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Abstract 

This thesis focuses on optimizing the training process of YOLOv4-p6 to detect and classify persons, small 

vehicles, large vehicles, and ships for surveillance applications in warehouses and ports. The optimization 

process involved fine-tuning the training hyperparameters of YOLOv4-p6 to maximize mean Average 

Precision (mAP). Several configurations achieved higher mAP results compared to the default settings. 

Consequently, this thesis examines the impact of each hyperparameter on YOLOv4-p6's training 

performance. 

Specifically, we trained and tested YOLOv4-p6 using publicly available UAV annotated image datasets, 

including Αerial vehicle, DOTA, VisDrone-DET, Stanford drone, and DAC-SDC. These datasets were modified 

to contain only the selected classes, and then combined into a single dataset consisting of 76,872 images 

with 876,388 annotated objects. Subsequently, we divided the combined UAV dataset into training (80% 

of the combined dataset), validation (10%) and testing (10%) subsets. 

The training hyperparameters of the YOLOv4-p6 algorithm were divided in two subsets. The first subset 

comprised those hyperparameters, the values of which depend on the characteristics of the training set.  

The values/levels of these hyperparameters were kept invariant throughout the tuning experiments. The 

second set comprised the hyperparameters to be tuned to optimize the training performance of YOLOv4-

p6. Specifically, the second set included five (two-levels) hyperparameters, which led to the generation of 

thirty-two experiments using the Full-Factorial method (25 = 32). For each of the 32 combinations we 

repeated the training and testing sessions to support the analysis of the results using Analysis of Variance 

(ANOVA).  This resulted in 64 trained models.  

The analysis of the mAP results by ANOVA revealed three statistically significant hyperparameters: image 

resolution, activation function, and anchor dimensions; furthermore, a three-way interaction has been 

identified as significant: among Non-Maximum Suppression, data augmentation, and anchor dimensions.  

The best trained models (25th and 29th) achieved an average mAP value of 52% in validation and 53.3% in 

testing. This is in contrast with the lowest performing models, of which the mAP values were 39.8% in 

validation and 44% in testing. This supports our thesis that careful tuning of the hyperparameters during 

training may yield to major improvements in model effectiveness. 

We also tested the best performing models on a new UAV dataset developed by the DeOPSys lab. They 

performed exceptionally well, achieving a value of average mAP up to 77.6% and 76.3%, respectively.  This 

independent testing validates the quality of the trained models.  More importantly it validates that the 

proposed hyperparameter tuning method enables effective training of high-performance YOLO models. 
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Περίληψη 

Η παρούσα διπλωματική εργασία επικεντρώνεται στη βελτιστοποίηση της διαδικασίας εκπαίδευσης του 

συστήματος YOLOv4-p6 για την ανίχνευση και ταξινόμηση αντικειμένων από φωτογραφίες ή video και 

συγκεκριμένα ανθρώπων, μικρών οχημάτων, μεγάλων οχημάτων και πλοίων, με εφαρμογές επιτήρησης 

αποθηκευτικών χώρων και λιμένων. Η βελτιστοποίηση επιτεύχθηκε μέσω της κατάλληλης ρύθμισης των 

υπερπαραμέτρων εκπαίδευσης του YOLOv4-p6 με στόχο τη μεγιστοποίηση της μέσης τιμής της μέσης 

ακρίβειας (mean Average Precision ή εν συντομία mAP). Ορισμένοι συνδυασμοί υπερπαραμέτρων  

επέφεραν υψηλότερα αποτελέσματα mAP σε σύγκριση με τις προεπιλεγμένες στο σύστημα ρυθμίσεις. 

Η διπλωματική εργασία εξετάζει επίσης την επίδραση κάθε υπερπαραμέτρου στην απόδοση 

εκπαίδευσης του YOLOv4-p6. 

Στο πλαίσιο της παρούσας έρευνας, εκπαιδεύσαμε το YOLOv4-p6 χρησιμοποιώντας δημόσια διαθέσιμα 

σύνολα δεδομένων εικόνων από UAV, όπως τα Aerial Vehicle, DOTA, VisDrone-DET, Stanford Drone και 

DAC-SDC. Τα εν λόγω σύνολα δεδομένων τροποποιήθηκαν ώστε να περιλαμβάνουν αποκλειστικά τις 

επιλεγμένες κατηγορίες αντικειμένων και στη συνέχεια συνδυάστηκαν σε ένα ενιαίο σύνολο δεδομένων 

που αποτελείται από 76.872 εικόνες με 876.388 επισημασμένα αντικείμενα. Στη συνέχεια, το ενιαίο 

σύνολο δεδομένων UAV διαιρέθηκε σε υποσύνολα εκπαίδευσης (80%), επικύρωσης (10%) και δοκιμής 

(10%). 

Οι υπερπαράμετροι εκπαίδευσης του αλγορίθμου YOLOv4-p6 χωρίστηκαν σε δύο ομάδες. Η πρώτη 

ομάδα περιλάμβανε υπερπαραμέτρους των οποίων οι τιμές εξαρτώνται από τα χαρακτηριστικά του 

συνόλου δεδομένων εκπαίδευσης. Οι τιμές/επίπεδα αυτών των υπερπαραμέτρων διατηρήθηκαν 

αμετάβλητα κατά τη διάρκεια των πειραμάτων ρύθμισης. Η δεύτερη ομάδα περιλάμβανε τις 

υπερπαραμέτρους που ρυθμίστηκαν για τη βελτιστοποίηση της απόδοσης εκπαίδευσης του YOLOv4-p6. 

Συγκεκριμένα, η εν λόγω ομάδα περιλάμβανε πέντε υπερπαραμέτρους δύο επιπέδων, γεγονός που 

οδήγησε στη δημιουργία τριάντα δύο (32) πειραμάτων χρησιμοποιώντας τη μέθοδο Πλήρους 

Παραγοντικού σχεδιασμού (Full-Factorial design, 25 = 32). Για κάθε ένα από τους 32 συνδυασμούς, 

επαναλάβαμε τους κύκλους εκπαίδευσης και δοκιμής ώστε να υποστηριχθεί η ανάλυση των 

αποτελεσμάτων μέσω της Ανάλυσης Διακύμανσης (ANOVA). Αυτό οδήγησε σε 64 εκπαιδευμένα μοντέλα. 

Η ανάλυση των τιμών του mAP που προέκυψαν από την διαδικασία εκπαίδευσης και δοκιμών μέσω 

ANOVA αποκάλυψε τρεις στατιστικά σημαντικές υπερπαραμέτρους: την ανάλυση εικόνας, τη συνάρτηση 

ενεργοποίησης και τις διαστάσεις των περιγραμμάτων anchors των αντικειμένων. Επιπλέον, εντοπίστηκε 

ως σημαντική μια τριπλή αλληλεπίδραση μεταξύ της καταστολής μη μέγιστων τιμών (Non-Maximum 

Suppression), της αύξησης δεδομένων (data augmentation) και των διαστάσεων των περιγραμμάτων 

anchors. 

Τα καλύτερα εκπαιδευμένα μοντέλα (25ο και 29ο) πέτυχαν μέση τιμή mAP 52% στην διαδικασία 

εκπαίδευσης/επικύρωσης και 53.3% στη διαδικασία δοκιμών. Επισημαίνεται ότι τα μοντέλα με τη 

χαμηλότερη απόδοση είχαν τιμές mAP 39.8% στην επικύρωση και 44% στη δοκιμή. Αυτό υποστηρίζει την 

υπόθεσή μας ότι η προσεκτική ρύθμιση των υπερπαραμέτρων κατά την εκπαίδευση μπορεί να οδηγήσει 

σε σημαντικές βελτιώσεις στην αποτελεσματικότητα του μοντέλου. 
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Επιπλέον, τα καλύτερα εκπαιδευμένα μοντέλα αξιολογήθηκαν σε ένα νέο σύνολο δεδομένων UAV που 

αναπτύχθηκε από το εργαστήριο DeOPSys. Τα μοντέλα κατέγραψαν εξαιρετική απόδοση, επιτυγχάνοντας  

μέση τιμή mAP έως 77.6% και 76.3%, αντίστοιχα. Η ανεξάρτητη αυτή αξιολόγηση επιβεβαιώνει την 

ποιότητα των εκπαιδευμένων μοντέλων. Πιο σημαντικό αποτέλεσμα της ανεξάρτητης αυτής δοκιμής 

είναι η επιβεβαίωση του γεγονότος ότι η προτεινόμενη μέθοδος ρύθμισης υπερπαραμέτρων επιτρέπει 

την αποτελεσματική εκπαίδευση μοντέλων YOLO υψηλής απόδοσης. 
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Chapter 1 Introduction 

Artificial Intelligence (AI) is replicating human intelligence within computational systems or machinery 

furnished with appropriate software, demonstrating proficiency in executing intricate tasks within the 

domain of human expertise. Leveraging the capabilities of AI, several logistics-related applications have 

been developed, some of which focus on the process safeguarding warehouse facilities or even ports.  For 

such environments, AI powered systems are sought for effective area surveillance in order to prevent 

unauthorized invasion, mitigate losses, organize routes for personnel, machinery, etc. 

Object detection is a key prerequisite for such surveillance applications.  Through object detection and 

image classification, once the information has been extracted, the systems are able to perform actions or 

make recommendations based on the extracted information. Note that there is a notable disparity 

between image classification and object detection. Image classification identifies the category of the most 

prominent entity within an image, while object detection encompasses the identification, position and 

dimensions of every discernible object within the image. 

The aim of the present thesis is to enhance the performance of such applications for object detection in 

surveillance of logistics facilities.  For this reason, we use the computer vision framework YOLO (You Only 

Look Once), using an advanced version of it, the YOLOv4-p6.  After we analyze the structure and 

functionality of YOLOv4-p6, our study focuses on improving the training process of YOLOv4-p6.  To do so, 

we systematically explore the space of training hyperparameters to identify the hyperparameter 

combination that results in training a YOLOv4-p6 model that achieves the highest mean Average Precision 

(mAP).  Furthermore, by systematically experimenting with the training hyperparameters we seek to 

identify their effects and the effects of their interaction on the performance of training. 

The structure of the remainder of the thesis is as follows: Chapter 2 overviews the first three YOLO 

algorithms and provides information about the functional framework, architectural structure, and novel 

features of YOLOv4 and Scaled YOLOv4 algorithms. Chapter 3 outlines the methodological steps for tuning 

the model’s training hyperparameters.  These encompass data preparation, the selection of the training 

hyperparameters, and the experimental design that leads to the optimal hyperparameter combination.  

