University of the Aegean
School of Engineering

Department of Financial Management and Engineering

IMPROVING THE TRAINING PERFORMANCE OF THE YOLO ALGORITHM FOR
DETECTING OBJECTS FROM UAV IMAGES RECORDED DURING MONITORING OF
LOGISTIC FACILITIES

Lapsanis Panagiotis

Supervisor: Prof. Georgios Dounias
Committee Members: Associate Prof. Vasileios Zeimpekis

Associate Prof. Vasileios Koutras

Chios, December 2024

University of the Aegean Department of Financial and Management Engineering

To my family...

[ii]

University of the Aegean Department of Financial and Management Engineering

Acknowledgements

First and foremost, | would like to express my sincere gratitude to Professor Emeritus loannis Minis for his
continuous and invaluable feedback. His insights and guidance have not only improved the quality of this
thesis but also contributed significantly to my personal growth. He consistently challenged me to push my
boundaries and achieve more than | thought possible. Furthermore, | would like to thank Professor
Georgios Dounias for kindly agreeing to become my supervisor following Mr. Minis’ retirement, after many
years of distinguished service.

| am deeply grateful to George Tepteris for guiding me through my first steps in the field of artificial
intelligence. His boundless patience and willingness to answer my numerous questions were truly
indispensable. Despite the volume of my questions, he was always kind and helpful.

In addition, | extend my gratitude to everyone in the DeOPSys lab of the Department of Financial and
Management Engineering and to my colleague Anna Tsiflitzi for the strong teamwork and collaboration
we developed throughout our projects.

Finally, | am thankful to my family and friends. My heartfelt appreciation goes especially to my mother for
her unwavering presence, encouragement and support of my personal choices. The support | have
received from everyone mentioned here has been vital to my progress.

[iii]

University of the Aegean Department of Financial and Management Engineering

Abstract

This thesis focuses on optimizing the training process of YOLOv4-p6 to detect and classify persons, small
vehicles, large vehicles, and ships for surveillance applications in warehouses and ports. The optimization
process involved fine-tuning the training hyperparameters of YOLOv4-p6 to maximize mean Average
Precision (mAP). Several configurations achieved higher mAP results compared to the default settings.
Consequently, this thesis examines the impact of each hyperparameter on YOLOv4-p6's training
performance.

Specifically, we trained and tested YOLOv4-p6 using publicly available UAV annotated image datasets,
including Aerial vehicle, DOTA, VisDrone-DET, Stanford drone, and DAC-SDC. These datasets were modified
to contain only the selected classes, and then combined into a single dataset consisting of 76,872 images
with 876,388 annotated objects. Subsequently, we divided the combined UAV dataset into training (80%
of the combined dataset), validation (10%) and testing (10%) subsets.

The training hyperparameters of the YOLOv4-p6 algorithm were divided in two subsets. The first subset
comprised those hyperparameters, the values of which depend on the characteristics of the training set.
The values/levels of these hyperparameters were kept invariant throughout the tuning experiments. The
second set comprised the hyperparameters to be tuned to optimize the training performance of YOLOv4-
p6. Specifically, the second set included five (two-levels) hyperparameters, which led to the generation of
thirty-two experiments using the Full-Factorial method (2> = 32). For each of the 32 combinations we
repeated the training and testing sessions to support the analysis of the results using Analysis of Variance
(ANOVA). This resulted in 64 trained models.

The analysis of the mAP results by ANOVA revealed three statistically significant hyperparameters: image
resolution, activation function, and anchor dimensions; furthermore, a three-way interaction has been
identified as significant: among Non-Maximum Suppression, data augmentation, and anchor dimensions.

The best trained models (25" and 29'") achieved an average mAP value of 52% in validation and 53.3% in
testing. This is in contrast with the lowest performing models, of which the mAP values were 39.8% in
validation and 44% in testing. This supports our thesis that careful tuning of the hyperparameters during
training may yield to major improvements in model effectiveness.

We also tested the best performing models on a new UAV dataset developed by the DeOPSys lab. They
performed exceptionally well, achieving a value of average mAP up to 77.6% and 76.3%, respectively. This
independent testing validates the quality of the trained models. More importantly it validates that the
proposed hyperparameter tuning method enables effective training of high-performance YOLO models.

[iv]

University of the Aegean Department of Financial and Management Engineering

NepiAnyn

H mapoloa SUTAWUATLKA EPYACLO ETUKEVIPWVETAL 0TN BeAtioTomnoinon tng Stadikaciag ekmaidsvong tou
ouotnpatog YOLOvV4-p6 yla TV avixveuon Kot Taflvounon OVTIKELUEVWY amo dwtoypadieg i video kat
OUVKEKPLUEVA aVOPWTTWY, UKPWY OXNUATWY, LEYOAWY OXNHUATWY Kot TTAOLwY, HLE EPOPUOYEG ETULTAPNONG
QTMOBNKEUTIKWY XWPWV Kot ALEVWY. H BeAtioTonoinon emiteUxOnke péow TNS KATAAANANG pUBULONG TwV
UTtEPTIAPAUETPWY ekTtaibeuong Tou YOLOVA-p6 Pe OTOXO TN HEYLOTOTOINON TNC MEONG TLUAG TNG MEONC
akpiBelag (mean Average Precision | ev ocuvtouioc mAP). Oplopévol cuvSuaouol UTTEPTIAPOUETPWY
enédpepav uPnAotepa anoteAéopata MAP o cUYKPLON UE TLG TIPOETUAEYEVEG OTO oUOTNUO PUOUILOELG.
H &uthwpatik epyaocia efetalel emiong tnv enidpacn KABs UMEPMAPAUETPOU OTNV aAmodoon
ekmaidevong tou YOLOv4-p6.

210 mMAaioLo TG mapouoag Epeuvag, ekmaldeloape To YOLOv4-p6 xpnotponolwvtag dnuoota dtabéotpa
ouvola deSopévwy ekovwy ano UAV, onwg ta Aerial Vehicle, DOTA, VisDrone-DET, Stanford Drone kot
DAC-SDC. Ta ev Aoyw oUvoAa SedouévwV TpOTOMoLBnKkav WoTe va MEPAAUPAVOUV ATTOKAELOTIKA TLG
ETUAEYUEVEC KATNYOPLEG AVTIKELLEVWV KOLL OTN CUVEXELOL CUVOUAOTNKAV OE £Va EVLALO CUVOAO SeSOUEVWY
TIOU aMOTEAELTOL AMO 76.872 €lkOVEG e 876.388 €mMLONUACUEVA OVTLIKELEVA. ITN GUVEXELQ, TO EVLALO
oUvolo 6ebopévwv UAV SLapgbnke o umoouvola ekmaideuong (80%), emikupwong (10%) kat SOKLUNG
(10%).

Ol umnepmnapapetpol eknaideuong tou aiyopiBuou YOLOV4-p6 xwpiotnkav oe dUo opadec. H mpwtn
opada mepAAUPaAvVE UTEPTIAPAUETPOUC TWV OTOLWV OL TIHEG €€APTWVTOL OO TA XAPAKTNPLOTIKA TOU
ouvolou bebopévwy ekmaibeuong Ou TIHEG/eMimedo AUTWV TWV UTIEPTIOPOUETPWY SlatnprOnkav
OMeTAPANTA Katd TN OLApKeEld Twv TMEPAUATWY puBUwoNG. H 6eltepn opada meplddppove TIg
UTIEPTIOPOLLETPOUG TIOU puBuiotnkav yla tn BeAtiotonoinon tng anodoong eknaideuong tou YOLOVA-p6.
JUYKEKPLUEVA, N €V AOYWw opada mepAAUPOvVE TIEVTE UTIEPTIAPAUETPOUG SUO eTUMESWY, YEYOVOC TIOU
odnynoe otn onuloupyla tplavta Suo (32) melpopdTtwv xpnolgomolwviag tn HéBodo MARpoug
Napayovtikol oxedlaopou (Full-Factorial design, 2° = 32). Ta kdBe éva amd toug 32 cuvSuacuoug,
enavaldPape toug KUKAoug ekmaibeuong kol SOKLUNG wote va umootnpxBel n avaiuon Twv
QMOTEAECUATWY PEOW TNG Avaluong AtakUpavong (ANOVA). Auto odrynoe og 64 ekmalSsupéva LOVTEAQ.

H avaAiuon twv Tpwv Tou mAP mou mpogkuav and thv Stadikaoia ekmaideuong kot SOKIUWY HECW
ANOVA amokdAu e TPELG OTATLOTKA ONUOVTLIKEG UTIEPTIOPAUETPOUG: TNV aVAAUON €LKOVAC, TN CUVAPTNON
£VEPYOTIOLNONG KOL TLG SLOOTACELS TWV TIEPLYPAUUATWY anchors Twv avIKELUEVWY. EMLTALOV, evTomioTnKe
WG ONUAVTLKA pLo TPUTA aAAnAemiSpaon PeTAl TNG KOTACTOARG KN HEYLOTWY TLHWV (Non-Maximum
Suppression), tng avénong dedopuévwy (data augmentation) Kol Twv SLOCTACEWY TWV TIEPLYPOAUUATWY
anchors.

Ta koAUTepa ekmatdeupéva HovTéAa (25° kat 29°) métuxav péon Tt mAP 52% otnv Sladikaoia
exnaidevong/emiklpwong kat 53.3% otn Sladikaoio Sokiuwy. Emonualvetal OtL ta POVTEAQ UE TN
xounAotepn anddoon eixav TiuéG MAP 39.8% otnv emikUpwon kat 44% otn Sokiur. Auto umootnpileL Tty
UTOBe0N HaG OTL N TIPOOEKTIKA pUBULON TWV UTIEPTIOPOUETPWY KATA TNV ekTaiideucn Umopel va odnynoet
OE ONUAVTLKEG BEATLWOELG OTNV OTTOTEAECHATIKOTNTA TOU HOVTEAOU.

[v]

University of the Aegean Department of Financial and Management Engineering

ErumAgov, ta kaAutepa ekmatbeupéva povtéda aflodoynbnkav os éva véo cuvolo Sedopévwv UAV mou
avamntuxOnke anod to epyaotrplo DeOPSys. Ta povtéha katéypadav e€aLpeTLKN AmOS0a0T, ETITUYXAVOVTAG
péon T MAP €wg 77.6% kal 76.3%, avtiotowa. H avefdaptntn auty aflohdynon emiBepatwvel Tnv
TIOLOTNTA TWV EKTIOLOEVUEVWY HOVTEAWV. MO GNUAVTIKO OIMOTEAECUA TNG OVEEAPTNTNG AUTAG SOKLUNAC
gival n emPBePfaiwon Tou yeyovotog OTL N TTPOTEWVOUEVN LEBOSOC pUBULONG UTIEPTIAPAUETPWY ETILTPETEL
TNV anoteAeopatiki ekmaideuon poviéAdwv YOLO v nAng amodoonc.

[vi]

University of the Aegean Department of Financial and Management Engineering

Table of Contents

Chapter 1 INtrodUCtioN............ooooiiiii 1
Chapter 2 Background of YOLO models...............oooiiiiiiiii 2
2.1 Introduction to the various YOLO VEISIONSccoeeiiiiiiiiiiiiiiieeeeiiiiieceee e e e e ssiirreeeee e e s ssaireeeees 2
2.2 EQrlier YOLO VEISIONSouiiiiiiiiiiiiiiiiteeiee e e ettt ittt e e e e s sttt e eeeeesseabbbeeeeeeesssaaabbaeeeeeeessnnannrneeens 3
2.2.1You Only Look ONCe Version 1ccoooiiiiiiiiiii 3
2.2.2YOU ONnly LOOK ONCE VEISION 2cooviiiiiiieeieiiieiiiiieee e e eeeeeetieie e e e e e eeeesataeeeeessessstnaaeeeeesssessanns 4
2.2.3 You Only LOOK ONCE VEISION 3ooiiiiiiiiiiieeeiieiiiieee e e eee ettt e e e e e e eeeaab e e e eeeeeeasstaaeeeeeesesssanns 6

2.3 Drill down to You Only Look Once version 4 algorithmcccooiiiiiiiiiiiiiiic 8
2.3.1 YOU ONnly LOOK ONCE VEISION 4coovviiiiiieieeieeiiiieee e e eeeeeetiiee e e e e e eeeeaatiaeeeeeeeassstaaaeeeeesseessanns 8
2.3.2 Backbone network of YOLOVAcocuiiiiiiiiieeiiiee ettt e 8
2.3.3 YOLOVA network analysisccccoo i 10
2.3.4 Bag Of Freebies (BOF)..........coocuiiiiiiiie ettt e e e e e et e e e e e e e e e e e nnraaes 15
2.3.5Bag Of SPECIAIS (BOS)cceiiiiiiiiiiiie ettt et e e e e e e e e e e e et b e e e e e e e e e eanrraaees 16
2.3.6 YOLOVA'S 10SS FUNCHIONooeeiiiiiiiiiiie ettt 17

2.4 5caled-YOLOVA MOEISooiiiiiiiiiiiieeetee ettt e s e e e 19
2.5 Comparison between YOLO and other detection models.............cccccoiiiiiiiiiiiiiiiiiiiiiccicceccc e, 22
2.6 Analysis Of Performance MEeLIICSuuuuuuuuiuii s 25
Chapter 3 Data preparation and parameter selection for training the YOLOv4-p6 algorithm................ 33
3.1 Training data SEIECHIONuuiiiiiiiiii s 33
3.2 Annotation adjustments in UAV datasets............cccooeiiiuuuunuuiuiicce s 35
3.3 Training, validation and testing datasets..............ccccoiiiiiiiiii s 36
3.4: EXPErimental SEBEUPuuuuiieiiiiiii s 37
3.5: Important hyperparameters for YOLOv4-p6 model training.............cccccooeiiiiiiiiiiiiiiiiiiiiiccccecennn 38
3.5.1. Hyperparameters defined based on the characteristics of the dataset................................ 41
3.5.2 Hyperparameters related to the model’s architecture and operation 45
Chapter 4 Experimental Investigation................... 57
4.1 Full Factorial EXPerimentscooooeeeiiiiiiiie i 57
4.2 EXPeriment @XECULIONcooiiiiiiiiii et e e e e e e ettt e e e e e e e e e eabaaeeeeeeeeetsaaaeeeeeeeeennnnnn 58
4.3 Experimental results and analysis 63
4.4 Hyperparameter effects on mean Average Precision (MAP)cccc 70
4.4.1 ANOVA on best mAP results from trainiNg rUNS..................ouviiiiiiiiiiiiiiiiiiieriieerereeeereeeeereeea. 71
4.4.2 ANOVA on best mAP results from teStiNg FUNSooviiiiiiiiiiiiiiiiiieiiirieeeeeeereereeeereeeaaan, 78

[vii]

University of the Aegean Department of Financial and Management Engineering

4.5 ConClUdiNg remMArKS........coooeiiiieeeee e 82
Chapter 5 Testing the trained YOLOv4-p6 models on DeOPSys dataset..............ccccceeeiiiiiiiiiiiiiinneeeenes 84
5.1 DEOPSYS UAV dataset...........uuuuuuuuiiiiiiiiiiiii s 84
5.2 Testing execution on DeOPSyYs datasetuuuuuuiiiiiiii s 85
5.3 Testing results of DeOPSYSs dataset...............uuuuuuiiii s 87
Chapter 6 CONCIUSIONS..........ccooiiiii e, 90
REFEIEINCEScoiiiiieeee ettt e e e e ettt e e e e s s bbbttt e e e e e s s s aabbbeeeeeeeessaasbbaeeaeeeeesaaanrreees 92
AppendixX A. 10U and CIOU JOSSESuuuiiiiiiiiiiiiiiie ettt e e e e eeeat e e e e eeeeasataeeeeeeseeesssanaeeaeseees 100
A.lIntersection over Union (I0U)ooooiiiiiiiiiiiiii 100
A.2 Complete Intersection over Union (CIOU)ooooiiiiiiiiiiiiiiiii 100
Appendix B. Functionality of bounding BOXes................couiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeceeee e 103
B.1 Ground truth bouNdiNg DOXEScooviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeee e rrrereeeesrearearaee 103
B.2 ANCROI BOXESooiiiiiiiiiiiiieee ettt e e s s e s e s e s s e 103
B.3 BOUNAING DOXES..........oooiiiiiiiiiiiiiiiiiiiitettee ettt ettt et et eeeeeeeeeesaeeseeaaesssaesssassssessssssssesassssssensssnnnrnnns 105
B.4 Calculations regarding the resultant bounding boxes..................oovviiiiiiiiiiiiiiiiiiiiiiiie, 108
Appendix C. Convolution operations and network architecturesccccvvvviiiviiiiiiiiiiiiiiiiiieeinnen, 109
C.1 Stride OPEIrAtIONueiiiiiiiiiitii s 109
(O e F 1 (1] (=l s 1 1= « B OO P PRSPPI 110
C.3 CoNVOIULIONAI JQYEIS........euuiiiiiiiiiiiiii s 111
LR 8 - Vo e 11 - 113
C.5 Batch NOrmMalizationooiiiiiiiiii et e e e 114
C.6 DOWNSAMPIING OPEIAtION........uuiiiiiiiiiiiiiiiiit e ann 115
C.7 Upsampling OPeration................uuuuuuuuuieuiiii s 115
C.8 RESIAUAI BIOCKS........coneeiiiiiiiie ettt e e s e e e s e e e 116
C.OROULE QYRSoeviiiiiiiiiiiiiiiitiit ittt ae e aanann 117
C.10 Cross-stage partial connections (CSP cONNECHIONS).............uuuuuuuuuuiiiiiiiieicceeee e 118
C.11 Spatial Pyramid POOIING..............uuuunmiiiiiiiiii s 119
C.12 Path Aggregation NetWork (PANEL)uuuuuuuni s 120
Appendix D. Combination of UAV datasetsouiiiiiiiiiiiiiiiiiiiiiiiieiereereeeeeeerrererereererrrer ... 121
D.1 YOLO FOIMALcoiiiiiiiieiiitiee ettt ettt ettt e e st e e s b e e e s e abb e e e e sab et e e e abbeeeesnbeeeeennes 121
D.2 Modifications for each UAV dataset..............ccoouiiiiiiiiiiiiiiiiiie et 122
D.3 Python code for converting the classes in annotation filescccccevviiiiiiiiiiiiiiiiiiiiiiiiines 124
Appendix E. Analysis of Variance (ANOVA)oooiiiiiiiiiiiiiiieeieeteeeeeeteeerreereeeeereerrrere e ————.——————————————. 126

University of the Aegean Department of Financial and Management Engineering

Table of Figures

Figure 2.1 The development of YOLO models over the years (Keita, 2022)cccceeeeeeevicciiieeeeee e, 2
Figure 2.2 The output vector for each anchor box within every grid cell is generated by the YOLO

algorithm (WiIKiDOCS, 2023) ..eiieiieieeiiiiiieee e e e e ecciitre e e e e e e e e setbtreeeeeeeeessaastaaseeeaassaassssaaseaaaesssaanssssaseaaasesnnnes 4
Figure 2.3 YOLO neural network architecture (El Aidouni, 2019)ceeveeiiiiiciiiiiieee e e 4
Figure 2.4 The application of k bounding boxes (Kamal, 2021a)ccceevvuieieiiiiiiee e 5
Figure 2.5 Depicts the removal of fully connected layers highlighted in red colour (pawangfg, 2020) 6
Figure 2.6 YOLOV2 neural network architecture (Zhang, 2020).........cceeeeeeeiiieiiiiiieee e e e eececireeee e e e e eveaeees 6
Figure 2.7 YOLOv3 neural network architecture (Afif et al., 2020)cceeeeeeiiiciiiiieiee e, 7
Figure 2.8 Representation of the Darknet-53 backbone (Redmon and Farhadi, 2018)ccccoccvvevevrnnennn. 9
Figure 2.9 Representation of the CSPDarknet-53 backbone (Xu et al., 2021)ccoovcieiiiriiieenniiieee e, 9
Figure 2.10 YOLOv4 neural network architecture (Tsang, 2022)ceeeeeeeeeiiiireeeeeeeeeeccireeeeeeeeeeeenvneeens 10

Figure 2.11 Representation of the CSP block in the top box and the residual block in the bottom box.... 11
Figure 2.12 Representation of the CBM layer in the top box and the CBL layer in the bottom box (Tsang,

P10 72 I PSPPI 11
Figure 2.13 Representation of the SPP block together with the six CBM layers.................ccccl. 14
Figure 2.14 YOLOv4-p6 neural network architecture (Wang et al., 2020)........ccceeeeeeeeiiiciiieeeeeee e, 19
Figure 2.15 Representation of the Scaled-YOLOv4 backbone’s CSP block (Shaikh et al., 2023) 20
Figure 2.16 Depicts the computational blocks of the reversed Dark layer (SPP) on the left and the
reversed CSP dark layers (SPP) on the right (Wang et al., 2020)ccevieiiiiiiiiiieieeeeeeeccireeeee e 21
Figure 2.17 Examples of True Positives, False Negatives, and False Positivescccccceeeiiii . 27
Figure 2.18 Examples of False Negative and False POSItivecceeeeeeiiii, 27
Figure 2.19 lllustration of multiple bounding box predictions for a single objectL. 28
Figure 2.20 The Precision/Recall curve from the data of Table 2.4.........cccoveveeiiieiiiiiiiieecceee e 30
Figure 2.21 Represents the Precision/Recall interpolated CUrvecocovveeeieiieee e 31
Figure 3.1 The number of labelled objects present within the datasets...........................l, 36
Figure 3.2 The percentage distribution of data into training, validation, and testing sets....................... 37
Figure 3.3 lllustrates the location of "classes" within the configurationfile..........................L 41
Figure 3.4 lllustrates the location of "max_batches" within the configuration file 43
Figure 3.5 lllustrates the location of "steps" within the configuration file......................... L. 43
Figure 3.6 lllustrates the location of "filters" within the configurationfile..........................l 44
Figure 3.7 The locations of "width" and "height" within the configurationfile 45
Figure 3.8 The locations of “masks” and "anchors" within the configurationfile................................... 46
Figure 3.9 Representation of the use of the k-means algorithm 46
Figure 3.10 The bounding boxes preceding and following the implementation of the Non-Max
Suppresion (NMS) algorithm (SWiezeWski, 2020)cceceieiiiiiieeee e ee e e essese e ere e sresresreeresaea 48
Figure 3.11 lllustrates a comparison between NMS and DloU-NMS for ship detection (Chen et al., 2023)
.. 49
Figure 3.12 Illustrates the nms_kind location within the configuration file and the implementation of
DIOU-NMS and Gre@dy-NIMIS..... ..o e et e e e e e e e e ettt e e e e e e e eettaa e eeeeeeeressnansaeaeennsnnnnn 50
Figure 3.13 Implementing the Mosaic technique on image datasets (Solawetz, 2020b)......................... 51
Figure 3.14 lllustrates the location of the mosaic data augmentation technique.................................... 51
Figure 3.15 Implementing the MixUp technique on image datasets (Yun et al., 2019b) 52

[ix]

University of the Aegean Department of Financial and Management Engineering

Figure 3.16 lllustrates the placement of data augmentation techniques within the configuration file..... 53
Figure 3.17 lllustration of Swish activation function (Singh, 2020)ccceiiieiiiiieieeee e, 54
Figure 3.18 lllustration of Mish activation function (Li et al., 2022)cceeviiciiiiieieee e, 55
Figure 3.19 lllustrates the implementation of activation functions within the configuration file.............. 56
Figure 4.1 Folder including both .cfgand .datafilesccccc 58
Figure 4.2 Information included in the first .data file corresponding to the first .cfg file used for training59
Figure 4.3 Txt file including the object classes........cccevvvviiiii 59
Figure 4.4 Execution command for conducting the experiments...........ccccci i, 59
Figure 4.5 Key quantities of the training process.......ccccceeeiiiii 60
Figure 4.6 Display of key class metrics during validationcccoooo 61
Figure 4.7 Information included in all .data files used for testing............cccceeeii 62
Figure 4.8 Execution command for testing the experiments..........cccccci 63
Figure 4.9 Training progress chart on the modified UAV datasetccccceoii, 67
Figure 4.10 First Pareto chart of the standardized effects...........cccce 76
Figure 4.11 Main effects plot for mAP (training) of A, B and E factors.........ccccvvveeeeeeiiiicciiieeeee e, 77
Figure 4.12 Interaction plot for CDE........coooeiiiiii e, 78
Figure 4.13 Second Pareto chart of the standardized effects...........ccccco 80
Figure 4.14 Main effects plot for mAP (testing) of A, B and Efactorsccccvvveeeieieiiiiciiiieeeee e, 82
Figure 5.1 Sample images from the DeOPSys dataset featuring (a) the Tholos Port (daylight conditions)

and (b) Lagada Rural Area (low light cONitioNS)cccoiiiiiiiiiiiee e e e 84
Figure 5.2 Data files of the first and second testing sets........cccceeeiiiiii 86
Figure 5.3 Setup for testing the 25" and 29" models on DeOPSys datasetccoeevvvrveevreeerereeeserennenn. 86
Figure 5.4 Execution command for testing the experiments...............ccc 87
Figure A.1 Complete Intersection over Union (CloU) (Wang et al., 2022)..........ccccceiiiiiiiiii, 101
Figure A.2 Position of the Complete Intersection over Union (CloU) in YOLOv4 configuration file......... 102
Figure B.1 Ground truth bounding box containing a dog (SuperAnnotate, 2023)ccceevcvveeinenns 103
Figure B.2 Command for applying the k-means algorithm in Darknet........................l, 104
Figure B.3 Representationof adatafile.........cccoo 105
Figure B.4 Position of anchors in YOLOv4-p6 configuration file.....................cc 105

Figure B.5 Displaying bounding boxes for the car class within light green boundaries (Dupont, 2023) .. 106
Figure B.6 Calculation of the probability for an anchor to include a specific class (PyLessons, 2019) 107

Figure B.7 Two bounding boxes representing the class "car" (krishnab, 2018).........................l 108
Figure C.11mage Siz€ Of AXA......coooeeeeeeeeeeeeeeeeeeeeee 109
Figure C.2 Filter Size Of 2X2 .ccooeee e 109
Figure C.3 The output feature Mapcoooeeiiiiii i 110
Figure C.4 Convolutional layer with stride in YOLOv4-p6 configuration file...........................l. 110
Figure C.5 Filter size of 3x3 (for each channel) moves across the input to produce the output 112
Figure C.6 Example of same padding (Pedro, 2023)cooviiiiiiiiee et 114
Figure C.7 Downsampling 0peration..........ccoooeiiiiiii i 115
Figure C.8 Upsampling Operation........ccooeeeeeieii i, 115
Figure C.9 Upsample layer in YOLOv4-p6 configurationfile...................cc 116
Figure C.10 Residual block architecture ... 116
Figure C.11 Residual block in YOLOv4-p6 configuration file................c.cc 117
Figure C.12 Route layer in YOLOv4-p6 configuration file...........ccccooeii 117

[x]

University of the Aegean Department of Financial and Management Engineering

Figure C.13 Conventional network (on the left) and CSP-Enhanced network (on the right) (Bochkovskiy,

2020C) e e e 118
Figure C.14 Spatial Pyramid Pooling (SPP) applied to network configuration (convs represents the

terminal convolutional layer with a filter count of 256) (He et al., 2014)ccccovveiiiiiieeeee e, 119
Figure C.15 Visualization of (a) PAN and (b) modified PAN(Bochkovskiy et al., 2020)cccceeeeeennnes 120
FIigure D.1 YOLO fOrmat.ccccceee e e 121
Figure D.2 DOTA dataset's annotation format ... 122
Figure D.3 Visdrone dataset's annotation format...........ccccceiii 123
Figure D.4 DAC dataset's annotation format ... 124
FiBUIe D.5 CONVEIT.PY SCIIPE .uuieiiiiiiiiiiiiiiie sttt e e ettt e e e e e e et eaab s s e s e e eeeaetaaa s eseeeeaasssannsseseeeennsennn 125

[xi]

University of the Aegean Department of Financial and Management Engineering

List of Tables

Table 2.1 Comparison between YOLOv1, YOLOv2, YOLOv3, YOLOv4, and Scaled-YOLOv4 models........... 22
Table 2.2 Comparison between various detection models that are trained on coco dataset (Redmon and
Farhadi, 2016a) (Redmon and Farhadi, 2018) (Bochkovskiy et al., 2020) (Wang et al., 2020) 24
Table 2.3 Representation Of TP/FP/FN/TN ...ueeeeii ittt e ettt e e e e e e e e e e e e e e e e e asaeeeees 26
Table 2.4 Experimental data on recall and PreciSioN.... e 30
Table 3.1 The labelled objects per dataset e e 35
Table 3.2 The hardware configuration of the SYStemM 38
Table 3.3 The software components Of the SYSLEMuuuiee e 38
Table 3.4 Hyperparameters that are set based on the characteristics of the training dataset 39
Table 3.5 Hyperparameters that influence the model’s architecture and operationccccoeeeeiiiiiinnnn. 39
Table 3.6 Represents the adjusted values of the first set of hyperparametersccccoeeeviiiiiiiiiiiiiiiiiinnnnn, 45
Table 3.7 Representation of the anchor bounding boxes before and after the application of k-means
Aot NM. 47
Table 3.8 Represents the two levels of the second set of hyperparameters........ccccceeeeeiiiiiiieiiiiiiiiiiiennnnn, 56
Table 4.1 The 2° full factorial AESIGNccviiiveecrieitie ettt ettt ettt e e e e ete et e e e eteeeaeeeareereeeree e 57
Table 4.2 mAP results obtained from training and tEStINGuuueiiiiii 65
Table 4.3 Training and testing results: Class AP ValUES....... ... 68
Table 4.4 Average Precision (AP) deviation of the best performing model in training and testing 70
Table 4.5 Full factorial deSign SUMIMAIYeuuuuiiii s 71
Table 4.6 ANOVA training FESUILSuuuuuuuiiiiiiiiii s 73
Table 4.7 ANOVA tEStING FESUILS....uuuueiiieiiiiiitieti s 78
Table 5.1 The labelled objects of DEOPSYS dataset...... ... 85
Table 5.2 Average mAP testing results of 257and 29"MOdels..........covevviiieeeiieeciceceee e 88
Table 5.3 AP testing results of 25 and 291 MOelS.c.coiiiuiiieieiieiece ettt 88

[xii]

University of the Aegean Department of Financial and Management Engineering

Chapter 1 Introduction

Artificial Intelligence (Al) is replicating human intelligence within computational systems or machinery
furnished with appropriate software, demonstrating proficiency in executing intricate tasks within the
domain of human expertise. Leveraging the capabilities of Al, several logistics-related applications have
been developed, some of which focus on the process safeguarding warehouse facilities or even ports. For
such environments, Al powered systems are sought for effective area surveillance in order to prevent
unauthorized invasion, mitigate losses, organize routes for personnel, machinery, etc.

Object detection is a key prerequisite for such surveillance applications. Through object detection and
image classification, once the information has been extracted, the systems are able to perform actions or
make recommendations based on the extracted information. Note that there is a notable disparity
between image classification and object detection. Image classification identifies the category of the most
prominent entity within an image, while object detection encompasses the identification, position and
dimensions of every discernible object within the image.

The aim of the present thesis is to enhance the performance of such applications for object detection in
surveillance of logistics facilities. For this reason, we use the computer vision framework YOLO (You Only
Look Once), using an advanced version of it, the YOLOv4-p6. After we analyze the structure and
functionality of YOLOv4-p6, our study focuses on improving the training process of YOLOv4-p6. To do so,
we systematically explore the space of training hyperparameters to identify the hyperparameter
combination that results in training a YOLOv4-p6 model that achieves the highest mean Average Precision
(mAP). Furthermore, by systematically experimenting with the training hyperparameters we seek to
identify their effects and the effects of their interaction on the performance of training.

The structure of the remainder of the thesis is as follows: Chapter 2 overviews the first three YOLO
algorithms and provides information about the functional framework, architectural structure, and novel
features of YOLOv4 and Scaled YOLOv4 algorithms. Chapter 3 outlines the methodological steps for tuning
the model’s training hyperparameters. These encompass data preparation, the selection of the training
hyperparameters, and the experimental design that leads to the optimal hyperparameter combination.
Chapter 4 presents the analysis of the experimental outcomes. This involves the evaluation of mean
Average Precision (mAP) performance metric, as well as the utilization of Analysis of Variance (ANOVA).
Chapter 5 presents the average mAP results from testing the optimal YOLOv4-p6 models with our lab’s
UAV dataset. Finally, the conclusions of this thesis are presented in Chapter 6.

[1]

University of the Aegean Department of Financial and Management Engineering

Chapter 2 Background of YOLO models

This Chapter begins with an overview of YOLO, YOLOv2, and YOLOv3 algorithms. It is followed by a detailed
analysis of the YOLOv4 and Scaled-YOLOv4 models, since our work has been performed using the YOLOv4
variants. Specifically, attention is directed towards the functionality of YOLOv4 and YOLOv4-p6, along with
their neural network architectures. At the end of this Chapter, there is a detailed presentation of the
performance metrics, which will be used in Chapter 4 to evaluate the results of our experiments.

2.1 Introduction to the various YOLO versions

Figure 2.1 presents the evolution of the YOLO algorithm. Redmon et al., introduced YOLO (You Only Look
Once) through a seminal scientific paper (Redmon et al., 2015). This seminal paper is entitled "You Only
Look Once: Unified, Real-Time Object Detection" and the related research proved to be a revolutionary
algorithm that led to the creation of various YOLO versions. Subsequently in 2016, Joseph Redmon and Ali
Farhadi presented their new findings in a paper entitled as "YOLO9000: Enhanced, Accelerated,
Empowered" and introduced YOLO9000, which is also recognized as the YOLOv2 algorithm (Redmon and
Farhadi, 2016a). Following on from YOLOv2, in 2018 the YOLOv3 algorithm was introduced and is detailed
in "YOLOv3: An Incremental Advancement", demonstrating significant improvements with three detection
scales and an optimized backbone network (Redmon and Farhadi, 2018).

Iaseph Redmnn

Al Farnad|
Joseph Redenon
fantosh Tiweaia Blewsy Borhkoyskiy
Rass G'l:ﬁil:k_ N”E:::E;an Chien=Ya0 Wﬂ"ﬂ
All Farhadi Hiong-Yuor: Mock Goo
YOO YOLO3 YOLOwd
"Wou Cnly Laak Snea! Unifesl, YL Arvincrizmental WO Ow i Optimal Speed and
Aeal Time Dhject Detection” improvornent” Accuracy of Dajock Dotechon'
YOLOS900O or ¥OLOVE Scaled YOLOvA
“YOLOBDM: Better, Faster, "Heoled-YOLDu4 Soeling Croas
rpnger” fivage Partial Network”

Figure 2.1 The development of YOLO models over the years (Keita, 2022)

The subsequent edition of YOLOv4 prompted Joseph Redmon to withdraw from further YOLO algorithm
development, citing ethical reasons. Specifically, he was concerned that object detection algorithms would
be used for military applications (Synced, 2020). Consequently, under the mentorship of Alexey
Bochkovskiy, a new scientific team led by Chien-Yao Wang and Hong-Yuan Mark Liao undertook the
responsibility for the continuous enhancement and development of YOLOv4, as detailed in “YOLOv4:

(2]

University of the Aegean Department of Financial and Management Engineering

Optimal Speed and Accuracy of Object Detection” (Bochkovskiy et al., 2020). In 2020, the same research
team revealed modified versions based on YOLOv4, namely the Scaled-YOLOv4 algorithms, which were
designed to support larger input sizes to improve the overall accuracy. The related paper for the Scaled-
YOLOv4 algorithms, entitled "Scaled-YOLOv4: Scaling Cross Stage Partial Network”, details the
advancements and adjustments implemented in these version of YOLO (Wang et al., 2020).

