniiniieniieenienne 42

4.3 Execution Time versus Number of ClIeNnts........cccccevieiieiienieneencceeeeseesee e 42

5 SOftware DeVEIOPMENTc..eiiie ettt ree e e e e e e e sabae e e e arees 43
5.1 [T Ao o [8 ot 1 o] o FO PP P TP PRPO PP 43
5.1.1 USE CaSe MOMEI ...ttt sttt s 44
5.1.2 SYStemM’s MOQUIES........coiiieiceee ettt ettt e e et e e erae e e e tae e e e 46

o I T Y To [U =Y o Vol =N DT T = - [o PPN 47

5.2 SOftWaAre DESCIIPLIONvviii it e e e ere e e e e re e e e s baeeeeeaes 49
5.3 LY 2= D 0 =L] 41 o TR 51
5.3.1 COoNSEraiNtS..ccoccuiiiiiiiiiiiiiii i 52

o 207 2 © T o 1o 0| = PPN 53

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL

APPROACH]
5.3.3 TWO Phase MEthOd......cccueiiiiiiiiiiiieieereeee et 54
5.3.4 SIMPIeX Methodcoooiiiiiiie e 54
5.3.5 Branch and Bound Methodccceieiiiiiiiiiiinienienieeceeeeeee e 55
5.4 Software Validation and TeSHINGccovvciiiiiiiiiie et 57
5.5 TESTING PrOCESS .ttt et e e e s et e e e e e e s s s ebsbeeeeeeeeeas 57
6 Discussion and Further ReSEarchcooeeriiiiiiiiiiieesescee et 60
7 REFEIENCES. ..ottt st st sttt et ee et en 62
Y o] o= o Vo L PSRNt 64
A.1 Software Requirement ANAIYSIScccveiiiiiieii i 64
A.2 Software SPecCifiCation PrOCESS.ciciiii ettt e sree e s ebee e e 65
A.3 Stages Of DeVEIOPMENT........oi i e 66
A4 IMpPlementation TOOISccuuiii it e et e e e e rae e e eares 67
MicroSoft VisUal STUTIOeevieieieiieie et 68
MICTOSOFE VISUGI G ..ttt sttt b e b s 68
MicroSoft .NET FrameEWOrKccoueeiiiiiiieniee ettt ettt ettt et e e e s e enee s 69
ALD TS CASES ittt e e e e e r e e e e 70
Test Case 1: 2 CUSTOMEIS L1 DAY cooceeeeeieiiiiieeeeeee e 70
Test Case 2: 2 CUSTOMErS 2 DaysS....ccovviiiiiiiieee e, 73
Test Case 3: 3 CuStoMErs 2 Days....cccovviiiiiiii i, 78

Abstract

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

Figures

LT o X o AV 2 D N [(=T o Lol N 8
Figure 1 Vehicle ROULING PrOBDIEM.............cooueeeieiiieeeieeeeeeteet ettt 14
Figure 2 Revised Simplex MEtNOd.cooeuuuiieeeeee ettt e st a e et e e eae e e st e e e staaaeenses 21
Figure 3 Branch and Bound FIOWCRGITcccoovueeeieiiiieeiee sttt 24
Figure 4 BFS SEAICH iN BiNAIY TIEEcccvveeeeeieieeeeeeeeeteee e sttt e ettt e estta e e s tteaeeasssaessassaaeatseseesntssaeesssees 26
Figure 5 DFS S€AICRH iN BiNQIY TIEEccc.ueeiieeeieesieeeeesteeet ettt ettt ettt saeeenee s 27
Figure 6 Relation of demand to ViSits Per ClIENTc.ceeeevueeeeeciie e cee et esee et aeestaa e e 29
Figure 7 Relation Of INCOME t0 VSIScooueeeueeiieeeiieseeeee ettt sttt 30
FIGUIE 8 SOIUTION STEPS ...ttt e et e e ettt e e e ettt e e ettt e et a e e e tseaeesssaeeassseaeassesaesntaaensnnsees 38
Figure 9 Execution Time CompariSON 5 CUSTOMEIS...........ccovvuevirecieiiniiiiieiiiieeeieee sttt 41
Figure 10 Execution Time COmMPaAriSON 6 CUSTOMEIS.........uuuuuuuuuuuuuereieiuiaiaiasasasssssssssssssssssssssssnsnnnnnnnnnnnnnn. 41
Figure 11 Execution Time CompariSON 7 CUSTOMEIS.........ccoecueeeeecuueeineiiieeeaiiieeeieaesiseeeesieeeseneee e 42
Figure 12 Execution Time COmMPAriSON 8 CUSTOMEIS..........uuuuuuuuuuuuuiuiuiiisiniasasasssssssssssssssssnsssssnsnnnnnnnnnnnn. 42
Figure 13 Time spent for each stage of component based engineeringcccccceeeveereeenceerseennen. 43
Figure 14 USE CaSE MOUE!ooeeeeeeeeeeeeeeeee et ee e ettt e ettt e e ettt e e e et s e e sttt e eeatsaaestseaeeaatsaaeessseas 45
Figure 15 SYStem's MOQUIEScooueeeeeiiieeieeseeee ettt ettt e e snee s 46
Figure 16 System's UML SEQUENCE AiQGIAMoeeeecveeeeeieieeeiitieeesiieeeecteeeesteeeeetaaaessseaaestaaaeessseas 48
Figure 17 V-RED Interface & Console APPlICALIONc.oovueeiueeeieinieieieisieeeee st 50
Figure 18 Branch and BoOUNG CQIISooeeeuueiieeiieeeeeee et eeeea e ettte e e sttt eeestaa e eetaaaeestsaaaestsaaeeases 55
Figure 19 V-RED FIOW CRQIt.......ccoueiiieiieesieeee sttt ettt s et e s e nseesneens 56
FiQUIE 20 TESTING PIOCESS ...t sababasasssssasssssssasssssees 58
Figure 21 Requirements ANGIYSIS PrOCESS...........covcueeeueeiieeeieesieeeie sttt ettt et sseesnee s 66
Figure 22 Excel Solver Results for 2 cuUStomers 1 dQycccueeeecueeeesiueeeeeciieeeciieeesceeeeecreeeesiveaeesaneas 72
Figure 23 V-RED Results for 2 cUStOMErs 1 Ayc.coovueeeueenieeeieiiieeeiee sttt 73
FIGQUIE 24 COSE 2 = 1 ROULE ...t aaasasaaasssasssssssssssnsnes 73
Figure 25 Excel Solver Results for 2 CUStOMErs 2 AAYScccuveeecueeeeciieeeesiieeeciieeeeieeessieaeesraaaessseeas 76
Figure 26 V-RED Results for 2 CUStOMEIS 2 AQYS..........cccueeeevureeeiiieeesiieeeecieeeecieaeestaaaessseseestvaaeeaseas 77
Figure 27 Excel Solver Results for 3 CUStOMErs 2 AAYScccuueeecueeeeiiieeeeiiieeeeiieeesieeeesieaeesraaeeessenas 80
Figure 28 V-RED Results for 3 CUStOMEIS 2 AQYS.........ccccuueeeeiueeeeeeieeeesiieeeeeieeeeceaeesiteeaeesreaeestsaaeeaseas 81
FigUre 29 ROULE fOI CASE 3-2 c..nneveeeeeieeeeiee ettt e eetta e ettt e e e sttt e e sttt e e s astaaestteaesasstaesanseeasssseaassnstaasassees 81

file:///C:/Users/Lama/Dropbox/EAP/Thesis_Amanatidis_Final_111021.docx%23_Toc306926051
file:///C:/Users/Lama/Dropbox/EAP/Thesis_Amanatidis_Final_111021.docx%23_Toc306926054

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Tables

MIvVaKOG 1 9 - 12 TTEAGTEG ATTOTEAEGUOTO ... eeeuveeetieeseeesieeeeeeesteeeeseesstteesseesstssssssasssssesssassssaesssssassassseasass 8
Table 1 TWO - FOUT CUSTOMEIS RESUILSuvvvveeeeeeeciieieeeeeeeesiiaieeeeeeeeesiiaseeae e eeessisssseasseeessssssessseesessannes 40
Table 2 Five - SiX CUSEOME@IS RESUILScoeeeeeeeeeeeeeeieeeieeeeieeeeeeeeeeeeeeeeeeeeeteeeeeeeeeeeeeseeeseeseeessssssssssssssssssssssnens 40
Table 3 Seven - Eight CUSTOMEIS RESUILSccccueeeeeiieeeeeeeeeeeeeeteeees e et a e s taaaestaaaeesaaaaesseeaeas 41
Table 4 Nine - TWelve CUSTOMEIS RESUILSueeeeeeeeeeeeveeeeeeieeeeeieieeeeeieeeeeeeeeieeeeeeseeeseeeesseesesssssssssssssssssssens 42

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

1 Introduction

Over the past decade, the traditional purchasing and logistics functions have evolved
into a broader strategic approach to materials and distribution management known
as supply chain management (Choon Tan, 2001). Furthermore, transportation and
distribution of goods are key issues faced by the supply chain management sector,
since they affect the total cost of the product and the quality of customer service
(Eskigun et al., 2005). This is the reason that all companies aiming at being
competitive on the market give special attention to the analysis of the supply chain
in order to improve the customer service level without an uncontrolled growth of
costs (Ambrosino and Scutella, 2005).

Based on the needs of the supply chain sector, many researchers the last 40 years
have widely developed distribution network models in supply chain systems usually
having as objective to find capacities, location of new facilities and the best flow of
material in the network (Ghezavati, Jabal-Ameli and Makui, 2009).A common
objective in designing such a distribution network is to determine the least cost
system design such that the demands of all customers are satisfied and frequency of
service is maximized without exceeding the predefined cost level (Amiri, 2006).This
kind of optimization problems have high degree of complexity and belong to the
class of NP-hard optimization problems, in which computational time increases
exponentially with the problem’s size (Goel and Gruhn, 2008).

One of the most interesting problems in this sector is the Vehicle Routing Problem
(VRP), which is a transportation problem where goods are delivered from a central
depot to a set of customers, as shown in Figure 1. Several constraints, such as vehicle
capacity, allowed working period (e.g. driver’s shift), time windows imposed by
customers where the service can be performed, etc., should be satisfied. The aim is
to design a set of minimum cost routes starting and ending to a depot of a fleet of
vehicles serving a set of customers with known demands and service costs (Laporte,
1992).

Figure 2 Vehicle Routing Problem

However, many variations on this classical problem exist; usually created by having
different constraints, like the one studied in this thesis, where it is added an extra

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND [IMPLEMENTATION OF AN OPTIMAL
APPROACH]

parameter that is the frequency of service to each customer. More specifically, we
are solving a problem, related to VRP, which concerns the frequency of service in
retail distribution networks. The problem herein presented is about the design of a
set of minimum cost routes starting and ending at a depot for a vehicle serving a
variable number of times a group of variable customers and where minimum
demands and service costs are given. The algorithm’s output is the optimal route
based on the set of constraints that include but are not limited to the total time of
travel (route length), the maximum capacity of each vehicle and the optimal number
of visits to each customer.

The herein discussed model has been developed by the DeOpSys team of the
University of the Aegean; where in Asimakopoulos (2006) thesis was presented a
MATLAB tool for maximizing the total profit earned by delivering goods to the retail
network’s customers during a specified time window and within the capacity of the
used depot. In that implementation, no results were returned when handling more
than eight customers and the overall execution time seemed to grow exponentially.

The idea in this second approach of the problem is, to develop for the given
optimization method a new algorithm that keeps the same mathematical model but
can be executed for more clients and days giving results faster than the previous
implementation. In other words the goal is to minimize the execution time by
lowering the algorithm’s complexity. If this can be achieved then a fully functional
software application for vehicles routing could be developed.

Therefore, primary goal of this thesis is to optimally solve the problem for a greater
number of clients. More specifically, research will be performed on the restrictions
and parameters that raise the problem's complexity and computational time in order
to find ways to minimize it.

Finally, a set of methods and techniques will be implemented to get the optimal
solution faster and for a larger set of clients. The implementation will be a software
application that takes all the delivery network's parameters as input data and
returns the optimal routing solution. Emphasis is given on the reduction of the
computational time on order to be applicable on a software application.

Thesis Structure

The remainder of the thesis is structured as follows:

In Chapter 2 the theoretical background of the presented method is analysed,
starting from general notions like Delivery Networks and Linear Programming Theory
to the crucial for this method, Branch and Bound algorithm and the optimization
methods for computing the rate of visits in retail distribution networks developed by
other researchers.

Introduction

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

In Chapter 3 the proposed solution for computing the frequency of service in retail
distribution networks is presented by describing the problem and formalizing it
through mathematical equations that describe the objective function and the
restrictions that are set.

In Chapter 4 the usage of V-RED is described along with experimental results of its
application in comparison with those provided from the previous implementation by
Asimakopoulos (2005).

Chapter 5 contains information about the requirements analysis and software
architectural design of the software tool — V-RED, the implementation process
followed for developing V-RED, its main components, the algorithm used to
implement each step of the method and the modeled behavior of the system under
normal and exceptional circumstances.