Chapter 4 presents the analysis of the experimental outcomes. This involves the evaluation of mean 

Average Precision (mAP) performance metric, as well as the utilization of Analysis of Variance (ANOVA).  

Chapter 5 presents the average mAP results from testing the optimal YOLOv4-p6 models with our lab’s 

UAV dataset. Finally, the conclusions of this thesis are presented in Chapter 6. 
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Chapter 2 Background of YOLO models 

This Chapter begins with an overview of YOLO, YOLOv2, and YOLOv3 algorithms. It is followed by a detailed 

analysis of the YOLOv4 and Scaled-YOLOv4 models, since our work has been performed using the YOLOv4 

variants. Specifically, attention is directed towards the functionality of YOLOv4 and YOLOv4-p6, along with 

their neural network architectures. At the end of this Chapter, there is a detailed presentation of the 

performance metrics, which will be used in Chapter 4 to evaluate the results of our experiments. 

2.1 Introduction to the various YOLO versions 

Figure 2.1 presents the evolution of the YOLO algorithm. Redmon et al., introduced YOLO (You Only Look 

Once) through a seminal scientific paper (Redmon et al., 2015). This seminal paper is entitled "You Only 

Look Once: Unified, Real-Time Object Detection" and the related research proved to be a revolutionary 

algorithm that led to the creation of various YOLO versions. Subsequently in 2016, Joseph Redmon and Ali 

Farhadi presented their new findings in a paper entitled as "YOLO9000: Enhanced, Accelerated, 

Empowered" and introduced YOLO9000, which is also recognized as the YOLOv2 algorithm (Redmon and 

Farhadi, 2016a). Following on from YOLOv2, in 2018 the YOLOv3 algorithm was introduced and is detailed 

in "YOLOv3: An Incremental Advancement", demonstrating significant improvements with three detection 

scales and an optimized backbone network (Redmon and Farhadi, 2018). 

 

Figure 2.1 The development of YOLO models over the years (Keita, 2022) 

The subsequent edition of YOLOv4 prompted Joseph Redmon to withdraw from further YOLO algorithm 

development, citing ethical reasons. Specifically, he was concerned that object detection algorithms would 

be used for military applications (Synced, 2020). Consequently, under the mentorship of Alexey 

Bochkovskiy, a new scientific team led by Chien-Yao Wang and Hong-Yuan Mark Liao undertook the 

responsibility for the continuous enhancement and development of YOLOv4, as detailed in “YOLOv4: 
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Optimal Speed and Accuracy of Object Detection” (Bochkovskiy et al., 2020). In 2020, the same research 

team revealed modified versions based on YOLOv4, namely the Scaled-YOLOv4 algorithms, which were 

designed to support larger input sizes to improve the overall accuracy.  The related paper for the Scaled-

YOLOv4 algorithms, entitled "Scaled-YOLOv4: Scaling Cross Stage Partial Network”, details the 

advancements and adjustments implemented in these version of YOLO (Wang et al., 2020). 

2.2 Earlier YOLO versions 

2.2.1 You Only Look Once version 1 

The YOLO (You Only Look Once) algorithm represents the first entry in the YOLO series of object detection 

models. Unlike traditional object detectors that treat detection as a classification problem, YOLO 

approaches it as a regression problem, accelerating the process to predict bounding boxes and class 

probabilities in a single network pass (Redmon et al., 2016). Specifically, the developers were seeking to 

create a single pass neural network capable of determining the class identity of objects and defining their 

spatial coordinates within the image through a single iteration. 

At the beginning of the training process, the YOLO algorithm resizes its input images based on selected 

predetermined dimensions, which must be divisible by 32. For instance, YOLO applies dimensions of 

448x448 to its input images for height and width, respectively. Then, it divides the input images into a grid 

of dimensions S x S, where S is typically 7 or 13. It is assumed that each grid cell contains a centered object 

and each cell predicts the various bounding box sizes of the (presumed) objects, along with their 

corresponding confidence scores and probabilities for the object to belong to the different available 

classes (El Aidouni, 2019). For each of the individual grid cells i, YOLO performs the following predictions: 

 The total of two bounding boxes (𝐵), also known as anchor boxes, as discussed in Appendices  

A.1 and A.2. 

 Each of the B anchor boxes has a confidence score (𝐶𝑖) and spatial coordinates (𝑥, 𝑦, 𝑤, ℎ), along 

with class probabilities (𝑝𝑖(𝑐)) for each class (𝑐 = 1, 2, 3, 4, . . . , 𝐶). 

These forecasts are structured into a 𝑆 𝑥 𝑆 ∗ (𝑏 ∗  5 + 𝐶) tensor, where “5” represents the dimensions of 

the vector (𝐶𝑖 , 𝑥, 𝑦, 𝑤, ℎ). Here, (𝑥, 𝑦) is the center of the bounding box relative to the grid cell, (𝑤, ℎ) is 

the width and height of the bounding box relative to the entire image, and 𝐶𝑖  represents the confidence 

score (see Figure 2.2). 
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Figure 2.2 The output vector for each anchor box within every grid cell is generated by the YOLO algorithm (WikiDocs, 2023) 

The YOLO model is designed based on a convolutional neural network architecture, capable of directly 

anticipating objects through the application of the two bounding boxes and identifying class probabilities 

for the object in each box. Compared to other object detection algorithms of the time, the design is quite 

simple. It consists of 4 Max Pooling layers, 2 fully connected layers, and 24 convolutional layers, as 

illustrated in Figure 2.3 (Kamal, 2021a). 

 

Figure 2.3 YOLO neural network architecture (El Aidouni, 2019) 

2.2.2 You Only Look Once version 2 

Following the groundbreaking innovation of YOLOv1, YOLOv2 (known also as YOLO9000) includes several 

enhancements that improve the model training process and increase object detection accuracy (Redmon 

and Farhadi, 2016a). The changes that are included in YOLOv2 are: 
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 Batch Normalization: As explained in Appendix C.5, the incorporation of batch normalization into 

the structure improves the convergence of the model, speeding up the training process. It 

eliminates the requirement to use alternative normalization techniques such as Dropout, while 

concurrently decreasing the risk of overfitting (pawangfg, 2020). 

 High Resolution Classifier: The YOLOv1 algorithm trains its classifier network with an image of size 

224×224 and then increases the resolution to 448x448 pixels for the purpose of improves 

detection. When moving to detection, the network must learn to identify objects and adjust to 

changes in image resolution. This causes a reduction in mean Average Precision (mAP). On the 

other hand, the initial training of the YOLOv2 algorithm uses images with dimensions of 224×224. 

Consequently, a refinement process was performed, where the classification network is further 

trained at the resolution of 448×448 for a duration of 10 epochs on the ImageNet dataset before 

starting the training for object detection (Kamal, 2021b). 

 Evolutionary utilization of anchor boxes: In YOLOv1, the objective is to locate an object in the grid 

cell that includes the spatial midpoint of the object. Now see Figure 2.4, where the red cell is 

tasked with detecting multiple objects (not one as in YOLOv1)To address this challenge, the 

creators of YOLOv2 tried to enable the grid cell to detect multiple objects by introducing k 

bounding boxes (Kamal, 2021a). 

 

Figure 2.4 The application of k bounding boxes (Kamal, 2021a) 

Consequently, YOLOv2 improves object detection by introducing anchor boxes, which replace the fully 

connected layers that YOLOv1 used towards the end of its network. As explained in Appendix B.2, this 

method enhances the accuracy of object detection by using predefined boxes of various sizes and aspect 

ratios. In contrast to YOLOv1, which directly predicts bounding box coordinates for objects without the 

application of anchor boxes (see Figure 2.5). 
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Figure 2.5 Depicts the removal of fully connected layers highlighted in red colour (pawangfg, 2020) 

The architecture of YOLOv2 consists of 19 convolutional layers and 5 Max Pooling layers (Kamal, 2021b). 

As shown in Figure 2.6, the trainable architecture used as the backbone is Darknet-19, chosen for its 

comparatively lower computational requirements compared to alternative architectures. 

 

Figure 2.6 YOLOv2 neural network architecture (Zhang, 2020) 

2.2.3 You Only Look Once version 3 

YOLOv3 (Redmon and Farhadi, 2018) is the upgraded version of YOLOv2. It is an advancement from its 

predecessors, with capacity to swiftly recognize objects in both images and video streams. 

At its beginning, the YOLOv3 architecture was created as a 53-layer network, initially pretrained on the 

ImageNet dataset, and designed with focus on the detection task. Following each layer within the 53-layer 

architecture, it includes a batch normalization layer along with the incorporation of the Leaky ReLU 

activation function. These 53 layers are contained in an architecture known as Darknet-53, which is an 

updated version of Darknet-19. Following the Darknet-53, there are 53 additional layers to its structure, 

resulting in an overall 106 layers (see Figure 2.7) that make up the YOLOv3 model (Nagpal, 2023). 
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The enhancements of YOLOv3 include the following: 

 Objectness Score functions as a statistical metric, which estimates the probability of the existence 

of an object within a specified region of an image. This assists in reducing false positive detections 

(Kamal, 2021a) 

 Multi-label prediction involves the existence of many overlapping labels within a dataset. The 

application of SoftMax function for class prediction introduces the condition that each bounding 

box corresponds exclusively to a single class. In comparison, YOLOv3 avoids using SoftMax 

function, and instead uses independent logistic classifiers assigned to each class. Durning the 

training process of the model, the utilization of binary cross-entropy loss is adopted to optimize 

the class prediction process (Kamal, 2021a) 

 Multi-scale predictions: The YOLOv3 model generates predictions at three scales, enabling it to 

recognize small objects with greater accuracy (Kamal, 2021a) 

 Small objects detection: YOLOv3 demonstrates improved efficiency in small object detection, due 

to the incorporation of shortcut connections. The application of shortcut connections allows the 

retrieval of more complicated details from the initial feature map. However, in contrast to YOLOv2, 

YOLOv3 displays reduced performance in the detection of medium and large objects (Kamal, 

2021a). 