2.2 Earlier YOLO versions

2.2.1 You Only Look Once version 1

The YOLO (You Only Look Once) algorithm represents the first entry in the YOLO series of object detection
models. Unlike traditional object detectors that treat detection as a classification problem, YOLO
approaches it as a regression problem, accelerating the process to predict bounding boxes and class
probabilities in a single network pass (Redmon et al., 2016). Specifically, the developers were seeking to
create a single pass neural network capable of determining the class identity of objects and defining their
spatial coordinates within the image through a single iteration.

At the beginning of the training process, the YOLO algorithm resizes its input images based on selected
predetermined dimensions, which must be divisible by 32. For instance, YOLO applies dimensions of
448x448 to its input images for height and width, respectively. Then, it divides the input images into a grid
of dimensions S x S, where Sis typically 7 or 13. It is assumed that each grid cell contains a centered object
and each cell predicts the various bounding box sizes of the (presumed) objects, along with their
corresponding confidence scores and probabilities for the object to belong to the different available
classes (El Aidouni, 2019). For each of the individual grid cells i, YOLO performs the following predictions:

e The total of two bounding boxes (B), also known as anchor boxes, as discussed in Appendices
A.land A.2.

e Each of the B anchor boxes has a confidence score (C;) and spatial coordinates (x, y, w, h), along
with class probabilities (pi(c)) foreachclass(c =1,2,3,4,...,C).

These forecasts are structuredintoa S x S * (b * 5+ () tensor, where “5” represents the dimensions of
the vector (C;, x, y,w, h). Here, (x,y) is the center of the bounding box relative to the grid cell, (w, h) is
the width and height of the bounding box relative to the entire image, and C; represents the confidence
score (see Figure 2.2).

3]

University of the Aegean Department of Financial and Management Engineering

TxTx
Ex2-0Q

Frediction Feature Map
TxTx{(8+1)x2+0)

o} Y
[El0lalh @ 2 0l@ ki ¢ miml | lnc| 1 box per one grid cai
e——— R T L T
Box-Coordinates Box-Coordinates Class Probabilities

Figure 2.2 The output vector for each anchor box within every grid cell is generated by the YOLO algorithm (WikiDocs, 2023)

The YOLO model is designed based on a convolutional neural network architecture, capable of directly
anticipating objects through the application of the two bounding boxes and identifying class probabilities
for the object in each box. Compared to other object detection algorithms of the time, the design is quite
simple. It consists of 4 Max Pooling layers, 2 fully connected layers, and 24 convolutional layers, as
illustrated in Figure 2.3 (Kamal, 2021a).

"
H—
0« - /
" Hald—
3
u ’ — » \ - M y
3 ’ \/ NS
) d | » o/
g l- "‘ ’ i ’) .ﬂ ' @
T v I3 e i a " o "
Conv Layer Conv. Loywr Canv. Loyen Corw, Loyers Canv. loyers Conv loyen Conn Layer Conn. Laywr
Tu7ndesd 3192 Tuinile 1162367 o Ialx3i2 7 2dx1024
Maspool Loyer Maxpool Loyar 3x3x254 3x3e512 31024 177 3x3x1024
2x242 2:242 1x14256 11512 3351024
P 332512 3a3¢1024 De3al02442 o
Maspool Layer Maxpool Loyar :
/ 2242 2243 S
1 .
1 canvoltibion 6 corvolitions

4 convolions
Figure 2.3 YOLO neural network architecture (El Aidouni, 2019)

2.2.2 You Only Look Once version 2

Following the groundbreaking innovation of YOLOv1, YOLOv2 (known also as YOLO9000) includes several
enhancements that improve the model training process and increase object detection accuracy (Redmon
and Farhadi, 2016a). The changes that are included in YOLOV2 are:

[4]

University of the Aegean Department of Financial and Management Engineering

e Batch Normalization: As explained in Appendix C.5, the incorporation of batch normalization into
the structure improves the convergence of the model, speeding up the training process. It
eliminates the requirement to use alternative normalization techniques such as Dropout, while
concurrently decreasing the risk of overfitting (pawangfg, 2020).

o High Resolution Classifier: The YOLOv1 algorithm trains its classifier network with an image of size
224x224 and then increases the resolution to 448x448 pixels for the purpose of improves
detection. When moving to detection, the network must learn to identify objects and adjust to
changes in image resolution. This causes a reduction in mean Average Precision (mAP). On the
other hand, the initial training of the YOLOv2 algorithm uses images with dimensions of 224x224.
Consequently, a refinement process was performed, where the classification network is further
trained at the resolution of 448x448 for a duration of 10 epochs on the ImageNet dataset before
starting the training for object detection (Kamal, 2021b).

e Evolutionary utilization of anchor boxes: In YOLOv1, the objective is to locate an object in the grid
cell that includes the spatial midpoint of the object. Now see Figure 2.4, where the red cell is
tasked with detecting multiple objects (not one as in YOLOv1)To address this challenge, the
creators of YOLOv2 tried to enable the grid cell to detect multiple objects by introducing k
bounding boxes (Kamal, 2021a).

K boxes

Figure 2.4 The application of k bounding boxes (Kamal, 2021a)

Consequently, YOLOv2 improves object detection by introducing anchor boxes, which replace the fully
connected layers that YOLOv1 used towards the end of its network. As explained in Appendix B.2, this
method enhances the accuracy of object detection by using predefined boxes of various sizes and aspect
ratios. In contrast to YOLOv1, which directly predicts bounding box coordinates for objects without the
application of anchor boxes (see Figure 2.5).

(5]

University of the Aegean Department of Financial and Management Engineering

s

n
\ 1
\t: L] ’f:“
442 | 3¢ 'ﬁ
4 1 N 7 ?
2 ,] X X
') E
L 7) 7
3 52 -5 32 A 02 108 o 0
Conv. Layes cony. Laysss Conw Layers Comnv. Laysrs cony. Layers Cony. Laven Corv Layss cany. Layer
TXTHGA3-2 33182 1x1x128 D236Yyg IA1XS12 Yy H3x1024
M.:-g_;ool Layer Maxpool Layer 3¢3x256 IDHE12 3x3n1024 3x3x1024
y 2o %782 121>256 TaixE12 3Gx1024
xS 3vdxl0ia ol 02ds-)
Maxpool Layer Maxpool Layer
%K2x2 222

Figure 2.5 Depicts the removal of fully connected layers highlighted in red colour (pawangfg, 2020)

The architecture of YOLOv2 consists of 19 convolutional layers and 5 Max Pooling layers (Kamal, 2021b).
As shown in Figure 2.6, the trainable architecture used as the backbone is Darknet-19, chosen for its
comparatively lower computational requirements compared to alternative architectures.

Darknet Backbone itk

Figure 2.6 YOLOv2 neural network architecture (Zhang, 2020)

2.2.3 You Only Look Once version 3

YOLOv3 (Redmon and Farhadi, 2018) is the upgraded version of YOLOv2. It is an advancement from its
predecessors, with capacity to swiftly recognize objects in both images and video streams.

At its beginning, the YOLOv3 architecture was created as a 53-layer network, initially pretrained on the
ImageNet dataset, and designed with focus on the detection task. Following each layer within the 53-layer
architecture, it includes a batch normalization layer along with the incorporation of the Leaky RelU
activation function. These 53 layers are contained in an architecture known as Darknet-53, which is an
updated version of Darknet-19. Following the Darknet-53, there are 53 additional layers to its structure,
resulting in an overall 106 layers (see Figure 2.7) that make up the YOLOv3 model (Nagpal, 2023).

(6]

University of the Aegean Department of Financial and Management Engineering

The enhancements of YOLOv3 include the following:

e Objectness Score functions as a statistical metric, which estimates the probability of the existence
of an object within a specified region of an image. This assists in reducing false positive detections
(Kamal, 2021a)

e Multi-label prediction involves the existence of many overlapping labels within a dataset. The
application of SoftMax function for class prediction introduces the condition that each bounding
box corresponds exclusively to a single class. In comparison, YOLOv3 avoids using SoftMax
function, and instead uses independent logistic classifiers assigned to each class. Durning the
training process of the model, the utilization of binary cross-entropy loss is adopted to optimize
the class prediction process (Kamal, 2021a)

o Multi-scale predictions: The YOLOv3 model generates predictions at three scales, enabling it to
recognize small objects with greater accuracy (Kamal, 2021a)

o Small objects detection: YOLOv3 demonstrates improved efficiency in small object detection, due
to the incorporation of shortcut connections. The application of shortcut connections allows the
retrieval of more complicated details from the initial feature map. However, in contrast to YOLOv2,
YOLOv3 displays reduced performance in the detection of medium and large objects (Kamal,
2021a).

Imgis
el siier a1d 516 35}

YOLOvV3 Network Architecture

H G BRded +
i Cond 353342 53
fhanh el 0, 20 6E | 0 Cany: Coivwnluioned laysr Concatenabe; concatensle beo mpols

' S2; with ghride o1 2 bagh gizes (he ouput Size of this laveabloc
Ryl Biock 3a84 | |
N Ficiom o Residual Block: repeated comolutional layers with Reshel structere

'
Caer 12B<ERE 2 1
flimch skie (64 104 125)]

'

| PesdBlackzaiza | 1 23
{bmsh ek 10 L1001 .
' {bmsh ez 104, 104, 105 o o o ==]
Corre BERIXE 52 : Iaiarlanspema) (e [SO B2 15’_‘_‘ —s Owlestion Reads 1
{ha, e 82, 85 3ng | 4 hrich_sire 32, %2 25%) TR Ll e P9 .
| i
i

Coayw 1ainind 1

i Pnsideal Alnck Sxpda i Sunznlenahs
(bl g S5, 52 256 [T (g et 52,52 08 Bk "2:":‘&{_ et
Corv BlEanE 5k ' '1 S Sgabe 1 for detecting small objects J.'

(hocy slep: B0 BA S48 Cemmmmmmmsmamss e E T e

Cony Block

Ancag) Hlook 3xE13 g B Cancatonair Corw 285l

{bch_slee: 2, 26,548 [4 (hwr_size: o, 6, 70m [| SMESGKLHENNG) [T e gn gnyy [F| Deledtien Reault
1 - 1 fhakh sze 26, 26, 513) y
1 Cand LD iE x F

fank gie 1L LF e |

Posicdus Bluck datod [1
U | s e 2300, L0 |

Cany Dloek ' Com 2EEKINL & i : 3
TE [T L 1= LR AT - Lipsantple Scale 21 for detecting medium objects |
Gaanch_wye 13 1At |) [hatsh_aies:

20, 300)

Gorw 8ttt
v (oen_sizn: 1k 10 355

YOLOvA J Seale 3. for detecting big objects

Dlalection Redid

Figure 2.7 YOLOv3 neural network architecture (Afif et al., 2020)

(7]

University of the Aegean Department of Financial and Management Engineering

2.3 Drill down to You Only Look Once version 4 algorithm

2.3.1 You Only Look Once version 4

YOLOv4 is designed for high-speed object detection and classification in real-time scenarios using general
purpose GPUs. It exhibits superior efficiency, heightened precision, and increased consistency compared
to previous versions (Bochkovskiy et al., 2020). The original network design, which consists of 161 layers,
is made up of three components: the backbone, neck, and head. Additionally, YOLOv4 incorporates new
methodologies referred to as “Bag of Freebies” (BoF) and “Bag of Specials” (BoS) to increase its
performance.

As backbone in this network CSPDarknet-53 is used (Bochkovskiy et al., 2020), which is an updated
version of Darknet-53 (Redmon and Farhadi, 2018) that integrates cross-stage partial connections (CSP),
as further explained in Appendix C.10. It combines the features of Darknet-53 with CSP connections to
increase both precision and efficiency within the network.

The neck component of the model incorporates of Spatial Pyramid Pooling (SPP) (He et al., 2014) -see
Appendix C.11 for more details, and Path Aggregation Network (PANet) (Liu et al., 2018), see Appendix
C.12. SPP uses a technique known as pooling, which addresses the challenge of handling objects with
varying sizes and scales. Following the SPP the Path Aggregation Network is applied, which is used to
improve the object detection process through the preservation of spatial details. This enables the model
to create more accurate bounding boxes.

The last component is the detection heads that analyze the resulting feature maps. The YOLOv4 model,
like YOLOvV3, uses three detection heads for the detection and classification process. These detection
heads predict bounding box coordinates along with class probabilities for the objects identified within the
input image.

2.3.2 Backbone network of YOLOv4

YOLOv4 supports various backbones, including VGG16 (Simonyan and Zisserman, 2015), ResNet-50 (He et
al., 2015a), SpineNet (Du et al., 2020), EfficientNet-BO/B7 (Tan and Le, 2020), CSPResNeXt50 (Bochkovskiy
et al., 2020), and CSPDarknet-53 (Bochkovskiy et al., 2020). From the above backbones, as indicated also
above, the selected one is CSPDarknet-53. It is an updated version of Darknet-53 that integrates the CSP
connections at the top, while the feature extraction remains at the bottom, as seen in Darknet-53.

Figure 2.8 illustrates Darknet-53 that includes a total of 53 convolutional layers, with a mix of 1x1 and
3x3 filter sizes. Specifically, 29 of these layers have filters of size of 3x3 to increase the depth of the
network and its capacity for feature extraction. Each convolution layer within Darknet-53 is connected to
a batch normalization (BN) layer and a leaky-ReLU activation layer.

(8]

University of the Aegean Department of Financial and Management Engineering

Type Filters Size Cutpue
Convolltional 32 3Ix3 256 x 258
Convohticnal 64 3 «3/2 128% 128

|Convolticral 32 1=

1= Gonvohdicnal 64 3x3

| Residusl 128 x 128
Convolutional 128 3=3/2 Bdxbd
[Convolitional B4 11

o Convoldicnal 128 3=3
Hesidusl B4 x B4
Convoldicnal 256 3x3/2 3232
Convolutional 128 1x1

BEx Convolitional 256 3x3
Residusl) 32 33
Convoluticnal 512 33/ 16x15
Convoluticnal 256 1=

Ew | Convaltiornal 512 3«3
Residual 16 16
Convoliticnal 1024 3=3/2 Bx8
Convoluticnal 512 1=

4x Convolulicnal 1024 3x3

Residiel - Bx8
Avgpoal Gigbal
Connaslod 1000

Baltmex

Figure 2.8 Representation of the Darknet-53 backbone (Redmon and Farhadi, 2018)

With the application of CSP, the network divides the feature map of the primary layer into two different
paths and then combines them to produce an output feature map and proceeds in successive layers as
shown in Figure 2.9. In the CSP block, the feature map is divided into two paths: Part 1 and Part 2. Part 1
processes the feature map using an 1x1 convolutional layer with a stride of 1, which retains spatial
information. Part 2 processes the feature map using a 1x1 convolution followed by a 3x3 convolution,
both with a stride of 1, and Mish activation functions, which help reduce dimensions and capture spatial
information. After these processes, the resulting feature map of Part 2 is concatenated with the output
feature map of Part 1, leading to a more complete feature map.

CSPDarknet53 CSPBlock
Partl Par)
Conv 32x3x3_stride t [= l [“’]
Mish(316,41%.32) Cony 64x1%1, surkle 1
Y NI oo il o o9 o
CNPBlck =1

Conv 325151, stride)

Ouiput{298,208.64)

¥

CNFBlock »2

Mish
Y

Cony 64«53 yride 1

Output(104,104.128) Adish

T 00 | ===

CSPBlock *8
= L 4

Cony 64«12k sride 1 Conv 64> 1x1, stride 1

Oulput(s1,52.350)

f Mk Mish
CSPBlock =8

Output(26.26,512)

CSPBlock =4

Crufput{13,13,1023)

Figure 2.9 Representation of the CSPDarknet-53 backbone (Xu et al., 2021)

[9]

University of the Aegean Department of Financial and Management Engineering

The CSPDarknet-53 architecture demonstrates increased accuracy in object detection and its classification
efficiency can be further optimized through the integration of methodologies such as Mish, as elaborated
in Chapter 3.

2.3.3 YOLOvV4 network analysis

This Subsection provides a more detailed analysis on YOLOv4’s neural network architecture, focusing on
its backbone, neck, and head components, as shown in Figure 2.10. We begin with the nomenclature of
the components contained in Figure 2.10.

Backbupe Mok Dxnacticn
5= arknat 53] {Fabst] Heads

5 CHM I
= [abohy_size, BOS, 608, 30 12

4 a4 |
{mbch aiae, 104, 304, 54)

1 5
hich iz, 263, 161, 133

C5FE
(et size, 75, 75, 256]

- citl
(brtch_size, 38, 38, 5421

maps
flemtziy_size, £, 49, 1128

-

Figure 2.10 YOLOv4 neural network architecture (Tsang, 2022)

Nomenclature of the network’s components

In steps 9 and 13 of Figure 2.10, “Up2D” refers to the operation of upsampling, which is discussed in
appendix C.7. In the same Figure “Concat” represents the concatenation operation which is achieved
through the use of route layers (see Appendix C.9). In Figure 2.11 the term “CSPX” represents the cross-
stage partial structure. Lastly, Figure 2.12 illustrates the “CBL” layer, which combines a convolution layer
(see Appendix C.3) with batch normalization and the Leaky ReLU activation function. Similarly, the “CBM”
layer combines a convolution layer with batch normalization and the Mish activation function (Zhang et
al., 2022).

[10]

University of the Aegean Department of Financial and Management Engineering

CHM

L

C5PX = —% M —% ROUIL P CHM #-

WOLITE # CHEA

CAM T

L

s
!

- - . ik

Figure 2.11 Representation of the CSP block in the top box and the residual block in the bottom box

R BATCH + Acr':::izcm
NORMALIZATION FUNCTION
NORMALIZATION FUNCTION

Figure 2.12 Representation of the CBM layer in the top box and the CBL layer in the bottom box (Tsang, 2022)

cCBm

CBL

The network's backbone component

At the very beginning of the algorithm, a 608x608 image is fed into the CSPDarknet-53 and then passes
through a pair of convolutional layers (see Figure 2.10). The first convolutional layer (step 1) uses 32 filters
of size 3x3 and a stride of 1, resulting in an output feature map of 608x608x32 (see Appendix C.2).
Subsequently, the output is fed into the second convolutional layer (step 2), which uses 64 filters of size
3x3 with a stride of 2. This results in a feature map with dimensions of 304x304x64. The reduction in
dimensions from 608 to 304 is achieved through the filtering process by applying a stride of 2, while the
increased depth to 64 corresponds to the number of filters used in that convolutional layer.

Subsequently, the downsampled image is processed through the CSP blocks, which are in total five
(corresponding to steps 3 through 7). As shown in Figure 2.10, all CSP blocks contain residual blocks, CBM
and route layers, except for CSP1, which contains only one residual block (see Appendix C.8). As the
downsampled image with feature map of 304x304x64 progresses through the CSP1 block (step 3), it
undergoes:

e A convolutional layer with 64 filters (the same number of filters as before), using a stride of 1 and
a size of 1x1. This results in a feature map of 304x304x64

e A route layer that concatenates feature maps from previous layers to allow information flow
across different scales and resolutions. This results in a feature map of 304x304x64

[11]

University of the Aegean Department of Financial and Management Engineering

e A convolutional layer with 64 filters (the same number of filters as before), using a stride of 1 and
a size of 1x1. This results in a feature map of 304x304x64

e A convolutional layer with 32 filters (halves the number of filters), using a stride of 1 and a size of
1x1. This results in a feature map of 304x304x32

e A convolutional layer with64 filters (doubles the number of filters to preserve spatial information
due to using a larger size for this layer), with a stride of 1 and a size of 3x3. This results in a feature
map of 304x304x64

e Ashortcut layer that functions as a residual block. This results in a feature map of 304x304x64

e A convolutional layer with 64 filters using a stride of 1 and a size of 1x1. This results in a feature

map of 304x304x64

e Aroute layer that concatenates feature maps from previous layers. This results in a feature map
of 304x304x64

e A convolutional layer with 64 filters using a stride of 1 and a size of 1x1. This results in a feature
map of 304x304x64.

The CSP1 block concludes with an output feature map of 304x304x64. Following that, the downsampled
image progresses through CSP2 (step 4), CSP8 (step 5), CSP8 (step 6), and CSP4 (step 7). Before entering
the CSP2 (step 4) block, a downsampling layer (explained in Appendices C.1 and C.6) reduces the input
image size by half, doubles the number of filters and uses a filter size of 3x3. Consequently, the feature
map after the downsampling operation is 152x152x128. Then, the downsampled image moves through
the CSP2 block, which is similar to CSP1 but includes an additional residual block. This extra residual block
is added as follows:

e A convolutional layer with 64 filters (halves the number of filters), using a stride of 1 and a size of
1x1. This results in a feature map of 152x152x64

e A route layer that concatenates feature maps from previous layers. This results in a feature map
of 152x152x128

e A convolutional layer with 64 filters using a stride of 1 and a size of 1x1. This results in a feature
map of 152x152x64

e A convolutional layer with 64 filters, using a stride of 1 and a size of 1x1. This results in a feature
map of 152x152x64

e A convolutional layer with 64 filters using a stride of 1 and a size of 3x3. This results in a feature
map of 152x152x64

e Ashortcut layer that functions as a residual block. This results in a feature map of 152x152x64

e The following three layers represent a single residual block, where an additional one is included
in CSP2

e A convolutional layer with 64 filters using a stride of 1 and a size of 1x1. This results in a
feature map of 152x152x64

e A convolutional layer with 64 filters using a stride of 1 and a size of 3x3. This results in a
feature map of 152x152x64

[12]

University of the Aegean Department of Financial and Management Engineering

e A shortcut layer that functions as a residual block. This results in a feature map of
152x152x64.
e A convolutional layer with 64 filters, using a stride of 1 and a size of 1x1. This results in a feature
map of 152x152x64

e A route layer that concatenates feature maps from previous layers. This results in a feature map
of 152x152x64

e A convolutional layer with 128 filters (doubles the number of filters), using a stride of 1 and a size
of 1x1. This results in a feature map of 152x152x128.

The CSP2 block concludes with an output feature map of 152x152x128. The remaining CSP blocks
function the same way as CSP2 and follow the same pattern. For instance, CSP8 is like CSP2, but with six
more residual blocks added. Notice the number that follows CSP indicates the number of residual blocks.
Then, we add them in the same way as we added the extra block in CSP2. Consequently, the resulting
feature maps of CSP8, CSP8 and CSP4 blocks are:

e The resulting feature map of CSP8 (step 5) block is 76x76x256
e The resulting feature map of CSP8 (step 6) block is 38x38x512
e The resulting feature map of CSP4 (step 7) block is 19x19x1024.

Before entering the neck component of the YOLOv4 architecture, there are three convolutional layers
(CBL). These layers are located between the conclusion of CSP4 block and the beginning of the SPP (see
Figure 2.13). They are described as follows:

e A convolutional layer with 512 filters (halves the number of filters in the resulting CSP4 feature
map), using a stride of 1 and a size of 1x1. This results in a feature map of 19x19x512

e A convolutional layer with 1024 filters (doubles the number of filters to preserve spatial
information due to using a larger size for this layer), with a stride of 1 and a size of 3x3. This results
in a feature map of 19x19x1024

e A convolutional layer with 512 filters (halves the number of filters), using a stride of 1 and a size
of 1x1. This results in a feature map of 19x19x512.

The final three convolutional layers of the backbone component result in a feature map of 19x19x512,
which passes to SPP.

The neck component of the network

The description of the network’s neck component (depicted by the cyan box of Figure 2.10) performs the
following steps:

e Instep 8, the model applies Spatial Pyramid Pooling (SPP). This module is positioned between the
backbone and the neck. After applying three different pooling processes in 13x13, 9x9, and 5x5
dimensions, the feature maps of varying scales are merged with the original feature maps to
generate the combined output. Moreover, convolutional layers (CBL) are implemented three times

[13]

University of the Aegean Department of Financial and Management Engineering

both before (as mentioned at the end of backbone component) and after the SPP, totaling to six
instances of CBL application (see Figure 2.13). This results in a feature map with dimensions

19x19x512
1S

E : 4 H

AL i o — A,
i L~ B (B - B

Figure 2.13 Representation of the SPP block together with the six CBM layers

Step 9: Asingle CBL layer and upsampling operation are executed, resulting in an output dimension
of 38x38x256

Step 10: Is a CBL layer with a feature map of 38x38x256

Step 11: Involves concatenation operation and produces an output dimension of 38x38x512,
while extracting data information from the feature maps of steps 9 and 10

Step 12: Uses five CBL layers, resulting in an output dimension of 38x38x256

Step 13: A single CBL layer and upsampling operation are executed, resulting in an output
dimension of 76x76x128

Step 14: Is a CBL layer with a feature map of 38x38x128

Step 15: Involves concatenation operation and produces an output dimension of 76x76x256,
while extracting data information from the feature maps of steps 13 and 14

Step 16: Uses five CBL layers, which are performed before the detection of small objects

Step 17: Uses a stride 2 operation and a CBL layer to generate an output dimension of 38x38x256
Step 18: Includes only concatenation operation, resulting in an output dimension of 38x38x512
Step 19: Uses five CBL layers, which are applied before the detection for medium objects

Step 20: Uses a stride 2 operation and a CBL layer to generate an output dimension of 19x19x512
Step 21: Includes only concatenation operation, resulting in an output dimension of 19x19x1024
Step 22: Uses five CBL layers, which are performed before the detection for large objects.

The detection heads component of the network

The green box of Figure 2.10 contains three sets of feature maps with varying dimensions (76x76, 38x38,

and 19x19), derived from steps 16, 19, and 22, respectively. That way the model can identify objects of

diverse scales within the image.

In the original YOLOv4 algorithm, the number of filters before each detection head is set to 255. That is

determined by the following equation:

Number of filters = (n+5) * 3 (2.2)

[14]

I M AEET

University of the Aegean Department of Financial and Management Engineering

In Equation 2.1, n represents the number of different classes on which YOLOv4 was trained. Since it was
trained on the COCO dataset, which includes 80 distinct classes n = 80. 5 is a combined measure that
comprises four anchor boxes and one objectness score, while “3” indicates the number of anchors
integrated into the YOLOv4 model.

For instance, a single convolutional layer featuring 255 filters with dimensions 1x1 and a stride of 1 is
applied before the (large) detection head to reduce the output dimensionality from 512 to 255. The
resulting 19x19x255 feature map is used as input for detection and classification processes that locate
large objects. Every grid cell produces three one-dimensional arrays, each representing one of the three
anchors containing different features. These include box coordinates (bx, by, by, bw), the objectness score
(po), and class probabilities (p;) for each class (c). Thus, since in this case the training dataset contains 80
classes, the length of the individual one-dimensional array is 85 (comprising by, by, by, by, + p, + 80 class
probabilities) for each anchor within every grid cell (Tepteris et al., 2023).

2.3.4 Bag of Freebies (BoF)

YOLOv4 introduced various techniques known as “Bag of Freebies” (BoF), which are included in the
backbone and detector components of the network (Bochkovskiy et al., 2020). By utilizing BoF, the
network requires less computational power during the training process, while increasing its overall
accuracy. The majority of BoF focuses on data augmentation techniques, therefore the network is capable
to generate new training instances from existing data. Allowing the model to experience a broader range
of scenarios that might not otherwise be examined.

The techniques applied to the backbone and the detector components of the network are (Bochkovskiy
et al., 2020):

e For the backbone:
v' Data Augmentation Techniques: CutMix (Yun et al.,, 2019a) and Mosaic data
augmentation (Bochkovskiy et al., 2020)
v" Regularization Techniques: DropBlock regularization (Ghiasi et al., 2018) and Class label
smoothing (Miiller et al., 2020)
e For the detector:
v" Loss Function and Optimization Techniques: Complete Intersection over Union Loss
(CloU-Loss) (Zheng et al., 2019a), cosine annealing scheduler (Loshchilov and Hutter,
2017), Application of Optimal Hyperparameters (Bochkovskiy et al., 2020)
v' Data Augmentation and Regularization Techniques: Mosaic data augmentation,
DropBlock regularization, Cross-mini Batch Normalization (CmBN) (Bochkovskiy et al.,
2020), Self-Adversarial Training (SAT) (Zhao et al., 2022)
v' Training Efficiency and Model Robustness Enhancements: Cross-mini Batch
Normalization (CmBN), Elimination of Grid Sensitivity (Bochkovskiy et al., 2020),
Application of Multiple Anchors for a Single Ground Truth (Bochkovskiy et al., 2020)

In this thesis, we will only cover the BoF that was used to modify the configuration files before the
execution of the experiments. The selected technique is:

[15]

University of the Aegean Department of Financial and Management Engineering

o For the backbone:
v' Data Augmentation Techniques: Mosaic data augmentation
o For the detector:
v/ Data Augmentation and Regularization Techniques: Mosaic data augmentation

and it will be described in Chapter 3.

2.3.5 Bag of Specials (BoS)

In addition to the “Bag of Freebies” (BoF), YOLOv4 introduces the “Bag of Specials” (BoS), which comprises
a collection of more advanced techniques requiring more computational power. They ares are included in
the backbone and the detector components of YOLOv4 network, similar to BoF (Bochkovskiy et al., 2020).

The techniques applied to the backbone and the detector components of the network are (Bochkovskiy
et al., 2020):
e For the backbone:
v" Activation function: Mish activation function (Misra, 2020)
v Regularization Techniques: Cross-Stage Partial connections (CSP) (Wang et al., 2019)
v Regularization and Optimization Techniques: Multi-input Weighted Residual Connections
(MiWRC) (Bochkovskiy et al., 2020)
v Training Efficiency and Model Robustness Enhancements: Mish activation function,
Cross-Stage Partial connections (CSP), Multi-input Weighted Residual Connections
(MiWRC)
e For the detector:
v Activation function: Mish activation function
v' Optimization Techniques: Distance-Intersection over Union - Non-Maximum Suppression
(DloU-NMS) (Zheng et al., 2019a)
v" Training Efficiency and Model Robustness Enhancements: Mish activation function,
Spatial Pyramid Pooling (SPP) (He et al., 2014), Spatial Attention Module (SAM) (Woo et
al., 2018), Path Aggregation Network (PANet) (Liu et al., 2018), Distance-Intersection over
Union - Non-Maximum Suppression (DloU-NMS)

In this thesis, like BoF techniques, we will only cover the BoS that were used to modify the configuration
files before the execution of the experiments. The selected techniques are:

e For the backbone:
v Activation function: Mish activation function
v" Training Efficiency and Model Robustness Enhancements: Mish activation function
e For the detector:
v Activation function: Mish activation function
v' Optimization Techniques: Distance-Intersection over Union - Non-Maximum Suppression
(DIoU-NMS)
v" Training Efficiency and Model Robustness Enhancements: Mish activation function,
Distance-Intersection over Union - Non-Maximum Suppression (DloU-NMS)

[16]

University of the Aegean Department of Financial and Management Engineering

and they will be described in Chapter 3.

2.3.6 YOLOV4’s loss function

To begin with, the loss function has multiple uses in the YOLOv4 model. It is not used only as an evaluation

metric for training performance, but it also drives the optimization mechanism to adjust model

parameters, such as weights (DataRobot, 2018). The loss function applied in the YOLOv4 model contains

three different losses:

@,
0’0

Y/
0'0

Regression loss: The regression loss function (L¢joy) is used to reduce the disparity existing

between the predicted bounding box coordinates and those of the ground truth bounding box
(Wu et al., 2021). Thereby, it is designed to improve the accuracy in object localization, and its
mathematical representation is as follows:

Zb,bgt
p(b,b%)

LCIOU = 1 - IOU + CZ u (2'2)

where,

e b and b9t: are the central coordinates of the boxes B and B9¢, respectively

e p:is the Euclidean distance between the centroids of the predicted and ground truth
bounding boxes

e c:isthelength of the diagonal line that covers both the predicted and ground truth bounding
boxes when they are enclosed in the smallest possible shape

e «:can be adjusted to balance the importance of the distance between objects and their size
differences when calculating CloU.

e u:functions as a standardizing factor, accommodating the difference in aspect ratio between
the predicted and ground truth bounding boxes

e [oU:is the Intersection over Union, as it is discussed in Appendix A.1.

The CloU and loU are further discussed in Appendix A.

Confidence loss: The confidence l0ss (L¢onfidgence) is used in the training process to improve the

model's object detection performance. If the model produces poor results, it applies constraints
to itself based on its confidence estimates about the presence of objects in different grid cells and
its predictions of bounding boxes (Nguyen et al., 2022). The mathematical representation for this
loss is as follows:

s B
Lconfidence = Z Z Iiojbj [él log(Ci) +(1 - CL) log(l - Ci)]

i=0 j=0

s2 B
~ Jnoony). 1 [Gi10g(C) + (1 = C:)log(1 = €]

i=0 j=0

(2.3)

where,

e S?:represents the total number of grid cells

[17]

University of the Aegean Department of Financial and Management Engineering

B: indicates the number of bounding boxes located per grid cell
obj
Il.j
anchor j, taking the value 1 to indicate its presence and 0 otherwise
noobj
Iij :
assigning the value 1 to denote this absence and 0 otherwise

:an indicator function representing the presence of an object within cell i associated with

an indicator function representing the absence of an object within cell i and anchor j,

C;: represents the ground truth confidence score for the presence of an object in cell i
C‘i: represents the predicted confidence score for the presence of an object in cell i
log(C;): computes the natural logarithm of the ground truth confidence score

Anoonj: provides the weighting term for cells without any object presence.

% Classification loss: The classification 10ss (L¢iqssification) is used for training the object detection

model (Nguyen et al., 2022). Its role involves applying limitations for incorrect classifications
related to each bounding box, and its mathematical representation is as follows:

52
Lclassification = zliojbj z [ﬁl(c) log(Pi(C)) - (1 - ﬁl(c)) log(l - pi(c))] (2.4)
i=0

cEclasses

where,

S2: represents the total number of grid cells

c: represents each individual class that the model is trained to detect

classes: includes all categories of objects that the model is trained to identify
obj,

I;;7:

anchor j, taking the value 1 to indicate its presence and 0 otherwise

an indicator function denoting the presence of an object within cell i associated with

p;(c): represents the true probability that object i belongs to class ¢
ﬁi(c): represents the predicted probability that object i belongs to class c.