Finally, in Chapter 6 are presented the conclusions of the overall thesis and an
evaluation of the performance of the newly developed tool, along with directions for
future research.

In the Appendix are presented the processes to certify the correctness and the
reliability of the developed software along with test scenarios that prove that the
provided results are always the same given specific inputs and exactly those that
were expected to be based on the analytical solution of the problem.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

2 Theoretical Background

I 2.1 Introduction

This chapter deals with the theoretical background needed to analyze the problem
of the definition of optimum visit rates in distribution retail networks and develop a
software tool that will be able to solve the problem in a timely manner. For this
purpose basic notions of distribution networks and linear programming theory are
studied. Special focus is given to the Branch and Bound method including its policies
and characteristics and the Revised Simplex Method. Finally, are presented the most
common optimization methods for computing the frequency of service in retail
distribution networks.

I 2.2 Distribution Networks

Companies need to be competitive in order to be sustainable; a common way to
accomplish that is by analyzing the supply chain in order to improve the customer
service level without an uncontrolled growth of costs. This is achieved through the
optimization of the flows of goods through the producer network, also called in the
literature distribution network, from the supply points to the demand points,
essentially the customers of the retailer when we refer to retail distribution
networks. More precisely, the goal is to select the optimum numbers, locations and
capacities of plants and warehouses to open so that all customer demand is satisfied
at minimum total costs of the distribution network (Amiri, 2006).

Distribution network design problems are core problems for every company because
they involve strategic decisions which influence tactical and operational decisions. In
particular, they involve facility location, transportation and inventory decisions,
which affect the cost of the distribution system and the quality of the customer
service level (Crainic and Laporte, 1997).

A distribution network analysis has two main axes: the optimization of the flows of
goods: where we consider an existing distribution network, and we aim to optimize
the flows of goods through the network; and the improvement of the existing
network: where the goal is to choose the best configuration of the facilities that
consist the network in order to minimize the overall cost while the company’s goals
are satisfied. Usually, distribution network problems involve both kinds of analysis
(Ambrosino and Scutella, 2005).

In our case, given a specific retail distribution network, comprising of a depot, a
vehicle and a variable number of customers residing in different locations, we aim to
find the optimum route and number of visits in order to have the maximum sales
within a specific time window and with minimum overall cost. Thus, it is a problem

Theoretical Background

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

of optimization of the flows of goods through the network. It has its bases in the
well-known Travelling Salesman Problem (TSP) that belongs to the combinatorial
optimization domains and has been in depth studied in operations research and
theoretical computer science. In the TSP given a list of cities and their pairwise
distances, the task is to find a shortest possible tour that visits each city exactly once.
In our case we have a few twists on this basis. First of all we can and should make
multiple visits to our customers\cities; secondly, we want to know not only the
shortest path but also the optimal number of visits to maximize profits.

I 2.3 Optimization Techniques

I 2.3.1 Linear Programming Theory

The general linear programming problem in standard form can be stated as follows
(Kolman and Beck, 1980):

Find values xi, x5,...x, which will

Maximize z=c1X1+CoXp+...4+CpXp

Subject to the constraints
011x1+012x2+..al,,x,,sb1
021X1+022X2F..A2pXn
C7m1X1""C’m2X2""--amanSbm
x.20,j=1,2,...,n

Where the inequalities represent the constraints and the function z is the objective
function.

A linear programming problem in standard or canonical form can be compactly
a;; - Qip X1 b,

described by matrix notation. LetA =[: :], x=[:], b =[:]and
Am1 *° Qmn Xm bm

€1
c=[:] then the linear programming problem can be written:
CTL

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Find vectorx € R"
Maximize z=c" x

Subject to the constraints

An inequality constraint (< form)can be converted into an equality constraint using
slack variables, that are positive numbers that are added to the left side of an
inequality so that they effectively ‘take up the slack’ between the left side and the
right side of the inequality.

When we have constraints with equalities “=” the artificial variable technique is used
to transform the problem in standard form. This technique introduces a dummy
variable, called artificial variable into each constraint that is in equality form and
assigns an overwhelming penalty to having added this positive artificial variable by
changing the objective function.

In case that we have constraints with inequalities in “>” form, we add an artificial
variable as in the equalities case and subtract a surplus variable from its left side.

The Simplex Method

The Simplex Method is "a systematic procedure for generating and testing candidate
vertex solutions to a linear program" (Gill, Murray and Wright, 1982). The algorithm
to solve the general linear programming problem in its standard form, using the
Simplex Method is briefly depicted below (Hilier and Lieberman, 2005):

e 1% Phase-Initialization:
a. Introduce slack variables.
b. Select the decision variables to be nonbasic variables
c. Select the slack variables to be the initial basic variables
e 2" Phase-Optimality Test:
a. Are all the coefficients of the row corresponding to the objective function
nonnegative?
b. If yes, then the current solution is optimal and the process stops.
c. If not, then go to next iteration (see 3rd phase).
e 3" Phase-Iteration:
a. Determine the entering basic variable by selecting the variable with the
negative coefficient having the largest absolute value.
b. Determine the leaving basic variable by applying the minimum ratio test
(minimum of ratio side divided by corresponding positive element of pivot
column).

Theoretical Background

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

The Two Phase Method

There are two methods to solve linear programming problems that are not in the
standard form, namely the big-M method and the two-phase method. These
methods are used in cases that the linear programming problem contains constraints
that are in “equality” or “greater than” form. The only deference between the big-M
method and the two-phase method is in the formulation of the objective function
and the ease of use in computer based calculations. The algorithm of this method is
described below (Hilier and Lieberman, 2005):

e 1% Phase-Initialization: Revise the constraints of the original problem by
introducing slack, surplus and artificial variables as needed to obtain an obvious
initial solution for the artificial problem.

e 2" Phase: Find an optimal solution for the artificial problem.

min z= Y artificial variables , subject to revised
constraints

If phase 1 ends with all artificial variables driven to zero, then the second phase

can be launched.

e 3" Phase: Find an optimal solution for the real problem, drop the artificial
variables and starting from the optimal solution obtained at the end of phase 2,
use the simplex method to solve the real problem.

The Revised Simplex Method Procedure

Revised Simplex Method is a modification of the well-known simplex method. The
Revised Simplex Method describes linear programs as matrix entities and presents
the Simplex Method as a series of linear algebra computations. Instead of spending
time updating dictionaries at the end of each iteration, the Revised Simplex Method
does its heavy calculation at the beginning of each iteration, resulting in much less at
the end. Based on the nature of data of the initial problem, iterations of Revised
Simplex Method can but not necessarily are, faster than the standard simplex’s
iterations.

The general rule is that large and sparse linear programming problems are solved
faster and with the Revised Simplex Method, because it is based on calculations
made directly on the inverse of the basis matrix. This is the feature that gives
consistent advantage in cases where the number of constraints is much lower than
the number of variables and results in minor time and memory requirementsinvalid
source specified..

If we represent the m non zero values in a basic solution, in other words the basic
variables, as a vector xgand the corresponding columns of A (see section 3.3.1) are

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

used to create an m x m matrix B and the result of the objective function is the cg

Ci1
=[:]vertex then it follows that:
Cim

b = Bx,
xg=B71b
and
Z = CiXp

Using the above notations the Revised Simplex algorithm consists of the following
steps, as visualized in Figure 2:

VR

1. Determine Entering
Variables

~

RGN

5. Determine New Basic

0

>_

2. Is a Better Solution 3. Does a Valid §-ratio 4. Determine Departing -
. ; . Solution and Perform
Available? Exist? Variable .
Next Iteration
N N
NO NO
Current Solution is No Feasible Solution
Optimal exists
STOP STOP
N N

Figure 3 Revised Simplex Method

1. Define the entering variable by choosing the variable that will cause the
greatest increase in the objective function.

FIND jTHAT MINIMIZES c}B~'4; — ¢;

2. If all the parameters of the objective function are non-negative then an
optimal solution has been found, so stop execution.

IFV j (cB~'A; — ¢;) = 0 THEN STOP

3. Determine the departing variable by choosing the variable with the smallest
non-negative O-ratio.

t, = B~'4,

Theoretical Background

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

, Xi
0 — ratio = ‘T/trp for every t., >0

where p is the index of the entering variable

If there is not any value with non-negative 0-ratio the problem does not have
a feasible solution, so stop execution.

IF B-ratio> 0 THEN NO FEASIBLE SOLUTION

4. Determine the new B from the previous one and the departing and entering
variables.

Br:elw = Bo_l}iE
1 Aq1 0
E=]|: : :
0 Aqm 1

where q is the index of the departing variable

5. Determine the new xg and go back to step 1.

XB = B_lb

I 2.3.2 Branch and Bound

Branch and Bound (B&B) is by far the most widely used tool for solving large scale
NP-hard combinatorial optimization problems. It is used in cases that we cannot
afford to enumerate all possible combinations and get the solution. It is a divide and
conquer method where we divide a large problem into a few smaller ones, which is
the “branch” part. The conquering part is done by estimating how good solution
could be given by the selected node’s sub-tree, which is the “bound” part.

The idea is to partition the feasible region into more manageable subdivisions and
then, if required, to further partition the subdivisions. For each subdivision a new
linear program can be solved by adding one additional constraint. This constraint
marks the subdivision’s space. The decision on the subdivisions is based on the non-
integer variables of the solution. Each non integer variable partitions the solution
space into two subdivisions. This procedure is repeated until an integer solution is
obtained.

The efficiency of the method depends strongly on the node-splitting procedure and
on the upper and lower bound estimators. Ideally the procedure stops when all
nodes of the search tree are either pruned or solved. At that point, all non-pruned
sub regions will have their upper and lower bounds equal to the global minimum of
the function.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND [IMPLEMENTATION OF AN OPTIMAL
APPROACH]

In general, there are a number of ways to divide the feasible region, and as a
consequence there are a number of B&B algorithms. Thus, B&B is an algorithm that
each time that is implemented needs several parameters to be filled in and there are
numerous available choices for each case. These parameters should be carefully
chosen in order to get the desired behavior. This is the reason that several
techniques for the design of efficient B&B algorithms have emerged over the years.

Definitions

e Node: represents any partial or complete solution. Partial solution is represented
with a node when each tree level defines a specific part-variable of the problem.

e Leaf node: a complete solution where all variables are known and no other
branching is possible. Every leaf node has associated an actual value of the
objective function along with the corresponding values for all the variables of the
problem. Leaf nodes are also those that have given an infeasible solution.

e Bud node: a partial solution, either feasible or infeasible. It is a node that might
grow further but we don’t know it for sure, yet.

e Bounding function: Each bud node has associated a bounding function. The
bounding function is used to estimate the best value of the objective function
that we could get by growing the specific node. It is an estimator of the values
that we will compute for the child nodes and it is very important to be an
optimistic estimator. Thus when we have a minimization problem it must
underestimate the actual best achievable result and the opposite in the
maximization case.

e Branching, growing or expanding a node: is the process of creating the child
nodes of a bud node. For every possible value range we create a child node. If we
have a binary tree then when we branch we always create two child nodes one
for the zero value and one associated to the value one. If we have an integer
programming problem, for each variable that is not integer we create a child
node with its floor value and one for the corresponding ceil value.

¢ Incumbent: the currently best feasible solution. Each time that we find a feasible
solution we compare it with the incumbent and in case that is better than the
current incumbent we update it with the new value. Usually when the process
begins we don’t have an incumbent and thus, the first feasible solution found
becomes the incumbent.

e Partitioning policy: the rules used to decide when and how the branching will be
effectuated.

e Node selection policy: the rules to select which is the next node to be visited.

e Variable selection policy: the rules to select which variables should be analyzed
and how in order to create branches.

Theoretical Background

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

e Fathoming: when should be stopped the growth of a node, it depends on the
current solution and its magnitude relation with the incumbent along with the
type of variables that constitute that solution.

e Terminate rule: when should we terminate the algorithm execution either a
solution has been found or not.

Algorithm

Let us have an integer linear programming problem, to solve it we will use the
Branch and Bound algorithm (Forrest and Tomlin, 2007), as it is depicted in Figure 3.

s Step 1: Having an integer programming model we create its linear

programming relaxation by dropping the requirement that all variables must

be integers.

Solve LP

Feasible

fathomed Solution ?

by infeasibility

Have all sub
problems Solution >
been Incumbent?

analyzed?

EHEL
variables
integer ?

YES —‘ uidate Incumbent‘

fathomed
by integrality

ino
fathomed :
by bound :

Termination Branch tree
T - Optimal Solution = |**** Generate

Figure 4 Branch and Bound Flowchart

NO i

®,

*» Step 2: Solve the corresponding linear programming problem.

o Step 2.1: If no feasible solution exists, then the algorithm stops. The
response returned is that the initial integer linear problem does not
have a feasible solution.

+»+» Step 3: Compare the optimal solution to the best known feasible solution.

o Step 3.1: If all the variables of the solution are integer then this is a
possible optimal solution of the initial problem. Check if the found
solution is greater from the last known feasible solution (for a
maximization problem, the opposite in case of minimization). If yes,

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

then set the current solution as the best solution we know
(incumbent) else fathom the branch.

o Step 3.2: If not all the variables of the solution are integers, check if
the found solution is greater from the last known feasible solution (for
a maximization problem, the opposite in case of minimization). If yes,
then divide this subproblem further and repeat.