 

Figure 2.7 YOLOv3 neural network architecture (Afif et al., 2020) 
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2.3 Drill down to You Only Look Once version 4 algorithm 

2.3.1 You Only Look Once version 4 

YOLOv4 is designed for high-speed object detection and classification in real-time scenarios using general 

purpose GPUs. It exhibits superior efficiency, heightened precision, and increased consistency compared 

to previous versions (Bochkovskiy et al., 2020). The original network design, which consists of 161 layers, 

is made up of three components: the backbone, neck, and head. Additionally, YOLOv4 incorporates new 

methodologies referred to as “Bag of Freebies” (BoF) and “Bag of Specials” (BoS) to increase its 

performance. 

As  backbone in this network  CSPDarknet-53 is used (Bochkovskiy et al., 2020), which is  an updated 

version of Darknet-53 (Redmon and Farhadi, 2018)  that integrates cross-stage partial connections (CSP) , 

as further explained in Appendix C.10. It combines the features of Darknet-53 with CSP connections to 

increase both precision and efficiency within the network. 

The neck component of the model incorporates of Spatial Pyramid Pooling (SPP) (He et al., 2014) -see 

Appendix C.11 for more details, and Path Aggregation Network (PANet) (Liu et al., 2018), see Appendix 

C.12. SPP uses a technique known as pooling, which addresses the challenge of handling objects with 

varying sizes and scales. Following the SPP the Path Aggregation Network is applied, which is used to 

improve the object detection process through the preservation of spatial details. This enables the model 

to create more accurate bounding boxes. 

The last component is the detection heads that analyze the resulting feature maps.  The YOLOv4 model, 

like YOLOv3, uses three detection heads for the detection and classification process. These detection 

heads predict bounding box coordinates along with class probabilities for the objects identified within the 

input image. 

2.3.2 Backbone network of YOLOv4 

YOLOv4 supports various backbones, including VGG16 (Simonyan and Zisserman, 2015), ResNet-50 (He et 

al., 2015a), SpineNet (Du et al., 2020), EfficientNet-B0/B7 (Tan and Le, 2020), CSPResNeXt50 (Bochkovskiy 

et al., 2020), and CSPDarknet-53 (Bochkovskiy et al., 2020). From the above backbones, as indicated also 

above, the selected one is CSPDarknet-53. It is an updated version of Darknet-53 that integrates the CSP 

connections at the top, while the feature extraction remains at the bottom, as seen in Darknet-53. 

Figure 2.8 illustrates Darknet-53 that includes a total of 53 convolutional layers, with a mix of 1𝑥1 and 

3𝑥3 filter sizes. Specifically, 29 of these layers have filters of size of 3𝑥3 to increase the depth of the 

network and its capacity for feature extraction. Each convolution layer within Darknet-53 is connected to 

a batch normalization (BN) layer and a leaky-ReLU activation layer. 
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Figure 2.8 Representation of the Darknet-53 backbone (Redmon and Farhadi, 2018) 

With the application of CSP, the network divides the feature map of the primary layer into two different 

paths and then combines them to produce an output feature map and proceeds in successive layers as 

shown in Figure 2.9. In the CSP block, the feature map is divided into two paths: Part 1 and Part 2. Part 1 

processes the feature map using an 1𝑥1 convolutional layer with a stride of 1, which retains spatial 

information. Part 2 processes the feature map using a 1𝑥1 convolution followed by a 3𝑥3 convolution, 

both with a stride of 1, and Mish activation functions, which help reduce dimensions and capture spatial 

information. After these processes, the resulting feature map of Part 2 is concatenated with the output 

feature map of Part 1, leading to a more complete feature map. 

 

Figure 2.9 Representation of the CSPDarknet-53 backbone (Xu et al., 2021) 
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The CSPDarknet-53 architecture demonstrates increased accuracy in object detection and its classification 

efficiency can be further optimized through the integration of methodologies such as Mish, as elaborated 

in Chapter 3. 

2.3.3 YOLOv4 network analysis 

This Subsection provides a more detailed analysis on YOLOv4’s neural network architecture, focusing on 

its backbone, neck, and head components, as shown in Figure 2.10. We begin with the nomenclature of 

the components contained in Figure 2.10. 

 

Figure 2.10 YOLOv4 neural network architecture (Tsang, 2022) 

Nomenclature of the network’s components 

In steps 9 and 13 of Figure 2.10, “Up2D” refers to the operation of upsampling, which is discussed in 

appendix C.7. In the same Figure “Concat” represents the concatenation operation which is achieved 

through the use of route layers (see Appendix C.9). In Figure 2.11 the term “CSPX” represents the cross-

stage partial structure. Lastly, Figure 2.12 illustrates the “CBL” layer, which combines a convolution layer 

(see Appendix C.3) with batch normalization and the Leaky ReLU activation function. Similarly, the “CBM” 

layer combines a convolution layer with batch normalization and the Mish activation function (Zhang et 

al., 2022). 
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Figure 2.11 Representation of the CSP block in the top box and the residual block in the bottom box 

 

Figure 2.12 Representation of the CBM layer in the top box and the CBL layer in the bottom box (Tsang, 2022) 

The network's backbone component 

At the very beginning of the algorithm, a 608𝑥608 image is fed into the CSPDarknet-53 and then passes 

through a pair of convolutional layers (see Figure 2.10). The first convolutional layer (step 1) uses 32 filters 

of size 3𝑥3 and a stride of 1, resulting in an output feature map of 608𝑥608𝑥32 (see Appendix C.2). 

Subsequently, the output is fed into the second convolutional layer (step 2), which uses 64 filters of size 

3𝑥3 with a stride of 2. This results in a feature map with dimensions of 304𝑥304𝑥64. The reduction in 

dimensions from 608 to 304 is achieved through the filtering process by applying a stride of 2, while the 

increased depth to 64 corresponds to the number of filters used in that convolutional layer. 

Subsequently, the downsampled image is processed through the CSP blocks, which are in total five 

(corresponding to steps 3 through 7). As shown in Figure 2.10, all CSP blocks contain residual blocks, CBM 

and route layers, except for CSP1, which contains only one residual block (see Appendix C.8). As the 

downsampled image with feature map of 304𝑥304𝑥64 progresses through the CSP1 block (step 3), it 

undergoes: 

 A convolutional layer with 64 filters (the same number of filters as before), using a stride of 1 and 

a size of 1𝑥1. This results in a feature map of 304𝑥304𝑥64 

 A route layer that concatenates feature maps from previous layers to allow information flow 

across different scales and resolutions. This results in a feature map of 304𝑥304𝑥64 
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 A convolutional layer with 64 filters (the same number of filters as before), using a stride of 1 and 

a size of 1𝑥1. This results in a feature map of 304𝑥304𝑥64 

 A convolutional layer with 32 filters (halves the number of filters), using a stride of 1 and a size of 

1𝑥1. This results in a feature map of 304𝑥304𝑥32 

 A convolutional layer with64 filters (doubles the number of filters to preserve spatial information 

due to using a larger size for this layer), with a stride of 1 and a size of 3𝑥3. This results in a feature 

map of 304𝑥304𝑥64 

 A shortcut layer that functions as a residual block. This results in a feature map of 304𝑥304𝑥64 

 A convolutional layer with 64 filters using a stride of 1 and a size of 1𝑥1. This results in a feature 

map of 304𝑥304𝑥64 

 A route layer that concatenates feature maps from previous layers. This results in a feature map 

of 304𝑥304𝑥64 

 A convolutional layer with 64 filters using a stride of 1 and a size of 1𝑥1. This results in a feature 

map of 304𝑥304𝑥64. 

The CSP1 block concludes with an output feature map of 304𝑥304𝑥64. Following that, the downsampled 

image progresses through CSP2 (step 4), CSP8 (step 5), CSP8 (step 6), and CSP4 (step 7). Before entering 

the CSP2 (step 4) block, a downsampling layer (explained in Appendices C.1 and C.6) reduces the input 

image size by half, doubles the number of filters and uses a filter size of 3𝑥3. Consequently, the feature 

map after the downsampling operation is 152𝑥152𝑥128. Then, the downsampled image moves through 

the CSP2 block, which is similar to CSP1 but includes an additional residual block. This extra residual block 

is added as follows: 

 A convolutional layer with 64 filters (halves the number of filters), using a stride of 1 and a size of 

1𝑥1. This results in a feature map of 152𝑥152𝑥64 

 A route layer that concatenates feature maps from previous layers. This results in a feature map 

of 152𝑥152𝑥128 

 A convolutional layer with 64 filters using a stride of 1 and a size of 1𝑥1. This results in a feature 

map of 152𝑥152𝑥64 

 A convolutional layer with 64 filters, using a stride of 1 and a size of 1𝑥1. This results in a feature 

map of 152𝑥152𝑥64 

 A convolutional layer with 64 filters using a stride of 1 and a size of 3𝑥3. This results in a feature 

map of 152𝑥152𝑥64 

 A shortcut layer that functions as a residual block. This results in a feature map of 152𝑥152𝑥64 

 The following three layers represent a single residual block, where an additional one is included 

in CSP2 

 A convolutional layer with 64 filters using a stride of 1 and a size of 1𝑥1. This results in a 

feature map of 152𝑥152𝑥64 

 A convolutional layer with 64 filters using a stride of 1 and a size of 3𝑥3. This results in a 

feature map of 152𝑥152𝑥64 
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 A shortcut layer that functions as a residual block. This results in a feature map of 

152𝑥152𝑥64. 

 A convolutional layer with 64 filters, using a stride of 1 and a size of 1𝑥1. This results in a feature 

map of 152𝑥152𝑥64 

 A route layer that concatenates feature maps from previous layers. This results in a feature map 

of 152𝑥152𝑥64 

 A convolutional layer with 128 filters (doubles the number of filters), using a stride of 1 and a size 

of 1𝑥1. This results in a feature map of 152𝑥152𝑥128. 

The CSP2 block concludes with an output feature map of 152𝑥152𝑥128. The remaining CSP blocks 

function the same way as CSP2 and follow the same pattern. For instance, CSP8 is like CSP2, but with six 

more residual blocks added. Notice the number that follows CSP indicates the number of residual blocks. 

Then, we add them in the same way as we added the extra block in CSP2. Consequently, the resulting 

feature maps of CSP8, CSP8 and CSP4 blocks are: 

 The resulting feature map of CSP8 (step 5) block is 76𝑥76𝑥256 

 The resulting feature map of CSP8 (step 6) block is 38𝑥38𝑥512 

 The resulting feature map of CSP4 (step 7) block is 19𝑥19𝑥1024. 