Consequently, the overall loss function of YOLOv4’s model (T.) is described as follows:

TL = LCIoU - Lconfidence - Lclassification

2 b,b‘gt
p=(b,b%)

=1-1IoU + 5 au
c
s?2 B
—~ ZZI{’}” [Cilog(C) +(1 — €)log(1 — C)]
t=07=0 (2.5)
s? B
~ Jnoony). I [G110g(CO + (1 = G1)log(1 =)]
i=0 j=0

SZ
_ Z]ic)jbf Z [ﬁi(c) log(pi(c)) — (1 - ﬁi(c)) log(1 — pi(c))]
i=0

ceclasses

[18]

University of the Aegean Department of Financial and Management Engineering

In Equation 2.5, S? is the configuration of S x S grid, where B candidate boxes within each grid are
generated. This results in a total of S x S x B bounding boxes. In instances where no object (noobj) is
present within a box, the computation only includes the confidence loss associated with the box. This
confidence loss function, which uses cross entropy error, is divided into two distinct components: one
addressing the presence of an object (0bj), and the other addressing its absence (noobj). The introduction
of the weight coefficient 4 within the loss function of noobj is designed to reduce the contribution weight
assigned to calculations concerning scenarios with no object. Furthermore, the classification loss function
also uses cross entropy error. In scenarios where the j-th anchor box of the i-th grid is tasked with
delineating specific ground truth, the classification loss function is applied to the bounding box generated
by this anchor box (Wu et al., 2021).

2.4 Scaled-YOLOv4 models

The present Section overviews the evolution from YOLOv4 to Scaled-YOLOv4, which is designed to achieve
an optimal balance between speed and accuracy. Specifically, the Scaled version of YOLOv4 introduces a
fully optimized CSP referred to YOLOv4-P5, which is used as the foundational architecture for following
evolutions to YOLOv4-P6 (see Figure 2.14 and 2.15) and YOLOv4-P7 (Wang et al., 2020).

Hackiwrs
(CEPDarknes-23}
5 TuCERCx b 1000
{bakch_sir=. 2030 1034)
. FuEFCark, 1004
fhoabeh_ e, d) A THA)
5 Al S i, ST
(Batch_stie, 80, 80.513)

(liatehy size, all, Anel den) i iy s | "

Dieksction

Hosdc

=

Detestion forferge olilecia

Datocibor for very small oblects

z Sucapriank, 128
{hatch. sice, 3200 330138

= u,aq
= Ibratich Siaz, B30, 530, 64)

Figure 2.14 YOLOv4-p6 neural network architecture (Wang et al., 2020)

The backbone of the Scaled network optimizes both its size and the number of computational steps by
applying compound scaling. This approach deals with adjusting both the size (size!™%t) of the input
images and the number of steps (#stage) together (Wang et al., 2020). During the training process in each
stage (CSPDark), the model increases the number of filters and the number of residual blocks used, but it
decreases the size of the input images. Specifically, the size of the images is divided by two, and the
number of filters is multiplied by two as it moves from one stage to another until it reaches the SPP

[19]

University of the Aegean Department of Financial and Management Engineering

module. In addition, the number of residual blocks within each stage follows a specific pattern
represented by the array [1, 3, 15, 15, 7, 7]. For instance, step 5 contains fifteen residual blocks inside its
CSPDark block (see Figure 2.14).

However, the YOLOv4-p6 model limits the number of filters to 1024 to prevent issues such as overfitting
and high computational demands. In steps 8 and 9, it uses 1024 filters, which is its maximum use.

Figure 2.15 represents the CSP block that the model uses to process the input image throughout the
backbone component of the network. All CSP blocks have the same pattern, they begin with a 3x3
convolution layer and produce a feature map with ¢ channels. This feature map is then split into two
paths, each with % channels. The reason for reducing the channels to % is to improve feature selection and

computational efficiency by decreasing the computational load and memory use. The first path is further
processed with a series of residual blocks. Each one of these includes an 1x1 convolution, followed by a
3x3 convolution and a shortcut layer. After the residual blocks, the resulting output feature map is
processed through one more 1x1 convolution. Meanwhile, the second path skips these additional
convolutions, preserving the original split feature map. Afterwards, the two paths are concatenated again
to create a combined feature map with ¢ channels. Finally, this combined feature map is processed
through an 1x1 convolution to adjust the number of output channels by merging the information from
both paths.

Figure 2.15 Representation of the Scaled-YOLOv4 backbone’s CSP block (Shaikh et al., 2023)

The neck of the Scaled network functions similarly to YOLOv4. Specifically, it uses SPP to handle objects of
different sizes and scales within the network and PANet to improve the object detection process by
maintaining spatial details. Specifically, the model optimizes computational efficiency by incorporating the
PANet architecture, which combines features obtained from various feature pyramids (see Figure 2.16).
Figure 2.16 illustrates two configurations: (a) reversed dark layers (SPP) and (b) reversed CSP dark layers
(SPP).

[20]

University of the Aegean Department of Financial and Management Engineering

Both models use two different notations to describe their functionality, which are:

e k:is the filter size of the convolutional layer. For instance, k = 1 indicates that the convolutional
layer uses a 1x1 kernel, and k = 3 indicates that it uses a 3x3 kernel
e b:isthe number of filters in the convolutional layer.

The model (a) includes a series of convolutional layers with the following structure: conv k = 1,%,
convk =3,b, and convk = 1,%. The SPP is positioned in the center of the computation pipeline.

Following the SPP module, the structure changes to conv k = 3,b and conv k = 1,%.

The model (b) begins with a conv k = 1, b layer, followed by a split into two paths (g) The first path skips
all convolutional layers and SPP to proceed to the concatenation operation, while the second path
continues with conv k = 3,% and convk = 1,2 layers. Then, it passes through the SPP, which is
positioned again in the center of the computation pipeline. Following the SPP, there is one more conv k =
3,% before reaching the concatenation operation, where it merges the feature map of the first path with

the second one.

After combining features from different feature pyramids (with the use of a route layer), the resulting
feature map is 19x19x512. This feature map then passes through a convolutional layer (with stride of 1
and filters size 1x1), resultingina 19x19x1024 feature map. Subsequently, it proceeds through two series
of reversed Darknet residual layers (before and after SPP), while avoiding shortcut connections. However,
since the Scaled-YOLOv4 implements the CSP connection to its entire network, it leads into a modified
neck component (see Figure 2.16). Following the successful integration of CSP, the modified module results
in a 40% reduction of computational load (Wang et al., 2020).

As depicted in Figure 2.16, SPP was first added to the central position in the computation pipeline of the
neck. Similarly, in the CSPPAN, the SPP module was positioned at the middle of the computation group
pipeline (Wang et al., 2020).

I e k=1, b '

conv k=1, &2 { b2 | &2

conv k=3, b2 |

conv =3, 6

cony k=1, b2 |

COMNCL

comy k=3, b

vony k=1, b2 J I conv k=1, 62 |

(a) reversed dark layers (SPP) {b) reversed CSP dark layers (SPP)

Figure 2.16 Depicts the computational blocks of the reversed Dark layer (SPP) on the left and the reversed CSP dark layers (SPP)
on the right (Wang et al., 2020)

[21]

University of the Aegean Department of Financial and Management Engineering

Experimental findings confirm that YOLOv4-P6 reaches real-time operational efficiency, achieving a video
processing rate of 30 frames per second (fps) when the width scaling factor is set to 1. For YOLOv4-P7,
real-time functionality is achieved at a video processing rate of 15 fps, depending on a width scaling factor
of 1.25 (Wang et al., 2020).

2.5 Comparison between YOLO and other detection models

To demonstrate the progressive advancements in YOLO object detection algorithms, Table 2.1 offers a
comparative analysis between the foundational YOLO models and the innovative Scaled-YOLOvA4. This
comparison not only shows the evolution of the YOLO family over time, but also highlights improvements
in key areas of the model's design.

Table 2.1 Comparison between YOLOv1, YOLOv2, YOLOv3, YOLOv4, and Scaled-YOLOv4 models

Combines
region
proposal with Uses higher Added BoF
object resolution (Bag of
categorization classifier (from Freebies) and
in a single 224x224 to BoS (Bag of
neural 448x448) Specials)
network

forward pass
Added CSP (cross-

. Fully Added residual Uses CloU]
Architecture stage partial)
connected blocks (Complete)
) connections
) layers were Intersection
Contains two .
removed Over Union)
fully —
Utilizes an
connected
updated
layers at the
Batch NMS:
end of the o
. Normalization Greedy-NMS
architecture
was added Updated loss
function
Modified
CSPDarknet- .
Backbone Darknet-19 Darknet-53 c3 CSPDarknet-53 with
stages
Added SPP
Neck - - - -
and PANet

[22]

University of the Aegean

Department of Financial and Management Engineering

One detection
head

Head

Used a grid of
dimension SxS
to extract the
feature map
from images

One detection
head

Utilization of
anchor boxes

Bounding box
prediction:
predicts
location
coordinates in
relation to the
grid cell's
location.

Three
detection
heads were
added to
classify small,
medium, and
large objects
respectively
The accuracy
increased for
small objects
but decreased
for medium
and large
objects

Multi-label
prediction was
added

Objectness
score was
added

Three
detection
heads

There are four

detection heads in

total, to classify

very small, small,
medium and large
objects respectively

Table 2.1 compares the various versions of YOLO models. The initial version, YOLOv1, pioneered the
integration of region proposal and object categorization within a single neural network forward pass. It
used a grid of dimensions S x S to extract feature maps from images, followed by two fully connected
layers before the object detection stage. YOLOv2 introduced architectural modifications by replacing the
fully connected layers with anchor boxes, incorporating Darknet-19 as the backbone and batch
normalization in convolutional layers. Additionally, YOLOv2 allowed for training on higher resolution
images (from 224x224 to 448x448) to improve the bounding box prediction accuracy.

YOLOv3 introduced further advancements with the adoption of Darknet-53 as the backbone. The model
added residual blocks to its entire architecture and three detection heads at the end to identify small,
medium, and large objects respectively. Additionally, multi-label prediction and objectness score were
integrated. All these advancements led to improved accuracy for small objects, but with reduced
performance for medium and large objects. Subsequently, YOLOv4 introduced significant updates such as
Bag of Freebies (BoF) and Bag of Specials (BoS) techniques, refining its loss function and adopting Greedy-
NMS for non-maximum suppression. Furthermore, it introduced a) switching to CSPDarknet-53 as its
backbone and introducing) a neck structure after the backbone comprising Spatial Pyramid Pooling (SPP)
and Path Aggregation Network (PANet). Even if it extended its architectural depth, it retained the utility
of three detection heads.

[23]

University of the Aegean Department of Financial and Management Engineering

In the evolution from YOLOv4 to Scaled-YOLOv4, further improvements were introduced: Extension of
the integration of CSP connections throughout the model's architecture, along with modifications in the
backbone and neck components. The backbone is a modified version of CSPDarknet-53, with the number
of layers varying depending on the Scaled YOLO model version used; YOLO-p5 (CSP-P5), YOLO-p6 (CSP-
P6), and YOLO-p7 (CSP-P7) incorporate progressively more layers. The neck component incorporates CSP
connections, creating CSPPAN. The CSPPAN has the same utility as PANet, but it is even better by
incorporating CSP connections. Finally, the number of detection heads varied across Scaled YOLO versions,
with YOLO-p5 featuring three heads, YOLO-p6 featuring four, and YOLO-p7 featuring five, respectively.

Table 2.2 compares different detection models based on the metric AP (Average Precision), which is
detailed in Section 2.6. AP is a metric that evaluates the precision of an object detection model by
averaging the precision values over a range of loU thresholds, specifically from 0.5 to 0.95 in steps of 0.05.
In contrast, AP50 assesses the precision at a single loU threshold of 0.50, which indicates the model's
accuracy when the overlap between predicted and ground truth bounding boxes is equal to or greater
than 50%. While AP provides a complete perspective by considering various overlap levels, AP50 is less
demanding and generally results in higher precision values due to the lower overlap requirement.

All models were trained on the COCO dataset to provide more accurate results. The objective of this table
is to determine which detection model has the highest rate of object detection and classification.

Table 2.2 Comparison between various detection models that are trained on coco dataset (Redmon and Farhadi, 2016a)
(Redmon and Farhadi, 2018) (Bochkovskiy et al., 2020) (Wang et al., 2020)

Faster R-CNN = = 21.9% 42.7%
SSD300 - - 23.2% 41.2%
SSD512 = = 26.8% 46.5%
YOLOv2 - Darknet-19 21.6% 44%
YOLOv3 416x416 Darknet-53 31% 55.3%
YOLOv3 608x608 Darknet-53 33% 57.9%
YOLOv4 416x416 CSPDarknet-53 41.2% 62.8%
YOLOv4 512x512 CSPDarknet-53 43% 64.9%

YOLOv4-p5 896x896 CSP-P5 51.8% 70.3%
YOLOvV4-p6 1280x1280 CSP-P6 54.5% 72.6%
YOLOv4-p7 1536x1536 CSP-P7 55.5% 73.4%

Table 2.2 illustrates that the highest result was produced from YOLOv4-p7, which belongs to Scaled-
YOLOv4 models.

The analysis in Section 2.5 shows that the Scaled-YOLOv4 models have better Average Precision (AP)
results. If we examine the development of the features introduced in each YOLO update, it is clear that

[24]

University of the Aegean Department of Financial and Management Engineering

these improvements have been implemented with a reduction in training speed, as a compromise to
improve prediction accuracy.

In this thesis we selected to use Scaled-YOLOv4 models, since they feature the best detection and
classification results. From the three models that were included in the Scaled-YOLOv4 family, the YOLOv4-
p6 algorithm was chosen. Despite a marginal superiority in AP demonstrated by YOLOv4-p7, it was avoided
due to its slower training speed.

2.6 Analysis of performance metrics

Performance metrics are used to evaluate the detection performance of a model. Important metrics
include precision, recall, F1-score, Average Precision (AP) and mean Average Precision (mAP). All are based
on the model’s classification and detection results, that are identified as True Positives (TP), False Positives
(FP), True Negatives (TN), False Negatives (FN). The focus of this Section is to provide an overview of these
metrics, which are significant for all object detection models.

True positives (TP)/ False positives (FP)/ False Negatives (FN)/ True Negatives (TN)

To describe these four concepts (Google, 2022), we assumed the 10U resnoia t0 be 0.5 (see Table 2.3). As
shown in Appendix A.1, loU indicates the overlap between the predicted bounding box and the ground
truth bounding box.

e True positives (TP) occur when a) IoU = [0Upreshoig Meaning that the predicted bounding box
overlapped beyond the threshold (or even matched) the ground truth bounding box, and b) the
object has been classified correctly. As a result, a true positive result indicates that the predicted
bounding box correctly predicted the location and class of an object within a ground truth
bounding box.

e False positives (FP) can occur in four different scenarios regarding to the predicted bounding
boxes:

o When IoU = [oU;presnoia, but the object has been misclassified (classified in the wrong
class)
o When IoU < I0Uipresnotd, thatis, the predicted bounding box mislocated the object
e |f there are multiple predicted bounding boxes with IoU = [oU;pyeshoia (say loU = 0.88,
0.71, and 0.75). Only the one with the highest loU (e.g. 0.88) is considered a true positive.
The remaining predicted bounding boxes are classified as false positives
e When a predicted bounding box appeared without a corresponding ground truth
bounding box with the respective class.
As a result, a false positive result indicates that the predicted bounding box did not correctly
predict the class or location of an object within a ground truth bounding box.

e False negatives (FN) can occur in three different scenarios regarding to the ground truth bounding
boxes:

e Similar to the scenario of FP, when [oU = 10U;pyesnoia, the model has missed to correctly
predict the class of the object of the ground truth bounding box. For instance, in Figure
2.17, example (c) represents a pair of FP and FN results. Both were generated because the

[25]

University of the Aegean Department of Financial and Management Engineering

predicted bounding box misclassified the class of the object of the ground truth bounding
box, resulting in an unsuccessful detection. FP comes from the fact that the model
predicted a small vehicle which is not the predicted object (person). FN comes from the
fact that the model did not predict the person (negative), although it exists).

e Similar to the scenario of FP, when [oU < IoUpyesnoia, the model has failed to
successfully detect the location of the object of the ground truth bounding box. For
instance, in Figure 2.17, example (c) represents a pair of FP and FN results. Both were
generated because the object of the predicted bounding box was mislocated due to
insufficient overlap between the predicted and ground truth boxes, resulting in an
unsuccessful detection, even if the model correctly predicted the class of the ground truth
object. FP comes from the fact that the model predicted a person which does not exist at
the predicted location. FN comes from the fact that the model did not predict the object
that exists in the location of the ground truth box.

e Whenaan object and its ground truth bounding box are present, but the model does not
predict a bounding box at all in the said location. This means that there was an object, but
the model did not detect it

As a result, a false negative indicates that the object included in the ground truth bounding box
was not predicted by the predicted bounding box.
e True negatives (TN) are the cases in which the model correctly identifies the absence of an object.

Table 2.3 Representation of TP/FP/FN/TN

An object was identified by the model? Yes No
Yes TP (correct class and IoU = IoUpreshotd) Ep

FP (wrong class or IoU < IoUpreshold)
No FN TN

Figure 2.17 depicts three different examples using Intersection over Union (loU) to evaluate the accuracy
of predicted bounding boxes compared to ground truth bounding boxes. The green box represents the
ground truth bounding box, and the purple box represents the predicted bounding box. In the following
examples, the IoU;presnoia has been set to 0.5 (50%).

In Example (a), the loU is 0.84, which is greater than the [oUpresnoia- This means that the predicted
bounding box overlapped the ground truth box sufficiently, and it also classified the class “person”
correctly. As a result, Example (a) is a true positive (TP).

In Example (b), the loU of the two boxes is 0.74, which is greater than the IoU;presnoia- This means that
the predicted bounding box overlapped the ground truth box sufficiently. However, the model
misclassified the object as a "small vehicle" instead of a "person”. Consequently, this misclassification
results in a false positive (FP), since the object was incorrectly identified (purple arrow). Due to this
misclassification, the model did not correctly predict the "person" present in the ground truth bounding

[26]

University of the Aegean Department of Financial and Management Engineering

box. Therefore, it also results in a false negative (FN) because the model did not correctly detect the actual
object (a "person") present in the ground truth bounding box (green arrow).

In Example (c), the loU of the two boxes is 0.33, which is less than the IoU;preshoia- This means that the
predicted bounding box did not overlap sufficiently with the ground truth bounding box. Although the
classification of the object (in the two boxes) is correct the result is considered a false positive (purple
arrow), because the IoU < [oUipresnoia (0,33 < 0.5). Due to the insufficient overlap (low loU), the
model's prediction (predicted bounding box) does not sufficiently match the ground truth bounding box.
Therefore, this scenario also results in a false negative (green arrow) because the ground truth object is
not sufficiently detected within the predicted bounding box according to the loU;preshoid-

sreen bow! Grownd truth bounding bos
Purple bew: Predicred bounding box
fallinrnshata = 0.5 (ar 50%)

ioll = 084
Tol = folly i
Ioli = 0.33
Parson: Trus Resizve Tol < ol npacnia
¥ i

Person: False Negative

sriall vehicle: False pasitive » * Person: False Negative

PersonT Falsa positive =

Examiple {(a) Example (o) Exarngple ()
Figure 2.17 Examples of True Positives, False Negatives, and False Positives

Figure 2.18 illustrates the two different negatives that can occur from the use of bounding boxes. These
are false negatives and false positives. On the left, the green box represents a ground truth bounding box
where a person is present, but there is not a corresponding predicted bounding box (purple). This results
in a false negative because an object was not detected. On the right, a purple predicted box appears
without a corresponding green ground truth box. This results in a false positive because a non-existent
object was predicted.

~R VSR TR S T 11

Purple box; Predicted bounding box
l';'.IL'J'.;‘., aaliald = 0.5 rﬂ—"i&'%’l

—= Person: False Negative Person: False Posithe =

Figure 2.18 Examples of False Negative and False Positive

[27]

University of the Aegean Department of Financial and Management Engineering

In Figure 2.19, there are two predicted bounding boxes, each overlapping the ground truth bounding box.
The first predicted bounding box has an loU of 0.76, which exceeds the IoUjreshoia- Similarly, the second
predicted bounding box has an loU of 0.89, also surpassing the IoU;peshoiq- Both predicted bounding
boxes correctly classify the object as “person”. However, the second predicted bounding box has higher
loU than the first (IoUipreshoia < 0.76 < 0.89). Consequently, the prediction with the highest loU is true
positive, while the other is false positive.

Green box: Grountd truth bounding box

Purple box: Predicted bounding box
fﬂu‘irrn.-_tlrni'rr ={L5 {orSG%}

[—

Telr = 089
Perze 1ol = 1oty penra

'7-.- Farsml
leU = 0.76 |
Iol = ToUkrcznta l

Person; False Positive

Person: True Positive =—

Figure 2.19 lllustration of multiple bounding box predictions for a single object
Precision

The precision metric evaluates the accuracy of the model when identifying objects. It is calculated by
dividing the number of correctly classified objects (true positives) by the total number of instances
identified as positives (true positives and false positives) (Vakili et al., 2020).

Thus, Precision is provided by:

Precision = — (2.6)
recision = TP n FP .

Increased precision is observed in two circumstances (Gad, 2020):

e When the model generates many accurate positive classifications, thus maximizing true positives
e When the model minimizes the frequency of incorrect positive classifications, thus reducing the
number of false positives.

Recall

The recall metric evaluates the ability of the detector to locate the objects within the image. It is calculated
as the number of true positive instances (correctly identified objects) divided by the total number of object
instances (true positives and false negatives) (Vakili et al., 2020).

[28]

University of the Aegean Department of Financial and Management Engineering

Recall is mathematically represented as:

Recall = — & (2.7)
e = TP+ FN '

High recall shows that the model finds most of the objects, thus avoiding missing objects in the image. In
contrast, reduced recall indicates that the model is missing a number of objects, which can lead to
inaccurate object detection and inferior performance in certain applications (iguazio, 2022).

Fl-score

Precision and recall measure quite different model abilities. For example, assume an image with one
object that is identified correctly by the model (in terms of both class and bounding box). Then recall = 1.
However, precision may be 0.1 if the model has identified 10 objects in the image (one TP and nine FP).
The F-1 metric attempts to combine these two measures to one that assesses the overall performance of
the model (Vakili et al., 2020). It is represented as the harmonic mean of precision and recall:

Precision * Recall

F1 — score = 2 (2.8)

*
Precision + Recall

The result from Equation 2.8 ranges from 0 to 1 (0%-100%) and represents the balance between precision
and recall (Kundu, 2022).

Average Precision (AP)

Consider the relationship between recall and precision across many images. Specifically, for any recall
value 7 (i.e. the ability of the model to identify objects within an image), consider the corresponding
precision value p(r) (how many of the positives identified are true positives).

Average Precision (AP) is the mean precision across the recall range that is generated by the model across
these multiple images; that is (Anwar, 2022):

1
AP; = J;=Op(r)dr (2.9)

where,

o AP;: represents the Average Precision calculated for each class i
e p(r): represents the precision-recall curve across multiple images
e r:represents the recall values ranging from 0 to 1.

In Section 2.5, Table 2.2 displays the results in AP and AP50. The difference between them is that AP50
measures the average precision at a single loU threshold of 0.5 (50%). This metric represents the model's
accuracy when the overlap between the predicted and ground truth bounding boxes equals or exceeds
50%.

[29]

University of the Aegean Department of Financial and Management Engineering

As an example, let’s create a PR curve for one class using the data provided below:

Table 2.4 Experimental data on recall and precision

1 20%* 100%**
2 30% 100%
3 30%* 67%**
4 50% 75%

5 50% 62%

6 70% 66%

7 70% 57%
8 70% 52%

9 90% 49%
10 100% 53%

* In the first example 20% of the objects in the image were identified correctly, while in the second one
30% of the objects were identified correctly

** |n the first example, all the identified objects were true, and in the second only 2/3 of the identified
objects were true.

Based on Table 2.4, we created the PR curve shown below:

Precizion/Recall Curve

Precision

o 4, 0z 03 oA b5 [15:] ox k] 0m 1
Recall
Figure 2.20 The Precision/Recall curve from the data of Table 2.4

To evaluate AP we may use the method from the 2007 PASCAL VOC challenge (Everingham et al., 2010),
which is also used in the YOLOv4 and YOLOv4-p6 models in the validation and testing processes. This
method takes Precision values at 11 equally distributed Recall points: 0,0.1,0.2,0.3, ..., 1.0. For each Recall
value, Precision is interpolated as the highest Precision observed at any higher Recall value (pintery () =
ryj\rxp(f)). In other words, it is the maximum Precision value to the right. Based on this method, Average

Precision is computed as:

[30]

University of the Aegean Department of Financial and Management Engineering

1
1
P = I Z Precision(Recall)
i=0

(2.10)
step=0.1
Consequently, based on the 11-point interpolation method, we created the following plot:
Precizion/Hecall Intarpeiaied Cumsa
..-——""’HL'.‘__F.- 2
[r-—-_"‘_;-*
] 1 .
Recall
Figure 2.21 Represents the Precision/Recall interpolated curve
From Figure 2.21, the AP is calculated as follows:
1 < 1
AP = — z Precision(Recall) = H(APT(o) + AP.(0.1) + AP.(0.2)+... +AP.(1))
i=0
step=0.1 (2.11)
1 8.41
=11 (4 =D+ *075) + (2 * 0.66) + (3 * 0.53)) = <7 = 07645
= 76,45%

The reason for interpolating the PR curve in the above way is to reduce the effect of small fluctuations in
the PR curve, which are caused by small variations in the ranking of examples (Hui, 2019). This ensures
that AP is not too sensitive to small variations in precision at lower recall values.

mean Average Precision (mAP)

The mean Average Precision (mAP) metric summarizes the Average Precision (AP) of each individual class
and then divides the total AP value by the sum of the classes. It is mathematically represented as
(Henderson and Ferrari, 2017):

N
1
mAP = Nz AP, (2.12)

i=1

[31]

University of the Aegean Department of Financial and Management Engineering

where,

e AP;: represents the Average Precision calculated for each class
e N:represents the total number of classes.

In the fourth Chapter of this study, we used the mean average precision (mAP) metric to evaluate the
performance of our modified YOLOv4-p6 algorithm. This metric can be used to evaluate the model's
performance at different stages of training to identify optimal breakpoints to reduce computational
resources without reducing the quality of the results. Another reason for choosing mAP is that it can be
used for models trained with multiple classes, addressing class imbalances (the distribution between its
classes is uneven) and detection difficulties to ensure unbiased performance across all classes (Shah,
2022). As a result, many detection models like YOLO algorithms are evaluated with the mAP metric, since
they use datasets with many classes such as the COCO dataset (COCO, 2017), and because of the metric's
robustness and extensive capabilities to optimize detection models.

[32]

University of the Aegean Department of Financial and Management Engineering

Chapter 3 Data preparation and parameter selection for training the
YOLOv4-p6 algorithm

In this third Chapter we present key aspects that are leveraged to train the YOLOv4-p6 model in detecting
objects within recorded images by a UAV. The method focuses on two important training aspects:

- The selection of the training datasets
- Selection of training hyperparameters and the way to adjust them in order to optimize the
efficiency of the trained model as well as the model’s detection and classification performance.

In this Chapter we also present the experimental setup (hardware and software) used to conduct the
training process.

3.1 Training data selection

The effectiveness of object detection and classification model is directly related to the amount and quality
of data used during training. Specifically, effective training requires the application of large and high quality
datasets to reduce errors, including those that are due to overfitting and bias.

Numerous resources, including datasets from cloud repositories, web platforms, universities and research
institutions, offer annotated image collections that can be downloaded and used for research purposes in
computer vision tasks. While certain datasets are freely accessible, others require payment or subscription
for use.

e Cloud repositories are online platforms dedicated to storing and sharing datasets, with illustrative
instances including:
= GitHub (GitHub, 2008)
= GitlLab (GitLab, 2011)
e Web platforms provide tools for searching, browsing, and downloading datasets, with illustrative
instances including:
= MSCOCO (COCO, 2017)
= Kaggle (Kaggle, 2010)
e Universities and research institutions make available image datasets to assist others with their
research. Examples of such datasets include:
= Stanford University (Stanford University Computational Vision and Geometry Lab, 2009)
= Massachusetts Institute of Technology (MIT) (MIT Lincoln Laboratory 1951, 1998)

Datasets relevant to the current research are those that contain UAV recorded images that contain at least
four object classes:

e Person

e Small vehicle
e large vehicle
e Ship.

[33]

University of the Aegean Department of Financial and Management Engineering

Those object classes are related to the identification of unauthorized intrusion activities within the secure

perimeter of logistics facilities, such as ports and logistics centers. The selection of datasets should be

based on both quantitative and qualitative characteristics, including:

Quantitative characteristics:

Large quantity of data for the purpose of training the object detector
Representation of images captured from various perspectives and heights (e.g. differing
dimensions of large vehicles like buses, commercial vehicles, etc)

Qualitative characteristics:

Inclusion of multicolored images depicting objects targeted for detection, exhibiting a
diverse range of colors

The presence of numerous objects depicted in the images

Variation in lighting conditions across images, including different times of the day (e.g.
morning, afternoon, and evening).

Capturing images affected by noise disturbances (e.g., images featuring rain or fog).
Variations in both the object's spatial placement within the environment and the
characteristics of the environment itself.

Considering the four required classes, and the above quantitative and qualitative characteristics, we

selected the following UAV datasets for training the YOLOv4-p6 model:

The aerial vehicle dataset classifies the objects within the images into five distinct classes: car,

truck, bus, minibus, and cyclist. It contains 134 annotated images captured in both urban and rural

environments, featuring varied image resolutions spanning from 684x547 to 5,820x8,784 pixels
(Kharuzhy, 2018).
DOTA (v1.5 & v2.0 combined) dataset:

The DOTAv1.5 dataset comprises a training set and a validation set containing 1,869
annotated images captured across various urban and rural environments, featuring
resolutions ranging from 353x851 to 13,383x4,287 pixels. The objects contained in the
images of the training and validation sets are classified into sixteen distinct classes: plane,
ship, storage tank, baseball diamond, tennis court, basketball court, ground track field,
harbor, bridge, large vehicle, small vehicle, helicopter, roundabout, soccer ball field,
swimming pool and container crane (Xia et al., 2021).

The DOTAv2.0 dataset comprises a training set and validation set containing 548
annotated images captured across various urban and rural environments, featuring
resolutions ranging from 1,024x1,024, to 7,360x4,912 pixels. The objects contained in the
images are classified into nineteen distinct classes: plane, ship, storage tank, baseball
diamond, tennis court, basketball court, ground track field, harbor, bridge, large vehicle,

[34]

University of the Aegean Department of Financial and Management Engineering

small vehicle, helicopter, roundabout, soccer ball field, swimming pool, container crane,
airport, and helipad (Xia et al., 2021).

e The VisDrone-DET dataset! includes a total of 10,209 annotated images. Within the scope of this
thesis, only the training and validation sets are used, which comprise 8,629 annotated images
acquired from urban and rural landscapes. These images feature diverse resolutions ranging from
480x360 to 2,000x1,500 pixels. They contain ten distinct classes, namely pedestrian, persons,
bicycle, car, van, truck, tricycle, awning-tricycle, bus, and motor (Zhu et al., 2021).

e The Stanford drone dataset includes images that contain six classes of objects: pedestrian, biker,
skater, cart, car, bus. Overall, it contains 7,486 annotated images, featuring varied image
resolutions spanning from 1,184x1,759, to 1,983x1,088 pixels (Robicquet et al., 2016).

e From the entire DJI-DAC dataset this thesis uses only a portion of the DAC-SDC dataset, which
includes only three classes: car, ship, and person. Additionally, it contains 58,186 annotated
images from urban and rural areas with an image resolution of 640x360 pixels (Xu et al., 2018).

The above datasets fulfill the quantitative and qualitative characteristics and possess a considerable
volume of data for identifying the selected classes, as represented in Section 3.2.

3.2 Annotation adjustments in UAV datasets

In order to merge the datasets described above into a single, all inclusive dataset, the annotations of each
individual dataset were adjusted. This is because each dataset contains different classes and follows
different annotation formats. Hence, the process requires standardizing the annotation format to match
YOLO specifications (see Appendix D.1) and aligning the label names across all datasets. This ensures
consistency in both the structure of the annotations and the labelling of the classes.

The end objective is to provide a combined dataset that contains four different classes, namely “person”,
“small vehicle”, “large vehicle”, and “ship”. Specifically, "person" corresponds to class zero, "small vehicle"
to class one, "large vehicle" to class two, and "ship" to class three, with this information recorded in a text
file and subsequently stored within the directory designated as “darknet”. Appendix D.2 provides a
detailed analysis of the modifications made to each dataset.

Table 3.1 and Figure 3.1 provide the number of images and the data content in terms of the four classes
discussed above.

Table 3.1 The labelled objects per dataset

Aerial cars 154 - 3,787 238 -
DOTA (v1.5 &
2,417 - 219,328 29,872 51,860
v2.0)
VisDrone-DET 8,629 147,747 219,707 25,401 -

! (VisDrone, 2023)

[35]

University of the Aegean

Department of Financial and Management Engineering

Stanford
drone
DAC-SDC

7,486 93,020 26,332 910 -

58,186 27,965 25,014 =

—mmis dataset mnﬂns—mm!se imagas contain -+

l'-l'i-[;c;r:!-ﬂ'} his dataset mr!a]an—hm—dmse images contain-s

W—mk dataset containg CA LA [F R —these images contaln-s

Stanford drone this dataset containg 7,486 images these imagas contain-s

5,207

|—numh|=_-roi small vehfclec—“
|—n umber of large whi:lﬂ;—n
—oumber of small whﬂcs—m

—number of large ue'h'u:les—-m
number of ships
——number of rl.'llllf:—m

—number of small uehicle&—-m
\——number of large veﬁ:lﬂs—m
—mmbcrdpmm

—number of small uehlcle:m
—number of large uhillas—“
———umber of nmﬂ

m-mt natamttnnﬁlmese images conta h—l-[:)—nnmhernf small verﬂcles—m

L pumber ahsl!ips—m

Figure 3.1 The number of labelled objects present within the datasets

3.3 Training, validation and testing datasets

After creating a single dataset, we created three different subsets as follows (see Figure 3.2):

e The training set, consisting 80% of the images in the integrates set, is used for the initial training
of the model. Within this set, there are 61,429 images including 214,905 annotations labeled as

[36]

University of the Aegean Department of Financial and Management Engineering

'person’, 361,501 annotations labeled as “small vehicle”, 45,073 annotations labeled as “large
vehicle”, and 44,027 annotations labeled as “ship”

e During the training process, the model’s performance is evaluated using the validation set,
consisting of 10% of the original annotated set. Within this set, there are 7,678 images including
26,615 annotations labeled as “person”, 67,350 annotations labeled as “small vehicle”, 5,665
annotations labeled as “large vehicle”, and 6,368 annotations labeled as “ship”

e The testing set, consisting of 10% of the original annotated set, is designed to provide an
evaluation of the model's performance. Within this set, there are 7,680 images including 27,212
annotations labeled as “person”, 62,366 annotations labeled as “small vehicle”, 5,580 annotations
labeled as “large vehicle”, and 6,672 annotations labeled as “ship”.