Consequently, a subproblem is fathomed in the following cases:

e The relaxation of the subproblem has an optimal solution but it is not greater
of the current best solution (in case of maximization).
e The relaxation of the subproblem has no feasible solution.
e The relaxation has an optimal solution with all the variable values integer (or
binary in case of binary problem).
A subproblem is branched when the solution found is greater (in case of
maximization) than the incumbent but not all the variable values are integer (or
binary for binary problems). The way that is branched is defined by the variable
selection policy.

Partitioning policy

As we discussed above the partitioning policy deals with all the issues related to
branching a node of the tree. Based on the selected policy it is set the condition
based on which the branching will take place. There are several partitioning policies
to select from. The selection depends on the problem type and often is more
empirical than rule based.

Variable Dichotomy

Suppose that solving the relaxed linear problem returns an optimal solution where
not all variables are integer. The idea in variable dichotomy is to create for each non
integer variable xi two branches, one corresponding to the ceiling value of the
variable[xy], let it be d+1 and the other to the floor value|xy], d. The linear problem
of each branch will be updated by adding a new constraint, x, < dand x, = d + 1.
We then repeat the procedure for each of the two linear problems obtained(Dakin,
1965).

Generalized-Upper-Bound Dichotomy (GUB)

Suppose that solving the relaxed linear problem returns an optimal solution where
there are one or more fractional variables and the initial problem contains the
constraint}ieqX; = 1, then exist Q; andQ, such that Q = Q; U Q; andYicq, Xj =
1,ZteQ2 x; = 0, (Beale and Tomlin, 1970). This way each time we branch by creating

Theoretical Background

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

two sets of possible values, all variables that can get the value 0 go to the Q, set and
the rest to the Q set.

Multiple branches for bounded integer variable

If the optimal solution computed by solving the relaxed linear problem contains
fractional variables x; € {0, ..., 1} then | + 1 equations and corresponding branches
can be created. Each branch will havex; = k where k = 0,..,1 (Land and Doig, 1960)

. Actually, this method creates branches for each fractional variable. The number of
branches per variable is defined by all the possible integer values that the variable
can get. It is very slightly better than the full enumeration of the possible solutions.

Node selection policy

Node selection policy refers to the way that the next node to be visited in the B&B
tree will be selected. The selected node contains the next sub-problem that will be
solved in the process to find a global optimum for the initial problem. It is a critical
policy due to the fact that strongly affects the computational time of the algorithm.
Many general and problem specific policies have been proposed in the literature.
Here in we present the most commonly used both due to their low computational
complexity and their good results in practical size problems.

Breadth-First Search method

The Breadth-First Search method is a FIFO way of traversing a tree, since we examine
each level’s nodes and then continue to the next level, starting from the top of the
tree and moving towards the leafs.

Qﬁ Root

Figure 5 BFS Search in Binary Tree

Depth-First Search with Backtracking method

This method examines in depth the tree, branch by branch and each time that
encounters a leaf node goes to the closest unexplored node till no unexplored nodes
have been left. Starting from the root node selects a child node and examines it; the
process is repeated till no unexamined children exist. Then it goes back to one or
more past levels to find the next unexamined node and start the same process again,
essentially it is a LIFO method, as shown in Figure 5.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Q’ Root

Figure 6 DFS Search in Binary Tree

Best-Bound method

This policy examines the linear objective value of the nodes and chooses the one
that has the best value. All nodes that have linear objective value less than the
incumbent will be fathomed. It is based on the principle that if the value of the linear
problem is less than the incumbent then no integer value of the variables will give a
greater result and thus there is no need to examine its children nodes. This policy
minimizes the total number of explored nodes.

Sum of Integer Infeasibilities method

The sum of integer infeasibilities at a node is calculated as:

s = z min (x; — [ij, 1—(x— [xj]))
Based on this policy the node to be visited is the one having either minimum sum of
infeasibilities in the maximization problem or maximum sum in the opposite case. If
the solution is feasible the sum of the infeasibilities is equal to zero and no further
branching of the node is needed.

Variable selection policy

After having defined how are we going to examine the nodes we have to define the
rules based on which from a node we will create children nodes. Clearly it is a critical
the choice of branching variables and obviously affects the running time of the
algorithm. Many different approaches have been developed and tested on different
types of integer programs. Some common approaches are listed below.

Driebeck-Tomlin Penalties(Driebeek, 1966)/ (Tomlin, 1971)

Penalties give a lower bound on the degradation of the objective value when the
under examination node will be branched. The penalties are the cost of the dual
pivot needed to remove the fractional variable from the basis. Once the penalties
have been computed, a variety of rules can be used to select the branching variables.
A penalty can be used to eliminate a branch if the LP objective value for the parent
node minus the penalty is worse than the incumbent integer solution. Penalties are
out of favor because their cost is considered too high for their benefit.

Theoretical Background

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

Pseudo-Cost Estimate (Benichou et al., 1971)

Pseudo-costs provide a way to estimate the degradation to the objective value by
forcing a fractional variable to an integral value. Pseudo-costs attempt to reflect the
total cost, not just the cost of the first pivot, as with penalties. This is a sophisticated
rule in the sense that it keeps a history of the success of the variables on which
already has been branched. Pseudo-costs are not considered to be beneficial on
problems where there are large percentages of integer variables.

Pseudo-Shadow Prices (Land and Powell, 1979)

Similar to pseudo-costs, pseudo-shadow prices estimate the total cost to force a
variable to an integral value. The branching variable is chosen using criteria similar to
penalties and pseudo-costs.

| Strong Branching (Applegate et al.,, 1995)

The idea of Strong Branching is to test which of the fractional candidates gives the
best progress before actually branching on any of them. This test is done by
temporarily introducing a lower bound and subsequently an upper bound for the
examined variable with fractional LP value, and solving the corresponding linear
relaxations.

Most/Least Infeasible Integer Variable (Brunetta, Conforti and Fischetti, 2000)

In this approach, the integer variable whose fractional value is farthest from (closest
to) an integral value is chosen as the branching variable.

Priorities Selection (Smith, 2004)

Variables are selected based on their priorities. Priorities can be user-assigned, or
based on objective function coefficients, or on pseudo- costs. This policy strongly
depends on the kind of problem to be solved and has been used mainly in
telecommunications problems.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

3 The Optimal Solution for computing the frequency of service in retail
distribution networks

I 3.1 Introduction

This problem was initially introduced by Asimakopoulos (2006) as an Undergraduate
thesis developed by the DeOpSys team of the University of the Aegean. The main
idea is to define the frequency of service over a given set of customers and fleet of
vehicles in order to maximize the total profit.

To define the frequency of service we need to know the product needs of each
customer assigned to the route, or in other words the demand. In our case, the
demand is not a constant number but it is proportional to the number of visits to the
client. To be more precise, we have a minimum demand for each client and the
possibility of extra sales after the first visit. However, there is an upper limit to the
possible number of visits to each client during a specific time window. This upper
limit is given as input.

This limitation arises from the fact that there is a specific amount of available
products to sale and at the same time when the rate of demand reaches its peak all
next visits to the same client will not add any surplus of profit. This relationship
between the frequency of service to a customer and the rise of the demand is shown
in Figure 6.

S
>
- n; .
Lmin Umax n

Figure 7 Relation of demand to visits per client
The following assumptions that form our operating scenario are considered:
o If the number of visits equals the minimum possible, n; .~ then the demand

isDthat is the initial demand of this client covering the customer’s needs for
the referred time frame.

o Each subsequent visit will cause an increase on the demand D;with a
standard slopek;.

The Optimal Solution for computing the frequency of service in retail distribution FX)
networks

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

0o When a customer has been serviced for the maximum required number of
visits, i.e.n; _, then the demand D; _ would be the maximum possible for
that specific customer and time frame.

0 All subsequent visits after the n; _ will not affect the demand.

The objective is to define the number of visits per client in order to maximize the
overall profit in a specific time horizon (e.g. 5 days). Figure 7 represents the period
and incremental income from a clientiin relation to the number of visits. The
following assumptions are considered regarding the incomes involved:

o LetI; denote the total income of a specific client in a predefined time period.
The value of this income is proportional toD;.

o Thus, I; = pD; where p is the profit parameter.

o Incremental incomes are given by the equation: I = pD}.

o Whenn; <n;__thenl{ = pk;.

period income

incrementalincome

>
>

nimin nirrmx n;

Figure 8 Relation of Income to Visits

From the above, it is obvious that by visiting each customern; times the sold
goods are maximized and thus the profit. However visiting each customern;
times is not easy to realize when there is limited number of available vehicles and
there are time constraints.

Based on the above considerations, the following section describes a simplified
version of the problem, focusing on the function that describes the profit and the
limitations that are set by the problem constraints. Furthermore, the mathematical
formulation of the problem will be presented and analyzed.

I 3.2 Description of the Problem

Let N be a network consisting of a set of nodesV = {0,1, ...,n}, being represented
by a graph G and 4 a set of links that interconnect the nodes, which we will call
edges from now on. The set of nodes represents the customers of the retail network
that should be visited with the exception of node 0 that represents the depot that is

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

the base of the fleet of vehicles. Every edge (i, j) € A is related to the cost ¢;; to go
from nodeito nodej, Vi,j € V except wheni = jthatc;; = 0. LetT be the time
window being analyzed and n; the number of time periods in which is divided.
Based on the duration of each time period is defined the maximum distance C that
can be driven in that time period by any track of the fleet.

The Optimal Solution for computing the frequency of service in retail distribution RBefil
networks

[FREQUENCY OF SERVICE

AN OPTIMAL APPROACH]

IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF

Definitions
Graph G = (V,A) | describing the retail network
is the set of vertices, representing all the customers of the
v network plus the depot
is the set of edges, representing the possible routes for
A going from one customer to the other or the depot
v, = V\{0} represents all the customers of the retail network
T is the time window horizon
defl2 . ng} Is a tFme per.iod of T. Each route should be completed in
one time period and not more.
] Is a customer represented by a node of graph G,i € 1,
' and thus a selling point where goods are delivered.
p Is a unitary profit assigned to each unit of goods.
Is the cost to go from nodeito nodej,Vi,j €V or in
Cij other words the cost of the vehicle to drive from customer
i to customeryj.
Is the number of times that the customer i will get
u delivery of goods during a specific time window, T.
Is the maximum number of visits to customer i, after
fmaz which no extra profit will be earned.
Is the minimum number of visits to customer i, to keep
fmin the required service level.
Dio Is the demand corresponding to n; . visits to the
customer.
Did Is the demand of customer i during time periodd.
. Is the increase of demand rate, for each visit after the
' minimum number of visits.
c Is the maximum total cost that can be spent during a time
period.
Is the capacity of the vehicle in terms of units of sellable
¢ goods.
if i > j €route for time section d
=1, .
otherwise

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

if customer i will be served during time section d
a_ (1
Yo = {0}

‘ Objective function

otherwise

The following model has been developed by the DeOpSys team of the University of
the Aegean (Asimakopoulos, 2006). The objective function aims at the optimization
(i.e. maximization) of the total profit gained by delivering goods to the customers
during a specified time window and within the overall planning horizon (e.g. shift).
Thus, the objective function is formed by two main parts and can be written in a very
simple form as follows:

max(profit) = max(income — cost)

Assuming that cost is denoted as c;; and there is a decision variable x;; that
represents the product of distance between customer iand customer j and the cost
per unit of distance, then the total cost can be seen as:

=35 S o

=1 i€V JEV
li]

Let D? be the initial demand of customer i,y{ a binary decision variable that gets as
value 1 when the customer i will be visited the day d, n; . the minimum number of
visits to customer i, the raise of demandk;, after the first n; _ visits and p the profit

per unit, then the income part of the objective can be stated as:

nqg
income = Z D? + z yl-mn . |ki|p
a=1

i€V

Consequently, the mathematical expression describing this objective is presented
below:

0
i€V, =1iev]EV

Now by breaking down each of the two parts of the objective function we can get a
more detailed view of its components.

The Optimal Solution for computing the frequency of service in retail distribution BEE]
networks

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

Firstly, to compute the incomes we need to know the number of visits ZZilyidthat
will be effectuated to each customer, during the time window and how many of
those are above the minimum, Y.0%, yf —mn; . .The two cases are distinguished
because on those visits that are above the minimum we should apply the
incremental factor k; to get the extra sales that we will due to visiting the customer
more times than the essential. Thus the sum of incremental incomes and period
incomes will be:

ng nd
Dy + Z%’i—"imin kilp=Dip+ z%d_nimi” b
a=1 a=1

This way we have computed the incomes from one customer and all the days of the
time window in question. By applyingZiEVu , we can calculate the total income for

all the customers of the retail distribution network that is being examined.

Secondly, in order to compute the total cost we need to compute the cost of going

from node i to node j multiplied to the existence or not of this edge in the route of
d
ijs
by findint the),jey and the same for all edges starting from node i as),y and

the specific time period asc;;x;;, then compute it for all route edges ending at nodei

i%)
finally computing]the total of all time period comprising the specified time window
asy .