Before entering the neck component of the YOLOv4 architecture, there are three convolutional layers 

(CBL). These layers are located between the conclusion of CSP4 block and the beginning of the SPP (see 

Figure 2.13). They are described as follows: 

 A convolutional layer with 512 filters (halves the number of filters in the resulting CSP4 feature 

map), using a stride of 1 and a size of 1𝑥1. This results in a feature map of 19𝑥19𝑥512 

 A convolutional layer with 1024 filters (doubles the number of filters to preserve spatial 

information due to using a larger size for this layer), with a stride of 1 and a size of 3𝑥3. This results 

in a feature map of 19𝑥19𝑥1024 

 A convolutional layer with 512 filters (halves the number of filters), using a stride of 1 and a size 

of 1𝑥1. This results in a feature map of 19𝑥19𝑥512. 

The final three convolutional layers of the backbone component result in a feature map of  19𝑥19𝑥512, 

which passes to SPP. 

The neck component of the network 

The description of the network’s neck component (depicted by the cyan box of Figure 2.10) performs the 

following steps: 

 In step 8, the model applies Spatial Pyramid Pooling (SPP). This module is positioned between the 

backbone and the neck. After applying three different pooling processes in 13x13, 9x9, and 5x5 

dimensions, the feature maps of varying scales are merged with the original feature maps to 

generate the combined output. Moreover, convolutional layers (CBL) are implemented three times 



University of the Aegean Department of Financial and Management Engineering 
 
 

[14] 
 

both before (as mentioned at the end of backbone component) and after the SPP, totaling to six 

instances of CBL application (see Figure 2.13). This results in a feature map with dimensions 

19𝑥19𝑥512 

 

Figure 2.13 Representation of the SPP block together with the six CBM layers 

 Step 9: A single CBL layer and upsampling operation are executed, resulting in an output dimension 

of 38𝑥38𝑥256 

 Step 10: Is a CBL layer with a feature map of 38𝑥38𝑥256 

 Step 11: Involves concatenation operation and produces an output dimension of 38𝑥38𝑥512, 

while extracting data information from the feature maps of steps 9 and 10 

 Step 12: Uses five CBL layers, resulting in an output dimension of 38𝑥38𝑥256 

 Step 13: A single CBL layer and upsampling operation are executed, resulting in an output 

dimension of 76𝑥76𝑥128 

 Step 14: Is a CBL layer with a feature map of 38𝑥38𝑥128 

 Step 15: Involves concatenation operation and produces an output dimension of 76𝑥76𝑥256, 

while extracting data information from the feature maps of steps 13 and 14 

 Step 16: Uses five CBL layers, which are performed before the detection of small objects 

 Step 17: Uses a stride 2 operation and a CBL layer to generate an output dimension of 38𝑥38𝑥256 

 Step 18: Includes only concatenation operation, resulting in an output dimension of 38𝑥38𝑥512 

 Step 19: Uses five CBL layers, which are applied before the detection for medium objects 

 Step 20: Uses a stride 2 operation and a CBL layer to generate an output dimension of 19𝑥19𝑥512 

 Step 21: Includes only concatenation operation, resulting in an output dimension of 19𝑥19𝑥1024 

 Step 22: Uses five CBL layers, which are performed before the detection for large objects. 

The detection heads component of the network 

The green box of Figure 2.10 contains three sets of feature maps with varying dimensions (76𝑥76, 38𝑥38, 

and 19𝑥19), derived from steps 16, 19, and 22, respectively. That way the model can identify objects of 

diverse scales within the image. 

In the original YOLOv4 algorithm, the number of filters before each detection head is set to 255. That is 

determined by the following equation: 

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 =  (𝑛 + 5) ∗  3 (2.1) 
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In Equation 2.1, 𝑛 represents the number of different classes on which YOLOv4 was trained. Since it was 

trained on the COCO dataset, which includes 80 distinct classes 𝑛 = 80. 5 is a combined measure that 

comprises four anchor boxes and one objectness score, while “3” indicates the number of anchors 

integrated into the YOLOv4 model. 

For instance, a single convolutional layer featuring 255 filters with dimensions 1𝑥1 and a stride of 1 is 

applied before the (large) detection head to reduce the output dimensionality from 512 to 255. The 

resulting 19𝑥19𝑥255 feature map is used as input for detection and classification processes that locate 

large objects. Every grid cell produces three one-dimensional arrays, each representing one of the three 

anchors containing different features. These include box coordinates (𝑏𝑥 , 𝑏𝑦 , 𝑏ℎ , 𝑏𝑤), the objectness score 

(𝑝0), and class probabilities (𝑝𝑖) for each class (c). Thus, since in this case the training dataset contains 80 

classes, the length of the individual one-dimensional array is 85 (comprising 𝑏𝑥, 𝑏𝑦 , 𝑏ℎ, 𝑏𝑤 + 𝑝𝑜 + 80 class 

probabilities) for each anchor within every grid cell (Tepteris et al., 2023). 

2.3.4 Bag of Freebies (BoF) 

YOLOv4 introduced various techniques known as “Bag of Freebies” (BoF), which are included in the 

backbone and detector components of the network (Bochkovskiy et al., 2020). By utilizing BoF, the 

network requires less computational power during the training process, while increasing its overall 

accuracy. The majority of BoF focuses on data augmentation techniques, therefore the network is capable 

to generate new training instances from existing data. Allowing the model to experience a broader range 

of scenarios that might not otherwise be examined. 

The techniques applied to the backbone and the detector components of the network are (Bochkovskiy 

et al., 2020): 

 For the backbone: 

 Data Augmentation Techniques: CutMix (Yun et al., 2019a) and Mosaic data 

augmentation (Bochkovskiy et al., 2020) 

 Regularization Techniques: DropBlock regularization (Ghiasi et al., 2018) and Class label 

smoothing (Müller et al., 2020) 

 For the detector: 

 Loss Function and Optimization Techniques: Complete Intersection over Union Loss 

(CIoU-Loss) (Zheng et al., 2019a), cosine annealing scheduler (Loshchilov and Hutter, 

2017), Application of Optimal Hyperparameters (Bochkovskiy et al., 2020) 

 Data Augmentation and Regularization Techniques: Mosaic data augmentation, 

DropBlock regularization, Cross-mini Batch Normalization (CmBN) (Bochkovskiy et al., 

2020), Self-Adversarial Training (SAT) (Zhao et al., 2022) 

 Training Efficiency and Model Robustness Enhancements: Cross-mini Batch 

Normalization (CmBN), Elimination of Grid Sensitivity (Bochkovskiy et al., 2020), 

Application of Multiple Anchors for a Single Ground Truth (Bochkovskiy et al., 2020) 

In this thesis, we will only cover the BoF that was used to modify the configuration files before the 

execution of the experiments. The selected technique is: 
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 For the backbone: 

 Data Augmentation Techniques: Mosaic data augmentation 

 For the detector: 

 Data Augmentation and Regularization Techniques: Mosaic data augmentation 

and it will be described in Chapter 3. 

2.3.5 Bag of Specials (BoS) 

In addition to the “Bag of Freebies” (BoF), YOLOv4 introduces the “Bag of Specials” (BoS), which comprises 

a collection of more advanced techniques requiring more computational power. They ares are included in 

the backbone and the detector components of YOLOv4 network, similar to BoF (Bochkovskiy et al., 2020). 

 

The techniques applied to the backbone and the detector components of the network are (Bochkovskiy 

et al., 2020): 

 For the backbone: 

 Activation function: Mish activation function (Misra, 2020) 

 Regularization Techniques: Cross-Stage Partial connections (CSP) (Wang et al., 2019) 

 Regularization and Optimization Techniques: Multi-input Weighted Residual Connections 

(MiWRC) (Bochkovskiy et al., 2020) 

 Training Efficiency and Model Robustness Enhancements: Mish activation function, 

Cross-Stage Partial connections (CSP), Multi-input Weighted Residual Connections 

(MiWRC) 

 For the detector: 

 Activation function: Mish activation function 

 Optimization Techniques: Distance-Intersection over Union - Non-Maximum Suppression 

(DIoU-NMS) (Zheng et al., 2019a) 

 Training Efficiency and Model Robustness Enhancements: Mish activation function, 

Spatial Pyramid Pooling (SPP) (He et al., 2014), Spatial Attention Module (SAM) (Woo et 

al., 2018), Path Aggregation Network (PANet) (Liu et al., 2018), Distance-Intersection over 

Union - Non-Maximum Suppression (DIoU-NMS) 

In this thesis, like BoF techniques, we will only cover the BoS that were used to modify the configuration 

files before the execution of the experiments. The selected techniques are: 

 For the backbone: 

 Activation function: Mish activation function 

 Training Efficiency and Model Robustness Enhancements: Mish activation function 

 For the detector: 

 Activation function: Mish activation function 

 Optimization Techniques: Distance-Intersection over Union - Non-Maximum Suppression 

(DIoU-NMS) 

 Training Efficiency and Model Robustness Enhancements: Mish activation function, 

Distance-Intersection over Union - Non-Maximum Suppression (DIoU-NMS) 
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and they will be described in Chapter 3. 

2.3.6 YOLOv4’s loss function 

To begin with, the loss function has multiple uses in the YOLOv4 model. It is not used only as an evaluation 

metric for training performance, but it also drives the optimization mechanism to adjust model 

parameters, such as weights (DataRobot, 2018). The loss function applied in the YOLOv4 model contains 

three different losses: 

 Regression loss: The regression loss function (𝐿𝐶𝐼𝑜𝑈) is used to reduce the disparity existing 

between the predicted bounding box coordinates and those of the ground truth bounding box 

(Wu et al., 2021). Thereby, it is designed to improve the accuracy in object localization, and its 

mathematical representation is as follows: 

𝐿𝐶𝐼𝑜𝑈 = 1 −  𝐼𝑜𝑈 +  
𝜌2(𝑏, 𝑏𝑔𝑡)

𝑐2
+ 𝑎𝑢 (2.2) 

where, 

 𝑏  and 𝑏𝑔𝑡: are the central coordinates of the boxes 𝐵 and 𝐵𝑔𝑡 , respectively 

 𝜌: is the Euclidean distance between the centroids of the predicted and ground truth 

bounding boxes 

 𝑐: is the length of the diagonal line that covers both the predicted and ground truth bounding 

boxes when they are enclosed in the smallest possible shape 

 𝛼: can be adjusted to balance the importance of the distance between objects and their size 

differences when calculating CIoU. 