——number of peuple_m

F—rmbor of smiall vehiches— m
s Testing ser (10%) gUbEESRnaipelltts 7,680 images pse images mntaini{:)—
2 —numh-e‘rufmrgeuehltl

——rimiber of small velnl::lts-m
[——number of large uelﬂt.les—l'm
L number of shlps—.m

numiber of people— I L8

F——number of small vehfcles= 0 21
VELT PR W e B this set comtains» S 8 80 EN U these images contains .

Cansolidated
d‘t fl = TR I this set contalnssBUEEEETERE these Images contain s
dlase

Figure 3.2 The percentage distribution of data into training, validation, and testing sets

3.4: Experimental setup

Training of the YOLOv4-p6 model requires substantial computational resources to achieve effective results.
Key characteristics of the system used to perform this study are presented in Table 3.2:

[37]

University of the Aegean Department of Financial and Management Engineering

Table 3.2 The hardware configuration of the system

Central Processing Unit (CPU) AMD Ryzen 9 3900X 12-core Processor
Graphical Processing Unit (GPU) Nvidia GeForce RTX 3090/PCle/SSE2
Graphic Card Memory (GCM) 24GB
Random Access Memory (RAM) 32GB
Hard Disk Drive (HDD) ATA TOSHIBA HDWD240 4TB
Solid State Drive (SSD) ADATA SX8200PNP 512 GB

The Nvidia GeForce RTX 3090/PCle/SSE2 graphics card is ideal for deep learning tasks and has impressive
specifications such as 328 tensor cores, 10496 CUDA cores, and 24GB of GDDR6X memory.

The system operates on Ubuntu 20.04 LTS with the installed programs of Table 3.3

Table 3.3 The software components of the system

Operating System (OS) Ubuntu 20.04 LTS
System type x64-based
OpenCV 4.5.4 Version
CUDA Drivers 11.4 Version
cuDNN 8.3 Version

OpenCV (Open-Source Computer Vision Library) is implemented and used in the YOLOv4 and YOLOv4-p6
algorithms for real-time object detection and classification. OpenCV aids in preprocessing input images,
ensuring they are correctly formatted and optimized for the selected YOLO model. Additionally, OpenCV's
DNN (Deep Neural Network) module supports the loading and execution of YOLO models.

The CUDA and cuDNN drivers are installed to maximize the utilization of the RTX 3090 graphics card. CUDA
functions as a parallel computing framework that enables developers to harness the power of Nvidia GPUs
to improve the efficiency of computationally demanding tasks. cuDNN functions as a specialized library
containing developed deep neural network protocols designed for efficient use with Nvidia GPUs.

3.5: Important hyperparameters for YOLOv4-p6 model training

The objective of this research is to train the model in the most effective way in order to provide near
optimal mean Average Precision (mAP) results. Model training depends on several hyperparameters that
affect the efficiency of the training process and the effectiveness of the trained model. There are two
different types of hyperparameters: The ones that are set based on the characteristics of the training
dataset, and the ones the “trainer” selects to optimize training performance of the selected model.

The first set of hyperparameters are presented in Table 3.4.

[38]

University of the Aegean Department of Financial and Management Engineering

Table 3.4 Hyperparameters that are set based on the characteristics of the training dataset

The number of classes
Number of max batches
Number of steps (during which the learning rate is kept constant)
Number of filters of the convolutional layer before each detection head

Subsection 3.5.1, presents the description of each hyperparameter of the first set and the values used
during our study based on the UAV dataset characteristics. The correct configuration of these
hyperparameters is essential to improve the mAP results of the model.

The second set of hyperparameters concerns those that directly influence the model's architecture and
operation (see Table 3.5). By fine-tuning these hyperparameters, the user can intentionally modify the
model's interpretation and processing of the input data (images or video frames), resulting in better (or
worse) detection and classification results. Unlike the first set of hyperparameters, the adjustments of
which are based on the characteristics of the UAV dataset, the second set requires thorough testing of
various hyperparameters and their combinations. The process of experimenting with different
combinations of hyperparameters is essential for achieving optimal configuration for training.

Table 3.5 lists all the candidates for the second set of hyperparameters, and those selected for the tuning
of our experiments.

Table 3.5 Hyperparameters that influence the model’s architecture and operation

Box loss

Image resize v
Anchor box dimensions v
Network depth
Num anchors
Num heads
NMS (Non-Maximum Suppression) v
Learning rate
Freeze layer
Batch size
Stride size
Data augmentation techniques v
Activation function in YOLO layers

Activation function in structure v

[39]

University of the Aegean Department of Financial and Management Engineering

The reasons for choosing the hyperparameters of Table 3.5 are outlined below:

e Image resize determines the input size of images and directly affects both training and inference
processes, as well as detection accuracy. When a model is trained with high resolution input
images, it captures more details (corners, shapes, etc.) from the data, leading to the extraction of
more accurate information that can improve the detection and classification results. However,
high image resolution requires more computational resources and slows down the training
process.

e Anchor box dimensions refine the predetermined anchor boxes to generate better bounding
boxes, which affects the accuracy of localizing and detecting objects of different scales and aspect
ratios

o NMS ensures that only the most suitable bounding boxes are retained, thus improving the model's
predictions

e Data augmentation techniques enhance the model's robustness by increasing the diversity and
guantity of training data

e Activation function determines the model's non-linear behavior, impacting its capacity to learn
complex features from the input data. In YOLOv4-p6, the Mish activation function is used in the
backbone and neck parts of the architecture, while the Sigmoid activation function is used in the
convolutional layer (included in neck) before each detection head.

Conversely, the remaining hyperparameters were not selected to be adjusted, for the reasons listed
below. In general, however, we had to limit the number of parameters to be tested in this work in order
to limit the number of parameter combinations (and, thus, save computational effort) without
compromising the point of this research.

e Box loss is used for optimizing bounding box predictions during training. YOLOv4 and Scaled
YOLOv4 apply CloU loss, which has been found to be superior to other loss mechanisms, such as
DloU or GloU in many cases — this is why we used CloU and did not test the other loU approaches

e As mentioned in Chapter 2, Scaled YOLOv4 models include three different versions known as
YOLOv4-P5, YOLOvV4-P6, and YOLOv4-P7. Each version has a different number of layers to support
their respective number of detection heads, with YOLOv4-P5 having three heads, YOLOv4-P6
having four heads, and YOLOv4-P7 having five heads. YOLOv4-P6 and YOLOv4-P7 showed similar
and better mAP results than YOLOv4-P5, but YOLOv4-P7 required more training time compared
to the other two versions. Creating a new network with six or seven detection heads requires
more layers, which would further worsen the problem of the excessive training time. As a result,
we chose the YOLOv4-P6 architecture because it provides performance results close to YOLOv4-
P7, but with faster training time. This model features a total of 304 layers (network depth)
configured to support four detection heads, with each head using four anchors to provide optimal
performance.

e The learning rate affects the speed at which the model parameters converge during training.
YOLOv4-p6 performed effectively with its default learning rate setting throughout training, so we

[40]

University of the Aegean Department of Financial and Management Engineering

did not change it to prevent premature convergence to a local optimum or slowing down the
training process and preventing the model from converging (Zulkifli, 2018)

e Batch size was included in the priority (for adjustment) hyperparameters, since decreasing it can
speed up the training process but may reduce the performance of the model. However, increasing
the batch size together with the learning rate can produce positive results (Devansh, 2023). Since
the learning rate remains unchanged and YOLOv4-p6 specifies a batch size of 64, we used this
configuration for our experiments. Regarding stride size, the YOLO developers did not provide any
adjustments for smaller objects in YOLOv4-p6, since of the existing four heads in the model’s
architecture two are designed to detect very small and small objects. Moreover, the convolutional
layers preceding each detection head use the sigmoid activation function, which is compatible for
UAV tasks. Therefore no modifications were made to these layers (Shatravin et al., 2022)

o The freeze layers hyperparameter was tested in a couple of experiments. It turned out to be
functional only in YOLOv4-p5, while in YOLOv4-p6 and YOLOv4-p7, the models either failed to
generate any mAP results or produced poor mAP results.

Lastly, we have ensured that the selected hyperparameters are present in all components of YOLOv4-p6's
architecture, from the backbone and neck to the detection heads. We even considered including and
adjusting hyperparameters at the net section of the YOLOv4-p6 configuration file, which influence the
input data either at the beginning or during the training process.

3.5.1. Hyperparameters defined based on the characteristics of the dataset

In the default YOLOv4-p6 model the hyperparameters belonging to the first set (see Table 3.4) were set
based on the COCO dataset, which the model's developers used for training. In our case we adjusted these
hyperparameters to optimize training efficiency and tailor the model to match the characteristics of our
modified UAV dataset.

The number of classes

The number of classes represents the variety of different object categories on which the model is trained
for detection tasks. In the conducted experiments, four different classes are sought, i.e. person, small
vehicle, large vehicle, and ship. Consequently, the "classes" hyperparameter of the original configuration
file is adjusted from 80 to 4 classes, as depicted in Figure 3.3 (Patel et al., 2021).

max_dslrs=1

Figure 3.3 lllustrates the location of "classes" within the configuration file

[41]

University of the Aegean Department of Financial and Management Engineering

The number of max batches

The number of max batches is the total number of iterations completed by the model throughout its
training process. The reduction in the number of max batches allows the training process to be
accelerated, which is advantageous when computational resources are limited. In the default configuration
file of YOLOv4-p6, the “max batches” hyperparameter is initially set to 500,500. We adjusted this to 8,000
(see Figure 3.4) according to the following Equation 3.1 (Solawetz et al., 2020):

Max_batches = 2000 X n (3.1)

where n is the number of classes. For our UAV dataset n = 4.

Equation 3.1 was provided by the model developers to determine the number of max batches for training
based on a certain dataset. However, for large datasets such as COCO, this equation might not be ideal.
For example, the original Scaled YOLOv4 models use 500,500 max batches instead of 160,000
(2000 X 80 iasses of the coco dataset). This is based on the fact that the COCO dataset is very large, and
the developers attempted to achieve better results.

In our case, we used Equation 3.1 suggested by the developers to adjust the number of max batches for
our experiments with the modified UAV dataset. Since this dataset contains 61,429 images in the training
set, the training process passes through the entire training set 8 times (epochs) before it is completed.

The number of epochs is calculated as follows (GeeksforGeeks, 2023):

number of max batches 8,000 (3.2)
number of epochs = - - = =833 =8
total number of iterations per epoch 959.82
where,
number of images of the training set
total number of iterations per epoch = f g f, g (3:3)
batch size
= 95082
64 T

Therefore, we did not follow the practices of the COCO dataset, as the modified UAV dataset has fewer
classes and images in the training set (COCO has approximately 118,000 training images). If we had
followed the COCO practices, the increasing number of max batches might cause overfitting due to the
corresponding increase in the number of epochs (Ghosh et al., 2021), and it would have slowed down the
training process.

[42]

University of the Aegean Department of Financial and Management Engineering

learning rate=0.001
Luen L

minnssL
sma alphasd, 0642

Tom= cudn_graph =

Figure 3.4 lllustrates the location of "max_batches" within the configuration file

The number of steps

The “steps” hyperparameter defines the iteration numbers at which the learning rate is adjusted during
training. Initially, the learning rate remains constant for several iterations and then decreases at these
specified points. Typically, these points are 80% and 90% of the maximum batch value used. Thus, since in
our case max batches is equal to 8000, the steps hyperparameter is (Solawetz et al., 2020):

0,8 * max batches = 0,8 * 8000 = 6,400 (3.4)
0,9 * max batches = 0,8 * 8000 = 7,200 (3.5)
l!n;:i::.r.;
#oatch=1

teubdivisicons=1
i1 Training
batch=E4
subdivisicne=£4
width=1280

1230

angle={

ema alpha=i.56458

ture cuda graph = 1

Figure 3.5 lllustrates the location of "steps" within the configuration file

[43]

University of the Aegean Department of Financial and Management Engineering

The number of filters of the convolutional layer before each detection head

As shown in Figure 3.6, the filters placed in front of the convolution layer at each detection head are
responsible for generating a specific number of outputs, which include number of classes, anchor box
coordinates, objectness score and number of anchors. The filters are calculated by following the
subsequent equation (Patel et al., 2021):

Filters = (number of classes + 5) * number of anchors (3.6)

In Equation 3.6, the term “5” represents the following values:

e 4 values for the anchor box coordinates (tx, ty, tyw and ty)
e 1 value for the objectness score

The number of filters placed in front of the convolution layer must follow Equation 3.6, because YOLO
architectures are designed with a specific output dimension for each detection head (based on the number
of anchors and the number of classes). A higher or lower number of filters will cause the algorithm not to
run.

The YOLOv4-p6 model includes four detection heads specialized for very small, small, medium, and large
objects, with each head containing four anchors. As per Equation 3.6, all our experiments have four
anchors and four classes, thus requiring 36 filters. Consequently, we must adjust the filters before each
detection head, reducing the number from 255 to 36.

[eonzalusicnall

Figure 3.6 lllustrates the location of "filters" within the configuration file

[44]

University of the Aegean Department of Financial and Management Engineering

In summary, the adjustments to the first set of hyperparameters are presented in Table 3.6:

Table 3.6 Represents the adjusted values of the first set of hyperparameters

The number of classes 80 4
The number of max batches 500,500 8000
The number of steps 400,000, 450,000 6,400, 7,200

The number of filters of the convolutional
layer before each detection head

255 36

3.5.2 Hyperparameters related to the model’s architecture and operation

Image resize

At the beginning of the YOLOv4-p6 configuration file, many hyperparameters are specified in the [net]
section, including "width" and "height" which adjust the input image dimensions. As shown in Figure 3.7,
YOLOv4-p6 is trained with an image resolution of 1280x1280 pixels. This high resolution helps the model
collect more information as the input progresses through the network, but it also increases training time.

To investigate the trade-off between high image resolution and model effectiveness, we modified the
"width" and "height" hyperparameters to reduced values for two main reasons:

e To determine if YOLOv4-p6 can still achieve good results with reduced input image size

e To identify the optimal combination of hyperparameters that produces the highest mAP. With a
smaller input image size, training is completed faster, allowing us to test different hyperparameter
combinations and identify the one that achieves the highest mAP result. We will then use this
optimal combination to train the model at a higher input resolution to achieve even better results.

Therefore, we used two levels of image resolution: The default one of 1280x1280, and a reduced one of
960x960 pixels. Figure 3.7 shows how we adjusted the “height” and “width” hyperparameters.

Image resolution of 1280x1280 Image resolution of 960x960
[nat] [nec]
f Testing % Testing
fhatch=1 #bateh=1
fsubdivisions=1 $=zubdivisiona=l
§ Training $ Iraining
batch=g4 batch=£4
subdivisiona=&4 subdivisions=8
rideh=1280 | idTh=560 |
heighe=1280! peight=560
channels=3 channels=3
momentun=0_545 momentum=0.248
dacay=0.0005 decay=0.,0005
angle=0 angle=Q
saturation = 1.5 sgturartion = 1.5
axposurse = 1.5 expogure = 1.5
hue=.1 hiyge=, 1

Figure 3.7 The locations of "width" and "height" within the configuration file

[45]

University of the Aegean Department of Financial and Management Engineering

Anchor box dimensions

The architecture of YOLOv4-p6 includes four detection heads, each with two specific hyperparameters:
"mask" and "anchors" (refer to Figure 3.8). The hyperparameter "anchors" refers to anchor boxes, which
are predefined bounding boxes of various sizes and aspect ratios, described in detail in the Appendix B.2 .
As shown in Figure 3.8, the default YOLOv4-p6 model uses the following anchor box sizes: [13,17, 31,25,
24,51, 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 545,357, 616,618, 1024,1024].
Each detection head uses a different set of boxes to predict objects, which is selected by the "masks"
hyperparameter at each head. The "masks" hyperparameter is an index containing four values that specify
the anchor boxes used within each grid cell. Figure 3.8 illustrates a small detection head configured with
the "masks" index [0, 1, 2, 3]. Specifically, index O corresponds to the anchor box dimensions of 13x17,
index 1 to 31x25, and index 2 to 24x51.

Figure 3.8 The locations of “masks” and "anchors" within the configuration file

Although anchor boxes are refined during training to better enclose objects, it is essential to initialize them
correctly before training. This ensures that they can be refined effectively and faster during training. The
original anchor boxes in YOLOv4-p6 were generated using the k-means algorithm applied to the COCO
dataset. K-means clustering groups objects by their spatial characteristics and identifies centroids that
define optimal anchor box dimensions (Oti et al., 2021). As shown in the Appendix B.2 (description of the
command), we applied the same algorithm to our UAV dataset using the following command:

./darknet detector calc_anchors cfg/"NAME_OF THE_DATA_FILE".data -num_of _clusters
"NUMBER_OF_CLUSTERS" -width "NUMBER_OF_IMAGE_WIDTH" -height "NUMBER_OF_IMAGE_HEIGHT"

An example by applying the code:

./darknet detector calc_anchors cfg/traffic_lights.data -num_of clusters 16 -width 1280 -height 1280

Figure 3.9 Representation of the use of the k-means algorithm

The application of k-means clustering is to calculate sixteen new optimal anchor box sizes based on our
UAV dataset. Therefore, we used the k-means algorithm to identify clusters of anchor box sizes that best
fit the objects in our images of the specified size.

As mentioned before, our tests use two different image resolutions: 1280x1280 and 960x960.
Consequently, we executed the k-means algorithm twice to find the sixteen optimal anchor box sizes for

[46]

University of the Aegean Department of Financial and Management Engineering

both resolutions. As shown in Table 3.7, we adjusted the “anchors” hyperparameters across all the
detection heads in our tests according to the image resolution of each test, with different anchor box sizes
applied for images of 1280x1280 and 960x960 pixels, respectively.

Table 3.7 Representation of the anchor bounding boxes before and after the application of k-means algorithm

[13,17, 31,25, 24,51, 61,45, [3,4, 10,9, 6,17, 11,28, [4,5,7,17, 16,13, 14,36,
48,102, 119,96, 97,1809, 21,17, 26,31, 17,51, 52,34, 29,24, 33,42, 21,67, 64,43,
97,189, 217,184, 171,384, 35,52, 27,104, 50,84, 79,57, 45,69, 36,137, 99,72,
324,451, 324,451, 545,357, 81,117, 49,198, 142,165, 66,111, 110,150, 66,261,
616,618, 1024,1024] 145,382] 189,221, 193,510]

Scale/aspect
ratio

Non-maximum suppression (NMS)

This methodology preserves the most accurate bounding box while effectively reducing duplications
caused by overlapping candidates. To do so, it considers both the confidence score assigned by the model
and the degree of overlap, measured by the Intersection over Union (IOU) metric, among the bounding
boxes (Hosang et al., 2017). For instance, in Figure 3.10, the model generates multiple bounding boxes,
along with their respective confidence scores, to identify the car in the image. After the application of the
NMS algorithm, only one bounding box will be selected.

NMS takes as input a list of bounding boxes that have predicted an object, along with their confidence
scores and the overlap threshold. For example, the IoU;preshoia €N be set to 0.5, which means that all
correctly placed bounding boxes have IoU = IoU;pyesnoia- The output of the algorithm is a list of filtered
proposals, where each object instance corresponds to one optimal bounding box.

The approach for determining the optimal bounding box through the application of NMS is described
below (Singh, 2024):

Begin by selecting the bounding box with the highest confidence score
Transfer this bounding box from the input list to the final proposal list

3. Calculate and compare the loU (overlap) of this chosen bounding box with the remaining
bounding boxes

4. Remove any proposals from the input list that have an loU greater than the IoUp eshoid-
This ensures that highly overlapping proposals are filtered out

5. If there are still bounding boxes remaining in the input list, repeat steps 1 through 4 until
there are no more bounding boxes that meet the loU condition or are left in the input list.

[47]

University of the Aegean Department of Financial and Management Engineering

Before non-max suppression Alter non-max suppression

Non-Max
Suppression

Figure 3.10 The bounding boxes preceding and following the implementation of the Non-Max Suppresion (NMS)
algorithm(Swiezewski, 2020)

The YOLOv4 and YOLOv4-p6 algorithms use two different variations of Non-Maximum Suppression (NMS).
Specifically, YOLOv4 uses Greedy-NMS, while YOLOv4-p6 uses Distance-Intersection over Union - Non-
Maximum Suppression (DloU-NMS).

In this study, we propose to use Greedy-NMS, in addition to DlIoU-NMS, for YOLOv4-p6. Our objective is to
determine whether Greedy-NMS or DloU-NMS produces superior or inferior results when combined with
the other selected hyperparameters.

Greedy-NMS

Greedy Non-Maximum Suppression (Greedy-NMS) is designed to refine detection results by iteratively
selecting the bounding box with the highest confidence score and suppressing others that overlap
it. Specifically, it is used to reduce duplicate detections and reduce false positives. However, in scenarios
where objects are crowded together, Greedy-NMS faces difficulties. Even with a reliable detector that
accurately identifies bounding boxes that match the ground truth bounding boxes, Greedy-NMS can still
struggle due to its dependence on a set [oU¢peshoia (Usually set at 0.5). This threshold determines when
overlapping boxes are considered duplicates and thus suppressed. A lower loU threshold might fail to filter
out highly overlapped objects effectively, leading to more false positives in the final detections. Conversely,
increasing the IoU;presnoia could result in more objects being incorrectly suppressed, potentially missing
legitimate detections. Therefore, while Greedy-NMS offers a simple approach to post-processing in object
detection, its effectiveness can vary depending on the density and arrangement of objects within an image
(Liu and Huang, 2019).

Distance-Intersection over Union - Non-Maximum Suppression (DloU-NMS)

The Distance Intersection over Union (DloU) method (Zheng et al., 2019b) improves the effectiveness of
NMS by considering both the loU and the distance between the central points of the bounding boxes.

Equation 3.8 defines the criterion for retaining or removing a bounding box B; based on its confidence
score s;. Equation 3.7 defines the DloU metric Rp;oy (M, B;), M is the bounding box with the highest
confidence score.

[48]

University of the Aegean Department of Financial and Management Engineering

_pA(b,bY)

Rprou(M, By) = ez (3.7)

where,

e b and b9¢: represent the central points of the predicted bounding box (B) and the ground truth
bounding box (B9%), respectively

e p:denotes the Euclidean distance between the central points b and h9¢

e : represents the diagonal length of the smallest enclosing box that includes the predicted
bounding box and the ground truth bounding box.

The suppression criterion is set by &, which determines whether a box should be suppressed. In the
YOLOv4-p6 model, this suppression criterion is based on the I0Uipresnoia, Which is set to 0.2. If the
difference between loU and DloU is less than &, the box B; is retained (i.e., its confidence score s; remains
unchanged). Otherwise, if this difference is greater than or equal to &, the box B; is removed (i.e., its
confidence score s; is set to 0).

S;,IoU — R M, Bi) <
5 = { i 1o piou () <e (3.8)

0,IoU — Rpjoy (M,Bi) = ¢

Figure 3.11 compares the performance of Non-Maximum Suppression (NMS) with Distance-loU Non-
Maximum Suppression (DloU-NMS) for detecting ships in UAV images. The original images (top row) show
multiple ships scattered across the water. The middle row with NMS results indicates areas where some
ships are missed, marked by green arrows. The bottom row with DIoU-NMS results shows improved
detection, identifying more ships in areas where NMS was less effective. The green arrows highlight the
locations where DIoU-NMS successfully detected ships that NMS missed.

Image

NMS

NMS5-Diau

Figure 3.11 lllustrates a comparison between NMS and DIoU-NMS for ship detection (Chen et al., 2023)

[49]

University of the Aegean Department of Financial and Management Engineering

The application of the two NMS levels requires only a minimal implementation in the code. As shown in
Figure 3.12, we can adjust the NMS within each detection head by modifying the "nms_kind"
hyperparameter. Specifically, DloU-NMS is used by adding “diounms” next to “nms_kind”, and Greedy-
NMS is used by adding “greedynms” next to “nms_kind”, respectively.

Implementation of DloU-NMS

Implementation of Greedy-NMS

Figure 3.12 lllustrates the nms_kind location within the configuration file and the implementation of DloU-NMS and Greedy-
NMS

Data augmentation techniques

YOLOv4 introduces innovative data augmentation techniques that are used to improve the training
performance of our model. Specifically, data augmentation techniques produce altered versions of the
input images while preserving their annotations, thus expanding the training set (Solawetz, 2020a). As a
result, these augmentation techniques were created to enhance the model's training process by enriching
the training dataset.

For the creation of our tests, we used either the Mosaic technique alone or the combination of Mosaic
and Mixup techniques. Our objective is to determine which of the two approaches produces superior or
inferior results when combined with the other selected hyperparameters. The two techniques are
described below:

[50]

University of the Aegean Department of Financial and Management Engineering

Mosaic

The “Mosaic” data augmentation technique has been introduced by Bochkovskiy et al. in 2020 as part of
the YOLOv4 model. It combines four randomly selected inputimages (along with their annotations) during
the training process (refer to Figure 3.13). Therefore, it merges different sections from four images into
one. This approach challenges the model with different backgrounds and objects within each training
batch. As a result, it helps to improve the model's ability to detect objects in unlikely scenarios
(Bochkovskiy et al., 2020).

20 _1EET1ATONA 0 85206634 00

AU 14784836000 45359 L) g Ao LT19045341 0 8035133280 Wy 1770400544 D -SANESNEAS DD

Figure 3.13 Implementing the Mosaic technique on image datasets (Solawetz, 2020b)

This method is specified within the [net] section of the configuration file, as depicted in Figure
3.14.

Imetl]

bBatch=64

subdAi viciana=B
£ Training
fwldth=312

hedight=c0l

channela=1}

momentan=9. 345
dacay=0_ 000%
angla=0
satacaticn
BApLIUTE =
hue=_ 1

= 1.
L5

hur_"__in-_l\f'l."[.'

mex- batches = 500500
polioy=scepy

atapa=Y GO0, 45000

-
Imsoars=l11

Figure 3.14 Illustrates the location of the mosaic data augmentation technique

[51]

University of the Aegean Department of Financial and Management Engineering

Mixup

Mixup is a data augmentation technique designed for classification tasks, which works by combining two
randomly selected training instances and their corresponding annotations to create a new sample (Zhang
et al., 2018).

As illustrated in Figure 3.15, the process involves creating a new synthetic image by blending two images
of dogs: one of a St. Bernard and another of a Poodle. The Mixup technique generates this new image by
forming a weighted combination of the original images and their associated annotations. The weights for
this combination are determined by a mixing coefficient, which is randomly chosen from a beta
distribution. The beta distribution is a probability distribution defined on the interval [0, 1].

CAM for
‘Poodle’

Mixup

Figure 3.15 Implementing the MixUp technique on image datasets (Yun et al., 2019b)

In the example with the St. Bernard and Poodle images, consider the following mixing coefficient value
A1 = 0.3. According to the MixUp method, a new synthetic image x and label y are generated using the
following equations:

X = Ay * XstBernard + 1- /11) * Xpoodle (3.9)
Y = A * Ystpernara T 1- /11) * Ypoodle (3.10)

Here, Xst pernara aNd Xpoodie are the image representations of the St. Bernard and Poodle, respectively,
and Vst pernara @Nd Ypoodie are their corresponding labels. With 1; = 0.3, the new image x mostly reflects
the features of the Poodle image (70% influence), while also incorporating some characteristics of the St.
Bernard image (30% influence). Similarly, the label y for this new synthetic sample blends the labels "St.
Bernard" and "Poodle" based on the same ratio.

[52]

University of the Aegean Department of Financial and Management Engineering

By sampling from the beta distribution, Mixup obtains random mixing coefficients. These coefficients
determine the degree to which each instance contributes to the final merged sample. Consequently, the
new sample and its label represent a blend of the characteristics of the St. Bernard and Poodle images,
with the influence of each instance varying according to the sampled coefficient.

To apply the two data augmentation levels, simply add them to the [net] section of the configuration file
and set their values to 1, as shown in Figure 3.16. This way we can implement mosaic, mixup, or any other
data augmentation technique.

Implementation of Mosaic data Implementation of Mosaic and Mixup data
augmentation technique augmentation technigues

2 ElPh&=D. D008 sma_ alphes’, E9EE

Figure 3.16 lllustrates the placement of data augmentation techniques within the configuration file

Activation function

Activation functions are included in neural networks to add non-linear characteristics to the outputs of
neurons in network layers. Thereby, with the application of activation functions, the model is capable of

detecting complicated patterns.

For the creation of our tests, we applied two activation functions: Mish and Swish. Specifically, we used
the Mish activation function for a certain number of tests, and we used the Swish activation function for
the remaining ones. Our objective is to determine whether the Mish or Swish activation function produces
superior or inferior results when combined with the other selected hyperparameters. These two
activation functions are described below:

Swish activation function

The Swish is a smooth and non-monotonic activation function, which consistently shows performance
comparable to or better than the Rectified Linear Unit (ReLU). As depicted in Figure 3.17, it is unbounded

[53]

University of the Aegean Department of Financial and Management Engineering

in its upper range and bounded in its lower range, deriving its distinctive non-monotonic characteristic
(Ramachandran et al., 2017).

|
_ |
- T ? §
] |]

Figure 3.17 Illustration of Swish activation function (Singh, 2020)

Swish is formally expressed as an activation function represented by the following equation:

f(x) =x * o(Bx) (3.12)

where,

e 0:symbolizes the sigmoid activation function (Nwankpa et al., 2018), which is expressed as:

o(x) = (3.12)

(1+e™X)

e [3:can be either a constant or a trainable parameter. This parameter results into the following
cases:
e If § =0, the Swish activation function is simplified to a scaled linear function
e As 8 tends to infinity, the Swish function approximates the ReLU function
e x:isthe input value for the Swish activation function.

In Equation 3.11, the Swish activation function is using the self-gating method, where the function uses its
own value to control or "gate" itself. Instead of using an external or different value to influence the output
(like ReLU function), the function initially modifies the input using o (fx) and then combines this modified
value with the original input x. Here, the input x is multiplied with the o(8x).

Mish activation function

Mish is the updated version of the Swish activation function, designed to have similar characteristics to
Swish (Misra, 2019). That is, Mish is also a smooth and non-monotonic activation function like Swish, and
itis unbounded in its upper range and bounded in its lower range (see Figure 3.18).

[54]

University of the Aegean Department of Financial and Management Engineering

— mish

ra
P
=

Figure 3.18 lllustration of Mish activation function (Li et al., 2022)

The Mish activation function is characterized by the subsequent equation:

f(x) = x * tanh(In(1 + €¥))

Similarly to Swish, Mish uses the self-gating method. As shown in Equation 3.13, the input x is multiplied
with tanh(In(1 + e¥)).

Thanks to Equation 3.13, Mish provides a smoother transition from negative to positive values to improve
the flow of information during training. Consequently, it has improved training stability, resulting in the
reduction of vanishing gradients issue (see Figure 3.18, Mish has a sharper rise and narrower spread on
the graph). Despite these improvements, both activation functions are considered effective for training
the YOLOv4-p6 model.

Mish was applied to the original YOLOv4 and Scaled YOLOv4 models. It was applied to all convolutional
layers throughout their structures, except for the convolutional layers preceding each detection head.
These convolutional layers use logistic activations, which are referred to as sigmoid function (Nwankpa et
al., 2018).

Figure 3.19 illustrates the application of Mish activation function in the configuration file. To convert the
Mish into the Swish activation function, replace “activation = mish” with “activation = swish” in all
convolutional layers throughout the structure, except for the convolutional layers preceding each
detection head.

[55]

(3.13)

University of the Aegean Department of Financial and Management Engineering

Implementation of Swish
activation function

Implementation of Mish
activation function

]
[Cconvelutional]
bBatch normalizse=l

4.0
[convoluticnal]
bacch mormalize=1

filnery=32 filvera=32
-y siza=3

srride=1 STride=l

L T Eaa——na
Betivarionemisal PERITAZAZRTSIAN
& P1 ¥ BPL

Dovmsampls

[convolutional]
bacch normalize=L
filrers=g4d

Fige=]

Stride=3

§ Doumsampls

[convalutiohal]
DEZCD_"!IGIIEJ.I. zZe=1
filters=£4

aize=3

stride=2

Badss pag=1

Figure 3.19 lllustrates the implementation of activation functions within the configuration file

Table 3.8 presents the second set of hyperparameters, adjusted to the following two levels, which will be
used to create our experiments:

Table 3.8 Represents the two levels of the second set of hyperparameters

Image resize 1280 x 1280 pixels 960 x 960 pixels
For 1280 x 1280:
[4,5,7,17, 16,13, 14,36, 29,24,
33,42,21,67, 64,43, 45,69,
36,137, 99,72, 66,111, 110,150,
66,261, 189,221, 193,510]
For 960 x 960:
[3,4,10,9,6,17, 11,28, 21,17,
26,31,17,51, 52,34, 35,52,
27,104, 50,84, 79,57, 81,117,
49,198, 142,165, 145,382]

[13,17, 31,25, 24,51, 61,45,
48,102, 119,96, 97,189,
97,189, 217,184, 171,384,
324,451, 324,451, 545,357,
616,618, 1024,1024]

Anchor box dimensions

Non-maximum suppression (NMS) DloU-NMS Greedy-NMS
Data augmentation techniques Mosaic Mosaic + Mixup
Activation function Mish Swish

[56]

University of the Aegean Department of Financial and Management Engineering

Chapter 4 Experimental Investigation

In this Chapter, we present the experiments we conducted to optimize the performance of the YOLOv4-p6
model by systematically adjusting its hyperparameters that affect model training. The performance of the
model was assessed by the mean Average Precision (mAP) metric. To assess the effect of each hype-
rparameter and each hyperparameter interaction on mAP we used Analysis of Variance (ANOVA).

4.1 Full Factorial Experiments

Full factorial designs are used to ensure that the effects of all hyperparameters and of all their interactions
may be determined from the experimental results. One major drawback is that full factorial designs are
more extensive compared to fractional factorial designs. In our case, however, the limited number of
factors (5) and levels (2) allows the use of the full factorial design (see also (JMP, 2023). The design
comprises thirty-two (2°) experiments presented in Table 4.1.