‘ Constraints

Yjev,izj X = ¥it Vi€V, vd €{1,..,ny4} (3.1)
Yjev, iz X = ¥ VieV,vd €{1,..,ny} (3.2)
Yjevxg; =1 vd € {1, ...,ny} (3.3)
Yievxp =1 vd € {1, ...,ny} (3.4)
Yies Ljesxy < Yiesyd — 1 VS subset of V,,vd € {1, ...,n4} (3.5)
Yiev Ljev,iz) cijx{ij <C vd € {1, ...,ny4} (3.6)

n < Yotivi<mg,. ViEeV, (3.7)
Yiev, DivE < Q vd € {1, ...,n4} (3.8)

xf: ={0,1} (3.9)

yi ={0,1} (3.10)

Constraint (3.1) specifies if the vehicle visits customer i during time period d then no other
edge contained in the route will end to this node in the same time period. Next, constraint
(3.2) ensure that If the vehicle visits customer i during time period d then no other edge
contained in the route will start from this node in the same time period. Constraints (3.3)
and (3.4)ensure that only one edge contained in the route of a specific time period starts

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

from and ends to the depot. Constraint (3.5) specifies that each time period’s route should
not contain cyclic paths. Constraint (3.6) force that the total cost of a time period’s route
cannot be greater than the limit cost C set by the problem’s initial data. Constraint
(3.7)specifies that the number of visits to each customer should be between a minimum of
n; . and a maximum of n; _ .The constraint (3.8) guarantee that no day the capacity of
the vehicle is surpassed by the goods that should be delivered based on the designed route.
Here should be noted that:

n; in ng =n in

i = Nq
0 d
Di + Z yi - nimin kinimin = ni S rlimax
L \&)

This constraint is not taken into consideration in the herein proposed solution. Finally,
constraints (3.9) ensure that each edge i—j either it is contained to the route
corresponding to time period d or not, thus the variables x;; are binary and constraint (3.10)
that each customer i either gets a delivery in time periodd or not, thus the variables y; are
binary.

I 3.3 Optimization Method

The above described problem is a binary linear programming optimization problem
and our aim is to solve it using a low complexity and high velocity algorithm in order
to get quick solutions in practical sized instances of the problem. Aiming at this goal
the proposed solution combines branch and bound method with revised simplex and
relaxation techniques. More specifically, the steps followed to solve any instance of
the above problem are depicted below:

8. Get instance’s input
a. Dl-O:InitiaI demand per customer, which is the demand corresponding to
Nirnin
n; .andn; - the minimum and maximum allowed number of visits
per customer.
c. k;: Rate of raise of demand for each visit to customer after the first n;
visits.
d. ¢;;: Distance in km between each pair of customers per cost/km, usually
the coordinates of each customer’s location are given and the distance is

computed based on the equation./(x; — x1)2 + (y, — ¥1)2.
e. p:Theincomes from each visit to any customer.
9. Formalize the problem in order to acquire the form shown in previous section:

The Optimal Solution for computing the frequency of service in retail distribution &}
networks

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

{ 1
max| Z z y& — n; . |ki|lp— 2 Z CijXij |
under constraints:

> xi-yi=0

JEV,i%j

Z xfh—yl=0

JEV,i#]

PR

iES IES JES

Z z c”xUSC

€V jEV,iz]

ng

d
Z Vi SN,
d=1
ng

d
Z yi Z nlmin
d=1

10. Transform the problem in its augmented form by adding slack, artificial variables
and subtracting surplus variables as needed. Specifically, constraints 1,2,3,4 are
equalities and thus an artificial variable will be added to each of them; constraint
6 and the second part of 7 are less equal and thus only a slack variable will be
added for each one and all the rest are greater than and will be needed to
subtract a surplus variable and add an artificial. Here is noted that whenever a
negative value exists in the right part of the inequality, first we multiply it by -1
and then we start doing the above process. After all these transformations our
optimization problem will have the following form:

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

+A4,+A4, +A3 + A,

e —

I[ng ng
maxi z DY + Z yt—-n, . |ki|p— Z cixf
| d=1

i€V, d=1 i€V jEV
i#]
+ As + Ag
under constraints :
d d —
Z Xji—Yi +A41=0
JEV,i#]
d d
Z xij _yi +A2 = 0
JEV,i#]
JEV
z x]% + A4 =1
JEV
Sty sz
ies iES jES
d
z Z Cijxij +Sl <C
i€V jeV,i#j

ng
1+8,<n
Yi 2SNy
d=1
ng

Z yi+Ag—Py=m;
d=1
xf, vl =1{0,1}

11. Relax the initial problem by removing the constraint that demands the solution
variables to be binary variables.

12. Solve the relaxed problem using Revised Simplex Method. Original simplex
method calculates and stores all numbers in the tableau without needing all of
them. On the other hand the Revised Simplex Method is more efficient for
computing that does its heavy calculation at the beginning of each iteration. The
goal of this method is the ordering of all calculations so that no unnecessary
calculations are performed. It uses Gauss — Jordan to compute the inverse of a
matrix and the rest are simple multiplications between matrices.

The Optimal Solution for computing the frequency of service in retail distribution Be¥/
networks

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

Two Phase
Standard form Solve Method
Formalize Augmented form Branch Revised Simplex
problem and
Relaxation Bound Branch OR

Fathom

Figure 9 Solution Steps

13. Furthermore, in our case the problem always contains artificial variables and
thus we need to either use Big M method or Two Phase to solve it. In order to
have more accurate calculations through our software, the Two Phase method
was selected. Using this method first a minimization problem using only the
artificial variables is formulated and solved, if the result and all artificial variables
get a zero value then the initial problem has feasible solution and all columns
corresponding to artificial variables are dropped and the initial problem is solved
using revised simplex otherwise the problem does not have a feasible solution.

14. Use the solution along with the relaxed problems as initial values for the branch
and bound algorithm and start the branching and bounding process. This is done
by defining the branching policy and fathoming policy. Branching policy,
describes how is decided which branches should be created for each node, that
in our case is to create for each binary variable with value different from 0 or 1
two branches, one for each case. Fathoming policy defines how is decided which
branches should be fathomed based on the results that give, if the current
solution is less that the incumbent or no feasible solution was found then the
branch is fathomed.

15. If no solution has been found and we have reached a tree depth equal to the
number of unknown variables in the objective function then return the current
incumbent solution and terminate the execution.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

4 Experimental Results

I 4.1 Introduction

In this section are presented the results of the implemented method when
compared to the execution of the corresponding built-in libraries of MATLAB, as they
are presented in Asimakopoulos (2006) thesis. To be more precise, the source code
used in Asimakopoulos thesis was run with the same input data with the herein
presented software tool and the same environment in order to get the comparison
results. The goal is to prove that by implementing the Branch and Bound algorithm
using a middle level language as C++, we get faster and more reliable results than
using standardized high level development environments, as MATLAB. However, the
ultimate target is to achieve solutions of practical sized problems in meaningful
execution time.

The machine used to test the performance of the two applications has the following

profile:
e Intel Core Duo T2300 (1.66 GHz, 667 MHz FSB, 2MB L2 cache)

e 2048 MB DDR 266
e Windows 7 Prof.

Performance was tested by counting CPU time for each routine of the algorithm and
excluding user time and I\O operations. I\O operations were not included due to the
different implementation of the two application, the one using input and output files
and the other providing results exclusively to the display.

Furthermore, to get reliable results each set of input data were executed 100 times
using each application and the average time was used as execution time, in order to
avoid external interferences that could cause misleading results.

Here, should be noted that the source code given, as basis for the comparison, when
run in MATLAB didn’t return any results for any case with more than 6 clients, thus
the corresponding values from Asimakopoulos’ thesis were used for the comparison.

Experimental Results

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

I 4.2 Results

I 4.2.1 2 -4 Customers

Table 2 Two - Four Customers Results

2 CUSTOMERS 3 CUSTOMERS 4 CUSTOMERS
DAYS V-RED MATLAB V-RED MATLAB V-RED MATLAB
(Sec) (Sec) (Sec) (Sec) (Sec) (Sec)
1 0,01 0,04 0,01 0,06 0,03 0,12
2 0,04 0,05 0,04 0,08 0,09 0,22
3 0,07 0,06 0,08 0,12 0,21 0,38
4 0,08 0,08 0,15 0,17 0,39 0,59
5 0,09 0,08 0,23 0,26 0,64 0,81

I 4.2.2 5 -6 Customers

Table 3 Five - Six Customers Results

5 CUSTOMERS 6 CUSTOMERS
DAYS V-RED MATLAB PROFIT V-RED MATLAB PROFIT (€)
(Sec) (Sec) (€) (Sec) (Sec)
1 0,07 3,43 2031,68 0,30 14,22 2831,68
2 0,38 65,54 3091,35 0,23 75,43 4703,35
3 0,99 145,55 4151,03 2,60 178,65 6575,03
4 1,88 287,54 | 5210,71 4,96 312,43 8446,70
5 3,15 642,86 6270,38 8,18 709,33 10318,38

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:

ENHANCEMENT AND
APPROACH]

IMPLEMENTATION OF AN OPTIMAL

700

600 ’

500 //
3 400
=

8
& 300

200

100
0 J/t/ e —
3 5

=4=\-RED
== 888 MATLAR

[=-]
(=]
(=]

L= e |
[T]
[R |

L
(=]
(=]

Seconds
W
==
==

[
[=]
(=]

—
[
(=)

i\
&+
3

==V\-RED

== BEB MATLAB

Customers

Figure 10 Execution Time Comparison 5

Figure 11 Execution Time Comparison 6

Customers

I 4.2.3 7 -8 Customers

Table 4 Seven - Eight Customers Results

7 CUSTOMERS 8 CUSTOMERS
DAYS V-RED MATLAB PROFIT V-RED MATLAB PROFIT (€)
(Sec) (Sec) (€) (Sec) (Sec)
1 0,85 25,56 3356,43 2,61 30,42 3576,00
2 3,04 87,64 5612,32 6,65 98,62 6018,01
3 5,87 189,54 7534,78 18,60 204,45 8460,01
4 12,88 349,53 9145,65 27,32 379,73 10902,01
5 20,87 789,54 | 12126,03 29,14 986,42 13344,02

Experimental Results

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

800 1200
200
700) 1000
/
. 600 / 500
E 500 / 3
600
3 400 y =4=V-RED 3,8-' = V-RED
300
== B&B MATLAB 400 == BEB MATLAB
200
100 200
0 — —% 0 |
1 2 3 4 5
1 2 3 4
D
ays Days
Figure 12 Execution Time Comparison 7 Figure 13 Execution Time Comparison 8
Customers Customers

I 4.2.4 Solution of new instances of more than 8 Customers

Table 5 Nine - Twelve Customers Results

9 CUSTOMERS 10 CUSTOMERS 11 CUSTOMERS 12 CUSTOMERS

TIME PROFIT TIME PROFIT TIME PROFIT TIME PROFIT
(Sec) (€) (Sec) (€) (Sec) (€) (Sec) (€)

1 4,40 3920,33 | 10,20 4220,33 30,80 4795,14 98,50 5487,10
2 12,20 6716,66 | 35,20 7316,66 | 120,60 8270,27 | 444,10 14914,20
3 30,60 9512,99 | 93,40 10412,99 | 245,90 11745,41
4
5

DAYS

54,90 12309,32 | 158,40 13509,32 | 406,60 14845,74
93,80 15105,65 | 235,00 16487,65

I 4.3 Execution Time versus Number of Clients

It was experimentally proven that the best results for the proposed branch and bound
method are given when using the new implementation of the proposed method.

Comparing the above described implementations, the new implementation method, seems
to need significantly less computational effort and it provides better computational results
even when the number of clients is increased. Moreover, tests have been done till 12 clients
and no hanging or long waiting for the results was verified. Further research and
appropriate, more complex, test cases are needed to verify the upper bound of the
problem’s size that can be handled by this implementation.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

5 Software Development

I 5.1 Introduction

In the previous sections the theoretic basis of a software tool capable of solving
maximization problems that can be described by chapter’s four equations was in
detail described. In this chapter we will focus on the software engineering process
used to implement the software. More specifically, we will describe the used
software engineering methods, in other words the structured approaches to
software development which include description of the system through graphical
models along with all the rules and constraints applied to the system’s model.

The herein described software will be analyzed based on the following axes:

1. Specification: what the system should do and its development constraints.
2. Development: production of the software system.
3. Validation: checking that the software is what the customer wants.

The software model used to develop this system is called Component-based and it
stands on the ground that the system is composed by components that are
developed independently and represent specific aspects and functionality of the
system and following are created interfaces to make the components interact to
each other and get the integrated system (Sommerville, 2007).

@Yo

Integration and
Testing

Specification Development

Figure 14 Time spent for each stage of component based engineering

In this case, as shown in Figure 13, after the specification of the requirements and
the development of individual components, there is a great amount of time spent in
the components integration and the system’s testing.

Final aim is to create a good software tool and by saying that we mean that it should
deliver the required functionality and performance to the user and should be
maintainable, dependable and acceptable. More analytically, maintainability is
needed in order to have a tool that can easily be updated so to evolve to meet
changing needs; depend ability so its computational steps and results can be
trustworthy and efficiency because it should not make wasteful use of system
resources (Xu, 2006).