 𝑢: functions as a standardizing factor, accommodating the difference in aspect ratio between 

the predicted and ground truth bounding boxes 

 𝐼𝑜𝑈: is the Intersection over Union, as it is discussed in Appendix A.1. 

The CIoU and IoU are further discussed in Appendix A. 

 Confidence loss: The confidence loss (𝐿𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 ) is used in the training process to improve the 

model's object detection performance. If the model produces poor results, it applies constraints 

to itself based on its confidence estimates about the presence of objects in different grid cells and 

its predictions of bounding boxes (Nguyen et al., 2022). The mathematical representation for this 

loss is as follows: 

𝐿𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = ∑∑𝐼𝑖𝑗
𝑜𝑏𝑗[�̂�𝑖 log(𝐶𝑖)+(1 − �̂�𝑖) log(1 − 𝐶𝑖) ]  

𝐵

𝑗=0

𝑆2

𝑖=0

− 𝜆𝑛𝑜𝑜𝑏𝑗 ∑∑𝐼𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

𝐵

𝑗=0

𝑆2

𝑖=0

[�̂�𝑖 log(𝐶𝑖) + (1 − �̂�𝑖) log(1 − 𝐶𝑖)] 

(2.3) 

where, 

 𝑆2: represents the total number of grid cells 
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 𝐵: indicates the number of bounding boxes located per grid cell 

 𝐼𝑖𝑗
𝑜𝑏𝑗

: an indicator function representing the presence of an object within cell 𝑖 associated with 

anchor 𝑗, taking the value 1 to indicate its presence and 0 otherwise 

 𝐼𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

: an indicator function representing the absence of an object within cell 𝑖 and anchor 𝑗, 

assigning the value 1 to denote this absence and 0 otherwise 

 𝐶𝑖: represents the ground truth confidence score for the presence of an object in cell 𝑖 

 �̂�𝑖: represents the predicted confidence score for the presence of an object in cell 𝑖 

 log(𝐶𝑖): computes the natural logarithm of the ground truth confidence score 

 𝜆𝑛𝑜𝑜𝑏𝑗: provides the weighting term for cells without any object presence. 

 

 Classification loss: The classification loss (𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛) is used for training the object detection 

model (Nguyen et al., 2022).  Its role involves applying limitations for incorrect classifications 

related to each bounding box, and its mathematical representation is as follows: 

𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = ∑𝐼𝑖𝑗
𝑜𝑏𝑗

𝑆2

𝑖=0

∑ [𝑝 
𝑖
(𝑐) log(𝑝𝑖(𝑐))  − (1 − 𝑝 

𝑖
(𝑐)) log(1 − 𝑝𝑖(𝑐))]

𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

 (2.4) 

where, 

 𝑆2: represents the total number of grid cells 

 𝑐: represents each individual class that the model is trained to detect 

 𝑐𝑙𝑎𝑠𝑠𝑒𝑠: includes all categories of objects that the model is trained to identify 

 𝐼𝑖𝑗
𝑜𝑏𝑗

: an indicator function denoting the presence of an object within cell 𝑖 associated with 

anchor 𝑗, taking the value 1 to indicate its presence and 0 otherwise 

 𝑝𝑖(𝑐): represents the true probability that object 𝑖 belongs to class 𝑐 

 𝑝 
𝑖
(𝑐): represents the predicted probability that object 𝑖 belongs to class 𝑐. 

Consequently, the overall loss function of YOLOv4’s model (TL) is described as follows: 

𝑇𝐿 = 𝐿𝐶𝐼𝑜𝑈  − 𝐿𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒  − 𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛  

=  1 −  𝐼𝑜𝑈 +  
𝜌2(𝑏, 𝑏𝑔𝑡)

𝑐2
+ 𝑎𝑢 

− ∑∑𝐼𝑖𝑗
𝑜𝑏𝑗[�̂�𝑖 log(𝐶𝑖)+(1 −  �̂�𝑖) log(1 − 𝐶𝑖) ]  

𝐵

𝑗=0

𝑆2

𝑖=0

− 𝜆𝑛𝑜𝑜𝑏𝑗 ∑ ∑𝐼𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

𝐵

𝑗=0

𝑆2

𝑖=0

[�̂�𝑖 log(𝐶𝑖) + (1 −  �̂�𝑖) log(1 − 𝐶𝑖)]  

− ∑𝐼𝑖𝑗
𝑜𝑏𝑗

𝑆2

𝑖=0

∑ [𝑝 
𝑖
(𝑐) log(𝑝𝑖(𝑐)) − (1 −  𝑝 

𝑖
(𝑐)) log(1 −  𝑝𝑖(𝑐))]

𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

 

(2.5) 
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In Equation 2.5, 𝑆2 is the configuration of S × S grid, where 𝐵 candidate boxes within each grid are 

generated. This results in a total of 𝑆 𝑥 𝑆 𝑥 𝐵 bounding boxes. In instances where no object (𝑛𝑜𝑜𝑏𝑗) is 

present within a box, the computation only includes the confidence loss associated with the box. This 

confidence loss function, which uses cross entropy error, is divided into two distinct components: one 

addressing the presence of an object (𝑜𝑏𝑗), and the other addressing its absence (𝑛𝑜𝑜𝑏𝑗). The introduction 

of the weight coefficient 𝜆 within the loss function of 𝑛𝑜𝑜𝑏𝑗 is designed to reduce the contribution weight 

assigned to calculations concerning scenarios with no object. Furthermore, the classification loss function 

also uses cross entropy error. In scenarios where the j-th anchor box of the i-th grid is tasked with 

delineating specific ground truth, the classification loss function is applied to the bounding box generated 

by this anchor box (Wu et al., 2021). 

2.4 Scaled-YOLOv4 models 

The present Section overviews the evolution from YOLOv4 to Scaled-YOLOv4, which is designed to achieve 

an optimal balance between speed and accuracy. Specifically, the Scaled version of YOLOv4 introduces a 

fully optimized CSP referred to YOLOv4-P5, which is used as the foundational architecture for following 

evolutions to YOLOv4-P6 (see Figure 2.14 and 2.15) and YOLOv4-P7 (Wang et al., 2020). 

 

Figure 2.14 YOLOv4-p6 neural network architecture (Wang et al., 2020) 

The backbone of the Scaled network optimizes both its size and the number of computational steps by 

applying compound scaling. This approach deals with adjusting both the size (𝑠𝑖𝑧𝑒𝑖𝑛𝑝𝑢𝑡) of the input 

images and the number of steps (#stage) together (Wang et al., 2020). During the training process in each 

stage (CSPDark), the model increases the number of filters and the number of residual blocks used, but it 

decreases the size of the input images. Specifically, the size of the images is divided by two, and the 

number of filters is multiplied by two as it moves from one stage to another until it reaches the SPP 
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module. In addition, the number of residual blocks within each stage follows a specific pattern 

represented by the array [1, 3, 15, 15, 7, 7]. For instance, step 5 contains fifteen residual blocks inside its 

CSPDark block (see Figure 2.14). 

However, the YOLOv4-p6 model limits the number of filters to 1024 to prevent issues such as overfitting 

and high computational demands. In steps 8 and 9, it uses 1024 filters, which is its maximum use. 

Figure 2.15 represents the CSP block that the model uses to process the input image throughout the 

backbone component of the network. All CSP blocks have the same pattern, they begin with a 3𝑥3 

convolution layer and produce a feature map with 𝑐 channels. This feature map is then split into two 

paths, each with 
𝑐

2
 channels. The reason for reducing the channels to 

𝑐

2
 is to improve feature selection and 

computational efficiency by decreasing the computational load and memory use. The first path is further 

processed with a series of residual blocks. Each one of these includes an 1𝑥1 convolution, followed by a 

3𝑥3 convolution and a shortcut layer. After the residual blocks, the resulting output feature map is 

processed through one more 1𝑥1 convolution. Meanwhile, the second path skips these additional 

convolutions, preserving the original split feature map. Afterwards, the two paths are concatenated again 

to create a combined feature map with 𝑐 channels. Finally, this combined feature map is processed 

through an 1𝑥1 convolution to adjust the number of output channels by merging the information from 

both paths. 

 

Figure 2.15 Representation of the Scaled-YOLOv4 backbone’s CSP block (Shaikh et al., 2023) 

The neck of the Scaled network functions similarly to YOLOv4. Specifically, it uses SPP to handle objects of 

different sizes and scales within the network and PANet to improve the object detection process by 

maintaining spatial details. Specifically, the model optimizes computational efficiency by incorporating the 

PANet architecture, which combines features obtained from various feature pyramids (see Figure 2.16). 

Figure 2.16 illustrates two configurations: (a) reversed dark layers (SPP) and (b) reversed CSP dark layers 

(SPP). 
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Both models use two different notations to describe their functionality, which are: 

 𝑘: is the filter size of the convolutional layer. For instance, 𝑘 = 1 indicates that the convolutional 

layer uses a 1𝑥1 kernel, and 𝑘 = 3 indicates that it uses a 3𝑥3 kernel 

 𝑏: is the number of filters in the convolutional layer. 

The model (a) includes a series of convolutional layers with the following structure: 𝑐𝑜𝑛𝑣 𝑘 = 1,
𝑏

2
, 

𝑐𝑜𝑛𝑣 𝑘 = 3, 𝑏, and 𝑐𝑜𝑛𝑣 𝑘 = 1,
𝑏

2
. The SPP is positioned in the center of the computation pipeline. 

Following the SPP module, the structure changes to 𝑐𝑜𝑛𝑣 𝑘 = 3, 𝑏 and 𝑐𝑜𝑛𝑣 𝑘 = 1,
𝑏

2
. 

The model (b) begins with a 𝑐𝑜𝑛𝑣 𝑘 = 1, 𝑏 layer, followed by a split into two paths (
𝑏

2
). The first path skips 

all convolutional layers and SPP to proceed to the concatenation operation, while the second path 

continues with 𝑐𝑜𝑛𝑣 𝑘 = 3,
𝑏

2
 and 𝑐𝑜𝑛𝑣 𝑘 = 1,

𝑏

2
 layers. Then, it passes through the SPP, which is 

positioned again in the center of the computation pipeline. Following the SPP, there is one more 𝑐𝑜𝑛𝑣 𝑘 =

3,
𝑏

2
 before reaching the concatenation operation, where it merges the feature map of the first path with 

the second one. 