Table 4.1 The 2% full factorial design

1 1280*1280 mish diounms mosaic default
2 960*960 mish diounms mosaic default
3 1280*1280 swish diounms mosaic default
4 960*960 swish diounms mosaic default
5 1280*1280 mish greedynms mosaic default
6 960*960 mish greedynms mosaic default
7 1280*1280 swish greedynms mosaic default
8 960*960 swish greedynms mosaic default
9 1280*1280 mish diounms mosaic + mixup default
10 960*960 mish diounms mosaic + mixup default
11 1280*1280 swish diounms mosaic + mixup default
12 960*960 swish diounms mosaic + mixup default
13 1280*1280 mish greedynms mosaic + mixup default
14 960*960 mish greedynms mosaic + mixup default
15 1280*1280 swish greedynms mosaic + mixup default
16 960*960 swish greedynms mosaic + mixup default
17 1280*1280 mish diounms mosaic new
18 960*960 mish diounms mosaic new
19 1280*1280 swish diounms mosaic new
20 960*960 swish diounms mosaic new
21 1280*1280 mish greedynms mosaic new
22 960*960 mish greedynms mosaic new
23 1280*1280 swish greedynms mosaic new

[57]

University of the Aegean

Department of Financial and Management Engineering

24
25
26
27
28
29
30
31
32

960*960
1280*1280
960*960
1280*1280
960*960
1280*1280
960*960
1280%1280
960*960

swish
mish
mish
swish
swish
mish
mish
swish
swish

greedynms
diounms
diounms
diounms
diounms
greedynms
greedynms
greedynms
greedynms

mosaic
mosaic + mixup
mosaic + mixup
mosaic + mixup
mosaic + mixup
mosaic + mixup
mosaic + mixup
mosaic + mixup
mosaic + mixup

new
new
new
new
new
new
new
new
new

* Activation functions in structure are those used in all convolutional layers of the model, except for the

convolutional layers before each detection head

The above Table contains all possible combinations of the second set of hyperparameters (as defined in

Subsection 3.5.2), using both levels (default and new). Note that for the first set of hyperparameters we
applied the adjustments described in Subsection 3.5.1 and we kept them invariant throughout the
experimental study. The remaining hyperparameters (those not included in the first and second sets),

such as batch size, were kept at their default levels.

4.2 Experiment execution

According to Table 4.1, we created thirty-two configuration files (.cfg files) and placed them in a folder, as

shown in Figure 4.1. Each .cfg file contains a combination of hyperparameters as shown in Table 4.1.

v |
«fg

W 4
clata

eaRE TR
iy

Whlane 25
clvta

bl IR A
ey

Fvass 10
=y

TN AT 14
waka

s 3
“ig

T L
o]

WHbFa 10
duta

YedFD_S,
o

WP 1!
dats

VRS L
daka

Tiaee 11
¥y

TWFE 15

data

b B
oy

TAPE,
fn

P 11
snta

VAT 20,
g

¥¥dPs Jd,

daia

Figure 4.1 Folder including both .cfg and .data files

TWare .
daka

ALY
i

TaFo_20
data

Viike 28
g

A0
*3

YkaE 14
wlaba

FEPE A
ot

VAR 14,
o

YRR
=

oA i),
sy

LR
datw

oQ

o 10
Aoty

FYaEd 5
data

VLA 14

e L
sala

s i
o

TWESL TR rYeEal
=fg dsta iy
VS TR WEe 1S T 18
dui eig dakn
PRI YVAFDLIR YR
cfg data dy
LA0 T L T T T

datn

wHaka

TP L
Aty

Yk 1a
ehe

Lo o
eata

VirE_L
-

widbo 1o
disks

TVAFO_ D
g

L ki B
dakn

VWS 14

TWERD_EL
data

Together with each .cfg file, there is a .data file with the same name. For our experimentation, we named

each file “YV4P6” followed by a number from 1 to 32 to indicate the combination presented in Table 4.1.

Figure 4.2 presents the information included in each .data file.

[58]

T
<ha

TV aHh 17
dubw

NG
:tg

University of the Aegean Department of Financial and Management Engineering

1 classes= 4
2 train = /media/deopsys/Hard Disk/pancos/Final dataset (swapped classes)/Paths/Train.txt
3 valid = /media/deopsys/Hard Disk/panos/Final dataset (swapped classes)/Paths/Val.txt

4 names = /home/deopsys/Documents/darknet/data/yolovd 4 classes.names
backup = /media/deopsys/Hard Disk/panos/Experiments/cfgl

Figure 4.2 Information included in the first .data file corresponding to the first .cfg file used for training

where,

e classes: shows that the model is being trained to detect four different object classes (person, small
vehicle, large vehicle, and ship)

e train: specifies the path to a text file (Train.txt) that lists the file paths of all training images. As
mentioned in Section 3.3, we split our modified UAV dataset into three sets: training, validation,
and testing sets

o valid: specifies the path to a text file (Val.txt) that lists the file paths of all validation images

e names: specifies the path to a text file that contains the names of the object classes (see Figure
4.3)

person
small vehicle
large vehicle
1 ship

Figure 4.3 Txt file including the object classes

e backup: specifies the directory where the trained model weights will be saved. During training,
we set up the algorithm to save the trained weights every 1000 iterations, as will be explained
later in this Section.

The only difference between each .data file is the "backup" path, which changes (corresponding to each
.cfg file) to prevent overwriting the generated training weights.

The training process is conducted through the following command:

foriin {1..32}; do ./darknet detector train cfg/cfg_panos/Experiments/YV4P6_S{i}.data
cfg/cfg_panos/Experiments/YV4P6_S{i}.cfg yolov4-p6.conv.289 -map | tee
/media/deopsys/Hard_Disk/panos/Experiments/cfgs{i}.txt; done

Figure 4.4 Execution command for conducting the experiments

This contains a loop from 1 to 32, which selects iteratively the .cfg file (e.g. YV4P6_1.cfg) and the
corresponding .data file (e.g. YV4P6_1.data). Additionally, it uses the pre-trained weights “yolov4-
p6.conv.289” that the developers published as initial weights in the process. The command also saves the
training progress chart (see Figure 4.9) in the Darknet directory and terminal information in line reports

[59]

University of the Aegean Department of Financial and Management Engineering

(as shown in Figures 4.5 and 4.6) in a chosen path. Thus, once the training of the first model is completed,
the process moves to the second model with the same pre-trained weights, saving the training progress
chart and terminal information in line reports under a unique file name to avoid overwriting the results
of the previous model. This continues until all thirty-two experiments have been trained. As discussed
already, with the application of this command, we obtained the training progress chart, model weights,
and a text file containing the report information for each experiment.

Once all thirty-two experiments were completed, we re-trained them all over again, resulting in a total of
sixty-four experiments. The reasons for conducting each experiment twice are the following:

e To facilitate the analysis of the results (using ANOVA) by quantifying the variability within groups
o Toevaluate the robustness of training under the same hyperparameter settings. Small differences
between the mAP results of the two runs indicate that the model is trained consistently.

In Section 3.4, we have presented the components of our lab’s system. Despite its computational power,
the YOLOv4-p6 required 60 hours to complete one experiment with an image resolution of 1280x1280,
and approximately 36 hours for an experiment with a 960x960 image resolution. With the application of
the command presented in Figure 4.4, the first run of thirty-two experiments took forty-five days to
complete, and ninety days to complete both runs. As a result, the primary and only problem we
encountered during training was the extended training time.

The report presented in Figure 4.5 provides the evolution of key quantities of the training process per
iteration.

1606: 11.410105, 5.284472 avg loss, 0.001000 rate, 16€.538288 seconds, 102784 images, 48.9129%15 hours left
Figure 4.5 Key quantities of the training process
In this Figure,

e 1,606 is the ID of the current training iteration

e 11.410105 is the total loss value

e 0.284472:is the average loss. The purpose is to minimize the average loss, approaching zero if
possible

e (0.001000 is the current learning rate, which is defined in the YOLOv4-p6 configuration file

e 16.538288 is the total time spent processing the batch identified by iteration ID 1,606

e 102,784: is the total number of images used in training up to this batch. This total is calculated
by multiplying the number of batches (1,606) by the batch size (64), resulting in 102,784 images.

Part of the overall training process is the validation process. The latter tests the weights that the algorithm

creates during training and generates a mAP result for each validation run (see Figure 4.6). We set up our
models to begin their first validation run in the 600" iteration and then repeat it every 100 iterations (e.g.,

[60]

University of the Aegean Department of Financial and Management Engineering

700, 800, 900, 1000, ...) until the 8000 training iteration, where the training process of one model is
completed. This means that each experiment included seventy-five validation runs and generated
seventy-five different mAP results. Furthermore, the trained weights were saved every 1000 iterations in
the path we set in the .data file (backup path).

Figure 4.6 presents a representative example of the results of one validation run (Tepteris et al., 2023).
The results change from one validation run to another as the model constantly updates its training

weights.

F T A S e class id = [TP = 6756, FP = 1002)

! Evaluation metrics for | cless_id = ¢ 8B = 39,91% {IF = 23395, FP = 3737)

| | class: id = 34.7EY [TE = 2Z&6, FP = &77)
l___...__?E_'Erl?L??S_ _______ I claszs 1d = (T = 2116, EE = 554)

e e e e Eoxr conk 0.85, r=call = 0.33; Fl-acore = 0.47

| Evaluation metrics for | For conf Thyssh = 0.25, TP = 34543, FE = &030, FN = 71455, aversge Iod = E2.32 %
i i

I all classes { IoU chreshold = 50 %, used Area-TUnder-Curve for each unigque Recall

Figure 4.6 Display of key class metrics during validation
In the validation report, for each class, the following are provided:

e class_id: For example, index value 3 represents the class "ship"

e name: the name of the class

o AP (Average Precision): provides the average precision result of the class

e TP (True Positive): is the number of correctly identified class objects

e FP (False Positive): is the number of incorrectly identified class objects

e Recall: is the ratio of true positives to the sum of false negatives and true positives for the
particular class

e avg loU: represents the average Intersection over Union (loU) across all images in the validation
set for the particular class.

Itis reminded that the evaluation metrics for all classes in all training images are:

e Precision: is the overall prediction accuracy across all classes

e Recall: evaluates the ability of the detector to locate the trained objects within the image for all
classes

e F1 — score: is the harmonic mean of precision and recall

e TP (True Positive): is the number of correctly detected objects across all classes

e FP (False Positive): is the number of incorrectly detected objects across all classes

o FN (False Negative): is the number of missed detections across all classes

o average loU: represents the average loU across all images in the validation set for all classes

o mAP (mean Average Precision): summarizes the Average Precision (AP) of each individual
class and then divides the total AP value by the number of the classes.

[61]

University of the Aegean Department of Financial and Management Engineering

After the training process was completed, we performed the testing process for each of our thirty-two
(times two) experiments. Both in training and testing, the model generates multiple results used for
evaluation, as presented in Figure 4.6. From all the metrics contained in the line reports, we used the
mean Average Precision (mAP) metric to evaluate the performance of the models (from training and
testing). However, in each of these stages, the mAP results are used for different purposes:

e During the training process, the model adjusts its parameters to better detect the objects of
interest in the input data. These adjusted parameters are stored in the weights. To ensure the
model is learning correctly from the data, these weights are used in validation, an intermediate
process. In this process, the model applies the trained weights to the validation set to test its
detection and classification capabilities. During the validation process the model's detection
metrics, including mAP, are computed and presented throughout training and are displayed in the
progress chart (showing only mAP results). Consequently, the mAP results during training are used
to confirm whether the models is being trained correctly. Models achieving high mAP values in
validation indicate that overfitting is avoided and training in the related dataset is progressing
well

e During the testing process, we use the best weights of the model (which is generated in training
and contains the parameters that achieved the highest mAP result during validation) on the
testing set. The testing results (including mAP) confirm the detection and classification
performance of the model in independent data. If the value of the testing mAP is close to the
better mAP values obtained from validation, then the model has been trained and performs as
expected. If the testing mAP value is significantly lower than the better validation mAP values,
this indicates that even under the same type of data the performance of the model is lower than
expected (and obtained during validation), and, thus, training has not been successful.

For testing our trained models, we used the testing set of the modified UAV dataset (as discussed in
Section 3.3) and the respective best weights (which achieved the highest mAP in validation) obtained from
both training runs. Furthermore, we modified the information contained in the .data files and left the .cfg
files unchanged (see Figure 4.1). Specifically, for testing, all .data files contained the information displayed
in Figure 4.7. To execute the command for performing the testing process, as shown in Figure 4.8, we
replicated and numbered the same .data file thirty-two times (as shown in Figure 4.1) to match each one
with a corresponding .cfg file.

Figure 4.7 presents the information included in the .data files used for testing our trained YOLOv4-p6
models.

1 classes= 4
2 valid = /media/decpsys/Hard Disk/pancs/Final dataset (swapped classes)/Paths/Test.txt
names = /home/deopsys/Documents/darknet/data/yolov4 4 classes.names

Figure 4.7 Information included in all .data files used for testing

[62]

University of the Aegean Department of Financial and Management Engineering

In Fig. 4.7, the “classes” and “names” parameters remain the same as those used in training. The “valid”
parameter was changed to specify the path to a text file (Test.txt) that contains the file paths of all testing
images. Additionally, the “train” and “backup” parameters were omitted in the .data files for testing, as
they are only used for training.

The following command is used to execute the testing process after completing both runs in training per
hyperparameter combination.

foriin {1..32}; do ./darknet detector map cfg/cfg_panos/Testing/YV4P6_S{i}.data
cfg/cfg_panos/Testing/YV4P6_S{i}.cfg
/media/deopsys/Hard_Disk/panos/Weights/First_run/4V4P6_S{i} best.weights -points 101 -thresh

0.25 -iou_thresh 0.5 > /media/deopsys/Hard_Disk/panos/Testing/testing_S{i}.txt; done
Figure 4.8 Execution command for testing the experiments

The command contains a loop from 1 to 32, which selects iteratively the .cfg file (e.g. YV4P6_1.cfg), the
corresponding .data file (e.g. YV4P6_1.data) and the best weights file created from the first training run
of the corresponding .cfg file. The command also saves the terminal information in line reports in a chosen
path. Thus, once the testing of the first model (first .cfg file) is completed, the process moves to the second
model with its corresponding best weights file, saving the terminal information in line reports under a
unique file name to avoid overwriting the results of the previous model. This continues until all thirty-two
models have been tested using their corresponding best weights from the first training run. Once testing
of the 32 models are completed, we execute the same command using the best weights files from the
second training run. Consequently, from both runs of the testing process, we obtained line reports that
contain the mAP metric of testing for each model of each run.

4.3 Experimental results and analysis

In this Section, we analyze the results obtained from training (generated during the validation process)
and testing runs.

e To characterize the training performance of each model, we extracted the highest mAP (referred
to as the best mAP) produced during the model’s validation process. Note that during each
training session, 75 validation mAP values were obtained (one every 100 iterations after iteration
600), and the highest among them is designated as the best mAP.

e In the case of testing, we used the single mAP result obtained from applying the model on the
testing dataset.

Table 4.2 presents the mAP results from the training and testing runs of YOLOv4-p6 using the modified
UAV dataset. In this table, we used both the best and average mAP to analyze our results. Since each
process (training and testing) was executed twice, we also used the average mAP, which is the average of
the best mAP from the two runs of each model during training or testing. This metric provides a clearer
and more balanced view of the results by incorporating both runs, rather than relying on a single run's
outcome. Consequently, the best mAP indicates the peak performance of each model in either training or
testing, while the average mAP reflects the overall performance across both runs.

[63]

University of the Aegean Department of Financial and Management Engineering

The differences between the two runs (A % (1-2)) characterize the consistency of the models per
hyperparameter combination. Small differences suggest that the models are consistent and stable, while
larger differences indicate inconsistency. The trained YOLOv4-p6 models demonstrated consistent
performance in both the training and testing processes, as there are no significant differences between
the two runs (under 4-5% difference between the two runs in both processes).

What is more important is the last column of Table 4.2 that indicates the differences between the average
mAP values of validation/training vs testing. Two important observations are relevant here:

1. The difference values in the last column are low. Moreover, the testing average mAP is higher than
the validation average mAP, indicating robust model performance and no overfitting during
training. Of course, the testing dataset is (an independent) part of the modified UAV dataset, and
thus similar performance is expected between validation and testing in case of proper training.
The performance in totally new image dataset (such as the DeOPSys one) is expected to be lower.

2. The effect of the hyperparameters appears to be similar in training/validation and in testing. This
is analyzed further below.

[64]

University of the Aegean Department of Financial and Management Engineering

Table 4.2 mAP results obtained from training and testing

1 49.2 51.6 -2.4 50.4 514 53.4 -2.0 52.4 -2.0
2 44.3 43.0 1.3 43.7 46.8 47.2 -0.4 47.0 -3.3
3 46.8 49.3 -2.5 48.0 49.6 51.3 -1.7 50.5 -2.4
4 43.4 39.1 4.3 41.3 47.5 43.2 4.2 45.3 -4.1
5 52.3 50.1 2.3 51.2 53.5 52.9 0.6 53.2 -2.0
6 44.2 41.0 3.1 42.6 48.0 44.0 4.0 46.0 -3.4
7 45.0 47.8 -2.7 46.4 47.3 51.3 -4.1 49.3 -2.9
8 39.7 40.0 -0.3 39.8 43.8 44.2 -0.3 44.0 -4.2
9 48.5 50.1 -1.7 49.3 51.5 52.6 -1.2 52.1 -2.8
10 41.2 43.9 -2.7 42.5 46.5 48.0 -1.5 47.3 -4.7
11 49.1 46.0 3.0 47.6 51.0 48.7 2.2 49.9 -2.3
12 39.6 40.4 -0.8 40.0 44.0 45.5 -1.5 44.7 -4.7
13 51.4 47.8 3.6 49.6 52.7 49.9 2.7 51.3 -1.7
14 44.1 44.3 -0.2 44.2 47.0 48.4 -1.4 47.7 -3.5
15 48.2 46.9 1.3 47.5 49.8 50.4 -0.6 50.1 -2.5
16 39.2 40.9 -1.7 40.0 42.9 45.5 -2.5 44.2 -4.2
17 50.7 52.5 -1.8 51.6 52.1 53.5 -1.4 52.8 -1.1
18 43.9 45.7 -1.8 44.8 47.6 48.8 -1.2 48.2 -3.4
19 51.3 49.1 2.2 50.2 51.9 50.2 1.7 51.0 -0.8
20 38.8 42.5 -3.7 40.7 41.4 46.7 -5.3 44.1 -3.4
21 51.9 50.4 1.5 51.1 52.9 51.9 11 52.4 -1.3

[65]

University of the Aegean Department of Financial and Management Engineering

22 45.7 47.3 -1.5 46.5 48.4 49.6 -1.2 49.0 -2.5
23 49.1 50.2 -1.1 49.6 51.1 51.3 -0.2 51.2 -1.5
24 441 41.0 3.1 42.6 46.6 43.9 2.8 45.3 -2.7
25 51.6 52.3 -0.7 52.0 53.2 53.3 -0.1 53.3 -1.3
26 47.8 44.0 3.8 45.9 50.6 47.3 3.3 48.9 -3.0
27 49.0 52.4 -3.4 50.7 50.3 53.9 -3.6 52.1 -1.4
28 43.6 45.9 -2.4 44.8 45.6 47.3 -1.8 46.5 -1.7
29 52.2 51.8 0.4 52.0 53.4 53.2 0.3 53.3 -1.3
30 44.7 42.5 2.2 43.6 47.9 46.1 1.9 47.0 -3.4
31 47.4 48.7 -1.3 48.1 48.9 49.1 -0.3 49.0 -1.0
32 43.9 41.5 2.4 42.7 46.5 45.6 0.9 46.1 -3.3

[66]

Based on Table 4.2, the results of the training process indicate the highest average mAP in two different
models: the 25" model with 52% mAP (51.6% best mAP in the 1 run and 52.3% best mAP in the 2™ run)
and the 29" model with 52% mAP (52.2% best mAP in the 1% run and 51.8% best mAP in the 2™ run).

Figure 4.9 displays the training progress chart of the 29" experiment (1% run). The x-axis shows the number
of iterations as training progresses. The y-axis measures two different values: the value of the loss function,
and mAP. The blue curve of the graph represents the training loss curve, and the red one represents the
mAP results during training. The training loss curve shows whether the model has adapted well to the
dataset, with lower values indicating better results. During training, this curve decreases and then
stabilizes with some fluctuation within the interval of (4, 8). The red curve shows the model's ability to
detect the specified objects in the input data during validation. The increasing mAP values observed in the
red curve, ranging from 10% to 52%, indicate that the model is performing well. However, there are signs
of overfitting, notably around the 7000"" iteration, where the mAP drops to 18%. Despite this overfitting,
the model demonstrates effective object detection and classification capabilities on the modified UAV
dataset, achieving a maximum mAP of 52%.

reAPT
o1 0%
=0 O 1
Losn ‘
i
LB

8 e

E-At]

on
B

(=50 emg 2400 F200 0o 1300 600 B400 Fang =)
current ovy loss = O.EO40 iterotiom = SO0 ERProL. Cimme left = 008 bours
rems e’ ko mava : charbpng - Seeed [mratisn nmkar tn of moas_bstohes=8000

Figure 4.9 Training progress chart on the modified UAV dataset

Continuing with the results of Table 4.2, the results of the testing runs indicated that the 25" and 29t
models also achieved the highest average mAP. Specifically, the 25" model with 53.3% mAP (53.2% best
mAP in the 1% run and 52.3% in the 2" run) and the 29" model with 53.3% mAP (53.4% best mAP in the
1%t run and 52.2% best mAP in the 2™ run).

University of the Aegean Department of Financial and Management Engineering

Based on the above findings, we can draw the following conclusions:

e The 25" and 29" models achieved the highest average mAP results in both the training and testing
runs

e There is good agreement between the training/validation vs. testing results; i.e. the highest mAP
values in both sets of results correspond to the same hyperparameter combinations. This also
holds for the lowest mAP values

o The effects of the hyperparameters on mAP are very significant. Indicatively, the best performing
hyperparameter combination has a mAP value of 52%, while the worst performing combination
has a mAP value of 39.8%. This indicates the great importance of selecting the appropriate
hyperparameters in training, depending on the characteristics of the training dataset

e Conclusions on the effects of the hyperparameters and their combinations on mAP may be drawn
from either the validation or the testing map.

Tables 4.3 presents the average precision (AP) results of the four objects under consideration of all models
of Table 4.2. For each hyperparameter combination, the Table presents the average APs of the two runs
for both validation (first five columns) and testing (five last columns). For instance, according to the first
five columns of Table 4.3, model number 20 achieved an average AP of 32.1% for the person class, 36%
for the small vehicle class, 45.9% for the large vehicle class, and 48.8% for the ship class in training. The
average mAP is (32.1 + 36 + 45.9 + 48.8) /4 = 40.7%.

Table 4.3 Training and testing results: Class AP values

1 43.5 40.5 54.9 62.8 50.4 43.3 57.6 54.9 53.8 52.4
2 37.5 38.1 514 47.7 43.7 37.3 54.4 50.7 45.5 47.0
3 42.1 40.7 53.3 56.1 48.0 41.5 57.8 54.2 48.4 50.5
4 37.7 37.1 50.2 40.2 41.3 37.5 53.0 49.4 41.4 45.3
5 43.6 40.9 55.1 65.1 51.2 43.1 58.1 55.8 55.8 53.2
6 35.3 37.8 50.3 47.1 42.6 34.7 53.8 49.2 46.2 46.0
7 39.2 40.1 53.6 52.8 46.4 38.9 57.2 53.5 47.5 49.3
8 34.8 37.8 50.9 35.7 39.8 34.7 54.1 50.1 37.1 44.0
9 44.9 40.2 54.4 57.8 49.3 44.5 57.3 55.1 51.3 52.1
10 38.9 38.3 52.3 40.7 42.5 38.2 54.5 51.4 45.0 47.3
11 42.8 40.1 53.8 53.6 47.6 41.7 57.2 53.7 46.8 49.9
12 35.8 37.4 50.4 36.3 40.0 35.1 53.4 49.6 40.7 44.7
13 43.2 40.1 52.9 62.1 49.6 42.5 57.0 53.4 52.3 51.3
14 38.6 38.1 50.9 49.1 44.2 38.2 54.5 50.3 47.7 47.7
15 40.1 40.2 51.8 58.1 47.5 40.0 57.0 53.1 50.2 50.1

[68]

University of the Aegean Department of Financial and Management Engineering

16 38.1 37.6 51.7 32.7 40.0 38.0 53.9 51.0 33.9 44.2
17 43.3 41.8 54.1 67.4 51.6 42.4 59.0 54.1 55.5 52.8
18 40.7 38.7 48.5 51.2 44.8 40.8 55.6 48.5 47.9 48.2
19 44.8 42.2 50.8 63.1 50.2 44.4 59.2 49.7 50.8 51.0
20 321 36.0 45.9 48.8 40.7 32.3 51.8 45.4 46.8 44.1
21 43.6 41.2 51.9 67.8 51.1 43.1 58.2 51.8 56.5 52.4
22 39.0 394 50.8 56.8 46.5 39.2 56.0 50.2 50.7 49.0
23 38.8 40.3 51.2 68.2 49.6 37.9 57.4 52.1 57.2 51.2
24 354 37.5 48.1 49.3 42.6 34.9 53.6 47.5 45.0 45.3
25 43.8 42.2 52.6 69.4 52.0 43.5 59.4 54.0 56.1 53.3
26 41.6 39.5 48.8 53.9 45.9 41.1 56.2 48.3 50.2 48.9
27 42.4 41.1 53.8 65.5 50.7 41.5 58.4 54.8 53.8 52.1
28 36.0 38.1 46.1 58.8 44.8 35.2 54.6 45.1 50.9 46.5
29 45.1 42.2 53.8 66.9 52.0 44.7 59.5 53.8 55.1 53.3
30 38.2 38.2 49.6 48.5 43.6 37.6 54.7 49.9 45.8 47.0
31 37.3 41.2 50.4 63.4 48.1 36.6 58.1 50.8 50.5 49.0
32 36.9 37.4 49.5 47.1 42.7 36.4 53.2 48.8 45.9 46.1

As shown in Table 4.3, the highest average AP values achieved during training for each class were mostly
produced by different models across both runs. The highest average AP values (in training) for each class
were 45.1% (29" model) for person, 42.2% (19" and 29" models) for small vehicle, 55.1% (5" model) for
large vehicle, and 69.4% (25" model) for ship. Similarly, the highest AP values in the testing process were
also from different models. The highest average AP values (in testing) for each class were 44.7% (29
model) for person, 59.5% (29" model) for small vehicle, 55.8% (5" model) for large vehicle, and 57.2%
(23 model) for ship.

Table 4.4, presents the AP values for the model achieving the highest average mAP value, as well as the
models that produced the highest AP values per class in training and testing, respectively. Since two
different models achieved the highest average mAP value, we selected the 29" model to study (the one
analyzed in Figure 4.9). Then, we calculated the deviation of the best performing model
(|AP of the best model — best AP|/best AP)to determine whether the best performing model has a
high or low deviation from the best AP values in training or testing. For instance, the deviation of the 29"
model for large vehicle class is -2.36%: ([53.8 — 55.1] /55.1).

[69]

University of the Aegean Department of Financial and Management Engineering

Table 4.4 Average Precision (AP) deviation of the best performing model in training and testing

Person 45.1 45.1 0 44.7 44.7 0
Small
. 42.2 42.2 0 59.5 59.5 0
vehicle
Large
. 53.8 55.1 -2.36% 53.8 55.8 -3.58%
vehicle
Ship 66.9 69.4 -3.60% 55.1 57.2 -3.67%

Table 4.4 clearly indicates that the 29th model that corresponds to the highest mAP does have a robust
performance in terms of AP for the classes of interest, as evidenced by the very limited deviation from
the best AP values.

4.4 Hyperparameter effects on mean Average Precision (mAP)

By applying Analysis of Variance (ANOVA), we can evaluate the effect of each factor (hyperparameter) and
of the factor interactions on mAP. This allows us to identify the significant factors (hyperparameters) and
the combination(s) of factors that result in optimal training of the YOLOv4-p6 model in terms of mAP.

As explained in Appendix D, the ANOVA tests the following hypotheses:

e The null hypothesis (Ho) states that a factor or a factor interaction has no significant effect on mAP
e The alternative hypothesis (H.) states that a factor or a factor interaction has a significant effect
on mAP.

We performed two ANOVA analyses with the MiniTab software, which utilized the experimental results
shown in Table 4.1.

The first ANOVA drill down was conducted using the best mAP results from the training/validation runs.
The purpose of this analysis was to identify the effect of the hyperparameters and their combinations in
the effectiveness of training. Identifying these effects could assist developers in creating better detection
models, reducing the risk of overfitting and improving detection performance.

The second ANOVA drill down was conducted using the best mAP results from the testing runs. The
purpose of this analysis was to verify that the hyperparameter combinations resulting in effective training,
show consistent superior performance during testing.

[70]

University of the Aegean Department of Financial and Management Engineering

The following Table 4.5 provides the "design summary" of both analyses.

Table 4.5 Full factorial design summary

Design Summary

Factors 5 Base Design 5,32
Runs 64 Replicates 2
Blocks 1 Center pts (total) 0

All terms are free from
aliasing.

As indicated in Table 4.5, the experimental design encompasses five factors (our selected second set of
hyperparameters):

e Image resolution

e Activation function - structure

¢ Non-Maximum Suppression (NMS)
e Data augmentation technique

e Anchor dimensions.

Within the experimental setup a single block is applied, meaning that all experiments are performed under
uniform conditions. This reduces variability. In addition, we selected zero center points before the
execution of ANOVA, in order not to perform experimental runs at the mid-level of each factor in the
design. Although this limits the test’s ability to evaluate nonlinear effects, we assumed that such effects
are not present. The base design includes 5 factors, and since each factor has 2 levels, this leads to 32
experimental runs (i.e., 2°> = 32). With 2 replicates, the total number of runs increases to 64. Lastly, the
“all terms are free from aliasing” means that none of the factors and their interactions are mixed with
each other and can be estimated independently.

4.4.1 ANOVA on best mAP results from training runs
The ANOVA analysis of the training (validation) results is presented in Table 4.6. Note the following:

e Adjusted Sum of Squares (Adj SS) isolates and measures the variance in mAP that is explained by
each factor or interaction after removing the effects of other factors and their interactions in the
model. For instance, the Adjusted Sum of Squares for image resolution is 0.075196. This value
represents the variance in mAP explained by changes in image resolution (Kutner, 2005).

e Adjusted Mean Squares (Adj MS) is the average variance associated with each factor or
interaction, accounting for the relevant degrees of freedom in the model. For instance, the
Adjusted Mean Square for “image resolution” is 0.075196. This value is calculated by dividing the
Adjusted Sum of Squares for “image resolution” by its corresponding degrees of freedom, which
in this case is 1 (Kutner, 2005).

[71]

University of the Aegean Department of Financial and Management Engineering

The Adjusted Mean Squares is:

MSaq; = SSadj (4.1)

DF

The F-value is the ratio of the Adjusted Mean Square of a factor or interaction to the Adjusted
Mean Square of the error (see Equation 4.2). A high F-value (beyond a certain threshold provided
in tables based on the DOF, risk, etc.) indicates that the factor or interaction has a statistically
significant impact on mAP. For example, “image resolution”, “activation function in the structure”
and “anchor dimensions” have high F-values, indicating that they have a statistically significant
effect on mAP. In contrast, factors like “NMS” and “data augmentation technique” have lower F-

values, indicating that they do not have a significant effect on mAP (Archdeacon, 1994).

The F-Value is provided from:
F —Value = _MSaaj (42)

MSadj/error

The p-value represents the probability of obtaining results (e.g. F-value) as extreme as those
observed, assuming the null hypothesis is true. A small p-value (less than 0.05) shows that the
observed results are statistically significant, leading to the rejection of the null hypothesis (Ho).
Conversely, a high p-value suggests that the observed results could reasonably occur by chance,
leading to accepting the null hypothesis. For example, “image resolution”, “activation function in
the structure” and “anchor dimensions” have low p-values, indicating that they have a significant
effect on mAP. In contrast, “NMS” and “data augmentation technique” have a high p-value,

indications that they have no significant effect on mAP (Archdeacon, 1994).

At the end of Table 4.6, two additional terms are presented:

Error: represents the unexplained variance in the model, showing the difference between the
observed results and the results predicted by the model. In our model, SS,--or = 0.00883 (Adj
SS) represents the unexplained variance in the mAP that is not accounted for by the model. It
equals to the sum of squares of the differences between each observed result and the result
predicted by the model, as presented below (Kutner, 2005):

n 2
SSerror = §] 1(yi - yi) (4.3)
i=

where,
e y;:is the observed result for the i-th observation
e J,:isthe predicted result for the i-th observation

e n:isthe number of observations.

Total: represents the total variance that is separated into explained variance (model) and
unexplained variance (error). It provides a baseline against which the model's performance is

[72]

University of the Aegean Department of Financial and Management Engineering

evaluated. In our model, SS;otq; = 0.106443 represents the total variance in the mAP. It is
calculated as the sum of squares of the differences between each observed result and the overall
mean of the dependent variable, as presented below (Kutner, 2005):

SStotar = Z (Yi - 37)2 (4.4)

i=1

where,

e y;:is the observed result for the i-th observation
e y: is the mean of the observed results
e n:is the number of observations.

The small relative value of unexplained variance in the model shows that a large portion of the total
variance is accounted for by the variables included in the model. This indicates that the model is effective
in explaining the variability in the data, which makes the model valuable for understanding the results we
are studying.

Table 4.6 presents the significance of each factor and their interactions on the mAP.

Table 4.6 ANOVA training results

Source DF Adj SS Adj MS F-Value p-Value
Model 31 0.097611 0.003149 11.41 0
Linear 5 | 0.092651 0.01853 67.14 0
Image resolution 1 0.075196 0.075196 272.47 0
Activation function - structure 1 0.010521 0.010521 38.12 0
NMS 1 0.000216 0.000216 0.78 0.383
Data augmentation technique 1 0 0 0 0.979
Anchor dimensions 1 0.006718 0.006718 24.34 0
2-Way Interactions 10 0.001182 0.000118 0.43 0.922

Image resolution*Activation function - structure 1 | 0.000053 0.000053 0.19 0.663
Image resolution*NMS 1 0.000048 0.000048 0.17 0.679
Image resolution*Data augmentation technique 1 | 0.000094 0.000094 0.34 0.565
Image resolution*Anchor dimensions 1 0.000029 0.000029 0.11 0.748
Activation function - structure*NMS 1 0.000301 0.000301 1.09 0.304
Activation function - structure*Data
. . 1 0.000187 0.000187 0.68 0.416

augmentation technique
Activation function - structure*Anchor

. . 1 | 0.000133 0.000133 0.48 0.493
dimensions

NMS*Data augmentation technique 1 0.000106 0.000106 0.38 0.54

[73]

University of the Aegean Department of Financial and Management Engineering

NMS*Anchor dimensions 1 | 0.000056 0.000056 0.2 0.655
Data augmentation technique*Anchor
. . 1 0.000175 0.000175 0.63 0.432
dimensions
3-Way Interactions 10 0.001765 0.000176 0.64 0.769
Image resolution*Activation function -

1 0.000092 0.000092 0.33 0.568
structure*NMS

Image resolution*Activation function -
. . 1 | 0.000071 @ 0.000071 0.26 0.616
structure*Data augmentation technique
Image resolution*Activation function -
. . 1 0.000006 0.000006 0.02 0.885
structure*Anchor dimensions

Image resolution*NMS*Data augmentation

. 1 | 0.000067 0.000067 0.24 0.625
technique
Image resolution*NMS*Anchor dimensions 1 | 0.000063 0.000063 0.23 0.635
Image resolution*Data augmentation

. . . 1 | 0.000006 0.000006 0.02 0.881
technique*Anchor dimensions
Activation function - structure*NMS*Data

. . 1 0.000015 0.000015 0.05 0.817

augmentation technique

Activation function - structure*NMS*Anchor

dimensions 1 | 0.000038 0.000038 0.14 0.712
Activation function - structure*Data

augmentation technique*Anchor dimensions

NMS*Data augmentation technique*Anchor

dimensions

4-Way Interactions 5 0.001788 0.000358 1.3 0.29
Image resolution*Activation function -

structure*NMS*Data augmentation technique

Image resolution*Activation function -

structure*NMS*Anchor dimensions

1 0.00002 0.00002 0.07 0.788

1 0.001386 0.001386 5.02 0.032

1 0.000004 0.000004 0.01 0.909

1 0.00004 0.00004 0.14 0.706

Image resolution*Activation function -
structure*Data augmentation technique*Anchor 1 0.001102 @ 0.001102 3.99 0.054
dimensions
Image resolution*NMS*Data augmentation

. . . 1 0.000575 0.000575 2.08 0.159
technique*Anchor dimensions

Activation function - structure*NMS*Data
) .) . 1 | 0.000068 0.000068 0.25 0.623
augmentation technique*Anchor dimensions

5-Way Interactions 1 0.000225 0.000225 0.82 0.373
Image resolution*Activation function -
structure*NMS*Data augmentation 1 | 0.000225 0.000225 0.82 0.373

technique*Anchor dimensions

[74]

University of the Aegean Department of Financial and Management Engineering

Error 32 0.008831 0.000276
Total 63 0.106443

MiniTab also generates convenient graphical representations to help the assessment of the
factor/interaction effects. These include:

e Pareto chart of the standardized effects
e Main effects plot for mAP
e Interaction plot for mAP.