Software Development

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

In the following sections will be described the step by step process that was followed
in order to create the desired software; starting from the initial requirements given
by the mathematical problem itself, the requirement analysis needed to find out
what was the functional specification that would fulfill the end user’s needs, and
finally the system’s design and architecture described using Unified Modeling
Language (UML) models.

I 5.1.1 Use Case Model

Use-cases are scenario-based techniques in the UML which identify the actors in an
interaction and which describe the interaction itself. A set of use cases should
describe all possible interactions with the system.

More specifically, a use case is a technique for documenting the potential
requirements of a new system or software change. Each use case provides one or
more scenarios that convey how the system should interact with the end user or
another system to achieve a specific business goal. Use cases typically avoid
technicalities, preferring instead the language of the end user or domain expert. Use
cases are often co-authored by requirements engineers and stakeholders(Zlindorf,
2001).

A use case contains a textual description of all of the ways which the intended users
could work with the software or system. Use cases do not describe any internal
workings of the system, nor do they explain how that system will be implemented.
They simply show the steps that a user follows to perform a task(MacKinnon, 2003).
All the ways that users interact with a system can be described in this manner.

In the herein presented case each basic step of the process correspond to a use case
and there are both unilateral and bilateral communications among the components,
as shown in Figure 14.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

i D Formulation
AN

<uses> <uses>

3

Objective
Function
Manager

Constraints
Handler

\ /
\ ’
<extends> <extends>

N\ ¥

Solution
Manager

N
/ <extends>

Simplex
Algorithm
Handler

Branch and
Bound Algo
Handler

<uses>

T T <uses> - _ Two Phase
> Method
Handler

Figure 15 Use Case Model

The system aims in computing the optimum frequency of service in retail distribution
networks and in order to achieve this employs the following use cases:

e Problem Formulation: Responsible for handling inputs and based on the given
mathematical formulas transforming those inputs to a valid objective function
and constraints.

e Constraints Handler: It is used by the problem formulation and handles each
constraint in order to dynamically create all the relevant to the specific case
constraints.

e Objective Function Handler: It transforms the generic mathematic formula of the
objective function to an instance specific equation to be used in the following
steps.

e Solution Manager: It is the orchestrator of the optimization process which calls
the rest of the components when and if needed.

Software Development

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

e Branch and Bound Algorithm Handler: It handles the creation of branches and
the fathoming of those that are not helpful, given an initial solution of the
relaxed linear problem.

e Simplex Algorithm Handler: It is a standalone component used to solve general
optimization problems using the simplex algorithm, in cases that inequalities
with greater than or equalities exist in the given constraints, it is extended by the
Two Phase Method Handler.

e Two Phase Method Handler: It is used by the Simplex Algorithm Handler in order
to transform the optimization problem to its standard form.

I 5.1.2 System’s Modules

The herein described software was designed following the modular design
technique. The re-usable components were taken apart and set to be modules with
corresponding interfaces and a coordinator module was used to orchestrate the
process and provide the logic sequences and flow conditions, as shown in Figure 15.

Solution Manager
Problem Formulation Branch & Bound
Objective Constraints Standard Two Phase Branching Fathoming | Optimality
Function Form Method Policy Policy Check

Figure 16 System's Modules

Essentially, we have on top a Solution Manager module that handles I\O and calls
the rest of the modules as needed based on the results that each of them returns
and on the coded logic of the system.

Then we have three main components used to implement the optimization method
concerning the frequency of service in retail distribution networks. The first one is
the Problem Formulation module that gets from Solution Manager the initial inputs
and creates all the internal structures needed to represent the problem in a manner
that the rest of the components can handle it. More precisely, this component uses
two other modules the Objective Function and Constraints modules to achieve its
goals.

The Objective Function module is responsible for creating an array line containing
the objective function coefficients of the specific problem’s instance along with an
array containing the corresponding variable names.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

The Constraints module does the same for all the problem’s constraints, saving them
to two arrays, one used for less than inequalities and one for equalities and greater
than inequalities. Again there is a vertex for the corresponding basic variables that
will be needed by the simplex module.

The Simplex module, as expected, implements the simplex algorithm, supported by
two sub-modules Standard Form and Two Phase Method. The first one is used for
problems that are in general standard form whether the second one is used when
greater than and equalities constraints exist.

Finally, the Branch and Bound module uses three sub-modules, the Branching
Policy, Fathoming Policy and Optimality Check to implement the well-known
algorithm. The sub-modules are pretty much self-explanatory, Branching Policy,
used to decide which branches should be created for each node, Fathoming Policy
used to decide which branches should be fathomed based on the results that give,
and Optimality Check that handles the comparisons of current solution to
incumbent and the termination rules, in the case that no solution has been found
and we have reached a tree depth equal to the number of unknown variables in the
objective function then returns as result the current incumbent solution and
terminates the execution.

5.1.3 Sequence Diagram

UML sequence diagrams model the flow of logic within your system in a visual
manner, enabling you both to document and validate your logic, and are commonly
used for both analysis and design purposes(Glinz, 2000).

Sequence diagrams are typically used to model usage scenarios. Sequence diagrams
are typically used to model usage scenarios. A usage scenario is a description of a
potential way your system is used. The logic of a usage scenario may be part of a use
case, perhaps an alternate course. It may also be one entire pass through a use case,
such as the logic described by the basic course of action or a portion of the basic
course of action, plus one or more alternate scenarios(Bernardi, 2002).

Software Development

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

Problem Branch & Bound
Simplex Handler
Selution Manager Formulation Handler
: ; |
[Instance data 2z i i

Obj function tb

1

1

1

1

1

1

1

1

1

Constraints tb 4 2phase :
= > method i
Initial Basic Sol 0 1
1

1

1

1

1

1

1

1

1

pivot () J

1

1

Solution -
=

Optimality Check

Fathoming Rules

—X

I
|

Optimal Binary:Solution Reached
I

1
I
; >
:
I

A

"0" branch ()

"1" branch ()

4

X X

Figure 17 System's UML sequence diagram

In Figure 16 is depicted the main flow of events for the system in a generic usage
scenario. As shown the Solution Manager initiates the process by posting the input
to the Problem Formulation and receives the partial results each time that Branch
and Bound object checks for optimality.

The Problem Formulation problem is used once per problem solved in order to
transform the given input to specific input data for the rest of the objects.
Essentially, based on the given mathematical model are created the appropriate
objective functions and constraints and saved in arrays in order to be easily handled.

Furthermore, the Simplex Handler is called for the solution of the initial relaxed
problem and each time that a new branch is created in order to generate the
solutions. Each solution is either set to be incumbent in case that is greater than the
current incumbent and fulfills the binary requirement for all the variables or it is
discarded through the fathoming policy of Branch and Bound Object.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Finally, the Branch and Bound object besides checking each time the optimality of
the given solution creates the branches and validates the status for each node and
validates whether it should be fathomed or not. However, it is the main component
of the system and interacts with the Solution Manager till the end of the process
either it concludes with finding an optimal solution or by reaching the maximum
depth of the Branch and Bound tree.

I 5.2 Software Description

The V-RED application that is the software tool developed to compute the optimal
frequency of service in retail distribution networks, is a standalone application coded
in Visual C++ and with an add-on interface developed in Visual C#, to make the

whole process more user friendly.

Software Development m

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

File

Customers Vehicles Help

Project Loaded: ch6_2visuall Edit Project

The Vehicle KH-8013 will start form Depot AnoBrjkn and will pass from Customers: Amanatidis Lazaros, Mehétng 1, Meddtng 2, Meddtng 3in the next 1 Days.
The Profit of each product will be 20 and the max Distribution Cost will be 1200.

Vilia fe] H ;
= Oinoi Agios,

[satelite | Hyorid | Terrain |
Stefanos :

Tapa)

- Achames gl
Mandra D Axapval) i Kifissia

vdoa)- Aspropyrgos

Maisl Nea Makri
AapéuayDs) Iﬁimua.se'r_gr M]?@“ Melissia Nea Méxpa) Marmari
N At MeAioon) Mésopdp)
ea TR Petroupoli
k! A s Rafi
Peramos B EE(302 Ty iounain) 0] Bréiancri Rafee
Mégara £papos) oY Megalonisos
Meyapa) AN/ &=l Pallini Petalion Nisida
7 Nikea /(AcNEs Lneavn; Artemis
DG Salamina ko En i) Kolpos
FoyeReD BY Tadyic) Perama E3 Kallithea j Petalion
GOF le o30S N il o KaahiBéa) C: e
(Msioridc) i ; W A Map data 2010 Tele Atlas - "crms of Use

B d\Llama\My Documents\VisuaLAStudior 200~8\J|?io‘|ecl:".\BBR_VG\ReIease\BBR\/ﬁ_!«EL'!II‘EL"| —

Number of customers:2
Number of days:1

Run Two Phase Method

Current value of z is: 92.231

Sub Optimal solution

Checking if incumbent should he updated
New incumbent zx»= 92.231

Optimal solution z*»*=92.231

A.008 seconds used by the processor.

Figure 18 V-RED Interface & Console Application

As shown in Figure 17, the V-RED application initially was developed as a console
application where input data were given through the keyboard and output was
returned to the display. Subsequently, was added on the top level a window based
interface to simplify the input of data and make more descriptive the results that the
system generates. This was achieved adding a map based system for adding
customers and their positions and the same was done for the presentation of the
optimal route along with its expected cost. Essentially, in both cases the core
implementation it’s the same and there are no time consuming process because the
C++ code used in the standalone version is used as an embedded CLR in the C# code,

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

making the application to have the exact same performance. However, here we will
focus on the console application in order to describe the core system functionality
and not the features of the interface.

The V-Red application has an object oriented design, thus the components are
objects that communicate through interfaces and react to the specifics of the given
problem instance.

There are 3 main objects that constitute the backbone of the whole system and
several minor in order to implement needed functionality. Here we have to note that
no libraries were used for the implementation of either the Simplex or the Branch
and Bound Algorithm. The purpose of that was to have full access to each step and
ability to optimize the implementation of these algorithms based on the specific
problem’s features without having to load and handle libraries that are generic and
thus would bring heavy computational effort. Consequently, there is the core object
that implements the Simplex and Two Phase Algorithm, the object that implements
the Branch and Bound Algorithm and the Problem Formulation object that is
responsible for transforming the input data to a valid set of constraints and an
objective function. On top of those there is the Solution Manager that calls as
needed the rest of the objects and returns to the end user intermediate results,
error messages and\or the final solution.

I 5.3 V-RED Algorithm

In this section the algorithm used to implement the V-RED core application will be
presented. Furthermore, a graphical view of the algorithm is shown in the Flow Chart
of Figure 19. In order to make this section easier to read initially the backbone of the
system is presented as a basic algorithm and then each component is analyzed
through its own algorithm.
Begin V-RED Application
1. Read input data from file
2. Call Problem Formulation
2.1. For each customer
2.1.1. Read D, Nmin, Nmax K, P, (X,Y)
2.2. Read depot coordinates (xo,Yo)
2.3. For each customer i and the depot
2.3.1. For each customer j and the depot

2.3.2. Compute distance cj=/(x; — %) + (v; — ¥;)?
2.4. Construct Objective Function
2.5. Call Constraint #1- Constraint #10
2.6. Save data to InitiaProblem.txt file

Software Development

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

2.7. Call Branch and Bound (InitialProblem.txt)
3. Printout Error Messages
4. Printout Results

End V-RED Application

I 5.3.1 Constraints

; d _ d
‘ Constraint #1)cy i Xji = Vi

1. Foreachdayd
1.1. For each customer i
1.1.1. For each customer j

Sum+= X[d][j][i]
Sum -Y[d][i]=0

Constraint #2Y ey, i Xf = ¥§

1. Foreachdayd
1.1. For each customer i
1.1.1. For each customer j
Sum+= X[d][i][j]
Sum -Y[d][i]=0

Constraint #3Yjcy x; = 1

1. Foreachdayd
1.1. For each customer j
Sum+= X[d][0][j]
Sum-1=0
Constraint #4Yjcy x = 1

1. Foreachdayd
1.1. For each customer i
Sum+= X[d][i][0]
Sum-1=0

Constraint #5);c¢ Yjcs xg- — Dies }’? =1

1. Compute combinations of possible S
2. Foreachdayd
2.1. For each item i of set S
2.1.1. Foreach item j of set S different from i

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

SumPartA+=x[d][i][j]
SumPartB+=y[d][i]
SumPartA[d]-SumPartB[d]<=1

Constraint #GZiEV ZjEV,i;ﬁj C,-]-xg- <C

1. Foreachdayd
1.1. For each customer i
1.1.1. For each customer j
Sum C[i][jI*x[d][i][j]<=C

Constraint#7n; < Y74 y?