After combining features from different feature pyramids (with the use of a route layer), the resulting 

feature map is 19𝑥19𝑥512. This feature map then passes through a convolutional layer (with stride of 1 

and filters size 1𝑥1), resulting in a 19𝑥19𝑥1024 feature map. Subsequently, it proceeds through two series 

of reversed Darknet residual layers (before and after SPP), while avoiding shortcut connections. However, 

since the Scaled-YOLOv4 implements the CSP connection to its entire network, it leads into a modified 

neck component (see Figure 2.16). Following the successful integration of CSP, the modified module results 

in a 40% reduction of computational load (Wang et al., 2020). 

As depicted in Figure 2.16, SPP was first added to the central position in the computation pipeline of the 

neck. Similarly, in the CSPPAN, the SPP module was positioned at the middle of the computation group 

pipeline (Wang et al., 2020). 

 

Figure 2.16 Depicts the computational blocks of the reversed Dark layer (SPP) on the left and the reversed CSP dark layers (SPP) 

on the right (Wang et al., 2020) 
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Experimental findings confirm that YOLOv4-P6 reaches real-time operational efficiency, achieving a video 

processing rate of 30 frames per second (fps) when the width scaling factor is set to 1. For YOLOv4-P7, 

real-time functionality is achieved at a video processing rate of 15 fps, depending on a width scaling factor 

of 1.25 (Wang et al., 2020). 

2.5 Comparison between YOLO and other detection models 

To demonstrate the progressive advancements in YOLO object detection algorithms, Table 2.1 offers a 

comparative analysis between the foundational YOLO models and the innovative Scaled-YOLOv4. This 

comparison not only shows the evolution of the YOLO family over time, but also highlights improvements 

in key areas of the model's design. 

Table 2.1 Comparison between YOLOv1, YOLOv2, YOLOv3 , YOLOv4, and Scaled-YOLOv4 models 

Differences in: YOLOv1 YOLOv2 YOLOv3 YOLOv4 Scaled-YOLOv4 

Architecture 

Combines 

region 

proposal with 

object 

categorization 

in a single 

neural 

network 

forward pass 

Uses higher 

resolution 

classifier (from 

224x224 to 

448x448) 

Added residual 

blocks 

Added BoF 

(Bag of 

Freebies) and 

BoS (Bag of 

Specials) 

Added CSP (cross-

stage partial) 

connections 

Contains two 

fully 

connected 

layers at the 

end of the 

architecture 

Fully 

connected 

layers were 

removed 

Uses CIoU 

(Complete 

Intersection 

Over Union) 

Batch 

Normalization 

was added 

Utilizes an 

updated 

NMS: 

Greedy-NMS 

Updated loss 

function 

 

Backbone  Darknet-19 Darknet-53 
CSPDarknet-

53 

Modified 

CSPDarknet-53 with 

stages 

Neck - - - 
Added SPP 

and PANet 
- 
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Differences in: YOLOv1 YOLOv2 YOLOv3 YOLOv4 Scaled-YOLOv4 

Head 

One detection 

head 

One detection 

head 

Three 

detection 

heads were 

added to 

classify small, 

medium, and 

large objects 

respectively 

Three 

detection 

heads 

There are four 

detection heads in 

total, to classify 

very small, small, 

medium and large 

objects respectively 
Used a grid of 

dimension SxS 

to extract the 

feature map 

from images 

Utilization of 

anchor boxes 

The accuracy 

increased for 

small objects 

but decreased 

for medium 

and large 

objects 

Bounding box 

prediction: 

predicts 

location 

coordinates in 

relation to the 

grid cell's 

location. 

Multi-label 

prediction was 

added 

Objectness 

score was 

added 

Table 2.1 compares the various versions of YOLO models. The initial version, YOLOv1, pioneered the 

integration of region proposal and object categorization within a single neural network forward pass. It 

used a grid of dimensions 𝑆 𝑥 𝑆 to extract feature maps from images, followed by two fully connected 

layers before the object detection stage. YOLOv2 introduced architectural modifications by replacing the 

fully connected layers with anchor boxes, incorporating Darknet-19 as the backbone and batch 

normalization in convolutional layers. Additionally, YOLOv2 allowed for training on higher resolution 

images (from 224x224 to 448x448) to improve the bounding box prediction accuracy. 

YOLOv3 introduced further advancements with the adoption of Darknet-53 as the backbone. The model 

added residual blocks to its entire architecture and three detection heads at the end to identify small, 

medium, and large objects respectively. Additionally, multi-label prediction and objectness score were 

integrated. All these advancements led to improved accuracy for small objects, but with reduced 

performance for medium and large objects. Subsequently, YOLOv4 introduced significant updates such as 

Bag of Freebies (BoF) and Bag of Specials (BoS) techniques, refining its loss function and adopting Greedy-

NMS for non-maximum suppression. Furthermore, it introduced a) switching to CSPDarknet-53 as its 

backbone and introducing) a neck structure after the backbone comprising Spatial Pyramid Pooling (SPP) 

and Path Aggregation Network (PANet). Even if it extended its architectural depth, it retained the utility 

of three detection heads. 
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In the evolution from YOLOv4 to Scaled-YOLOv4, further improvements were introduced:  Extension of 

the integration of CSP connections throughout the model's architecture, along with modifications in the 

backbone and neck components. The backbone is a modified version of CSPDarknet-53, with the number 

of layers varying depending on the Scaled YOLO model version used; YOLO-p5 (CSP-P5), YOLO-p6 (CSP-

P6), and YOLO-p7 (CSP-P7) incorporate progressively more layers. The neck component incorporates CSP 

connections, creating CSPPAN. The CSPPAN has the same utility as PANet, but it is even better by 

incorporating CSP connections. Finally, the number of detection heads varied across Scaled YOLO versions, 

with YOLO-p5 featuring three heads, YOLO-p6 featuring four, and YOLO-p7 featuring five, respectively. 

Table 2.2 compares different detection models based on the metric AP (Average Precision), which is 

detailed in Section 2.6. AP is a metric that evaluates the precision of an object detection model by 

averaging the precision values over a range of IoU thresholds, specifically from 0.5 to 0.95 in steps of 0.05. 

In contrast, AP50 assesses the precision at a single IoU threshold of 0.50, which indicates the model's 

accuracy when the overlap between predicted and ground truth bounding boxes is equal to or greater 

than 50%. While AP provides a complete perspective by considering various overlap levels, AP50 is less 

demanding and generally results in higher precision values due to the lower overlap requirement. 

All models were trained on the COCO dataset to provide more accurate results. The objective of this table 

is to determine which detection model has the highest rate of object detection and classification. 

Table 2.2 Comparison between various detection models that are trained on coco dataset (Redmon and Farhadi, 2016a) 

(Redmon and Farhadi, 2018) (Bochkovskiy et al., 2020) (Wang et al., 2020) 

Model Size Backbone AP AP50 

Faster R-CNN - - 21.9% 42.7% 

SSD300 - - 23.2% 41.2% 

SSD512 - - 26.8% 46.5% 

YOLOv2 - Darknet-19 21.6% 44% 

YOLOv3 416x416 Darknet-53 31% 55.3% 

YOLOv3 608x608 Darknet-53 33% 57.9% 

YOLOv4 416x416 CSPDarknet-53 41.2% 62.8% 

YOLOv4 512x512 CSPDarknet-53 43% 64.9% 

YOLOv4-p5 896x896 CSP-P5 51.8% 70.3% 

YOLOv4-p6 1280x1280 CSP-P6 54.5% 72.6% 

YOLOv4-p7 1536x1536 CSP-P7 55.5% 73.4% 

 

Table 2.2 illustrates that the highest result was produced from YOLOv4-p7, which belongs to Scaled-

YOLOv4 models. 

The analysis in Section 2.5 shows that the Scaled-YOLOv4 models have better Average Precision (AP) 

results. If we examine the development of the features introduced in each YOLO update, it is clear that 
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these improvements have been implemented with a reduction in training speed, as a compromise to 

improve prediction accuracy. 

In this thesis we selected to use Scaled-YOLOv4 models, since they feature the best detection and 

classification results. From the three models that were included in the Scaled-YOLOv4 family, the YOLOv4-

p6 algorithm was chosen. Despite a marginal superiority in AP demonstrated by YOLOv4-p7, it was avoided 

due to its slower training speed. 

2.6 Analysis of performance metrics 

Performance metrics are used to evaluate the detection performance of a model. Important metrics 

include precision, recall, F1-score, Average Precision (AP) and mean Average Precision (mAP).  All are based 

on the model’s classification and detection results, that are identified as True Positives (TP), False Positives 

(FP), True Negatives (TN), False Negatives (FN). The focus of this Section is to provide an overview of these 

metrics, which are significant for all object detection models. 

True positives (TP)/ False positives (FP)/ False Negatives (FN)/ True Negatives (TN) 

To describe these four concepts (Google, 2022), we assumed the 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 to be 0.5 (see Table 2.3). As 

shown in Appendix A.1, IoU indicates the overlap between the predicted bounding box and the ground 

truth bounding box. 

 True positives (TP) occur when a) 𝐼𝑜𝑈 ≥ 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 meaning that the predicted bounding box 

overlapped beyond the threshold (or even matched) the ground truth bounding box, and b) the 

object has been classified correctly. As a result, a true positive result indicates that the predicted 

bounding box correctly predicted the location and class of an object within a ground truth 

bounding box. 

 False positives (FP) can occur in four different scenarios regarding to the predicted bounding 

boxes: 

 When 𝐼𝑜𝑈 ≥ 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, but the object has been misclassified (classified in the wrong 

class) 

 When 𝐼𝑜𝑈 < 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,  that is, the predicted bounding box mislocated the object 

 If there are multiple predicted bounding boxes with 𝐼𝑜𝑈 ≥ 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  (say IoU = 0.88, 

0.71, and 0.75). Only the one with the highest IoU (e.g. 0.88) is considered a true positive. 

The remaining predicted bounding boxes are classified as false positives 

 When a predicted bounding box appeared without a corresponding ground truth 

bounding box with the respective class. 

As a result, a false positive result indicates that the predicted bounding box did not correctly 

predict the class or location of an object within a ground truth bounding box. 