Pareto chart of the standardized effects

As shown in Figure 4.10, the Pareto chart of the standardized effects illustrates the impact of various
factors and interactions on the mAP. The factors are labeled A through E, representing the following
variables:

e A:lmage resolution
e B: Activation function in the structure

C: NMS (Non-Maximum Suppression)
e D: Data augmentation technique
e E: Anchor dimensions.

The red dashed line at the standardized effect value of 2.04 shows the significance threshold at a = 0.05.
Factors with bars extending beyond this red dashed line have a significant impact on mAP. However, this
also means that thereisa 5% (a = 0.05) risk of identifying a factor or an interaction of factors as significant
while it is not.

The significant factors and combination of factors for training according to the Pareto chart are the
following:

e Image resolution (A) has the greatest standardized effect on mAP

e Activation function in the structure (B)

e Anchor dimensions (E)

e The combination of factors CDE (NMS, data augmentation technique and anchor dimensions).

[75]

University of the Aegean Department of Financial and Management Engineering

Pareto Chart of the Standardized Effects
(response is mAP, o = 0.05, only 30 effects shown)

Term 2.04

=

Factor Name
A Image resclution

B Activation function - structure
C MNMS
D
E

22
Qo000

k23
m
[m]

Data augmentation technigue
Anchor dimensions

D0 mm Mmrimmmmm

I m
o, :b:bn%

] B om
JaFFinlalal=r o 8

m
=

2
L=t al=htalat

=
m
A
=/

4 6 B W 12 14 1B 18
Standardized Effect

Figure 4.10 First Pareto chart of the standardized effects

The remaining hyperparameters or their combinations do not have a significant effect on mAP, since their
values are less than 2.04 (Navarro Tuch et al., 2019).

Commenting on the above results:

e “Image resolution” changes the resolution of the input data, which greatly influences the training
process. Larger image resolutions provide better detection and classification results

e “Activation function in the structure” is significant for feature extraction from the input data.
Newer versions of activation functions offer better non-linear characteristics, which help to
capture more details (information) from the available images

e “Anchor dimensions” assist the model to generate more appropriate bounding boxes by adjusting
the size of the anchor bounding boxes during the training process. The most suitable configuration
of anchor box dimensions, in relation to the dataset that is used to train the model, is likely to
result in improved model performance.

Main effects plot for mAP

Figure 4.11 presents the main effects plot for training (Kim et al., 2007) that quantifies the effect in mAP
for factors A, B, C, D and E, respectively. The following observations can be made regarding these five
factors:

e Varying image resolution from 969x960 to 1280x1280 improves mAP by [42.9% — 49.7%| =
6.8%

e Varying activation function from Swish to Mish improves mAP by |45% — 47.5%]| = 2.5%
e Varying anchor box sizes from the original set to new set improves mAP by |45.2% — 47.3%| =

2.1%.

[76]

University of the Aegean Department of Financial and Management Engineering

Therefore, the best options for our significant factors are:
e 1280x1280 for image resolution
e Mish function for the activation function in the structure

e New set of anchor box sizes for anchor dimensions.

Main Effects Plot for mAP

Data Means
L Image resolution Activation function - structure Anchor dimensions
-
049
D4d
L
N Ll

047
=
g Od6
S0

045 - . >

DA

043 '_

04k

1260*12B0 DE0*360 rmish swish defoult T
Figure 4.11 Main effects plot for mAP (training) of A, B and E factors
Interaction plot for CDE

Figure 4.12 presents an interaction plot (lbrahim et al., 2011) showing the only significant three-way
interaction CDE (involving C: NMS, D: Data augmentation techniques, and E: Anchor dimensions) emerging
from the training analysis. Note that the interaction plots in MiniTab display the interaction between only
two factors per plot. As a result, our three-way interaction is analyzed in three different two-way
interaction plots.

Overall, the interaction plot shows that the combination of CDE factors yields better mAP results with:

e Distance-Intersection over Union - Non-Maximum Suppression (DloU-NMS) for NMS
e Mosaic + mixup for data augmentation
¢ New set of anchor box sizes for anchor dimensions.

[77]

University of the Aegean Department of Financial and Management Engineering

Interaction Plot for mAP
Fitted Means

NMS * Data augment Diata augmant
—¢— mosale
0474 — m — mosajic + mixup
Q268
B
[.
i |
% 0456
E
Er
2 pasn-
E MMS * Anchar dimen | Data avgment * Anchor dimen Anchor
B timen
il _— ol
= odn . S e default
% e o
-n — W — new
0468 -
462 -
0456
= -~
———a T
0450 , : =
digunms greedynims mesdic masaic + mixup
MNMS Data augment

Figure 4.12 Interaction plot for CDE

4.4.2 ANOVA on best mAP results from testing runs
We created a similar Table (see Table 4.7) for the ANOVA results of the testing runs.

Table 4.7 ANOVA testing results

Source DF Adj SS Adj MS F-Value = p-Value
Model 31 0.056872 = 0.001835 7.28 0
Linear 5 0.053675 0.010735 42.59 0
Image resolution 1 0.04256 0.04256 168.85 0
Activation function - structure 1 0.009347 0.009347 37.08 0
NMS 1 0.000303 0.000303 1.2 0.281
Data augmentation technique 1 0.000019 0.000019 0.07 0.787
Anchor dimensions 1 0.001446 0.001446 5.74 0.023
2-Way Interactions 10 0.000594 0.000059 0.24 0.99
Image resolution*Activation function - structure 1 0.000064 = 0.000064 0.25 0.618
Image resolution*NMS 1 0.000014 0.000014 0.06 0.812
Image resolution*Data augmentation technique 1 0.00017 0.00017 0.68 0.417
Image resolution*Anchor dimensions 1 0.00004 0.00004 0.16 0.694
Activation function - structure*NMS 1 0.000058 = 0.000058 0.23 0.634
Activation function - structure*Data

1 0.000028 0.000028 0.11 0.741

augmentation technique

[78]

University of the Aegean Department of Financial and Management Engineering

Activation function - structure*Anchor

. . 1 0.000004 @ 0.000004 0.01 0.905
dimensions
NMS*Data augmentation technique 1 0.000167 0.000167 0.66 0.421
NMS*Anchor dimensions 1 0 0 0 0.966
Data augmentation technique*Anchor
. . 1 0.000048 0.000048 0.19 0.667
dimensions
3-Way Interactions 10 = 0.000916 @ 0.000092 0.36 0.954
Image resolution*Activation function -
1 0.00011 0.00011 0.44 0.513
structure*NMS
Image resolution*Activation function -
.] 1 0.000026 = 0.000026 0.1 0.749
structure*Data augmentation technique
Image resolution*Activation function -
. . 1 0.000043 0.000043 0.17 0.682
structure*Anchor dimensions
Image resolution*NMS*Data augmentation
. 1 0.000004 @ 0.000004 0.02 0.897
technique
Image resolution*NMS*Anchor dimensions 1 0.000127 = 0.000127 0.5 0.484
Image resolution*Data augmentation
. . K 1 0.000027 0.000027 0.11 0.744
technique*Anchor dimensions
Activation function - structure*NMS*Data
) . 1 0 0 0 0.997
augmentation technique
Activation function - structure*NMS*Anchor
. . 1 0.000013 0.000013 0.05 0.819
dimensions
Activation function - structure*Data
) .) . 1 0.000024 0.000024 0.1 0.76
augmentation technique*Anchor dimensions
NMS*Data augmentation technique*Anchor
. . 1 0.000541 0.000541 2.14 0.153
dimensions
4-Way Interactions 5 0.001249 0.00025 0.99 0.439
Image resolution*Activation function -
. . 1 0.000012 0.000012 0.05 0.83
structure*NMS*Data augmentation technique
Image resolution*Activation function -
. . 1 0.000146 0.000146 0.58 0.452
structure*NMS*Anchor dimensions
Image resolution*Activation function -
structure*Data augmentation technique*Anchor 1 0.000857 = 0.000857 3.4 0.074
dimensions
Image resolution*NMS*Data augmentation
k i i 1 0.000092 0.000092 0.37 0.549
technique*Anchor dimensions
Activation function - structure*NMS*Data
)) ;) 1 0.000141 = 0.000141 0.56 0.459
augmentation technique*Anchor dimensions
5-Way Interactions 1 0.000438 = 0.000438 1.74 0.197

[79]

University of the Aegean Department of Financial and Management Engineering

Image resolution*Activation function -

structure*NMS*Data augmentation 1 | 0.000438
technique*Anchor dimensions

Error 32 0.008066
Total 63 0.064938

Pareto chart of standardized effects

0.000438 1.74 0.197

0.000252

Inthe Pareto chart of the standardized effects, shown in Figure 4.13, the labeling of the factors is consistent
with the analysis of Subsection 4.4.2. Similarly to the first Pareto chart, the factors are labeled A through

E, representing the following variables:

e A:Image resolution

e B: Activation function in the structure
e C:NMS (Non-Maximum Suppression)
e D: Data augmentation technique

e E: Anchor dimensions.

In this chart the red dashed line representing the standardized effect has a value of 2.04, indicating the

significance threshold at a=0.05. Factors with bars extending beyond this red dashed line have a significant

impact on mAP. Therefore, the significant factors for testing according to the Pareto chart are the following:

e Image resolution (A) has the greatest standardized effect on mAP

e Activation function in the structure (B)
e Anchor dimensions (E).

Pareto Chart of the Standardired Effects

(response is mAP, a = 0.05, only 30 effects shown)

] 2 ' 6] 10 12 L]
Standardized Effect

Facler Feame

A Image resolistior

& Activatian fudctien - snicture
(= WS

r) Data awgrertabon imchibgoe
r Anchor dinonsiors

Figure 4.13 Second Pareto chart of the standardized effects

[80]

University of the Aegean Department of Financial and Management Engineering

The remaining hyperparameters or their combinations do not have a significant effect on mAP, since their
values are less than 2.04. Comparing the ANOVA results of training/validation vs. testing, we may conclude
that

1. The effects of the three factors, image resolution (factor A), activation function in the
structure (factor B) and anchor dimensions (factor E), are significant in both cases

2. The three-way interaction CDE is not significant in the testing ANOVA; however, it still has
a relatively high standardized effect close to the threshold of Fig. 4.13

These conclusions are very important; they indicate that a model trained under optimal hyperparameter
settings, has also superior performance when tested on data that the model has not been exposed to
(although from the same dataset that all three, training, validation and testing sets have been created).

Main effects plot for mAP (testing)

Figure 4.14 presents a main effects plot for testing (Kim et al., 2007) that quantifies the effect in mAP for
factors A, B, C, D and E, respectively. The following observations can be made regarding these five factors:

e Varying image resolution from 969x960 to 1280x1280 improves mAP by |46.3% — 51.4%| =
5.1%

e Varying activation function from Swish to Mish improves mAP by |47.6% — 50.1%]| = 2.5%

e Varying anchor box sizes from the original set to new set improves mAP by |48.4% — 49.3%| =
0.9%.

The effects of image resolution (A) and activation function (B) on mAP resulting from the testing
experiments are very close to those resulting from the training/validation experiments. The effect of
anchor size dimensions (E), although significant, has a lower value from the one observed from the latter
experiments. This consistency between the two sets of experiments is quite encouraging, indicating that
the effects of the hyperparameters on the performance of the trained model has been identified correctly
and are significant.

The best options for our significant factors are:

e 1280x1280 for image resolution
e Mish function for the activation function in the structure
e New set of anchor box sizes for anchor dimensions.

[81]

University of the Aegean Department of Financial and Management Engineering

Main Effects Plot for mAP

Data Maans
nea Image resolution Activation function - structure Anchor dimensians
L]

051

o5 .
ﬁ -
1)

049
=

L
048
L]
047
-
D46
12801280 960960 mish swish default neEw

Figure 4.14 Main effects plot for mAP (testing) of A, B and E factors

4.5 Concluding remarks

After completing both ANOVA analyses, the results from training and testing runs agreed to a high degree.

From training, three hyperparameters (factors) and one hyperparameter three-way interaction have been
found to affect mAP with statistical significance. The main effects, including image resolution (factor A),
activation function in the structure (factor B), and anchor dimensions (factor E), are shown to affect mAP
by 6.8%, 2.5%, and 2.1%, respectively. The significant hyperparameter CDE three-way interaction involves
NMS, the data augmentation technique, and anchor dimensions. It positively impacts mAP when using
the combination of DIoU-NMS, Mosaic + Mixup, and the new set of anchor box sizes for anchor
dimensions.

From testing, the same three hyperparameters as in training have been found to affect mAP with statistical
significance. The main effects, including image resolution (factor A), activation function in the structure
(factor B), and anchor dimensions (factor E), are shown to affect mAP, increasing it by 5.1%, 2.5%, and
0.9%, respectively.

As mentioned in Section 4.4, based on the comparison of the ANOVA results for training/validation versus
testing, the following findings can be reported:

1. The same factors are significant: Both the training/validation and testing ANOVAs reveal image
resolution (factor A), activation function (factor B), and anchor dimensions (factor E) as significant
factors

2. The effects are similar: The magnitude of the effects observed in the training/validation ANOVA
are comparable to those found in the testing ANOVA, with a similar pattern of significance across
the factors.

[82]

University of the Aegean Department of Financial and Management Engineering

Note that the results achieved by a model in an application depends on the fit of the trained model to
the application dataset. In Chapter 5, we use our trained models on our lab’s dataset, referred to as the
DeOPSys dataset, to assess the performance of the trained models on this independent UAV dataset that
has quite different characteristics than the modified UAV dataset we used for model training.

[83]

University of the Aegean Department of Financial and Management Engineering

Chapter 5 Testing the trained YOLOv4-p6 models on DeOPSys dataset

In this Chapter, we present the evaluation of the proposed hyperparameter optimization method using
the best trained models (25" and 29" models) to detect objects from UAV images obtained by our lab
(DeOPSys dataset). The objective of this exercise is to validate that the best performing models in the
training/validation process are performing well in the DeOPSys dataset.

5.1 DeOPSys UAV dataset

The DeOPSys dataset (ENIRISST+, 2023) includes annotated images containing the following three classes:

e Person
e C(Car
e Boat

The images were captured by a drone in two locations on the island of Chios: the port/shipyard in the
Tholos area (see example (a) in Figure 5.1) and a rural area near Lagada (see example (b) in Figure 5.1).
These images were taken at different altitudes (15m, 30m, and 50m) and at different times of the day
(morning and evening). Note that:

o Images taken from different heights offered varying levels of detail and viewpoints. Lower altitudes
result in more detailed views of objects, but they cover a smaller area, while images taken from
higher altitudes covered a wider area with less detail

e Daylight images generally had higher quality due to better natural light, while images taken in low
light conditions were less clear, making it harder to decipher some object details. In addition,
weather conditions, like cloudy or clear skies, also impacted the image quality.

Figure (a) Figure (b)

Port in the Tholos area in daylight Rural area near Lagada in low light conditions

Figure 5.1 Sample images from the DeOPSys dataset featuring (a) the Tholos Port (daylight conditions) and (b) Lagada Rural
Area (low light conditions)

[84]

University of the Aegean Department of Financial and Management Engineering

Furthermore,

e The objects of interest varied in size

e There were variations in the spatial placement of objects within the environment and the
characteristics of the environment itself. For example, in some cases the dataset involved two
persons and a car.

Finally, the dataset included 722 images with multiple annotated objects for detection, captured at various
heights. Table 5.1 shows the objects in the images of the DeOPSys dataset’s testing sets.

Table 5.1 The labelled objects of DeOPSys dataset

Images 15m 241 244 229 0 473
Images 30m 240 256 117 62 435
Images 50m 241 257 123 476 856
Morning images 350 373 285 538 1196
Evening images 372 384 184 0 568
Total images 722 757 469 538 1764

The testing sets of Table 5.1 are the following:

Images taken from a drone at a height of 15 meters during the morning and evening hours
Images taken from a drone at a height of 30 meters during the morning and evening hours
Images taken from a drone at a height of 50 meters during the morning and evening hours
Images taken from a drone at heights of 15, 30 and 50 meters during the morning hours
Images taken from a drone at heights of 15, 30 and 50 meters during the evening hours

oA WN e

Images taken from a drone at heights of 15, 30 and 50 meters during the morning and evening
hours.

5.2 Testing execution on DeOPSys dataset

Referring to Section 4.3, the 25" and 29" models showed the highest average mAP during training,
achieving 52% mAP value. For this reason, we tested the selected models on the DeOPSys dataset. The
execution of the testing process is similar to the one discussed in Section 4.2, where we kept the .cfg files
unchanged and only modified the information included in the .data files. However, DeOPSys contains six
different testing sets, as explained at the end of Section 5.1. This means that we have six .data files for
each .cfg file, that is, we test the six testing sets with these models (see Figure 5.3). Furthermore, we
executed the testing process in DeOPSys twice, just like the previous training and testing on the modified
UAV dataset.

[85]

University of the Aegean Department of Financial and Management Engineering

By way of example, the first two .data files contain the information shown in Figure 5.2.

.data file of the first testing set

classas= 4
valid = /media/decpsys/Hard Disk/drone files/all experiments 1l.txt
names = JShome/deopsys/Documents/dacknet/data/yolevd 4 classes.names

.data file of the second testing set

classaes= 4
valid = /media/decpsys/Hard Disk/drone_files/all experiments 2.txt
names = /home/deopsys/Documents/darknet/data/yolovd 4 classes.names

Figure 5.2 Data files of the first and second testing sets

All six .data files retain the same “classes” and “names” parameters used in training or previous testing of
the modified UAV dataset used for training. The “valid” parameter changes for every .data file, as
presented in Figure 5.2 “valid = ... /all_experiement_ [number 1 to 6].txt", to represent the testing set that
is going to be used for testing the respective model (.cfg file). Similarly to our previous testing, the “train”
and “backup” parameters were omitted in the .data files for testing, as they are only used for training.

To perform the testing process on DeOPSys, we created two folders, named Model_25 and Model_29,
each containing one .cfg file with its six corresponding .data files used for testing the respective model.
Figure 5.3 represents the folders and the first folder (Model_25), which includes the .cfg file of the 25t
model and its six corresponding .data files.

Model_25 Model_z29
YVipgs 25, YVaps 25 YWAPG_25 YVaps 25 YWaPEs 25 YVAPE 25 YWARG 25
;.‘g 1.data 2.daka 3.data d.data 5.data t.data

Figure 5.3 Setup for testing the 25t and 29'h models on DeOPSys dataset

[86]

University of the Aegean Department of Financial and Management Engineering

The names of the .cfg files are the same as the .data files, e.g., YV4P6_25. However, the .data files have
an extra number at the end to represent the number of the testing set. For example, YV4P6_25_3 specifies
the settings and paths for the 25" model's testing process, including the location of the third testing set.
After this setup, we executed the command of Figure 5.4 to begin the testing process on DeOPSys dataset.
The command in Figure 5.4 is different from the one used in Section 4.2, because this time we have six
.data files for each .cfg file.

foriin 25 29; do > /media/deopsys/Hard_Disk/panos/testing/testing_S{i}.txt; for jin {1..6}; do ./darknet
detector map cfg/cfg_panos/Testing/Model_S${i}/YV4P6_S{i} S{j}.data
cfg/cfg_panos/Testing/Model_${i}/YV4P6_S{i}.cfg
/media/deopsys/Hard_Disk/panos/Testing_process/Weights/First_run/4V4P6_S{i} best.weights -points 101
-thresh 0.25 -iou_thresh 0.5 >> /media/deopsys/Hard_Disk/panos/testing/testing_S{i}.txt; done; done

Figure 5.4 Execution command for testing the experiments

It contains a double loop: an outer loop explicitly targeting only folders Model_25 and Model_29 and an
inner loop iterating through the six .data files for each folder. The outer loop selects the corresponding
.cfg file and the best weights file created from the first training run of the selected folder. The inner loop
then selects the first .data file and tests the respective .cfg file (included in the folder). Once testing of the
model with the first testing set (.data file) is complete, it moves to the second .data file, continuing until
the model is tested with all six .data files.

After testing the first folder, the process moves to the second folder with its corresponding best weights
file, saving the terminal output for each .data file in a single line report under a unique file name to avoid
overwriting the results of the previous model. This process continues until the two models have been
tested using their corresponding best weights. Once completed, the same command is executed again
using the best weight files from the second training run. As a result, from the testing process on the
DeOPSys dataset, we obtain line reports similar to our previous testing, containing the mAP metric for
each model of each run, which will be evaluated in the next Section.

In summary, to perform the DeOPSys testing process, we used the six testing sets, our trained models,
and the best weights (which achieved the highest mAP in validation) generated from the training runs.

5.3 Testing results of DeOPSys dataset

For the DeOPSys dataset, we set up our models to detect only the person and small vehicle classes.
Although the DeOPSys dataset includes the class small boat, the models have not been trained in this third
class. Note that the ship class included in training has quite different characteristics than the small boat
class.

Table 5.2 presents the mAP results of the DeOPSys tests using the 25" and 29" models (rows of the table).
The columns correspond to: a) three testing sets (three columns) containing images photographed from
15, 30 and 50 m height, b) the next two columns correspond to images photographed from all heights (15,

[87]

University of the Aegean Department of Financial and Management Engineering

30, 50 m) corresponding to morning and evening conditions, respectively. The last column corresponds
to all images. Note that for each column, the average mAP of the two models corresponding to each of
the 25 and 29 training runs are presented.

From Table 5.2 it is clear that both models yielded very encouraging mAP results for the images taken at
heights of 15, 30, and 50 meters during the morning and evening hours (as mentioned in Section 5.1),
achieving average mAP of 77.6% and 76.3%, respectively. Furthermore, the two models

o Achieved the highest average mAP on images captured at a height of 15 meters during the
morning and evening hours, with the 25" model achieving 85.3% mAP and the 29" model
achieving 82.8% mAP.

e Conversely, they achieved the lowest average mAP on images captured at a height of 30 meters
during the morning and evening hours, with the 25" model achieving 70.8% mAP and the 29*"
model achieving 72.0% mAP.

In general:

e Both trained models displayed exceptional performance
e Morning and evening images taken at a lower height are the easier to detect by both models
e Morning and evening images taken at a 30m height are the harder to detect.

Table 5.2 Average mAP testing results of 25thand 29t"models.

25 85.3 70.8 75.4 82.4 74.3 77.6
29 82.8 72.0 74.8 80.4 74.5 76.3

Table 5.3 presents the average AP (Average Precision) values of the two runs for the person and small
vehicle classes obtained from testing the 25 and 29" models on the six testing sets from DeOPSys. The
rows of the table represent the testing sets (same as in Table 5.2), and the columns correspond to: a) the
average AP values of the two runs for the person and small vehicle classes on each testing set separately
(two columns), and b) the average mAP results of the models on each testing set (one column). As
described in Section 2.6, the AP values are used to calculate the mAP metric. Likewise, utilizing the average
AP values, we can calculate the average mAP results. For instance, the average mAP of the 25" model on
the images 50m testing set is calculated as: (51.3 + 99.6/2) = 75.4%.

Table 5.3 AP testing results of 25t and 29t models.

" Images 15m 70.7 99.9 85.3
5 Images 30m 49.5 92.1 70.8
° Images 50m 51.3 99.6 75.4
= Morning images 65.4 99.3 82.4

[88]

University of the Aegean Department of Financial and Management Engineering

| femrreibud |
e | e |

Evening images 53.1 95.5 74.3

All images 57.4 97.7 77.6

Images 15m 65.7 100.0 82.8

o Images 30m 47.7 96.3 72.0
% Images 50m 49.6 100.0 74.8
3 Morning images 61.4 99.4 80.4
2 Evening images 50.8 98.2 74.5
All images 54.2 98.3 76.3

From Table 5.3, we conclude three primary findings:

e The person class confirms that the models have limited performance with images captured at a
height of 30 meters, while they perform better using images captured at heights of 15 and 50
meters. The highest AP value for the person class is 70.7% (images 15m testing set), and the lowest
is 47.7% (images 30m testing set)

o The small vehicle class produces great results even from images captured at a height of 30 meters.
The highest AP value for the small vehicle class is 100% (images 15m testing set and images 50m
testing set), and the lowest is 92.1% (images 30m testing set)

e The models achieved good average AP results on the testing set containing all images. Specifically,
the 25" model produced average AP results of 57.4% for the person class and 97.7% for the small
vehicle class, while the 29" model produced average AP results of 54.2% for the person class and
98.3% for the small vehicle class. These AP values of the person class are significantly lower than
those of the small vehicle class. The reason is that the person images correspond to a much
smaller number of pixels in each photo of the datasets as compared to the vehicle class and, thus,
the identification/detection uncertainty is higher in the former class.

[89]

University of the Aegean Department of Financial and Management Engineering

Chapter 6 Conclusions

This thesis proposes a new method to optimize training of models that may effectively detect and classify
objects in real time from images taken at logistics facilities, including ports. These objects include
"persons”, "small vehicles", "large vehicles", and "ships". The proposed approach is based on YOLO, an
advanced image detection system. We reviewed several versions of this system YOLOv1, YOLOv2, YOLOv3,
YOLOv4, and Scaled YOLOv4 models, and compared their performance based on the Average Precision
(AP) metric. Evidence indicates that YOLOv4-p6 achieves better results on the COCO dataset compared to
its previous versions. Therefore, this study focused on optimizing training of the YOLOv4-p6 model to
achieve the highest attainable mean AP (mAP) results. The mAP metric was selected as our primary
evaluation metric for training and testing. This metric measures the model's performance across multiple

classes.

For our study, we generated a training dataset used by combining the following publicly available UAV
image datasets that included the selected classes: Aerial vehicle, DOTA, VisDrone-DET, Stanford drone, and
DAC-SDC. Prior to combining the datasets, the following modifications were made: 1) annotations were
converted into YOLO format, 2) unnecessary classes were removed, and 3) the classes under interest were
adjusted in the following order: person, small vehicle, large vehicle, and ship. The resulting combined UAV
dataset consists of 76,872 images with 876,388 annotations across the four selected classes. The dataset
was divided into three different sets: training (80% of the dataset), validation (10%), and testing (10%),
which correspond to 61,429 images with 665,506 annotations, 7,678 images with 105,998 annotations,
and 7,680 images with 101,830 annotations, respectively.

Training optimization was studied by tuning the training hyperparameters of YOLO. Our goal was to
determine the most favorable set of hyperparameters that maximize the mAP results. To do so, we

1. Split the available training hyperparameters of YOLOv4-p6 into two sets. The first set included
hyperparameters adjusted based on the characteristics of the training set; i.e., the number of
classes, max batches, steps, and filters (of the convolutional layer before each detection head).
We maintained the values/levels of these hyperparameters fixed throughout the experiments. The
hyperparameters of the second set were tuned through the experimental work. The
hyperparameters in this second set were varied at two levels (1** level: default hyperparameter
values of YOLOv4-p6 and 2™ level: new hyperparameter values)

2. Utilized the second set of hyperparameters to generate our experiments design using a Full-
Factorial approach. The five hyperparameters under study and tuning resulted in thirty-two (2°)
different factor combinations.

Model training was performed under these 32 hyperparameter combinations, thus generating 32 trained
models. (Actually, since for analysis purposes, we performed two training rounds for each combination,
the total number of models were 32x2=64.) Note that in each training session, every 100 training iterations
validation is conducted. At the end of the session, testing of the trained model is performed.

The outputs of each of the 64 experiments were the highest mAP achieved in validation, and the mAP
value resulting from training. The outputs of the experiments were analyzed using ANOVA. This analysis

[90]

University of the Aegean Department of Financial and Management Engineering

of the validation results revealed that the hyperparameters impacting mAP in a statistically significant way
are: image resolution, activation function, and anchor box sizes. Non-Maximum Suppression (NMS)
methods and data augmentation techniques did not have a significant effect on mAP. Similar outcomes
were obtained from analyzing the results obtained from the testing process. Furthermore, the analysis
indicated a single significant three-way interaction (only in training) between NMS, data augmentation
techniques and anchor dimensions. The quantitative effects on mAP of the three significant
hyperparameters are as follows:

e Varying image resolution from 969x960 to 1280x1280 improves mAP by 6.8% in training and 5.1%
in testing

e Varying activation function from Swish to Mish improves mAP by 2.5% in training and testing

e Varying anchor box sizes from the original set to new set improves mAP by 2.1% in training and
0.9% in testing.

The best trained models (corresponding to the 25™ and 29" hyperparameter combinations achieved in
validation a 52% average mAP and 53.3% in testing.

The considerable effects of the hyperparameters on model effectiveness support strongly our thesis that
careful tuning of the hyperparameters during training may yield to major improvements in model
effectiveness. The results from testing the two best trained models on the independent DeOPSys dataset
validate the above thesis.

During this completely independent testing process, which used images never employed during training,
both models achieved superior object detection results. The highest average mAP values were achieved
for images taken from a height of 15m: mAP of 85.3% for the 25" model and 82.8% for the 29" model.
Even the lowest model performance, corresponding to images taken from the 30m height, was very good
with mAP values of 70.8% for the 25" model and 72.0% for the 29" model.

This exercise showed that the proposed method for tuning the training hyperparameters of YOLO is
successful.

e ltillustrated the significance of appropriate hyperparameter tuning

e It revealed the effects of the various hyperparameters on the significant mAP output

e It paves the way towards a systematic method for successful hyperparameter tuning to optimize
model training.

Future directions for research include:

e Consider the hyperparameters of newer versions of YOLO

e Utilize more efficient and accurate backbone and neck components from updated algorithms on
Scaled YOLOv4 models

e Incorporate updated modules; e.g. SPFF (Spatial Pyramid Pooling Fast) module used in YOLOv11

e Develop efficient methods for hyperparameter tuning.

[91]

University of the Aegean Department of Financial and Management Engineering

References

Afif, M., Ayachi, R., Pissaloux, E., Said, Y., Atri, M., 2020. Indoor objects detection and recognition for an
ICT mobility assistance of visually impaired people. Multimedia Tools and Applications 79.
https://doi.org/10.1007/s11042-020-09662-3

Anwar, A., 2022. What is Average Precision in Object Detection & Localization Algorithms and how to
calculate it? [WWW Document]. Medium. URL https://towardsdatascience.com/what-is-average-
precision-in-object-detection-localization-algorithms-and-how-to-calculate-it-3f330efe697b (accessed
2.26.24).

Archdeacon, T.J., 1994. Correlation and regression analysis: a historian’s guide. University of Wisconsin
Press, Madison, Wis.

Bochkovskiy, A., 2021a. Scaled YOLO v4 is the best neural network for object detection on MS COCO
dataset. Medium. URL https://alexeyab84.medium.com/scaled-yolo-v4-is-the-best-neural-network-for-
object-detection-on-ms-coco-dataset-39dfa22fa982 (accessed 7.10.24).

Bochkovskiy, A., 2021b. Scaled YOLO v4 is the best neural network for object detection on MS COCO
dataset. Medium. URL https://alexeyab84.medium.com/scaled-yolo-v4-is-the-best-neural-network-for-
object-detection-on-ms-coco-dataset-39dfa22fa982 (accessed 3.5.24).

Bochkovskiy, A., 2021c. Scaled YOLO v4 is the best neural network for object detection on MS COCO
dataset. Medium. URL https://alexeyab84.medium.com/scaled-yolo-v4-is-the-best-neural-network-for-
object-detection-on-ms-coco-dataset-39dfa22fa982 (accessed 1.30.24).

Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M., 2020. YOLOv4: Optimal Speed and Accuracy of Object Detection.

Brownlee, J., 2019. A Gentle Introduction to 1x1 Convolutions to Manage Model Complexity.
MachinelLearningMastery.com. URL https://machinelearningmastery.com/introduction-to-1x1-
convolutions-to-reduce-the-complexity-of-convolutional-neural-networks/ (accessed 2.20.24).

Chen, C., Zeng, W., Zhang, X., 2023. HFPNet: Super Feature Aggregation Pyramid Network for Maritime
Remote Sensing Small Object Detection. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing PP, 1-17. https://doi.org/10.1109/JSTARS.2023.3286483

COCO, 2017. Papers with Code - UCSD Ped2 Dataset [WWW Document]. URL
https://paperswithcode.com/dataset/ucsd (accessed 6.27.24).

Curti, N., 2020. Route Layer [WWW Document]. NumPyNet. URL https://nico-
curti.github.io/NumPyNet/NumPyNet/layers/route_layer.html (accessed 2.20.24).

DataRobot, 2018. Introduction to Loss Functions [WWW Document]. DataRobot Al Platform. URL
https://www.datarobot.com/blog/introduction-to-loss-functions/ (accessed 2.16.24).

[92]

University of the Aegean Department of Financial and Management Engineering

Devansh, 2023. How does Batch Size impact your model learning. Geek Culture. URL
https://medium.com/geekculture/how-does-batch-size-impact-your-model-learning-2dd34d9fb1fa
(accessed 7.18.24).

Du, X., Lin, T-Y,, Jin, P.,, Ghiasi, G., Tan, M., Cui, Y., Le, Q.V., Song, X., 2020. SpineNet: Learning Scale-
Permuted Backbone for Recognition and Localization.

Dupont, M., 2023. Role of Tight Bounding Boxes in Enhancing Model Accuracy [WWW Document].
Labelvisor. URL https://www.labelvisor.com/role-of-tight-bounding-boxes-in-enhancing-model-accuracy/
(accessed 4.13.24).

El Aidouni, M., 2019. Understanding YOLO and YOLOv2 [WWW Document]. Manal El Aidouni. URL
https://manalelaidouni.github.io/manalelaidouni.github.io/Understanding%20YOLO%20and%20YOLOv2.
html (accessed 1.30.24).