1. Foreachdayd
1.1. For each customer j

Y[d][i]>=nmin[i]

Constraint #8Y,%, y? <mn;

2. Foreachdayd
2.1. For each customer i

Y[d][i]l<=nmax][i]

‘ Constraint #9 Binary variables

This constraint is initially relaxed to having all variables between 0 and 1 to start the
Branch and Bound Algorithm

I 5.3.2 Optimizer

Begin Optimizer (InitialProblem.txt)

1.1. Check for =, >= constraints
1.1.1. If yes Call Two Phase Method
1.1.2. Else Call Simplex Method
1.2. RETURN

End Optimizer

Software Development

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

I 5.3.3 Two Phase Method

Begin Two Phase Method
Begin Phase 1

1.1. Create new objective function z=-Sum of(Artificial Var) and same constraints
1.2. Call Simplex Method
1.3. If method returns non FS solution or solution different from zero then return

non FS and Error Message “Phase 1 Failed”

Else if method returns solution equal to zero

1.3.1. Check if there are artificial variables in base

1.3.1.1.1. If yes then for each one check if the corresponding
right side is zero
1.3.1.1.1.1. If yes then Call Pivot to get them out of base
Else if none is in the base Call Phase 2

Else return non FS and Error Message “There are non-zero
artificial variables in base”

End Phase 1
Begin Phase 2

2.1. Replace Objective function with initial and keep table of Phase 1
2.2. Call Simplex Method

2.3. Get Results from Simplex Method

2.4. RETURN

End Phase 2
End Two Phase Method

I 5.3.4 Simplex Method

Begin Simplex Method
1.1. If the line corresponding to objective function has not any negative values
optimal solution found RETURN
Else if maximum number of allowed pivots reached STOP
Else select the first most negative value and mark its column as pivot column
1.2. Compute B-ratio and mark the line with minimum value and positive divisor
as pivot line
1.3. Call Pivot for the item that corresponds to (marked line, marked column)
Begin Pivot
1.3.1. Divide pivot line by pivot element
1.3.2. For each line besides the pivot line compute new values as New line =
Old line — Pivot Item*0Old line

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

End Pivot
1.4. Goto 1.1

End Simplex Method

I 5.3.5 Branch and Bound Method

The idea is to create a tree starting from the root node that is the initial relaxed
problem and each time that is solved, make two new branches one giving a 0 value
(left branch) and one giving the value 1 (right branch) to the first variable of the
problem that is not in binary form. Before creating the branches we check if the
currently examined node produced a non-feasible solution thus we need to fathom
the branch or the solution found is greater than or equal to the incumbent and in
that case the incumbent should be updated and again the branch fathomed.

BB(1_0.txt)

BB(initia i
Problem.txt)

BB(1_1.txt)

Figure 19 Branch and Bound Calls

Begin Branch and Bound Method (Input.txt)
1.1. Call Optimizer(Input.txt) // read input data from file
1.2. Check optimality of current solution (returned by 1.1)
1.2.1. If all variables binary
1.2.1.1. Check incumbent and update if current >= incumbent
1.2.1.2. Fathom Branch
1.2.2. Else
1.2.2.1. Add new constraint =0// create left branch
1.2.2.2. Update Input File to “Scount_0.txt”//save new problem’s data
1.2.2.3. Call Branch and Bound (“Scount _0.txt”)//repeat algorithm
Add new constraint =1
1.2.2.4. Update Input File to “Scount _1.txt”//save new problem’s data
1.2.2.5. Call Branch and Bound (“Scount _1.txt”)//repeat algorithm
1.3. If no FS was returned then Fathom Branch
1.4. RETURN (when arrives here no other branches are available)
End Branch and Bound Method

Software Development

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

Start Sommmmme e Spmmmmmn

Problem Formulation

D, nmin, nmax, K , o,

(x,y)
for each customer

Constraint
#1

Optimizer

, Constraint
' #2
! i
i ! Constraint
. e |
I R —
i Constraint
TwoPhase i #4
1
1
! Constraint
¥ TR #5
Formulate i
Problem with 1 Constraint
Artificial Obj I #6
1
1
1
I | Constraint
[> #7
Phase 1 :
1
1
1
1
1

3 Constraint
I

?

Artificial in
base?

Artificial=07?

]
i <
A

Branch & Bound

Are all var

binary? incumbent?
Optimization
check

Add "0" Branch
for each <=bin

Add "1" Branch
for each <=bin

All branche
fathomed or
solved?

Figure 20 V-RED Flow Chart

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

I 5.4 Software Validation and Testing

The principal objectives of testing are the discovery of defects in a system and the
assessment of whether or not the system is useful and useable in an operational
situation. Both verification and validation are concerned with establishing the
existence of defects in a program but not the source of that error(Sommerville,
2007).

More specifically, software testing is concerned with exercising and observing
product behavior that is a dynamic way of verifying the product. The ordinary
verification procedure consists in executing the system with test data and then
observe its operational behavior.

Attention should be given to the fact that testing can reveal the presence of errors
but not their absence. This actually, is also the only validation technique for non-
functional requirements as the software has to be executed to see how it behaves.

There are two types of testing(Sommerville, 2007):

o Defect testing that consists of tests designed to discover system defects. A
successful defect test is one which reveals the presence of defects in a
system. However, defect testing and debugging are distinct processes.
Debugging is concerned with locating and repairing these errors and involves
formulating a hypothesis about program behavior then testing these
hypotheses to find the system error

e Validation testing that is intended to show that the software meets its
requirements. A successful validation test is one that shows that one or more
requirements have been properly implemented.

Concluding, software testing can be implemented at any time in the development
process. Usually, most of the test effort occurs after the requirements have been
defined and the coding process has been completed. However, different software
development models will focus the test effort at different points in the development
process and will use different methodologies.

I 5.5 Testing Process

In this section the followed testing process will be presented, focusing on release
testing - where the complete system to be delivered as a black-box is tested. Of
course, it is well known that only exhaustive testing can show a program is free from
defects. However, exhaustive testing is impossible. Thus best practices are used in
selecting system tests. A general rule is that all functions accessed through menus or
user selection should be tested and where user input is required; all functions must
be tested with correct and incorrect input. However we should always keep in mind

Software Development

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

that testing can show the presence of faults in a system but it cannot prove there are
no remaining faults(Sommerville, 2007).

Analyzing the testing process used to validate the V-RED software, shown in Figure
20, we see that the first step is to create test cases that will describe what features
of the system should be checked, what will be the exact input data and the expected
results. Here should be noted that test cases should be created not only for standard
situations but also for all those that is expected to return error messages. Test cases
aim to find situations that will reveal defects in the system, that’s why:

e Should be chosen inputs that force the system to generate all error
messages;

e Should be designed inputs that cause buffers to overflow;
e Each input or input series should be repeated a number of times;

¢ Invalid outputs should be forced to be generated;

e Computation results should be forced to be too large or too small

Design
Error
Repair

Retest
Program

4 A
©>©0

Figure 21 Testing Process

After creating the test cases, each one should be executed and the given results
compared to the correct ones. In case of complex systems that the expected results
cannot easily be computed, a different software tool should be used, that we already
know that works correctly, in order to create the comparison output data.

In cases of erroneous results, a debug session will be initiated to locate the errors in
the code or the logic of the system. To do so, first of all the test case and input data
causing the error will be used to step by step check the main variables and the
intermediate results in order to find out if it is an error caused by the way it was
coded the system or an error in the algorithm that is being implemented. In both
cases as soon as the error is located, an error repair is designed and implemented.
When the code is ready, it is going to be retested with all the available test cases and

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

not only the one that caused the error, because it is not uncommon by fixing an
error to create some other bugs, in situations that previously the system worked
perfectly.

As the last step of software development the performance of the code should be
tested, or even better benchmarked. Generally speaking benchmark is a standard by
which something is evaluated or measured. In computing, benchmark is the act of
running a computer program, a set of programs, or other operations, in order to
assess the relative performance of an object, normally by running a number of
standard tests and trials against it. Benchmarking is usually associated with assessing
performance characteristics of computer hardware, but there are circumstances
when the technique is also applicable to software.

The key objective of software benchmarking is to help the developers completely
understand how the program performs during execution. This is usually achieved by
using an integrated set of performance and debugging profilers and then collecting
all crucial performance, memory and resource allocation information at runtime.
Final goal is to easily isolate and eliminate all performance issues, memory leaks and
resource leaks within the source code and certifying a specific standard of
performance in any situation.

Software Development

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

6 Discussion and Further Research

The focus of the proposed master thesis was set on the definition of the frequency
of service in a distribution network by maximizing the profit in a specific time
window. The problem is modeled using integer mathematical programming and is
solved using the Brach and Bound algorithm in order to find the optimal solution.

This problem had already been solved within an Undergraduate thesis developed by
the DeOpSys team of the University of the Aegean. In that effort the focus was given
in solving practical sized problems using a specific heuristic algorithm. The actual
solution of the problem using the Branch and Bound algorithm was narrowed down
to a small number of clients due to the high complexity of the problem (number of
variables and constraints).

Therefore, primary goal of this thesis was to optimally solve the problem for a
greater number of clients. More specifically, research was performed on the
restrictions and parameters that raise the problem’s complexity and solution time.
Finally, a set of methods and techniques were implemented in order to reduce the
complexity and get the optimal solution faster for a larger set of clients. The
resulting product is a software application, V-RED, that takes all the delivery
network’s parameters as input data and returns the optimal routing solution.

The benchmarking results lead us to the conclusion that is possible to use the Branch
and Bound Algorithm in practical sized problems but it needs very careful
implementation and customization of the tricky steps in order to have minimum
execution times.

However, as seen the execution time depends more on the number of days that the
route contains than the number of customers. This happens due to the fact that the
number of customer adds an initial overhead to the system but this overhead
remains unchanged no matter how many days are in the route and it is probable that
we could prove that this amount grows by a stable parameter c.

On the contrary the overhead given by the number of days grows exponentially and
leads us to assume that there is a specific upper bound for the number of days that
we can get a scheduled routing using this algorithm.

It would be interesting to find out which specific functions of the designed system
are exponentially related to the problem size and even more important if there are
ways to narrow down the execution time and thus elevate the size of the solvable
problems by using more specific fathoming and branching policies.

Furthermore, by evaluating the time used by each constraint we can say that there
are two very time consuming constraints. The one refers to the cost per day and it is

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

a limiting constraint in all the executed cases and even better it has a normal rate of
growth in relation to the problem size. The other one refers to cyclicity and using
computation of all possible combinations make the whole system much slower. It
probably would be a good idea for future research to remove the constraint from
the optimization problem and add it as a part of the fathoming policy used by the
Branch and Bound algorithm. This way the execution time would be minimized.

Finally, some issues about the mathematical modeling appeared to exist. First of all
the peculiar handling of the case of 2 customers and 2 or more route days where the
system instead of returning a positive result greater or equal to the one given to 2
customers 1 day it keeps giving negative profit. Investigating this case was found that
the distribution cost was greater than the income. If the minimum number of visits
(nmin) for at least one of the customers was zero (0), then the profit would have not
been negative.

Discussion and Further Research

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

7 References

Ambrosino, D. and M. G. Scutella (2005). "Distribution network design: New
problems and related models." European Journal of Operational Research165(3):
610-624.

Amiri, A. (2006). "Designing a distribution network in a supply chain system:
Formulation and efficient solution procedure." European Journal of Operational
Research171(2): 567-576.

Applegate, D., R. E. Bixby, et al. (1995). Finding cuts in the TSP (a preliminary
report).Technical Report 95-05, DIMACS, Rutgers University, New Brunswick, NJ
08903.

Beale, E. M. L. and J. A. Tomlin (1970). Special Facilities in a General Mathematical
Programming System for Non-convex Problems Using Ordered Sets of Variables.
Proceedings of the Fifth International Conference on Operations Research, Tavistock.

Benichou, M., J. M. Gauthier, et al. (1971). "Experiments in mixed integer linear
programming." Mathematical Programming1(76-94).

Bernardi, S., S. Donatelli, et al. (2002). From UML sequence diagrams and
statecharts to analysable petri net models. Proceedings of the 3rd international
workshop on Software and performance. Rome, Italy, ACM: 35-45.

Brunetta, L., M. Conforti, et al. (2000). "A polyhedral approach to an integer
multicommodity flow problem." Discrete Applied Mathematics101(1): 13-36.

Choon Tan, K. (2001). "A framework of supply chain management literature."
European Journal of Purchasing & Supply Management7(1): 39-48.

Crainic, T. G. and G. Laporte (1997). "Planning models for freight transportation."
European Journal of Operational Research97(3): 409 -438.

Dakin, R., J. (1965). "A tree-search algorithm for mixed integer programming
problems." The Computer Journal(8): 250 - 255.

Driebeek, N. J. (1966). "An algorithm for the solution of mixed integer
programming problems." Management Science21: 576-587.

Eskigun, E., R. Uzsoy, et al. (2005). "Outbound supply chain network design with
mode selection, lead times and capacitated vehicle distribution centers." European
Journal of Operational Research165(1): 182-206.

Forrest, J. J. H. and J. A. Tomlin (2007). "Branch and bound, integer, and non-
integer programming.” Annals of Operations Research149(1): 81-87.

Ghezavati, V. R., M. S. Jabal-Ameli, et al. (2009). "A new heuristic method for
distribution networks considering service level constraint and coverage radius."
Expert Systems with Applications(36): 5620-5629.