 False negatives (FN) can occur in three different scenarios regarding to the ground truth bounding 

boxes: 

 Similar to the scenario of FP, when 𝐼𝑜𝑈 ≥ 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, the model has missed to correctly 

predict the class of the object of the ground truth bounding box. For instance, in Figure 

2.17, example (c) represents a pair of FP and FN results. Both were generated because the 
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predicted bounding box misclassified the class of the object of the ground truth bounding 

box, resulting in an unsuccessful detection. FP comes from the fact that the model 

predicted a small vehicle which is not the predicted object (person). FN comes from the 

fact that the model did not predict the person (negative), although it exists).  

 Similar to the scenario of FP, when 𝐼𝑜𝑈 ≤ 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, the model has failed to 

successfully detect the location of the object of the ground truth bounding box. For 

instance, in Figure 2.17, example (c) represents a pair of FP and FN results. Both were 

generated because the object of the predicted bounding box was mislocated due to 

insufficient overlap between the predicted and ground truth boxes, resulting in an 

unsuccessful detection, even if the model correctly predicted the class of the ground truth 

object.  FP comes from the fact that the model predicted a person which does not exist at 

the predicted location.  FN comes from the fact that the model did not predict the object 

that exists in the location of the ground truth box.  

 When a an object and its ground truth bounding box are present, but the model does not 

predict a bounding box at all in the said location. This means that there was an object, but 

the model did not detect it 

As a result, a false negative indicates that the object included in the ground truth bounding box 

was not predicted by the predicted bounding box. 

 True negatives (TN) are the cases in which the model correctly identifies the absence of an object.  

Table 2.3 Representation of TP/FP/FN/TN 

 An object exists in reality? 

An object was identified by the model? Yes No 

Yes 
TP (correct class and 𝐼𝑜𝑈 ≥ 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) 

FP (wrong class or 𝐼𝑜𝑈 < 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) 
FP 

No FN TN 

 

Figure 2.17 depicts three different examples using Intersection over Union (IoU) to evaluate the accuracy 

of predicted bounding boxes compared to ground truth bounding boxes. The green box represents the 

ground truth bounding box, and the purple box represents the predicted bounding box. In the following 

examples, the 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 has been set to 0.5 (50%). 

In Example (a), the IoU is 0.84, which is greater than the 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. This means that the predicted 

bounding box overlapped the ground truth box sufficiently, and it also classified the class “person” 

correctly. As a result, Example (a) is a true positive (TP). 

In Example (b), the IoU of the two boxes is 0.74, which is greater than the 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. This means that 

the predicted bounding box overlapped the ground truth box sufficiently. However, the model 

misclassified the object as a "small vehicle" instead of a "person”. Consequently, this misclassification 

results in a false positive (FP), since the object was incorrectly identified (purple arrow). Due to this 

misclassification, the model did not correctly predict the "person" present in the ground truth bounding 
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box. Therefore, it also results in a false negative (FN) because the model did not correctly detect the actual 

object (a "person") present in the ground truth bounding box (green arrow). 

In Example (c), the IoU of the two boxes is 0.33, which is less than the 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. This means that the 

predicted bounding box did not overlap sufficiently with the ground truth bounding box. Although the 

classification of the object (in the two boxes) is correct the result is considered a false positive (purple 

arrow), because the 𝐼𝑜𝑈 <  𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  (0,33 <  0.5). Due to the insufficient overlap (low IoU), the 

model's prediction (predicted bounding box) does not sufficiently match the ground truth bounding box. 

Therefore, this scenario also results in a false negative (green arrow) because the ground truth object is 

not sufficiently detected within the predicted bounding box according to the 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. 

 

Figure 2.17 Examples of True Positives, False Negatives, and False Positives 

Figure 2.18 illustrates the two different negatives that can occur from the use of bounding boxes. These 

are false negatives and false positives.  On the left, the green box represents a ground truth bounding box 

where a person is present, but there is not a corresponding predicted bounding box (purple). This results 

in a false negative because an object was not detected. On the right, a purple predicted box appears 

without a corresponding green ground truth box. This results in a false positive because a non-existent 

object was predicted. 

 

Figure 2.18 Examples of False Negative and False Positive 
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In Figure 2.19, there are two predicted bounding boxes, each overlapping the ground truth bounding box. 

The first predicted bounding box has an IoU of 0.76, which exceeds the 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. Similarly, the second 

predicted bounding box has an IoU of 0.89, also surpassing the 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. Both predicted bounding 

boxes correctly classify the object as “person”. However, the second predicted bounding box has higher 

IoU than the first (𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≤ 0.76 ≤ 0.89). Consequently, the prediction with the highest IoU is true 

positive, while the other is false positive. 

 

Figure 2.19 Illustration of multiple bounding box predictions for a single object 

Precision 

The precision metric evaluates the accuracy of the model when identifying objects. It is calculated by 

dividing the number of correctly classified objects (true positives) by the total number of instances 

identified as positives (true positives and false positives) (Vakili et al., 2020). 

Thus, Precision is provided by: 

Precision =
TP 

TP + FP 
 (2.6) 

 

Increased precision is observed in two circumstances (Gad, 2020): 

 When the model generates many accurate positive classifications, thus maximizing true positives 

 When the model minimizes the frequency of incorrect positive classifications, thus reducing the 

number of false positives. 

Recall 

The recall metric evaluates the ability of the detector to locate the objects within the image. It is calculated 

as the number of true positive instances (correctly identified objects) divided by the total number of object 

instances (true positives and false negatives) (Vakili et al., 2020). 
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Recall is mathematically represented as: 

Recall =
TP 

TP + FN 
 (2.7) 

 

High recall shows that the model finds most of the objects, thus avoiding missing objects in the image. In 

contrast, reduced recall indicates that the model is missing a number of objects, which can lead to 

inaccurate object detection and inferior performance in certain applications (iguazio, 2022). 

F1-score 

Precision and recall measure quite different model abilities.  For example, assume an image with one 

object that is identified correctly by the model (in terms of both class and bounding box).  Then recall = 1.  

However, precision may be 0.1 if the model has identified 10 objects in the image (one TP and nine FP).  

The F-1 metric attempts to combine these two measures to one that assesses the overall performance of 

the model  (Vakili et al., 2020). It is represented as the harmonic mean of precision and recall: 

F1 − score = 2 ∗
Precision ∗ Recall 

Precision + Recall 
 (2.8) 

 

The result from Equation 2.8 ranges from 0 to 1 (0%-100%) and represents the balance between precision 

and recall (Kundu, 2022). 

Average Precision (AP) 

Consider the relationship between recall and precision across many images.  Specifically, for any recall 

value 𝑟 (i.e. the ability of the model to identify objects within an image), consider the corresponding 

precision value 𝑝(𝑟) (how many of the positives identified are true positives). 

Average Precision (AP) is the mean precision across the recall range that is generated by the model across 

these multiple images; that is (Anwar, 2022): 

𝐴𝑃𝑖 = ∫ 𝑝(𝑟)𝑑𝑟
1

𝑟=0

 

 

(2.9) 

where, 

 𝐴𝑃𝑖: represents the Average Precision calculated for each class 𝑖 

 𝑝(𝑟): represents the precision-recall curve across multiple images 

 𝑟: represents the recall values ranging from 0 to 1. 

In Section 2.5, Table 2.2 displays the results in AP and AP50. The difference between them is that AP50 

measures the average precision at a single IoU threshold of 0.5 (50%). This metric represents the model's 

accuracy when the overlap between the predicted and ground truth bounding boxes equals or exceeds 

50%. 
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As an example, let’s create a PR curve for one class using the data provided below: 

Table 2.4 Experimental data on recall and precision 

Images Recall Precision 

1 20%* 100%** 

2 30% 100% 

3 30%* 67%** 

4 50% 75% 

5 50% 62% 

6 70% 66% 

7 70% 57% 

8 70% 52% 

9 90% 49% 

10 100% 53% 

* In the first example 20% of the objects in the image were identified correctly, while in the second one 

30% of the objects were identified correctly 

** In the first example, all the identified objects were true, and in the second only 2/3 of the identified 

objects were true. 

Based on Table 2.4, we created the PR curve shown below: 

 

Figure 2.20 The Precision/Recall curve from the data of Table 2.4 

To evaluate AP we may use the method from the 2007 PASCAL VOC challenge (Everingham et al., 2010), 

which is also used in the YOLOv4 and YOLOv4-p6 models  in the validation and testing processes. This 

method takes Precision values at 11 equally distributed Recall points: 0, 0.1, 0.2, 0.3, ..., 1.0. For each Recall 

value, Precision is interpolated as the highest Precision observed at any higher Recall value (𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟) =

max
�̃�≥𝑟

𝑝(�̃�)). In other words, it is the maximum Precision value to the right. Based on this method, Average 

Precision is computed as: 
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𝑃 = 
1

11
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑅𝑒𝑐𝑎𝑙𝑙)

1

𝑖=0
𝑠𝑡𝑒𝑝=0.1

 (2.10) 

 

Consequently, based on the 11-point interpolation method, we created the following plot: 

 

Figure 2.21 Represents the Precision/Recall interpolated curve 

From Figure 2.21, the AP is calculated as follows: 

𝐴𝑃 = 
1

11
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑅𝑒𝑐𝑎𝑙𝑙)

1

𝑖=0
𝑠𝑡𝑒𝑝=0.1

=
1

11
(𝐴𝑃𝑟(0) + 𝐴𝑃𝑟(0.1) + 𝐴𝑃𝑟(0.2)+. . . +𝐴𝑃𝑟(1))

=
1

11
((4 ∗  1) + (2 ∗  0.75) + (2 ∗  0.66) + (3 ∗  0.53)) =  

8.41

11
= 0.7645

= 76,45% 

(2.11) 

 

The reason for interpolating the PR curve in the above way is to reduce the effect of small fluctuations in 

the PR curve, which are caused by small variations in the ranking of examples (Hui, 2019). This ensures 

that AP is not too sensitive to small variations in precision at lower recall values. 

mean Average Precision (mAP) 

The mean Average Precision (mAP) metric summarizes the Average Precision (AP) of each individual class 

and then divides the total AP value by the sum of the classes. It is mathematically represented as 

(Henderson and Ferrari, 2017): 

𝑚𝐴𝑃 =
1

𝑁
∑𝐴𝑃𝑖

𝑁

𝑖=1

 (2.12) 
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where, 

 𝐴𝑃𝑖: represents the Average Precision calculated for each class 

 𝑁: represents the total number of classes. 