ENIRISST+, 2023. Dataset - DeOPSys Dataset - DKAN Demo [WWW Document]. URL https://open-
data.enirisstplus.uop.gr/dataset/d8d4163e-fac6-4369-87b8-c795d76fc274 (accessed 5.26.24).

Everingham, M., Van Gool, L., Williams, C., Winn, J., Zisserman, A., 2010. The Pascal Visual Object Classes
(VOC) challenge. International Journal of Computer Vision 88, 303—-338. https://doi.org/10.1007/s11263-
009-0275-4

Gad, A.F., 2020. Accuracy, Precision, and Recall in Deep Learning [WWW Document]. Paperspace Blog. URL
https://blog.paperspace.com/deep-learning-metrics-precision-recall-accuracy/ (accessed 2.26.24).

GeeksforGeeks, 2023. Epoch in Machine Learning [WWW Document]. GeeksforGeeks. URL
https://www.geeksforgeeks.org/epoch-in-machine-learning/ (accessed 8.22.24).

GeeksforGeeks, 2021. Spatial Resolution (down sampling and up sampling) in image processing.
GeeksforGeeks. URL https://www.geeksforgeeks.org/spatial-resolution-down-sampling-and-up-sampling-
in-image-processing/ (accessed 3.10.24).

GeeksforGeeks, 2019. CNN | Introduction to Padding [WWW Document]. GeeksforGeeks. URL
https://www.geeksforgeeks.org/cnn-introduction-to-padding/ (accessed 7.4.24).

Ghiasi, G., Lin, T-Y,, Le, Q.V., 2018. DropBlock: A regularization method for convolutional networks.

Ghosh, M., Sk, O., Gherardini, F., Zdimalova, M., 2021. Classification of Geometric Forms in Mosaics Using
Deep Neural Network. Journal of Imaging 7, 149. https://doi.org/10.3390/jimaging7080149

GitHub, 2008. GitHub: Let’s build from here [WWW Document]. GitHub. URL https://github.com/
(accessed 4.25.24).

GitLab, 2011. The most-comprehensive Al-powered DevSecOps platform [WWW Document]. URL
https://about.gitlab.com/ (accessed 4.25.24).

[93]

University of the Aegean Department of Financial and Management Engineering

Google, 2022. Classification: True vs. False and Positive vs. Negative | Machine Learning [WWW
Document]. Google for Developers. URL https://developers.google.com/machine-learning/crash-
course/classification/true-false-positive-negative (accessed 2.21.24).

He, K., Zhang, X., Ren, S., Sun, J., 2015a. Deep Residual Learning for Image Recognition.
He, K., Zhang, X., Ren, S., Sun, J., 2015b. Deep Residual Learning for Image Recognition.
He, K., Zhang, X., Ren, S., Sun, J., 2015c. Deep Residual Learning for Image Recognition.

He, K., Zhang, X., Ren, S., Sun, J., 2014. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual
Recognition. pp. 346—361. https://doi.org/10.1007/978-3-319-10578-9_23

Henderson, P., Ferrari, V., 2017. End-to-end training of object class detectors for mean average precision.
Hosang, J., Benenson, R., Schiele, B., 2017. Learning non-maximum suppression.

Hui, J., 2019. mAP (mean Average Precision) for Object Detection. Medium. URL https://jonathan-
hui.medium.com/map-mean-average-precision-for-object-detection-45¢121a31173 (accessed 6.13.24).

Ibrahim, M., Muhamad, N., Bakar, A., Jamaludin, K., Ahmad, S., Nor, N., 2011. Optimization of Micro Metal
Injection Molding SS 316L For The Highest Green Strength By Using Taguchi Method. Advanced Materials
Research 264-265. https://doi.org/10.4028/www.scientific.net/AMR.264-265.135

iguazio, 2022. What is Recall [WWW Document]. Iguazio. URL https://www.iguazio.com/glossary/recall/
(accessed 2.21.24).

loffe, S., Szegedy, C., 2015. Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift.

JMP, 2023. Full Factorial Designs [(www Document]. URL
https://www.jmp.com/support/help/en/17.2/index.shtml#page/jmp/full-factorial-designs.shtml#
(accessed 2.25.24).

kaggle, 2010. Kaggle: Your Machine Learning and Data Science Community [WWW Document]. URL
https://www.kaggle.com/ (accessed 4.25.24).

Kamal, A., 2021a. YOLO, YOLOv2 and YOLOv3: All You want to know. Medium. URL https://amrokamal-
47691.medium.com/yolo-yolov2-and-yolov3-all-you-want-to-know-7e3e92dc4899 (accessed 1.30.24).

Kamal, A., 2021b. YOLO, YOLOv2 and YOLOv3: All You want to know. Medium. URL https://amrokamal-
47691.medium.com/yolo-yolov2-and-yolov3-all-you-want-to-know-7e3e92dc4899 (accessed 3.5.24).

Keita, Z., 2022. YOLO Object Detection Explained: A Beginner’'s Guide [WWW Document]. URL
https://www.datacamp.com/blog/yolo-object-detection-explained (accessed 6.27.24).

Kenton, W., 2024. Analysis of Variance (ANOVA) Explanation, Formula, and Applications [WWW
Document]. Investopedia. URL https://www.investopedia.com/terms/a/anova.asp (accessed 3.21.24).

[94]

University of the Aegean Department of Financial and Management Engineering

Kharuzhy, 2018. Commits - jekhor/aerial-cars-dataset [WWW Document]. GitHub. URL
https://github.com/jekhor/aerial-cars-dataset (accessed 4.12.24).

Kim, ki-chan, Ahn, J., Won, S., Hong, J.P., Lee, ju, 2007. A Study on the Optimal Design of SynRM for the
High Torque and Power Factor. Magnetics, |EEE Transactions on 43, 2543-2545.
https://doi.org/10.1109/TMAG.2007.893302

krishnab, 2018. YOLO object detection: how does the algorithm predict bounding boxes larger than a grid
cell? Stack Overflow.

Kundu, R., 2022. F1 Score in Machine Learning: Intro & Calculation [WWW Document]. URL
https://www.v7labs.com/blog/f1-score-guide, https://www.v7labs.com/blog/f1-score-guide (accessed
2.26.24).

Kutner, M.H. (Ed.), 2005. Applied linear statistical models, 5th ed. ed, The McGraw-Hill/Irwin series
operations and decision sciences. McGraw-Hill Irwin, Boston.

Lecun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning applied to document recognition.
Proceedings of the IEEE 86, 2278-2324. https://doi.org/10.1109/5.726791

Li, H., Iv, xin, Zhang, S., 2022. Multiobjective Deep Reinforcement Learning based Joint Beamforming and
Power Allocation in UAV assisted Cellular Communication. https://doi.org/10.21203/rs.3.rs-1634741/v1

Liu, S., Huang, di, 2019. Adaptive NMS: Refining Pedestrian Detection in a Crowd.
Liu, S., Qi, L., Qin, H., Shi, J., Jia, J., 2018. Path Aggregation Network for Instance Segmentation.
Loshchilov, I., Hutter, F., 2017. SGDR: Stochastic Gradient Descent with Warm Restarts.

Mantripragada, M., 2020. Digging deep into YOLO V3 - A hands-on guide Part 1 | by Manogna
Mantripragada | Towards Data Science [WWW Document]. URL https://towardsdatascience.com/digging-
deep-into-yolo-v3-a-hands-on-guide-part-1-78681f2c7e29 (accessed 4.13.24).

Misra, D., 2020. Mish: A Self Regularized Non-Monotonic Activation Function.
Misra, D., 2019. Mish: A Self Regularized Non-Monotonic Neural Activation Function.

MIT Lincoln Laboratory 1951, 1998. Datasets | MIT Lincoln Laboratory [WWW Document]. URL
https://www.ll.mit.edu/r-d/datasets (accessed 7.3.24).

Midiller, R., Kornblith, S., Hinton, G., 2020. When Does Label Smoothing Help?

Nagpal, M., 2023. The Ultimate Guide to YOLO3 Architecture [WWW Document]. ProjectPro. URL
https://www.projectpro.io/article/yolov3-architecture/836 (accessed 1.31.24).

Navarro Tuch, S., Lépez-Aguilar, A., Bustamante-Bello, R., Molina, A., Izquierdo-Reyes, J., Curiel-Ramirez,
L., 2019. Emotional domotics: a system and experimental model development for UX implementations.
International Journal on Interactive Design and Manufacturing (1JIDeM) 13.
https://doi.org/10.1007/s12008-019-00598-z

[95]

University of the Aegean Department of Financial and Management Engineering

Nguyen, M., Lam, H., Le, T., 2022. A Real-Time Application for Waste Detection and Classification. IJARCCE
11. https://doi.org/10.17148/1JARCCE.2022.11503

Nwankpa, C., ljomah, W., Gachagan, A., Marshall, S., 2018. Activation Functions: Comparison of trends in
Practice and Research for Deep Learning.

0O’Shea, K., Nash, R., 2015. An Introduction to Convolutional Neural Networks.

Oti, E., Olusola, M., Eze, F., Enogwe, S., 2021. Comprehensive Review of K-Means Clustering Algorithms.
International Journal of Advances in Scientific Research and Engineering 07, 64-69.
https://doi.org/10.31695/1JASRE.2021.34050

Parico, A.I.B., Ahamed, T., 2021. Real Time Pear Fruit Detection and Counting Using YOLOv4 Models and
Deep SORT. Sensors 21, 4803. https://doi.org/10.3390/s21144803

Parsania, P., Virparia, P., 2016. A Comparative Analysis of Image Interpolation Algorithms. IJARCCE 5, 29—
34. https://doi.org/10.17148/1JARCCE.2016.5107

Patel, S., Patel, N., Deshpande, S., Siddiqui, A., 2021. Ship Intrusion Detection using Custom Object
Detection System with YOLO Algorithm 08.

pawangfg, 2020. YOLO v2 - Object Detection. GeeksforGeeks. URL https://www.geeksforgeeks.org/yolo-
v2-object-detection/ (accessed 1.30.24).

Pawar, R., 2022. labellmg: Convert annotations in XML to YOLO format [WWW Document]. Gist. URL
https://gist.github.com/InputBlackBoxOutput/8ede7112531708b03a2e8e86ca2ff3d5 (accessed 2.24.24).

Pedro, J., 2023. Detailed Explanation of YOLOv8 Architecture — Part 1. Medium. URL
https://medium.com/@juanpedro.bc22/detailed-explanation-of-yolov8-architecture-part-1-
6da9296b954e (accessed 7.4.24).

PyLessons, 2019. PylLessons [WWW Document]. URL https://pylessons.com/YOLOv3-introduction
(accessed 4.13.24).

Ramachandran, P., Zoph, B., Le, Q., 2017. Swish: a Self-Gated Activation Function.

Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You Only Look Once: Unified, Real-Time Object
Detection.

Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2015. You Only Look Once: Unified, Real-Time Object
Detection.

Redmon, J., Farhadi, A., 2018. YOLOv3: An Incremental Improvement.
Redmon, J., Farhadi, A., 2016a. YOLO9000: Better, Faster, Stronger.
Redmon, J., Farhadi, A., 2016b. YOLO9000: Better, Faster, Stronger.

Riad, R., Teboul, O., Grangier, D., Zeghidour, N., 2022. Learning strides in convolutional neural networks.

[96]

University of the Aegean Department of Financial and Management Engineering

ringringyi, 2023. ringringyi/DOTA_YOLOv2.

Robicquet, A., Sadeghian, A., Alahi, A., Savarese, S. (Eds.), 2016. Learning Social Etiquette: Human
Trajectory Understanding In Crowded Scenes. Computer Vision — ECCV 2016, Lecture Notes in Computer
Science. https://doi.org/10.1007/978-3-319-46484-8 33

Seltman, H.J., 2018. Experimental Design and Analysis.

Shah, D., 2022. Mean Average Precision (mAP) Explained: Everything You Need to Know [WWW
Document]. URL https://www.v7labs.com/blog/mean-average-precision,
https://www.v7labs.com/blog/mean-average-precision (accessed 7.8.24).

Shaikh, S., Chopade, J., Kharate, G., 2023. Object Classification and Tracking Using Scaled P8 YOLOv4 Lite
Model. Period. Polytech. Elec. Eng. Comp. Sci. 67, 102—111. https://doi.org/10.3311/PPee.20685

Shatravin, V., Shashey, D., Shidlovskiy, S., 2022. Sigmoid Activation Implementation for Neural Networks
Hardware Accelerators Based on Reconfigurable Computing Environments for Low-Power Intelligent
Systems. Applied Sciences 12, 5216. https://doi.org/10.3390/app12105216

Simonyan, K., Zisserman, A., 2015. Very Deep Convolutional Networks for Large-Scale Image Recognition.

Simplilearn, 2023. What is XML: Overview on Comments, Attributes, Tags & Syntax | Simplilearn [WWW
Document]. Simplilearn.com. URL https://www.simplilearn.com/tutorials/programming-tutorial/what-is-
xml (accessed 3.10.24).

Singh, A., 2024. Selecting the Right Bounding Box Using Non-Max Suppression [WWW Document]. URL
https://www.analyticsvidhya.com/blog/2020/08/selecting-the-right-bounding-box-using-non-max-
suppression-with-implementation/ (accessed 2.28.24).

Singh, S., 2020. Swish as an Activation Function in Neural Network. Deep Learning University. URL
https://deeplearninguniversity.com/swish-as-an-activation-function-in-neural-network/ (accessed
2.20.24).

Solawetz, J., 2020a. Data Augmentation in YOLOv4 [WWW Document]. Roboflow Blog. URL
https://blog.roboflow.com/yolov4-data-augmentation/ (accessed 7.17.24).

Solawetz, J., 2020b. Data Augmentation in YOLOv4 [WWW Document]. Roboflow Blog. URL
https://blog.roboflow.com/yolov4-data-augmentation/ (accessed 1.30.24).

Solawetz, J., Nelson, J., Sahoo, S., 2020. How to Train YOLOv4 on a Custom Dataset [WWW Document].
Roboflow Blog. URL https://blog.roboflow.com/training-yolov4-on-a-custom-dataset/ (accessed 4.25.24).

Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M., 2015. Striving for Simplicity: The All
Convolutional Net.

Stanford University Computational Vision and Geometry Lab, 2009. Stanford Computational Vision and
Geometry Lab [WWW Document]. URL https://cvgl.stanford.edu/resources.html (accessed 7.3.24).

Stevulidkova, P., Hurtik, P., 2023. Intersection over Union with smoothing for bounding box regression.

[97]

University of the Aegean Department of Financial and Management Engineering

Subramanyam, V.S., 2021. Basics of Bounding Boxes. Analytics Vidhya. URL https://medium.com/analytics-
vidhya/basics-of-bounding-boxes-94e583b5e16¢ (accessed 4.13.24).

SuperAnnotate, 2023. Mean average precision (mAP) in object detection | SuperAnnotate [WWW
Document]. URL https://www.superannotate.com/blog/mean-average-precision-and-its-uses-in-object-
detection (accessed 7.4.24).

Swiezewski, J., 2020. YOLO Algorithm and YOLO Object Detection - Machine Learning [WWW Document].
URL https://appsilon.com/object-detection-yolo-algorithm/ (accessed 2.25.24).

Synced, 2020. YOLO Creator Joseph Redmon Stopped CV Research Due to Ethical Concerns. SyncedReview.
URL https://medium.com/syncedreview/yolo-creator-says-he-stopped-cv-research-due-to-ethical-
concerns-b55a291ebb29 (accessed 5.26.24).

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.,
2014. Going Deeper with Convolutions. https://doi.org/10.48550/arXiv.1409.4842

Tan, M., Le, Q.V., 2020. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks.
Tandon, A., 2024. adityatandon/VisDrone2YOLO.

Tepteris, G., Mamasis, K., Minis, |., 2023. State of the art object detection and recognition methods(draft)
| DeOPSys Lab [WWW Document]. URL https://deopsys.aegean.gr/node/280 (accessed 12.12.24).

Tsang, S.-H., 2022. Review — YOLOv4: Optimal Speed and Accuracy of Object Detection. Medium. URL
https://sh-tsang.medium.com/review-yolov4-optimal-speed-and-accuracy-of-object-detection-
8198e5b37883 (accessed 6.27.24).

Ultralytics, 2023. YOLO Performance Metrics [Www Document]. URL
https://docs.ultralytics.com/guides/yolo-performance-metrics (accessed 2.28.24).

Vakili, M., Ghamsari, M., Rezaei, M., 2020. Performance Analysis and Comparison of Machine and Deep
Learning Algorithms for loT Data Classification.

VisDrone, 2024. VisDrone/VisDrone2018-DET-toolkit.
VisDrone, 2023. VisDrone/VisDrone-Dataset.
Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M., 2020. Scaled-YOLOv4: Scaling Cross Stage Partial Network.

Wang, C.-Y,, Liao, H.-Y.M,, Yeh, |.-H., Wu, Y.-H., Chen, P-Y., Hsieh, J.-W., 2019. CSPNet: A New Backbone that
can Enhance Learning Capability of CNN.

Wang, X., Ly, F, Li, L., Yi, Z., Jiang, Q., 2022. A novel optimized tiny YOLOv3 algorithm for the identification
of objects in the lawn environment. Scientific Reports 12, 15124. https://doi.org/10.1038/s41598-022-
19519-4

WikiDocs, 2023. C_2. Yolo V1 - EN - Deep Learning Bible - 4. Object Detection - Eng. [WWW Document].
URL https://wikidocs.net/167699 (accessed 5.26.24).

[98]

University of the Aegean Department of Financial and Management Engineering

Woo, S., Park, J., Lee, J.-Y., Kweon, |.S., 2018. CBAM: Convolutional Block Attention Module.

Wu, L., Ma, J., Zhao, Y., Liu, H., 2021. Apple Detection in Complex Scene Using the Improved YOLOv4 Model.
Agronomy 11, 476. https://doi.org/10.3390/agronomy11030476

Xia, G.-S., Ding, J., Xue, N., Bai, X., Yang, W.,, Yang, M.Y., Belongie, S., Luo, J., Datcu, M., Pelillo, P., Zhang, L.,
2021. DOTA [WWW Document]. URL https://captain-whu.github.io/DOTA/dataset.html (accessed 2.9.24).

Xu, P, Li, Q., Zhang, B., Wu, F., Zhao, K., Du, X., Yang, C., Zhong, R., 2021. On-Board Real-Time Ship Detection
in HISEA-1 SAR Images Based on CFAR and Lightweight Deep Learning. Remote Sensing 13, 1995.
https://doi.org/10.3390/rs13101995

Xu, X., Zhang, X., Yu, B., Hu, X.S., Rowen, C., Hu, J., Shi, Y., 2018. DAC-SDC Low Power Object Detection
Challenge for UAV Applications.

Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y., 2019a. CutMix: Regularization Strategy to Train Strong
Classifiers with Localizable Features.

Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y., 2019b. CutMix: Regularization Strategy to Train Strong
Classifiers with Localizable Features.

Zhang, F.,, Wang, S., Cui, X., Wang, X., Cao, W., Yu, H., Fu, S., Pan, X., 2022. Goat-Face Recognition in Natural
Environments Using the Improved YOLOv4 Algorithm. Agriculture 12, 1668.
https://doi.org/10.3390/agriculture12101668

Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D., 2018. mixup: Beyond Empirical Risk Minimization.

Zhang, Z., 2020. YOLO2 Walkthrough with Examples [WWW Document]. Medium. URL
https://towardsdatascience.com/yolo2-walkthrough-with-examples-e40452ca265f (accessed 1.30.24).

Zhao, W., Alwidian, S., Mahmoud, Q.H., 2022. Adversarial Training Methods for Deep Learning: A
Systematic Review. Algorithms 15, 283. https://doi.org/10.3390/a15080283

Zheng, Z., Wang, P,, Liu, W,, Li, J., Ye, R., Ren, D., 2019a. Distance-loU Loss: Faster and Better Learning for
Bounding Box Regression.

Zheng, Z., Wang, P,, Liu, W,, Li, J., Ye, R., Ren, D., 2019b. Distance-loU Loss: Faster and Better Learning for
Bounding Box Regression.

Zheng, Z., Wang, P., Ren, D., Liu, W., Ye, R., Hu, Q., Zuo, W., 2021. Enhancing Geometric Factors in Model
Learning and Inference for Object Detection and Instance Segmentation.

Zhu, P, Wen, L., Du, D., Bian, X., Fan, H., Hu, Q., Ling, H., 2021. Detection and Tracking Meet Drones
Challenge.

Zulkifli, H., 2018. Understanding Learning Rates and How It Improves Performance in Deep Learning
[WWW Document]. Medium. URL https://towardsdatascience.com/understanding-learning-rates-and-
how-it-improves-performance-in-deep-learning-d0d4059c1c10 (accessed 7.18.24).

[99]

University of the Aegean Department of Financial and Management Engineering

Appendix A. loU and CloU losses

A.1 Intersection over Union (loU)

The Intersection over Union (loU) is used during the training process of the YOLO algorithm, where it
facilitates the determination of an anchor box that seeks optimal matching with a specified object
(referred to as the ground truth bounding box). loU represents the ratio of the intersecting area between
two bounding boxes (ground truth and anchor) to their combined area.

To better understand the loU, we will explain the following concepts:

e Anchor boxes: are predetermined bounding boxes of different sizes and aspect ratios
e Ground truth bounding box: is the manually annotated box that precisely encloses an object and
provides its respective label.

The mathematical representation for loU is delineated as follows (Stevulidkova and Hurtik, 2023):

Area of overlap
IoU = - (A1)
Area of union

The loU values ranges from 0 to 1 (Ultralytics, 2023), where:

e (Qindicates that the two boxes do not overlap, showing a complete misfit between the two

e 1 signifies that the predicted box aligns perfectly with the ground truth box, thus indicating a
perfect detection

e 0.50r0.75loU thresholds are widely used as benchmarks for the training process of a model.

A.2 Complete Intersection over Union (CloU)

Complete Intersection over Union (CloU) is an updated version of loU, which optimizes the performance
of the model by suppressing differences between the predicted bounding boxes and the ground truth
bounding boxes (Zheng et al., 2021).

Figure A.1 shows a predicted bounding box (green box) and a ground truth bounding box (black box) with
their centers marked by a green and black circle, respectively. The purple line represents the Euclidean
distance p between the centers, and the gold line f is the diagonal of the smallest enclosing box that can
contain both the predicted bounding box and the ground truth bounding box. Therefore, CloU combines
loU, the center distance p, and the aspect ratio matching. From the above factors, CloU tries to improve
the accuracy of bounding box predictions in respect of location, size, and shape, resulting in better
detection performance.

[100]

University of the Aegean Department of Financial and Management Engineering

N\
Ground N\

Truth

.

t

Figure A.1 Complete Intersection over Union (CloU) (Wang et al., 2022)

The equation of CloU is described below:

p?(b, b9")
clou =5 tau (A.2)

where,

e b and b9¢: represent the central points of the predicted bounding box (B) and the
ground truth bounding box (B9t), respectively

e p:is the Euclidean distance between the centroids of the predicted and ground truth
bounding boxes

e c: is the length of the diagonal line that covers both the predicted and ground truth
bounding boxes when they are enclosed in the smallest possible area

e «:can be adjusted to balance the importance of the distance between objects and their
size differences when calculating CloU

e u: functions as a standardizing factor, accommodating the difference in aspect ratio
between the predicted and ground truth bounding boxes.

In Equation A.2, “a” and “u” are calculated as follows:

u
AT+ (A3)
4 w9t w\’
u=— (arctanﬁ — arctan H) (A.4)

where,

e w and h: are the width and the height of the predicted bounding box b
o w9t and h9t: are the width and the height of the ground truth bounding box b9t
e JoU:is the Intersection over Union.

[101]

University of the Aegean Department of Financial and Management Engineering

The YOLOv4 and YOLOv4-p6 contain the CloU in all their detection heads, as shown in Figure A.2.

[veola]

mask = 0,1,2

snchors = 1235 1€, 1%, 36, 40, 28, 36, 75, 76, 55
class=a=00

num=3

Jitter=.3

ig:w:e_th:::i = .7

cruth thrash = 1

ocale_x y = 1.2

cls pormalizer=l.0

rmalizer=0.07

E=ta nma=0.&

max_delta=5

Figure A.2 Position of the Complete Intersection over Union (CloU) in YOLOv4 configuration file

[102]

University of the Aegean Department of Financial and Management Engineering

Appendix B. Functionality of bounding boxes

Both YOLOv4 and YOLOv4-p6 algorithms use the head component of their networks to detect objects. This
component includes the detection heads, which use the bounding boxes to predict and detect the desired
objects during the validation and testing processes.

The following sections of this appendix describe the use of ground truth bounding boxes, anchor bounding
boxes and bounding boxes.

B.1 Ground truth bounding boxes

Ground truth bounding boxes are manually created and their spatial information is provided as input data
at the beginning of training. Specifically, we fed the algorithm with a UAV dataset containing images with
annotations that specify the coordinates of all objects the model has been (or will be) trained on. These
coordinates form a rectangular box which is referred to as the ground truth bounding box (see Figure B.1).
Consequently, these boxes are labelled rectangular boxes that indicate the position of an object within the
image and its corresponding class. Each detected object in the image has a single ground truth bounding
box (Subramanyam, 2021).

Figure B.1 Ground truth bounding box containing a dog (SuperAnnotate, 2023)

B.2 Anchor boxes

Anchor boxes are predetermined bounding boxes of different sizes and aspect ratios used to capture the
selected object classes during detection. Instead of applying bounding boxes instantly, the model refines
the provided anchor boxes during the training process to create accurate bounding boxes. The
predetermined aspect ratios of the anchor boxes are established using K-means clustering (Redmon and
Farhadi, 2016b). This algorithm finds the anchor box parameters that result in optimal Intersection over
Union (loU) results, in order to optimize the fit of the anchor boxes to the training data by determining the
most suitable dimensions. Consequently, the selected distance metric is mathematically represented as
follows:

d(box, centroid) = 1 — IoU(box, centroid) (B.1)

[103]

University of the Aegean Department of Financial and Management Engineering

where,

e box: represents the ground truth bounding box

e centroid: indicates the center point of the anchor bounding box

e d(box, centroid): returns the percentage of the non-intersecting area between the ground truth
bounding box and the anchor bounding box.

Throughout the training process, each grid cell is associated with a set of anchor boxes (Mantripragada,
2020). Their purpose is to include objects of different scales and shapes, functioning as predefined
reference boxes. In YOLOv4, each cell the grid includes three anchor boxes. These are categorized into
small, medium and large detection scales, resulting in a total of nine anchor boxes across all detection
heads. In contrast, YOLOv4-p6 has four anchor boxes because the network is bigger and has four detection
heads. Consequently, it has a total of sixteen anchor boxes across all detection heads (4 anchor boxes for
each detection head).

The objective of the training process is to refine the initial anchor boxes during training to create better
bounding boxes that match better the ground truth bounding boxes. Specifically, during the training
iterations, the model adjusts the sizes and positions of anchor boxes based on the ground truth boxes.
This process involves refining the initial dimensions and central positions of the anchor box that has the
highest loU with the ground truth box, ensuring that the anchor box with the most significant overlap is
selected for adjustment. After adjustment, each selected anchor box produces a single bounding box that
predicts the presence of an object of a particular class with a confidence score at that specific location.

YOLOv4 and YOLOv4-p6 are configured with anchor box dimensions originally based on the COCO
(Microsoft Common Objects in Context) dataset (COCO, 2017), which includes 328,000 images of persons
and various common objects. Since we are using a different dataset, we need to readjust our anchor box
sizes to match with both the selected image resolutions of 1280x1280 and 960x960. One method is with
the application of k-means algorithm, as described below:

./darknet detector calc_anchors cfg/"NAME_OF_THE_DATA_FILE".data -num_of_clusters
"NUMBER_OF_CLUSTERS" -width "NUMBER_OF_IMAGE_WIDTH" -height "NUMBER_OF_IMAGE_HEIGHT"

An example by applying the code:

./darknet detector calc_anchors cfg/traffic_lights.data -num_of clusters 16 -width 1280 -height 1280

Figure B.2 Command for applying the k-means algorithm in Darknet

where,

e ./darknet: is the executable file of Darknet

e detector calc_anchors: instructs Darknet to calculate the anchor boxes corresponding to the
object detection model

e cfg/"NAME_OF_THE_DATA_FILE".data: specifies the path to the data file, as shown in Figure B.3.
The placeholder "NAME_OF_THE_DATA_FILE" needs to be replaced with the name of the data
file that contains information about the paths to the training and validation or testing sets, the

[104]

University of the Aegean Department of Financial and Management Engineering

number of classes and the backup path. The backup path saves the weights of the model (every
1,000 iterations) during the training process

classes= 4

train = /media/decopsys/Hard _Disk/pancs/Final_ dataset (swapped_classes)/Paths/Train.txt
valid = /media/decpsys/Hard Disk/pancs/Final dataset (swapped classes)/Paths/Val.txt
names = /home/deopsys/Documents/darknet/data/yolovd 4 classes.names

backup = /media/deopsys/Hard Disk/panos/Experiments/cfgl

Figure B.3 Representation of a data file

-num_of_clusters "NUMBER_OF_CLUSTERS": specifies the number of clusters into which the
anchor boxes should be grouped. This number depends on the model being trained. Therefore,
"NUMBER_OF_CLUSTERS" should be replaced with the actual number of clusters specified in the
corresponding configuration file. For example, as shown in Figure B.4, the YOLOv4-p6 model uses
sixteen pairs of anchor box sizes in the “anchors” hyperparameter, indicating that there are
sixteen clusters

Figure B.4 Position of anchors in YOLOv4-p6 configuration file

e - width "NUMBER_OF_IMAGE_WIDTH": specifies the input image width that is included in the
configuration file

o -height "NUMBER_OF_IMAGE_HEIGHT": specifies the input image height that is included in the
configuration file.

By providing better dimensions for our initial anchor boxes, we improve the detection performance of our
model, as the model can create more accurate bounding boxes.

B.3 Bounding boxes

The model does not directly use bounding boxes to predict the desired objects. Instead, it uses refined
anchors to assist in generating bounding boxes during training. These bounding boxes learn and predict
spatial offsets (vertical and horizontal) and sizes (height and width) from the refined anchors. As a result,
the final feature map represents different offset and size predictions for each anchor defined in the output
feature map, resulting in object detection for each class (Tepteris et al., 2023). Subsequently, the generated
bounding boxes are evaluated during the validation process by measuring their overlap with the ground
truth bounding boxes using loU (YOLOv4 and YOLOv4-p6 use an updated version of loU known as Complete
Intersection over Union (CloU), as discussed previously).

Asillustrated in Figure B.5, the light green rectangular boxes represent bounding boxes showing the spatial
locations within the image where cars are located (Subramanyam, 2021).

[105]

University of the Aegean Department of Financial and Management Engineering

Figure B.5 Displaying bounding boxes for the car class within light green boundaries (Dupont, 2023)

As mentioned above, YOLOv4 uses three different grid sizes to detect objects at different scales.
Specifically, the model applies a 19 by 19 grid generating 1,083 (19x19x3) bounding boxes for the
detection of large objects, a 38 by 38 grid generating 4,332 (38x38x3) bounding boxes for the detection
of medium objects and a 76 by 76 grid generating 17,328 (76x76x3) bounding boxes for the detection
of small objects. Consequently, YOLOv4 generates a total number of 22,743 bounding boxes, which are
then reduced using Non-Maximum Suppression (NMS).

Similarly, YOLOv4-p6 model creates a total of 102,000 bounding boxes, and specifically:

e For very small object detection: (160x160x3) = 76,800
e For small object detection: (80x80x3) = 19,200

e For medium object detection: (40x40x3) = 4,800

e Forlarge object detection: (20x20x3) = 1,200

In the detection heads of YOLOv4, the grid responsible for detecting large objects is defined with
dimensions of 19x19x255. Each cell within this grid contains three anchor boxes, which are tasked with
generating three predicted bounding boxes possessing the following characteristics:

e Thevariables t, and t, represent the coordinates of the center

e t, and t; are the predicted width and height, respectively

e P, signifies the objectness score

e P, represents an array of confidence scores corresponding to each class category within the

predicted bounding box.

For each of the three predicted bounding boxes in a cell, the objectness score is calculated by multiplying
the Pc(object) (representing the probability that the box contains an object) by the Intersection over
Union (loU) between the predicted and ground truth bounding boxes. Then, the resultant objectness score
is multiplied by the predicted class probability for each class in that box to calculate the confidence score

[106]

University of the Aegean Department of Financial and Management Engineering

for each class. After calculating the confidence scores in the bounding box, the highest score across all
classes is selected as the predicted object (class) for that bounding box (Redmon and Farhadi, 2018).

In the detection process, the objectness score (Redmon and Farhadi, 2018) within the central cell of the
ground truth bounding box is indicated as 1, while the objectness scores within other cells included in the
ground truth bounding box vary between 0 and 1 in relation to their distance from the center of the ground
truth bounding box. Conversely, cells outside the ground truth bounding box are assigned an objectness
score of 0. Each cell within the SxS grid contains three anchors, and for each anchor, a bounding box is
proposed, determined by its center coordinates and dimensions (bx, by, bh,bw). As shown in Figure B.6,
the bounding box with the highest overlap with the ground truth box is considered as the bounding box
responsible for object prediction, while the remaining two are ignored.

BO class probabilities
box1 | & b b o |ClGHEETEEEE S DS RS s e e e

i3 p.c, 0.12

¢ | (P& | (013 score: 0.44

G| | Py | (044 | wmmmp box: (b,,b,.b;:b,)
scores = P. *|i |=|; 2 class: c=3("car’)
Cm P.Cay 0.07

C P.Cay 0.01
Cap P.Ca 0.09

the box (b,,h_‘,,b,,.bw) has detected ¢ = 3 (“car") with probability score: 0.44

Figure B.6 Calculation of the probability for an anchor to include a specific class (PyLessons, 2019)
where,

o P, represents the objectness score, which is assigned a value of 1 in the central cell of each ground
truth bounding box. Cells surrounding the central cell have values less than 1, such as 0.95 and
0.9, while cells distant from the central cell have values close to zero

e P, represents the class probability for class i, derived from the YOLOv4 algorithm during the

training process.

For instance, Figure B.7 represents a 19x19 grid (large detection head). The red bounding boxes classified
the objects as “car” because they had the highest overlap with their respective ground truth box.
Therefore, the detected objects labelled as “car” are assumed to be the most appropriate result for
detection.