Gill, P., W. Murray, et al. (1982).Practical Optimization Academic Press

Glinz, M. (2000). Problems and Deficiencies of UML as a Requirements
Specification Language.Proceedings of the 10th International Workshop on Software
Specification and Design, IEEE Computer Society: 11.

Goel, A. and V. Gruhn (2008). "A General Vehicle Routing Problem." European
Journal of Operational Research191(3): 650-660.

Hilier, F. S. and G. J. Lieberman (2005). Introduction to Operations Research,
McGraw Hill.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Kolman, B. and R. E. Beck (1980). Elementary Linear Programming with
Applications.London, Academic Press.

Land, A. H. and A. G. Doig (1960). "An Automatic Method for Solving Discrete
Programming Problems." Econometrica(28): 497-520.

Land, A. H. and S. Powell (1979). "Computer codes for problems of integer
programming.” Annals of Discrete Mathematics5: 221-269.

Laporte, G. (1992). "The vehicle routing problem: An overview of exact and
approximate algorithms." European Journal of Operational Research59(3): 345-358.

Lindgaard, G., R. Dillon, et al. (2006). "User Needs Analysis and requirements
engineering: Theory and practice." Interacting with Computers18(1): 47-70.

MacKinnon, N. and S. Murphy (2003). Designing UML diagrams for technical
documentation. Proceedings of the 21st annual international conference on
Documentation. San Francisco, CA, USA, ACM: 105-112.

Ritchie, D. M. (1993).The development of the C language.The second ACM
SIGPLAN _conference on History of programming languages. Cambridge,
Massachusetts, United States, ACM: 201-208.

Smith, J. C. (2004). "Algorithms for distributing telecommunication traffic on a

multiple-ring sonet-based network." European Journal of Operational
Research154(3): 659-672.

Sommerville, I. (2007). Software Engineering, Addison-Wesley Publishing
Company.

Sommerville, I. and G. Dewsbury (2007). "Dependable domestic systems design: A
socio-technical approach." Interacting with Computers19(4): 438-456.

Sutcliffe, A., G. Papamargaritis, et al. (2006). "Comparing requirements analysis
methods for developing reusable component libraries." Journal of Systems and
Software79(2): 273-289.

Tomlin, J. A. (1971). "An improved branch and bound method for integer
programming." Opeations Research19: 1070-1075.

Xu, H., P. Sawyer, et al. (2006). "Requirement process establishment and
improvement from the viewpoint of cybernetics." Journal of Systems and
Software79(11): 1504-1513.

Zindorf, A. (2001). From use cases to code - rigorous software development with
UML.Proceedings of the 23rd International Conference on Software Engineering.
Toronto, Ontario, Canada, IEEE Computer Society: 711-712.

References

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

A. Appendix

I A.1 Software Requirement Analysis

Requirements in systems engineering and software engineering, encompasses those
tasks that go into determining the needs or conditions to meet for a new or altered
product, taking account of the possibly conflicting requirements of the various
stakeholders, such as beneficiaries or users.

“Requirements engineering is the branch of software engineering concerned with
the real-world goals for, functions of, and constraints on software systems. It is also
concerned with the relationship of these factors to precise specifications of software
behavior, and to their evolution over time and across software families”(Lindgaard,
2006).

The primary measure of success of a software system is the degree to which it meets
the purpose for which it was intended. Broadly speaking, software systems
requirements engineering (RE) is the process of discovering that purpose, by
identifying stakeholders and their needs, and documenting these in a form that is
amenable to analysis, communication, and subsequent implementation. There are a
number of inherent difficulties in this process. Stakeholders (including paying
customers, users and developers) may be numerous and distributed. Their goals may
vary and conflict, depending on their perspectives of the environment in which they
work and the tasks they wish to accomplish. Their goals may not be explicit or may
be difficult to articulate, and, inevitably, satisfaction of these goals may be
constrained by a variety of factors outside their control.

Requirements analysis is critical to the success of a development project.
Requirements must be documented, actionable, measurable, testable, related to
identified business needs or opportunities, and defined to a level of detail sufficient
for system design. Requirements can be functional and non-functional (Sutcliffe,
2006).

Below are depicted the initial requirements as provided by the DeOPSys research
team. The non-functional requirements of the herein discussed system can be
summarized as follows:

e The system should be able to make all computations based on each instance’s
inputs.
e The only given inputs should be:
o Initial demand per customer.
o Minimum and maximum allowed number of visits per customer.

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

o Rate of raise of demand for each visit to customer after the minimum
allowed number of visits.

o Coordinates of each customer’s location are given in order to compute
the distance between each pair of customers and between each customer
and the depot.

o Incomes from each visit to any customer.

e The system should be able to solve any linear optimization problem with the
objective function and constraints described in section 4.3.

e The mathematical algorithms used to solve the problem should be the Branch
and Bound Algorithm and the Simplex method.

As expected these data are general guidelines about what the software tool should
be able to do and not how is going to be implemented. The only non-habitual about
the given requirements is the fact that the algorithms that are going to be used to
solve the problem are well known and predefined. This happens due to the fact that
the final aim of the software tool is to verify the computational time needed when
using these algorithms and not to create an innovative product.

I A.2 Software Specification Process

A software requirements specification is a complete description of the behavior of
the system to be developed. In order to represent the herein defined system from
different perspectives three different models will be used. An external perspective
will be used to show the context of the system that is being modeled. This will be
achieved by designing the system’s use case model that is going to present all the
interactions that the users will have with the software. A behavioral perspective will
be given using a sequence diagram to show the main flow of events and critical
alternate flows and a structural perspective will be presented through the
architecture of the system where the functionality of the main system modules will
be described(Sommerville, 2007).

The steps taken in order to gather the requirements to build the system’s
architecture, as seen in Figure 21, can be summarized as follows:

1. Problem Definition: Crafting the problem statement is always the first step in
any design. Here the goal is to state succinctly, but accurately, the problem
keeping focused in what and why, but not how. Any design problem begins
with research of the area in order to get acquainted with the domain.
Another very important step of this process is the definition of all the terms
that are going to be used throughout the systems documentation, in order to
create a common base for the communication among the basic actors.

A. Appendix

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

2. Business Requirements: Concerns the features that either the end users
and/or the stakeholders of the project would like to see in the new system.

3. Software Model Description: System modelling helps the analyst to
understand the functionality of the system and models are used to
communicate with customers. Different models present the system from
different perspectives.

Problem
Definition

Requirements Requirements
Analysis : Specification

Software
Model
Description

Software
Specification

Business
Requirements

Software
Architecture

Figure 22 Requirements Analysis Process

4. Requirement Analysis: Involves technical staff working with customers to find
out about the application domain, the services that the system should
provide and the system’s operational constraints.

5. Software Specification: The process of establishing the services that the
customer requires from a system and the constraints under which it operates
and is developed.

6. Requirements Specification: A detailed view of the requirements that gives
analytical descriptions of the system services and constraints that are
generated during the requirements engineering process.

7. Software Architecture: The design process for identifying the sub-systems
making up a system and the framework for sub-system control and
communication is architectural design. The output of this design process is a
description of the software architecture.

I A.3 Stages of Development

The software development life cycle is different for every project and every
development team, but there are key stages that must be carried out. The V-RED
application was developed using agile methods that reflect the close collaboration of

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

the development team to the end users and the frequent change of requirements
and functionality. Below are outlined the distinctive features of this development
method(Sommerville, 2007) :

e Customer involvement: The customer is closely involved throughout the
development process with primary role to provide and prioritize new system
requirements and to evaluate the iterations of the system.

e Incremental delivery: The software is developed in increments with the
customer specifying the requirements to be included in each increment.

e Adaptable: It is expected that the system requirements will change and thus the
system is designed so that it can accommodate these changes.

e Simplicity: Focus should be given on simplicity in both the software being
developed and in the development process used.

Perhaps the best-known and most widely used agile method is Extreme
Programming (XP) that takes an ‘extreme’ approach to iterative development where
new versions may be built several times per day. In order to achieve the standards
set by Extreme Programming, below are summarized the best practices that were
followed during the development:

e Small Releases: The minimal useful set of functionality was developed first
and releases of the system were frequent and incrementally added
functionality to the first release.

e Simple Design: Enough design was carried out to meet the current
requirements and no more.

e Test first development: A unit test is used for each new piece of functionality
before that functionality itself is implemented.

e Refactoring: The code was being refactored each time that code

improvements were found.

Concluding, the Extreme Programming agile method was used in order to have a
rapid development that would give early releases and would accommodate
requirements change.

I A.4 Implementation Tools

The V-RED application was developed as a standalone windows application using the
Microsoft Visual Studio 2010 as development environment and more specifically
Visual C++ and .NET framework 4.0. The reasons that led as to such decision were
from one hand the user friendly environment given from the Microsoft Visual Studio

A. Appendix

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

and from the other hand the need to have fast code as it is given only by middle and
low level languages as C++ and the portability of the application given by the
framework on which was developed. Below are briefly described the main features
of the development tools that were used along with the analytical reasoning that
made us selected them for this specific implementation.

I Microsoft Visual Studio

Microsoft Visual Studio is an integrated development environment from Microsoft. It
can be used to develop console and graphical user interface applications along with
Windows Forms applications, web sites, web applications, and web services in both
native code together with managed code for all platforms supported by Microsoft.

Visual Studio includes a code editor supporting IntelliSense as well as code
refactoring. The integrated debugger works both as a source-level debugger and a
machine-level debugger. Other built-in tools include a forms designer for building
GUI applications, web designer, class designer, and database schema designer. It
accepts plug-ins that enhance the functionality at almost every level—including
adding support for source-control systems and adding new toolsets like editors and
visual designers for domain-specific languages or toolsets for other aspects of the
software development lifecycle.

Visual Studio supports different programming languages by means of language
services, which allow the code editor and debugger to support nearly any
programming language, provided a language-specific service exists. Built-in
languages include C/C++, VB.NET, C#, and F#. Support for other languages such as M,
Python, and Ruby among others is available via language services installed
separately.

I Microsoft Visual C++

Selecting a programming language requires many different considerations to be
taken. The first step is to select the level of the programming language. The level
determines the proximity of the programming language to the hardware. In the
lower level languages, instructions are written as a direct interface with the
underneath hardware, while in high level languages a more abstract code is written.

Generally, high level code is more portable, thus it can be used in different machines
although sometimes a small number of modifications could be needed, whereas a
low level language is limited by the specific features of the hardware on which it was
written. Nevertheless, the undoubtable advantage of low level code is that it is faster
due to the fact that it is written taking advantage of the possibilities of a specific

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

machine. A higher or lower level of programming is to be chosen for a specific
project depending on the type of program that is being developed.

There are languages that are clearly low level, like Assembly, whose instruction sets
are adapted to each machine the code is made for, and other languages are
inherently high level, like the Java, that is designed to be totally independent of the
platform where is going to run. However, the C++ language is in a middle position,
since it can interact directly with the hardware almost with no limitations, and can as
well abstract lower layers and work like one of the most powerful high level
languages.

Concluding, C++ has certain characteristics over other programming languages that
led us to select it for the V-RED development. The most remarkable are (Ritchie,
1993):

e Object-oriented programming: The possibility to orientate programming to
objects allows the programmer to design applications as communication
between objects rather than a structured sequence of code. In addition it
allows a greater reusability of code in a more logical and productive way.

e Portability: The same C++ code can be compiled in almost any type of
computer and operating system without making any changes.

e Brevity: Code written in C++ is very short in comparison with other
languages.

e Modular programming: An application's body in C++ can be made up of
several source code files that are compiled separately and then linked
together. Saving time since it is not necessary to recompile the complete
application when making a single change but only the file that contains it. In
addition, this characteristic allows to link C++ code with code produced in
other languages.

e Speed: The resulting code from a C++ compilation is very efficient, due
indeed to its duality as high-level and low-level language and to the reduced
size of the language itself.

I Microsoft .NET Framework

The .NET Framework is Microsoft's comprehensive and consistent programming
model for building applications that have visually elevated user experiences,
seamless and secure communication, and the ability to model a range of business
processes.

A. Appendix m

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

I A.5 Test Cases

To test the V-RED application as a whole were selected three test cases representing
the minimal input having two customers and just one day route, and two ordinary
cases, of two customers two days and three customers two days. It was also
effectuated a stress test with eight customers and five days that will be presented in
chapter 8.

Each test case consists of manually computing the objective function and constrains
and comparing it with those given by the V-RED software and then checking the
optimization results of the software compared to the results given by the Microsoft
Excel Solver 2010.

Microsoft Excel Solver is a numerical optimization add-in of Microsoft Excel. Solvers,
or optimizers, are software tools that help users find the best way to allocate scarce
resources. The resources may be raw materials, machine time or people time,
money, or anything else in limited supply. The best or optimal solution may mean
maximizing profits, minimizing costs, or achieving the best possible quality. There are
different optimization model that can be used with the Excel Solver. In this case the
linear optimization model was used to be able to confront the results with V-RED.

An optimization model in Microsoft Excel Solver has three parts: the target cell, the
changing cells, and the constraints.

e Target Cell: represents the objective or goal. We want to either minimize or
maximize the target cell.

e Changing cells: are the spreadsheet cells that we can change or adjust to
optimize the target cell.

e Changing cells: are the spreadsheet cells that we can change or adjust to
optimize the target cell.