[107]

University of the Aegean Department of Financial and Management Engineering

)

Z 0 1 Is there an object?
— b 4
' by (
by ‘ Bounding box
by
':l
I | Class labels
C3

Figure B.7 Two bounding boxes representing the class "car" (krishnab, 2018)

B.4 Calculations regarding the resultant bounding boxes

In accordance with the methodology introduced in YOLO9000 and YOLOv3 algorithms, YOLOv4 and
YOLOv4-p6 use dimension clusters as anchor boxes for the prediction of bounding boxes. The model
generates four coordinates for each bounding box, namely t,, ty, t,, and t;. If the cell is moved from the
image's top-left corner by coordinates (cy, ¢,), and the previous bounding box has a width and height
represented by p,, and p;, respectively, the predicted values are related as follows (Bochkovskiy, 2021a):

by =a(ty) * 1.1 — 0.05+ ¢, (B.2)
b, =a(t,) * 1.1 — 0.05+¢, (B.3)
by, = p,, e (B.4)
by, = py, eth (B.5)

In the above equations, the terms are defined as follows: by, b, b,, and by,. They represent the parameters
of the bounding box, where b, and b,, are the coordinates of the center of the predicted bounding box,
while b,, and by, indicate its width and height, respectively. p,, and p;, are the width and height of the
anchor boxes, where p,, is calculated as the ratio of the width of the anchor box (Wg,chor) to the width of
the image (Wimqage), and py, is calculated similarly using the height dimensions. ¢, and c,, refer to the shift
of the coordinates of the top-left corner of the cell containing the center of the predicted object from the
top-left corner of the image. The function o represents the sigmoid function, while t, and t,, represent
the shifts of the anchor from the top-left coordinates of the grid cell to which the anchor belongs, with
the cell also including the center of the predicted object and the ground truth box. t, and t; are
parameters that adjust the width and height of the anchor to match those of the ground truth box.

[108]

University of the Aegean Department of Financial and Management Engineering

Appendix C. Convolution operations and network architectures

C.1 Stride operation

The stride operation refers to the size of the step performed by the filters of convolutional layers during
the processes of feature extraction, downsampling and pooling. In that way, it controls the filter's
movement across input images. The amount of movement the filter makes at each step, either
horizontally, vertically, or both, depends on its configuration (Riad et al., 2022). For instance, the following
table displays a 4x4 image:

Image
112011
4 (3|12
2|1 0| 0] 4
11012

Figure C.1 Image size of 4x4

We are going to perform a 2x2 convolutional operation with a stride of 2, which involves moving a 2x2
filter with a stride of 2 across the image:

Filter
211
01

Figure C.2 Filter size of 2x2

We start by calculating the top-left element of the feature map, which involves performing the following
operation:

1+2)+(2+0)+@4=+1)+B=1)=8 (C.1)
Then, the filter is shifted to the right by a distance equivalent to 2 pixels, as demanded by the stride, to
perform a similar operation:

0+*2)+(1+«0)+(1+x1)+(2+1)=3 (C.2)
Following the computation of the top row within the feature map, the filter is shifted downward by 2 pixels
and repeats the same process, till there are no more rows below the table:

2+2)+0«x0)+(1+«x1)+(1=x1)=6 (C.3)

0+2)+@+«0)+O+«x1)+2=+1)=2 (C.4)

After completing the 2x2 convolutional operation with a step of 2, the resulting feature map is:

[109]

University of the Aegean Department of Financial and Management Engineering

Feature map
8 3

6 2
Figure C.3 The output feature map

The output feature map is 2x2, which is smaller than the input size of 4x4.

Even if neural networks may adopt larger input images and more complicated filters, the concept of stride
remains the same. For instance, the YOLOv4 and YOLOv4-p6 algorithms apply the stride operation in their
algorithms as follows:

2 Downsample

onvolutional]

h nermalize=1

[convelutionall]
batch normalize=l
filters=E4

size=1

stride=1

pad=1

activation=mish
Figure C.4 Convolutional layer with stride in YOLOv4-p6 configuration file

C.2 Feature map

During the forward pass of the YOLOv4 and Scaled YOLOv4 algorithms, a series of convolutions are applied
to the input image using different filters. This results in the creation of multiple feature maps, which
initially capture basic features like edges and corners. As these feature maps progress through the
networks, they start to represent more complex features such as shapes and textures (Lecun et al., 1998).
Consequently, at the end of these networks (in the heads component), these refined feature maps are
applied with bounding boxes to detect and classify objects.

The use of many feature maps helps detection models to identify more detailed features, but also
increases the computational requirements and introduces a potential risk of overfitting.

The following is an example of a 3x3 filter applied to a 5x5 image with stride of 2, creating a 2x2 feature
map:

RN O R
owo o

:
| 1o 1
I*[o 2 o=[175 170
J 10 1

SO N O
NDNWRE -
S RrRrOODN

[
)
)

[110]

University of the Aegean Department of Financial and Management Engineering

To begin with, we position the filter at the top left corner of the input matrix to calculate the first value of
the feature map as follows:

@A+*D+O0+*0)+@+«D+0*x0)+2*2)+(1+*0)+2+«1)+(1*+x0)+((3*1) =15 (C.5)

After we complete the previous step, we shift the filter horizontally 2 pixels to the right to calculate the
next value in the feature map:

A*D+@2*0)+O0*1)+1A*0)+(0*2)+(0*0)+@B*1D+(0+0)+Bx1) =7 (C.6)

Next, starting again from the top left corner, we shift the filter vertically downwards by 2 pixels to calculate
the next value in the feature map:

2+*1D)+@A*0)+@*1)+1A*0)+(0*2)+(2+0)+0+x1)+(0*0)+(2%1) =7 (C.7)

Finally, we move the filter horizontally 2 pixels to the right of its previous position to calculate the last
value in the feature map:

B+D+0*0)+@B+«D+2*x0)+@*2)+0*x0)+2«D+((0*x0)+(1*0) =10 (C.8)

C.3 Convolutional layers

In the convolutional layer, a series of changeable filters that are commonly referred to as kernels are used
to process the input image, resulting in feature extraction. These filters are numeric matrices whose
dimensions are set during initialization and remain constant. During training, each filter moves across the
input image, conducting element-wise cross-correlation operations (see Equation C.9) on its adjustable
parameters and specific sections of the input, resulting in the formation of single values within the
produced feature map (O’Shea and Nash, 2015). Throughout the same process, the filter weights are
continually adjusted to minimize the loss function.

The mathematical expression used for this operation is applied to each colour channel separately, as
shown in Equation C.9 (lan Goodfellow, 2016):

FG) =« K0).) (1G+m,j+mKmm) (c9)

where,

e [:represents the input image

K: symbolizes the kernel

F: represents the output feature map
e iandj:represent the locations of the pixels to be processed by convolution
m: is the width of the kernel

n: is the height of the kernel.

[111]

University of the Aegean Department of Financial and Management Engineering

As illustrated in Figure C.5, a 6x6 colour image with three input colour channels is convolutionally
processed with the respective filters. Each filter slides with a stride of 2 (moving two cells at a time) within
its channel. Consequently, the convolution operations result in a feature map matrix of size 2x2.

INPUT FILTERS

[(bias)

Figure C.5 Filter size of 3x3 (for each channel) moves across the input to produce the output

The first operation of the red channel with the respective filter is:

1+*0)+A+x0)+(1+*2)+(O0+*D)+(1A*x0)+(1*1D)+A*0)+(0*1)+(1*0)=3 (C.10)

The first operation of the green channel with the respective filter is:

1*2)+O0+*x1D)+O0O*x0)+(1*1)+O0O*x3)+(2*0)+(0*x0)+(0*1)+(0*3)=3 (C.11)

The first operation of the blue channel with the respective filter is:

2x0)+A+«D)+@B*x0)+(1+x0)+(1*x0)+2*1)+(O0*x1)+(0*0)+(0*0)=3 (C.12)

By summing the values of 3, 3, and 3, and then adding the bias value of 1, the resulting output is 7, which
represents the value located at the top-left position of the output feature map matrix. To calculate the
values of the remaining three cells in the feature map matrix, this process is repeated, moving the kernel
horizontally and vertically by 2 pixels in each operation (Tepteris et al., 2023).

With the use of convolutional layers, the network is capable to transfer features (as feature maps) across
the entire network. In addition, there are two types of convolutional operations that help with this
process, and these are:

e Convolutional layers with 3x3 filters size: The 3x3 convolution operation uses a 3x3 filter to
analyze input images or feature maps, allowing the identification of localized patterns and features

[112]

University of the Aegean Department of Financial and Management Engineering

within the input data. By applying multiple 3x3 convolutions, CNN designs build deeper networks

capable of learning multi-level representations of the input data (Springenberg et al., 2015)

e Convolutional layers with 1x1 filters size: The convolution 1x1 operation uses a 1x1 filter to
analyze input images or feature maps. The 1x1 convolutional layer is used for the following reasons
(Szegedy et al., 2014):

o A 1x1 filter possesses a single parameter or weight for each channel within the input, similar
to the application of any filter that results in a single output value. This configuration allows
the 1x1 filter to function similarly to a single neuron, by combining values from the same
position across all feature maps in the input. The application of this single neuron, with a stride
of 1, passes the input left-to-right and top-to-bottom, eliminating the need for padding and
resulting in a feature map that represents the width and height of the input

o Itfunctions as a linear weighting or projection of the input, as it does not involve neighboring
pixels in the input, preventing its classification as a traditional convolutional operation. Since
traditional convolutional operations involve looking at groups of neighboring pixels to capture
spatial information. Even though the convolution 1x1 operation is a linear operation, if we add
a non-linear activation function (like Mish activation function), it can perform better
computations on the input features

o The 1x1 filter is used to perform dimensionality reduction and feature transformation within
the network. With the application of multiple 1x1 filters, the network can adjust the number
of channels in the feature maps, thus controlling the depth of the feature maps as needed (He
et al., 2015b).

A network is capable to adjust the number of feature maps at any desired location by using convolutional
layers with 1x1 filters size. This operation is called projection layer or feature map pooling. (Brownlee,
2019).

C.4 Padding

Padding in convolutional neural networks (such as YOLO algorithms) involves adding extra pixels around
the edges of the input feature map, typically filled with zeros, before applying convolution operations. This
technique ensures that information at the edges of the feature map is processed in the same way as
information in the central regions during convolution.

There are two types of padding used (GeeksforGeeks, 2019):

e Valid Padding: In valid padding, no additional pixels are added to the input feature map, resulting
in an output feature map that is smaller in size compared to the input. Specifically, it is effective if
we want to decrease the spatial dimensions of the feature maps

e Same Padding: In same padding, additional pixels (often zeros) are added to the input feature map
to ensure the size of the output feature map matches that of the input feature map (see Figure
C.6). Specifically, it is effective if we want to preserve the spatial dimensions of the feature maps.

[113]

University of the Aegean Department of Financial and Management Engineering

oo | H»|O

O C (O |O|O
= I e Il =
OJLWUV NI N|O
QS| | S |

0 \
INPUT Padding

Figure C.6 Example of same padding (Pedro, 2023)

C.5 Batch normalization

Batch normalization takes place between a convolution operation and an activation function to reduce the
effect of "internal covariate shift" effect. This effect results from the randomness in both the parameter
initialization and the input data. Specifically, it can distort network training, but batch normalization (BN)
handles it by standardizing network activations using the mean and variance calculated across instances
within each mini-batch at each iteration. In addition, it improves model training by allowing the use of
higher learning rates and reducing vulnerability to changes in input weights. This method is applied after
the activation function within a convolutional layer and before the successive layers in the network
architecture (loffe and Szegedy, 2015).

During the training process, batch normalization is applied to transform the input data as described below:

1 m
B0 = — > xe:(6) (c13)
i=1
1 m
000 = | =D (10 — 1(6))? (c14)
i=1

Xei(0:) — ue(6r)

¢i(0t) = .
xt, (t) m (C 15)
Vei(0) =y *X;(6:) + B (C.16)

Equations C.13 and C.14 are applied to calculate the mean and variance of the activation values
throughout the batch. Subsequently by using Equation C.15, the activation vector X ; (6;) is normalized to
ensure consistency of each output to a standardized normal distribution within the batch, with the

[114]

University of the Aegean Department of Financial and Management Engineering

inclusion of a constant € to maintain numerical stability throughout this procedure. Following this, the
batch normalization process calculates the layer's output, referred as y.;(6;), through a linear
transformation involving two adjustable parameters, y and S (as indicated in Equation C.16). The
adjustment of the values of y and 8 allows the model to effectively control the bias and the standard
variation, respectively.

C.6 Downsampling operation

The downsampling operation reduces the size (number of pixels) of the input image during the training
process of the model. Specifically, downsampling operation is achieved through the stride operation in
YOLOv4 and YOLOv4-p6 algorithms (see Figure C.4 and C.7). The purpose of this operation is to:

e Reduce computational load and memory requirements
e Prevent overfitting by reducing the resolution of the input images, which allows the model to focus
on more detailed features.

Imaga size 4x4

Imagea size 2x2

downsample = 2 :

Figure C.7 Downsampling operation

C.7 Upsampling operation

With the application of upsampling operation, the number of pixels within the downsampled images can
be increased, which improves both the resolution and dimensions of the input images. In the YOLOv4 and
YOLOv4-p6 algorithms (see Figure C.8), the method applied for upsampling is Nearest Neighbor
interpolation (GeeksforGeeks, 2021). This method determines the value of a target pixel by identifying the
nearest pixel in the input image. It does this by rounding the coordinates of the desired interpolation point
to find the closest pixel. As depicted in Figure C.8, this technique matches each pixel with its closest
counterpart, therefore enlarging the image (Parsania and Virparia, 2016).

Image size 4x4

Image size 2x2

upsample = 2

——>

Figure C.8 Upsampling operation

[115]

University of the Aegean Department of Financial and Management Engineering

In YOLOv4 and YOLOv4-p6 algorithms, the upsampling operation is used in the configuration file as follows:

[conwvolutionall

batech normalize=]1

fileers=512

strice=l
pad=]

actiTation=mish
Figure C.9 Upsample layer in YOLOv4-p6 configuration file

C.8 Residual blocks

Residual blocks were introduced to address the issue of the vanishing gradient problem during the training
process of a network. The fundamental idea in the creation of the residual blocks is the use of skip
connections, also called shortcut connections. These connections allow information to pass directly
through one or more layers, making it easier to transfer directly to deeper layers in the network.

Furthermore, the structure of a residual block can be expanded to include additional convolutional layers
(He et al., 2015c), as shown in Figure C.10.

Convolutian layer 1

Y

Convolution laye: 2

MNumber of
comyolution layers

Y

Convolution layer 3

Figure C.10 Residual block architecture

As depicted in Figure C.10, x represents the block’s input image, Z(x) represents the result of the block,
and the number of convolution layers indicates the number of convolutional layers along with their
corresponding activations within the layer. In the residual block, the skip connections involve combining
the input with the output of the convolutional layers, which improves the ability of the network to capture

[116]

University of the Aegean Department of Financial and Management Engineering

more features. This occurs in the "+" layer, which acts as a shortcut layer. These layers are also used in
YOLOv4 and YOLOv4-p6, as shown in Figure C.11:

scnvo_ utlaagl |
Datoh ROITIA_ 1201
FLlterms3?

Figure C.11 Residual block in YOLOv4-p6 configuration file

C.9 Route layers

In YOLO models, the route layer passes outputs from earlier layers to successive ones without any
intermediate processing. This allows for the extraction of detailed features from previous network stages
and the combination of outputs from different layers, as long as they are dimensionally compatible. Similar
to the residual block in networks, which functions with the use of convolutional and shortcut layers, the
route layer improves the integration of features from previous layers (Curti, 2020). In the architecture of
YOLOv4-p6 model, multiple route layers specified by the "layers" parameter allow the combination of
feature maps from selected layers, as detailed below:

[conwoluticonal]

Transition last

t 10 (previcus+7+3ik}

[senvel

Figure C.12 Route layer in YOLOv4-p6 configuration file

[117]

University of the Aegean Department of Financial and Management Engineering

In Figure C.12, the route layer collects feature maps from both the seventh-to-last layer and the last layer.
Subsequently, it merges these feature maps through concatenation operation, which combines the depths
of two feature maps to capture low-level features and forwards the combined output to the next layer in
the network.

C.10 Cross-stage partial connections (CSP connections)

Cross-stage partial connections (CSP) allow information to flow not only in a forward direction through the
layers of the network, but also across different stages or blocks within the network (Wang et al., 2019).
The output of a layer (or group of layers) is added back to the output of a previous layer, essentially
skipping certain intermediary levels. This way, the network can learn to focus on the difference between
the two outputs, instead of having to learn to match the required mapping.

As depicted in Figure C.13, the basic concept is to divide the output feature map into two different paths
(Bochkovskiy, 2021b):

e A primary route (fifty percent of the features pass) improves semantic information generation
through an extended receptive field, which helps the network capture and process more semantic
information

e A secondary bypass route (the remaining fifty percent of the features are directed) allows the
preservation of spatial information by way of a more restricted perceptual field, which helps
preserve spatial details by focusing on local information.

Mon-C5P Vs CSsP

Teabures tectures

'Lm:wu foahresit &_,“#'w
] 5

——

Concal d
&ic—u!uﬂe: or Shardcu} foturas /7
fraires
Faaburs

Figure C.13 Conventional network (on the left) and CSP-Enhanced network (on the right) (Bochkovskiy, 2021c)

In the YOLOv4 model, the CSP connections are present in the backbone of the architecture. With the
application of CSPDarknet-53, the model captures and processes features from images, resulting in better
accuracy and efficiency in identifying objects.

In the YOLOv4-p6 model, the CSP connections are used in the entire structure of the network.

[118]

University of the Aegean Department of Financial and Management Engineering

C.11 Spatial Pyramid Pooling

The YOLOv4 algorithm uses the Spatial Pyramid Pooling (SPP) to resolve the difficulty of handling images
with different sizes and resolutions (He et al., 2014). SPP was designed to allow Convolutional Neural
Networks (CNNs) to process input images of varying sizes and produce fixed-length feature vectors,
regardless of the image dimensions (see Figure C.14). Since traditional CNNs require fixed-size inputs, this
is especially helpful when working with pictures of varied sizes throughout the training and testing
procedures.

The Spatial Pyramid Pooling layer operates as follows:

1. Input Image: Consider an input image with varying dimensions, such as height H and width
w
2. Feature Extraction: The image progresses through the early stages of CNN, going through
convolution and pooling operations, resulting in feature maps
3. Spatial Pyramid Pooling: In this step, multiple subregions are created with different spatial
levels. For each spatial level, the feature maps are pooled separately in a way that the output
is a fixed-size vector for each subregion, regardless of the input image's size
e Forlevel 0, the entire feature map is pooled into a single value (global pooling)
e Level 1 (gray square in Figure C.14) splits the feature map into 1x1 segments and
processes each segment independently by pooling
e Similarly, level 2 (light green square in Figure C.14) splits the feature map into 2x2
segments, pooling each segment independently
e Similarly, level 3 (blue square in Figure C.14) splits the feature map into 4x4 segments
and processes each segment independently by pooling
4. Concatenation: The pooled feature vectors from all spatial levels, including global pooling, are
combined to generate the overall feature vector of a fixed length.

Consequently, without scaling or cropping, CNN can handle pictures of various sizes by using spatial
pyramid pooling.

fullly-connecied layers | foi. o)

Fixed-length representation
— . ———
I o N L g
') I 2565-d " 4=250-d b 2156-d
P -'f/ 7

o l_‘f 4

e
L7 et /

= 1,-111-.1 |1|1rnr| pouling laver

feratare maps of convs
{erhirary size)

'ﬁ canvalutional layvers

gl image

Figure C.14 Spatial Pyramid Pooling (SPP) applied to network configuration (convs represents the terminal convolutional layer
with a filter count of 256) (He et al., 2014)

[119]

University of the Aegean Department of Financial and Management Engineering

The YOLOv4 and YOLOv4-p6 networks include the Spatial Pyramid Pooling (SPP) module following the
backbone component. This module comprises three Maxpool layers of different sizes (5x5, 9x9, and 13x13)
and three route layers for both networks.

C.12 Path Aggregation Network (PANet)

The application of the Path Aggregation Network (PANet) in YOLOv4 and YOLOv4-p6 improves the
preservation and use of spatial information for more accurate object detection (Liu et al., 2018). This
method integrates parameters from different levels of the backbone network to address different
detection stages. It achieves this by feeding information from lower layers upwards (bottom-up) and
through adaptive feature pooling. These two features are further outlined below (Parico and Ahamed,
2021):

e Bottom-up path augmentation reduces the length of the information path and enhances the
feature pyramid by allowing top layers (the classifiers) to access detailed information from lower
layers using route layers

e Adaptive feature pooling restores the distorted flow of information between each segment and
all feature levels by merging information from different convolutional layers using element-wise
max operation that extracts the maximum value from each corresponding pair of features.

There is also a slight modification to PANet that is applied in the YOLOv4 and YOLOv4-p6 models. As
illustrated in Figure C.15, the process of Bottom-up path augmentation involves the application of a
concatenation operation rather than the addition of neighboring layers, resulting in an enhancement in
the accuracy of the predicted results (Bochkovskiy et al., 2020).

—
» r“l.:' lefiti F & # comcilination
f:',' a;’ i an :._ {‘ r *
— —_ 3
4 Al
& o
at il Faie— A
— o r. ¥
r 4 .
o _.;.' I-I
(a) PAN (b) Modified PAN

Figure C.15 Visualization of (a) PAN and (b) modified PAN(Bochkovskiy et al., 2020)

[120]

University of the Aegean Department of Financial and Management Engineering

Appendix D. Combination of UAV datasets

D.1 YOLO format

YOLOv4 and YOLOv4-p6, like all versions of YOLO, requires the dataset to follow a specific format to use
the data. The standard method of using the YOLO format involves creating separate text files for each
image in the dataset. These files include the class number and spatial information about the objects
present in each image. In addition, the annotations in these files are also scaled to be within the range of
[0, 1], which makes it easier to handle the data even when the images are resized or modified. Each text
file has rows of data, each with the following information:

‘ (<object-class>, <x-center>, <y-center>, <width>, <height>)
Figure D.1 YOLO format

where,

e The "object-class" parameter indicates an integer that represents the object’s class. The classes
are numbered starting from 0 and increase by 1 for each different class in the dataset

o "x-center" and "y-center" parameters refer to the normalized coordinates of the ground truth
bounding box center, which are normalized by the image's width and height, with values ranging
from 0 to 1. The x and y coordinates are normalized according to the image size:

Xmax+ Xmin

-2 (D.1)
imageyiqtn
And
Ymax+ Ymin
y=—-?2 (D.2)
lmageheight

e "width" and "height" parameters represent the normalized width and height of the ground truth
bounding box, which surrounds the object, with values also ranging from 0 to 1. These values are
normalized according to the image size:

boundingbox,,;
widht = NGO Kwiden (D.3)
lmageéwidth
And
boundingboxy,,;
height — : 9 height (D.4)
lmageheight

[121]

University of the Aegean Department of Financial and Management Engineering

D.2 Modifications for each UAV dataset

This appendix describes the steps for making necessary changes in each UAV dataset individually.

1.

Aerial cars dataset

The Aerial Cars dataset includes five different classes: car, truck, bus, minibus, and cyclist, with
annotations in YOLO format. Within this dataset, the classes “car”, “truck”, “bus”, and “minibus”
are retained, while the “cyclist” class was removed. Following this, the retained classes are
converted by using the convert.py script. Specifically, the class "car" was replaced with number 1
to represent small vehicles, and the classes "truck", "bus", and "minibus" were replaced with
number 2 to represent large vehicles.

DOTA dataset

Each object in the dataset has a shape description called an Oriented Bounding Box (OBB),
represented as (xq, x5, X3, X4, X5), where (x;,y;) is the i-th corner of the OBB. These corners are
placed in a clockwise order. Besides the OBB, each object instance is categorized and given a
difficulty flag, indicating if it is challenging to detect (1 for difficult, 0 for not difficult). The
annotations for each image are stored in a text file with the same name as the image. Each line in
the text file corresponds to one object instance. Figure D.2 is an illustration of an image annotation
(Xia et al., 2021):

Example: 558 523 563 546 501 554 501 529 large-vehicle 0
Figure D.2 DOTA dataset's annotation format

Figure D.2 represents an annotated Oriented Bounding Box defined by points (558, 523), (563,
546), (501, 554), and (501, 529), outlining an OBB that captures a large vehicle in the image. The
label assigned to this object instance is "large-vehicle," which specifies its type. Furthermore, the
difficulty indicator associated with the detection of this instance is set to 0, showing that it is
relatively easy to identify the object in the image.

To begin with, we converted the unique characteristics of the annotation structure in the DOTA
dataset to YOLO format. The code provided in the cited GitHub repository-(ringringyi, 2023)
transformed the DOTA into YOLO format. Although we combined DOTA versions 1.5 and 2.0 into
a single dataset, each includes different classes and can operate separately. Specifically, DOTA
version 1.5 includes sixteen distinct classes while DOTA version 2.0 includes nineteen.
Consequently, the conversion process involves retaining only the classes "small vehicle," "large
vehicle," and "ship" from both versions. These retained classes were converted using the
convert.py script, where the class "small vehicle" was replaced with number 1 to represent small
vehicles, the class “large vehicle” was replaced with number 2 to represent large vehicles, and the
class “ship” was replaced with number 3 to represent ships.

Visdrone-DET dataset

As depicted in Figure D.3, the annotation format used in the Visdrone-DET dataset includes various
parameters (VisDrone, 2024). These parameters consist of “bbox_left”, which indicates the x-
coordinate of the top-left corner of the predicted bounding box, and “bbox_top”, which shows the
y-coordinate of the same corner. Additionally, “bbox_width” represents the width of the predicted
bounding box in pixels, while “bbox_height” represents its height in pixels. The “score” parameter

[122]

University of the Aegean Department of Financial and Management Engineering

in the "detection" file shows the confidence level associated with the predicted bounding box that
contains an object instance. In contrast, in the "groundtruth" file, “score” is binary: 1 indicates
inclusion in evaluation, and 0 indicates exclusion. Furthermore, “object_category” specifies one
of the ten classes in the VisDrone-DET dataset, as mentioned in Section 3.1. In the "detection"
result file, “truncation” is uniformly set to -1, where in the "groundtruth" file, it indicates the
degree to which object parts extend beyond the image, with 0 meaning no truncation and 1
indicating partial truncation. Similarly, “occlusion” in the "detection" file is always set to -1, while
in the "groundtruth" file, it represents the degree of object occlusion, with 0 indicating no
occlusion, 1 indicating partial occlusion, and 2 indicating heavy occlusion.

Example: 755, 468, 16,50,1, 1,0, 0
<bbox_left>,<bbox_top>,<bbox_width>,<bbox_height>,<score>,<object_category>,<truncation>,<occlusion>
Figure D.3 Visdrone dataset's annotation format

Figure D.3 shows the Visdrone format, which we converted into the YOLO format by using code
the cited GitHub repository-(Tandon, 2024). We kept the classes: "pedestrian”, "persons", "car",
"van", "truck" and "bus". Then, we used the convert.py script to convert them. In this process, the
classes "pedestrian" and "persons" were replaced with number 0 to represent persons, the class
“car” was replaced with class number 1 to represent small vehicles and the classes "van", "truck",
and "bus" were replaced with number 2 to represent large vehicles.

4. Stanford dataset
Similar to the aerial cars dataset, the annotations in this dataset follow the YOLO format, which
eliminates the need for a transformer code. The classes: "pedestrian”, "car" and "bus" were
included, while "biker", "skater" and "cart" were removed. The retained classes were converted
using the convert.py script, where the class "pedestrian"” was replaced with number 0 to represent
persons, the class "car" was replaced with number 1 to represent small vehicles, and the class
"bus" was replaced with class number 2 to represent large vehicles.

5. DAC dataset
The DAC dataset uses the XML format for its annotation structure, because it provides guidelines
for representing different types of data. However, unlike regular programming languages, XML
does not have built-in functions for computational tasks (Simplilearn, 2023). In the DAC dataset,
XML is used to organize and manage data with the help of programming languages or software
systems. It uses markup symbols called tags, as shown in Figure D.4, where tags such as

“annotation”, “size”, “object”, and “bndbox” can be used to encode information for the following
annotation:

<annotation>
<filename>000002</filename>
<size>
<width>640</width>
<height>360</height>
</size>
<object>

[123]

University of the Aegean Department of Financial and Management Engineering

<name>boatl</name>
<bndbox>
<xmax>273</xmax>
<xmin>196</xmin>
<ymax>323</ymax>
<ymin>164</ymin>
</bndbox>
</object>
</annotation>
Figure D.4 DAC dataset's annotation format

Figure D.4 provides detailed information about the image with file name “000002”. Specifically, it
includes the image’s dimensions (640x360), the identification of the object (labelled as boatl),
and specific coordinates of its ground truth bounding box (xmax: 273, xmin: 196, ymax: 323, ymin:
164).

After illustrating the application of XML in processing the DAC dataset, we proceed to convert it
into YOLO format by using the code from the cited GitHub repository-(Pawar, 2022). We kept the
classes: "person", "car", and "boat", while removing all the others. Next, we convert the retained
classes using the convert.py script, where the class “person” was replaced with number 0 to
represent persons, the class “car” was replaced with number 1 to represent cars and the class

“boat” was replaced with number 3 to represent ships.

D.3 Python code for converting the classes in annotation files

The Python scriptin Figure D.5 is used to change the order of the existing classes in the UAV datasets used
in our experiments. Since the five datasets contain different classes, we use this script to convert them as
follows: “0” for the person class, “1” for the small vehicle class, “2” for the large vehicle class and “3” for
the ship class.

#Name: convert.py
import os

Define the mapping of original classes to new classes
class_mapping = {
#add classes here, e.g.

#0"'0',

#1'0,

#..

Define the path to the main folder containing the subfolders

main_folder_path = 'write the folder path here'

Iterate over each subfolder and file in the main folder
for root, dirs, files in os.walk(main_folder_path):

[124]

University of the Aegean Department of Financial and Management Engineering

for filename in files:
if filename.endswith(".txt'):
file_path = os.path.join(root, filename)

Read the contents of the file
with open(file_path, 'r') as file:
lines = file.readlines()

Filter and modify the lines
modified_lines =]
for line in lines:

parts = line.split()

Check if the line is empty or doesn't have enough elements
if not parts or len(parts) < 2:
continue

class_label = parts[0]

Check if the class should be ignored
if class_label not in class_mapping or class_mapping[class_label] is None:
continue

Modify the first number in the line
new_class_label = class_mapping[class_label]
parts[0] = str(new_class_label)

Create a new line with the modified class label
modified_line ="' ".join(parts) + '\n'
modified_lines.append(modified_line)

Write the modified lines back to the file
with open(file_path, 'w') as file:
file.writelines(modified_lines)

Figure D.5 Convert.py script

[125]

University of the Aegean Department of Financial and Management Engineering

Appendix E. Analysis of Variance (ANOVA)

ANOVA includes various statistical methodologies that divide the total variation observed in a dataset into
separable systematic and random components. Specifically, systematic factors show significant statistical
effects on the dataset being studied, as opposed to random factors, which do not have such effects. In
addition, analysts use the ANOVA test to measure the effect that the independent variables have on the
dependent variable in regression analysis (Kenton, 2024).

ANOVA is classified into various categories based on the experimental design and the number of
independent variables being studied. The following instances are different types of ANOVA:

e One-way ANOVA

e Two-way ANOVA

e Factorial ANOVA

e Repeated Measures ANOVA
e Mixed ANOVA

In this thesis, only one-way Analysis of Variance will be used to analyze the experimental results.

The one-way Analysis of Variance (ANOVA) is used to compare the means of three or more groups.
Specifically, it examines if differences in the levels of a single independent variable (referred to as factor)
or the interactions between multiple factors have an effect on a dependent variable. Consequently, one-
way ANOVA is applicable when there is only one factor and one dependent variable being studied. As it
helps to determine if there are significant differences in means between the groups, although it does not
specify which specific pairs of groups show these differences (Seltman, 2018).

As mentioned above, one-way ANOVA is a statistical methodology used to determine if there is a difference
between the means of three or more groups. It tests the null hypothesis (Hy) that the means are equal
against the alternative hypothesis (H;) that at least one of the means is different. In statistical notation,
where “k” is the number of means, the hypotheses can be written as follows:

Hoipy =y = Uz =...= i (E.1)
H;:not all means demonstrate equivalence (E.2)

where, y; is the mean value corresponding to the i-th level of the factor.

Since random samples may not accurately reflect entire populations, there is a risk that the means
obtained from these samples may not represent the true means of the populations. For this reason,
hypothesis testing uses a statistical measure known as the p-value. The p-value measures the probability
of observing differences in sample means that are as significant as those observed, assuming that there is
no real difference in population means (null hypothesis). If the p-value is less than 0.05, this is considered
sufficient evidence to reject the null hypothesis, indicating that there is at least one different mean within
the population.

[126]

	Chapter 1 Introduction
	Chapter 2 Background of YOLO models
	2.1 Introduction to the various YOLO versions
	2.2 Earlier YOLO versions
	2.2.1 You Only Look Once version 1
	2.2.2 You Only Look Once version 2
	2.2.3 You Only Look Once version 3

	2.3 Drill down to You Only Look Once version 4 algorithm
	2.3.1 You Only Look Once version 4
	2.3.2 Backbone network of YOLOv4
	2.3.3 YOLOv4 network analysis
	2.3.4 Bag of Freebies (BoF)
	2.3.5 Bag of Specials (BoS)
	2.3.6 YOLOv4’s loss function

	2.4 Scaled-YOLOv4 models
	2.5 Comparison between YOLO and other detection models
	2.6 Analysis of performance metrics

	Chapter 3 Data preparation and parameter selection for training the YOLOv4-p6 algorithm
	3.1 Training data selection
	3.2 Annotation adjustments in UAV datasets
	3.3 Training, validation and testing datasets
	3.4: Experimental setup
	3.5: Important hyperparameters for YOLOv4-p6 model training
	3.5.1. Hyperparameters defined based on the characteristics of the dataset
	3.5.2 Hyperparameters related to the model’s architecture and operation

	Chapter 4 Experimental Investigation
	4.1 Full Factorial Experiments
	4.2 Experiment execution
	4.3 Experimental results and analysis
	4.4 Hyperparameter effects on mean Average Precision (mAP)
	4.4.1 ANOVA on best mAP results from training runs
	4.4.2 ANOVA on best mAP results from testing runs

	4.5 Concluding remarks

	Chapter 5 Testing the trained YOLOv4-p6 models on DeOPSys dataset
	5.1 DeOPSys UAV dataset
	5.2 Testing execution on DeOPSys dataset
	5.3 Testing results of DeOPSys dataset

	Chapter 6 Conclusions
	References
	Appendix A. IoU and CIoU losses
	A.1 Intersection over Union (IoU)
	A.2 Complete Intersection over Union (CIoU)

	Appendix B. Functionality of bounding boxes
	B.1 Ground truth bounding boxes
	B.2 Anchor boxes
	B.3 Bounding boxes
	B.4 Calculations regarding the resultant bounding boxes

	Appendix C. Convolution operations and network architectures
	C.1 Stride operation
	C.2 Feature map
	C.3 Convolutional layers
	C.4 Padding
	C.5 Batch normalization
	C.6 Downsampling operation
	C.7 Upsampling operation
	C.8 Residual blocks
	C.9 Route layers
	C.10 Cross-stage partial connections (CSP connections)
	C.11 Spatial Pyramid Pooling
	C.12 Path Aggregation Network (PANet)

	Appendix D. Combination of UAV datasets
	D.1 YOLO format
	D.2 Modifications for each UAV dataset
	D.3 Python code for converting the classes in annotation files

	Appendix E. Analysis of Variance (ANOVA)