I Test Case 1: 2 Customers 1 Day

‘ Input Data
Variables Customer 1 | Customer 2
Depot Coordinates [200,-200]
Customer Coordinates [0,100] [0,200]
Nmin 1 1
Nmax 5 5
Demand D 20 30
Demand Raise k 20 20.2

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL

APPROACH]
Profit per unit 20
Cost 1
Maximum Cost per day 1200
Distances Co01=360.5
Co2=447.2
C1,=100

Problem Formulation

Objective Function
7Z = 400)’1 + 404y2 + 196 - 3605.XO1 - 4472x02 - 3605x10 - 1OOX12
- 4‘4‘72x20 - 100x21
Under constraints:

Constraint #1: X10 T X12 = Y1
X0 T X21 =2

Constraint #2: Xo1 + X210 = Y1

Xoz +X12 = Y2
Constraint #3: Xo1 tX92 =1
Constraint #4: X0+ X2 =1

Constraint #5 —Xy1 — X2+ Y1 Yy, 21

Constraint #6: 360.5xy; + 447.2xy, + 360.5x19 + 100x,, + 447.2x,4 + 100x5,
<1200

Constraint #7: 1<y; <5

A. Appendix

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

Excel Solver Results

INEQ RIGHT | computed

0] (0] 1 1 (0] 0] 0] 1 0]
1 0 0 0 1 0 1 0 0 0 -1 0|= 0 0
1 0 0 0 0 0 0 1 1 0 0 -1|= 0 0
2 0 1 0 0 0 0 0 1 0 -1 = 0 0
2 0 0 1 0 0 1 0 0 0 0 -1|= 0 0
3 0 1 1 0 0 0 0 0 0 0 0|= 1 1
4 0 0 0 1 0 0 1 0 0 0 0|= 1 1
5 0 0 0 0 0 -1 0 -1 0 1 1[>= 1 1
6 0 360.5 447.2 360.5 0 100 447.2 100 0 0 0|<= 1200 907.7
7 0 0 0 0 0 0 0 0 0 1 0|<= 5 1
7 0 0 0 0 0 0 0 0 0 1 0|>= 1 1
7 0 0 0 0 0 0 0 0 0 0 1{<= 5 1
7 0 0 0 0 0 0 0 0 0 0 1[>= 1 1

0] .2 (0] 196 result

Figure 23 Excel Solver Results for 2 customers 1 day

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND [IMPLEMENTATION OF AN OPTIMAL
APPROACH]

V-RES Results

r N
% d:\Lama\My Documents\Visual Studio 2008\Projects\BBRv6\Re|ease\BBRv5.exe,=— | (B} i

Number of customers:2 -~
Number of days:1

Run Two Phase Method

fathomed

seconds used the processor.

seconds used the processor for first constraint.
seconds used the processor for second constraint.
seconds used the processor for third constraint.
seconds used the processor for fourth constraint.

seconds used the processor for fifth constraint.
seconds used the processor for sixth constraint.
seconds used the processor for seventh constraint.
seconds used the processor for ninth constraint.
B8.008 seconds used the processor for tenth constraint.
B8.841 seconds used by the processor.
Solve another operation? (l=yes, 2=nod: _

Figure 24 V-RED Results for 2 customers 1 day

Conclusions

As shown in Figures 22 and 23, both software tools return the same result and route
using different direction of movement. In Figure 24 is depicted the proposed route.
The expected optimal profit is 92.3.

Figure 25 Case 2 - 1 Route

Test Case 2: 2 Customers 2 Days

Input Data
Variables Customer 1 | Customer 2
Depot Coordinates [200,-200]
Customer Coordinates [0,100] [0,200]
Nmin 1 1
Nmax 5 5
Demand D 20 30
Demand Raise k 20 20.2

A. Appendix

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

Profit per unit 20
Cost 1
Maximum Cost per day 1200
Distances Co01=360.5
Co=447.2
C1,=100

Problem Formulation

Objective Function

z = 400y + 404y} + 400yZ + 404y? + 196
— (360.5x3; + 447.2x3, + 360.5x1, + 100x], + 447.2x3,
+ 100x3,) — (360.5x3, + 447.2x3, + 360.5x%, + 100x2,
+ 447.2x3, + 100x3,)

Under constraints:

Constraint #1: X1o + X1z = ¥1
1 1 _

X%O + X%1 =Yy

X%O + X%z - Y1

X20 T X21 =2

Constraint #2: xg1 + %31 = yi
xéz +xi, = Y2
x31 + x5 = Y5
X5, + x5, = y3

Constraint #3: X+ xd, =1
X5y + x5 =1

Constraint #4: X+ xdo =1
x%O + X%O == 1

Constraint #5 —x3; — X, +yi+y; =1
: X~ XLty +y; 21

Constraint #6: 360.5x%, + 447.2x%, + 360.5x1, + 100xL, + 447.2x}, + 100x,
< 1200

360.5x2, + 447.2x2, + 360.5x2, + 100x%, + 447.2x%, + 100x2,
< 1200

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL
APPROACH]

Constraint #7: 1<yl+y2<5
1<y;+ys<5

A. Appendix

IN RETAIL DISTRIBUTION

ENHANCEMENT AND IMPLEMENTATION OF

[FREQUENCY OF SERVICE

NETWORKS

AN OPTIMAL APPROACH]

‘ Excel Solver Results

yl_d2 y2_ d2 INEQ RIGHT computed

)__d2 |x21__d2 x22_d2

S
x
o
T
o]
-
x
o
T
-
-
x
o
T
(=)
-l
x
o
T
o
(=}
x
o
T
[
Q
x
o
T
x
-
T
o

.) . . dl yl divy:

RULE x00_d1 x01_d1 x02_d1 x10_d1 x11__d1 x12__d1 x20__d1 x21__d1 x22_d1

O O 0O 00000 A ™ ™ o«

[U U U U U Y U T N N e S
O O 000000 d ™ o o« -

907.7

r

1200
1200

907.7

r

0
0
0
1
0
0
0
1
0
0
0
0
0[>
1|>

0|<:

100

447.2

100

0

0 360.5 447.2 3605

0|<:

100

447.2

100

0

0 360.5 447.2 3605

0|<:

0[>:

1|<:

1|>:

-360.5

-447.2

)
I=}
el
o

0

-360.5

-447.2

-360.5

0

Figure 26 Excel Solver Results for 2 customers 2 days

76

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND [IMPLEMENTATION OF AN OPTIMAL
APPROACH]

V-RES Results

B | di\lama\My Documents\Visual Studio 2008\Pro;ects\BBRv6\Release\BBRVS exll o I

Number of customers:2
Number of days:2

Run Two Phase Method

Current value of z is: -11.5379

Sub Optimal solution

Checking if incumbent should bhe updated
New incumbent z»= -11.5379

Optimal solution z»*=-11.5379

xB=0

x1=1

x2 =0

m

Solve another operation? (1=yes, 2=nod:

Figure 27 V-RED Results for 2 customers 2 days

Conclusions

As shown in Figures 25 and 26, both software tools return the same result and route
using different direction of movement. In Figure 24 is presented the proposed route
that is the same that was in Case 2-1 for each day although it gives as result a loss of
profit.

Ideally it should give a result that worst case would be equal to the one given in Case
2- 1. This doesn’t happen because this is a case that the given mathematical model
doesn’t cover. If we don’t have route for the 2" day, then the sum of
incoming/outgoing vertices to the depot will be equal to zero that goes against
constraints #3 and #4. Furthermore, minor loss we would have even if the route
contained only one and not both customers, but again this time the cyclicity
constraint #5 —x3; — x%, + y? + y2 > 1 would not be satisfied. Thus, the model
used cannot give optimal results when customer number is 2 and route days are
more than 1.

A. Appendix

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION
NETWORKS: ENHANCEMENT AND IMPLEMENTATION OF
AN OPTIMAL APPROACH]

I Test Case 3: 3 Customers 2 Days

‘ Input Data

Variables Customer 1 | Customer 2 Customer 3
Depot Coordinates [200,-200]
Customer Coordinates [0,100] [0,200] [200,300]
Nmin 1 1 1
Nmax 5 5 5
Demand D 20 30 40
Demand Raise k 20 20.2 30.3
Profit per unit 20
Cost 1
Maximum Cost per day 1200
Distances C01=360.5

Co=447.2

Co3=500

C1,=100

C13=282.8

C3=223.6

Problem Formulation

Objective Function

z = 400y} + 404y] + 606y3 + 400y? + 404y2 + 606y2 + 390
— (360.5x3; + 447.2x}, + 360.5x], + 100x], + 447.2x1, + 100x3,
+ 223.6x3; + 223.6x1, + 282.8x1; + 282.8x]5 + 500x};
+ 500x3,) — (360.5x3, + 447.2x%, + 360.5x%, + 100x%,
+ 447.2x%, + 100x%, + 223.6x35 + 223.6x3, + 282.8x3,
+ 282.8x13 + 500x3; + 500x1,)

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND IMPLEMENTATION OF AN OPTIMAL

APPROACH]

Under constraints:

Constraint #1:

Constraint #2:

Constraint #3:
Constraint #4:

Constraint #5

Constraint #6:

Constraint #7:

X1o0 + X1z + X13 = y1
X30 + X351 + X33 = V3
X3o +X31 +X32 = V3
X3 + X3z + X33 =y35
X509 + X5 +X53 = y3
X350 + X35 + X5, =y3

x31 +x5; + x§1 =yi

Xo2 + X1z + X3, = Y3

X(1)3 + x4z + X%z = Y%

X5y + x5, + x5 = i

xéz +xi, + x§2 =y3

X33 + X153 + X33 = y3

x4 +xd, +xds =1

x% +x3,+x3; =1

xio+xio+xd, =1

xZ+ x5, +x3, =1
—X3) — Xip—X3 —Xiz—Xp3— X +yi +y;+y3 =21
—X5 — xfz_xé - xfs_x%3 - x:fz +yf +y5+ J’s? =1

360.5x3; + 447.2x}, + 360.5x], + 100x], + 447.2x3, + 100x3,
+ 223.6x3; + 223.6x3, + 282.8x3, + 282.8x1,
+ 500x3; + 500x3, < 1200
360.5x3; + 447.2x3, + 360.5x%, + 100x?, + 447.2x%, + 100x3,
+ 223.6x2; + 223.6x2, + 282.8x2, + 282.8x%,
+ 500x3; + 500x3, < 1200
1<yi+y?<5
1<y;+y?<5
1<yi+yi<5

A. Appendix

IN RETAIL DISTRIBUTION

ENHANCEMENT AND IMPLEMENTATION OF

[FREQUENCY OF SERVICE

NETWORKS

AN OPTIMAL APPROACH]

‘ Excel Solver Results

INEQ RIGHT comp

xiyl y2 y3

x32

x31

x21 x22 x23 peli]

x20

x:x12 x13

x03 x10

x02

-
(=]
x
=
o0
>
o
>
-
>

x32

x21 xix23 x30 x31

x20

x12 x13

x11

x03 x10

x02

x01

RULE x00

1200 463

1200 1184

-1 0 00

00

0

0

-1

00

00
00
00
00
-10

00
00
00

00

0
-1

-1

00

10
00
00
00
00
00
00
00
00
00

00

0

-1

00

00
00
00
00
00
00
00
00
10
10
10
00
00
00
00
00

00

00

00

00

0>

00

0>

00

0>

00

-10

0>

00

0>

1
0
1
1
0
0
0
1

00

00

00
00
00
00

0 100 282.8 447.2 100 0 223.6 500 282.8 223.6 0

1[>

00

1[>

-10
-10

00

0 223.6 500 282.8 223.6 0

1[>

0|<:

0
0

0
0

0
0

-360.5 -447.2 -500 -360.5

0

6

0|<:

00 360.5 447.2 500 360.5 0 100 282.8 447.2 100

00
00

00
00
00

0|<:

00

0|<:

00

400 404 606 390 result 842

-223.6

500 -

-223.6

100

447.2

-100 -283

360.5

500

-360.5 -447.2 -

2
=
8
<

-223.6 -500 -282.8 -223.6

100

-447.2

360.5

500

-360.5 -447.2 -

Figure 28 Excel Solver Results for 3 customers 2 days

[FREQUENCY OF SERVICE IN RETAIL DISTRIBUTION NETWORKS:
ENHANCEMENT AND [IMPLEMENTATION OF AN OPTIMAL
APPROACH]

V-RES Results

© di\Lama\My Documents\Visual Studio 2008\Projects\BBRv6\Release\BERvS.cxe ML (ol Cols S

Number of customers:3
Number of days:2

Run Two Phase Method

Current value of z is: 841.676

Sub Optimal solution

Checking if incumbent should bhe updated
New incumbent zx= 841.676

Optimal solution z*=841.676

x0=0

Figure 29 V-RED Results for 3 customers 2 days

Conclusions

As shown in Figures 27 and 28, both software tools return the same result and route
using different direction of movement. In Figure 29 is depicted the proposed route
that is the same for the first and second day. The expected optimal profit is 841.76.

Figure 30 Route for Case 3-2

A. Appendix