In the fourth Chapter of this study, we used the mean average precision (mAP) metric to evaluate the 

performance of our modified YOLOv4-p6 algorithm. This metric can be used to evaluate the model's 

performance at different stages of training to identify optimal breakpoints to reduce computational 

resources without reducing the quality of the results. Another reason for choosing mAP is that it can be 

used for models trained with multiple classes, addressing class imbalances (the distribution between its 

classes is uneven) and detection difficulties to ensure unbiased performance across all classes (Shah, 

2022).  As a result, many detection models like YOLO algorithms are evaluated with the mAP metric, since 

they use datasets with many classes such as the COCO dataset (COCO, 2017), and because of the metric's 

robustness and extensive capabilities to optimize detection models. 

  



University of the Aegean Department of Financial and Management Engineering 
 
 

[33] 
 

Chapter 3 Data preparation and parameter selection for training the 

YOLOv4-p6 algorithm 

In this third Chapter we present key aspects that are leveraged to train the YOLOv4-p6 model in detecting 

objects within recorded images by a UAV.  The method focuses on two important training aspects: 

- The selection of the training datasets 

- Selection of training hyperparameters and the way to adjust them in order to optimize the 

efficiency of the trained model as well as the model’s detection and classification performance. 

In this Chapter we also present the experimental setup (hardware and software) used to conduct the 

training process.   

3.1 Training data selection 

The effectiveness of object detection and classification model is directly related to the amount and quality 

of data used during training. Specifically, effective training requires the application of large and high quality 

datasets to reduce errors, including those that are due to overfitting and bias. 

Numerous resources, including datasets from cloud repositories, web platforms, universities and research 

institutions, offer annotated image collections that can be downloaded and used for research purposes in 

computer vision tasks. While certain datasets are freely accessible, others require payment or subscription 

for use. 

 Cloud repositories are online platforms dedicated to storing and sharing datasets, with illustrative 

instances including: 

 GitHub (GitHub, 2008) 

 GitLab (GitLab, 2011) 

 Web platforms provide tools for searching, browsing, and downloading datasets, with illustrative 

instances including: 

 MS COCO (COCO, 2017) 

 Kaggle (Kaggle, 2010) 

 Universities and research institutions make available image datasets to assist others with their 

research. Examples of such datasets include: 

 Stanford University (Stanford University Computational Vision and Geometry Lab, 2009) 

 Massachusetts Institute of Technology (MIT) (MIT Lincoln Laboratory 1951, 1998)  

Datasets relevant to the current research are those that contain UAV recorded images that contain at least 

four object classes: 

 Person 

 Small vehicle 

 Large vehicle 

 Ship. 
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Those object classes are related to the identification of unauthorized intrusion activities within the secure 

perimeter of logistics facilities, such as ports and logistics centers.  The selection of datasets should be 

based on both quantitative and qualitative characteristics, including: 

 Quantitative characteristics: 

 Large quantity of data for the purpose of training the object detector 

 Representation of images captured from various perspectives and heights (e.g. differing 

dimensions of large vehicles like buses, commercial vehicles, etc) 

 Qualitative characteristics: 

 Inclusion of multicolored images depicting objects targeted for detection, exhibiting a 

diverse range of colors 

 The presence of numerous objects depicted in the images 

 Variation in lighting conditions across images, including different times of the day (e.g. 

morning, afternoon, and evening). 

 Capturing images affected by noise disturbances (e.g., images featuring rain or fog). 

 Variations in both the object's spatial placement within the environment and the 

characteristics of the environment itself. 

Considering the four required classes, and the above quantitative and qualitative characteristics, we 

selected the following UAV datasets for training the YOLOv4-p6 model: 

 The aerial vehicle dataset classifies the objects within the images into five distinct classes: car, 

truck, bus, minibus, and cyclist. It contains 134 annotated images captured in both urban and rural 

environments, featuring varied image resolutions spanning from 684x547 to 5,820x8,784 pixels 

(Kharuzhy, 2018). 

 DOTA (v1.5 & v2.0 combined) dataset: 

 The DOTAv1.5 dataset comprises a training set and a validation set containing 1,869 

annotated images captured across various urban and rural environments, featuring 

resolutions ranging from 353x851 to 13,383x4,287 pixels. The objects contained in the 

images of the training and validation sets are classified into sixteen distinct classes: plane, 

ship, storage tank, baseball diamond, tennis court, basketball court, ground track field, 

harbor, bridge, large vehicle, small vehicle, helicopter, roundabout, soccer ball field, 

swimming pool and container crane (Xia et al., 2021). 

 The DOTAv2.0 dataset comprises a training set and validation set containing 548 

annotated images captured across various urban and rural environments, featuring 

resolutions ranging from 1,024x1,024, to 7,360x4,912 pixels.  The objects contained in the 

images are classified into nineteen distinct classes: plane, ship, storage tank, baseball 

diamond, tennis court, basketball court, ground track field, harbor, bridge, large vehicle, 



University of the Aegean Department of Financial and Management Engineering 
 
 

[35] 
 

small vehicle, helicopter, roundabout, soccer ball field, swimming pool, container crane, 

airport, and helipad (Xia et al., 2021). 

 The VisDrone-DET dataset1 includes a total of 10,209 annotated images. Within the scope of this 

thesis, only the training and validation sets are used, which comprise 8,629 annotated images 

acquired from urban and rural landscapes. These images feature diverse resolutions ranging from 

480x360 to 2,000x1,500 pixels. They contain ten distinct classes, namely pedestrian, persons, 

bicycle, car, van, truck, tricycle, awning-tricycle, bus, and motor (Zhu et al., 2021). 

 The Stanford drone dataset includes images that contain six classes of objects: pedestrian, biker, 

skater, cart, car, bus. Overall, it contains 7,486 annotated images, featuring varied image 

resolutions spanning from 1,184x1,759, to 1,983x1,088 pixels (Robicquet et al., 2016). 

 From the entire DJI-DAC dataset this thesis uses only a portion of the DAC-SDC dataset, which 

includes only three classes: car, ship, and person. Additionally, it contains 58,186 annotated 

images from urban and rural areas with an image resolution of 640x360 pixels (Xu et al., 2018). 

The above datasets fulfill the quantitative and qualitative characteristics and possess a considerable 

volume of data for identifying the selected classes, as represented in Section 3.2. 

3.2 Annotation adjustments in UAV datasets 

In order to merge the datasets described above into a single, all inclusive dataset, the annotations of each 

individual dataset were adjusted.  This is because each dataset contains different classes and follows 

different annotation formats. Hence, the process requires standardizing the annotation format to match 

YOLO specifications (see Appendix D.1) and aligning the label names across all datasets. This ensures 

consistency in both the structure of the annotations and the labelling of the classes. 

The end objective is to provide a combined dataset that contains four different classes, namely “person”, 

“small vehicle”, “large vehicle”, and “ship”. Specifically, "person" corresponds to class zero, "small vehicle" 

to class one, "large vehicle" to class two, and "ship" to class three, with this information recorded in a text 

file and subsequently stored within the directory designated as “darknet”. Appendix D.2 provides a 

detailed analysis of the modifications made to each dataset. 

Table 3.1 and Figure 3.1 provide the number of images and the data content in terms of the four classes 

discussed above. 

Table 3.1 The labelled objects per dataset 

  Number of objects 

Datasets 
Number of 

images 

Number of 

persons 

Number of 

small vehicles 

Number of 

large vehicles 

Number of 

ships 

Aerial cars 154 - 3,787 238 - 

DOTA (v1.5 & 

v2.0) 
2,417 - 219,328 29,872 51,860 

VisDrone-DET 8,629 147,747 219,707 25,401 - 

                                                             
1 (VisDrone, 2023) 
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  Number of objects 

Datasets 
Number of 

images 

Number of 

persons 

Number of 

small vehicles 

Number of 

large vehicles 

Number of 

ships 

Stanford 

drone 
7,486 93,020 26,332 910 - 

DAC-SDC 58,186 27,965 25,014 - 5,207 

 

 

Figure 3.1 The number of labelled objects present within the datasets 

3.3 Training, validation and testing datasets 

After creating a single dataset, we created three different subsets as follows (see Figure 3.2): 

 The training set, consisting 80% of the images in the integrates set, is used for the initial training 

of the model. Within this set, there are 61,429 images including 214,905 annotations labeled as 
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'person', 361,501 annotations labeled as “small vehicle”, 45,073 annotations labeled as “large 

vehicle”, and 44,027 annotations labeled as “ship” 

 During the training process, the model’s performance is evaluated using the validation set, 

consisting of 10% of the original annotated set. Within this set, there are 7,678 images including 

26,615 annotations labeled as “person”, 67,350 annotations labeled as “small vehicle”, 5,665 

annotations labeled as “large vehicle”, and 6,368 annotations labeled as “ship” 

 The testing set, consisting of 10% of the original annotated set, is designed to provide an 

evaluation of the model's performance. Within this set, there are 7,680 images including 27,212 

annotations labeled as “person”, 62,366 annotations labeled as “small vehicle”, 5,580 annotations 

labeled as “large vehicle”, and 6,672 annotations labeled as “ship”. 

 

Figure 3.2 The percentage distribution of data into training, validation, and testing sets 

3.4: Experimental setup 

Training of the YOLOv4-p6 model requires substantial computational resources to achieve effective results. 

Key characteristics of the system used to perform this study are presented in Table 3.2: 
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Table 3.2 The hardware configuration of the system 

Hardware 

Central Processing Unit (CPU) AMD Ryzen 9 3900X 12-core Processor 

Graphical Processing Unit (GPU) Nvidia GeForce RTX 3090/PCIe/SSE2 

Graphic Card Memory (GCM) 24GB 

Random Access Memory (RAM) 32GB 

Hard Disk Drive (HDD) ATA TOSHIBA HDWD240 4TB 

Solid State Drive (SSD) ADATA SX8200PNP 512 GB 

 

The Nvidia GeForce RTX 3090/PCIe/SSE2 graphics card is ideal for deep learning tasks and has impressive 

specifications such as 328 tensor cores, 10496 CUDA cores, and 24GB of GDDR6X memory. 

The system operates on Ubuntu 20.04 LTS with the installed programs of Table 3.3 

Table 3.3 The software components of the system 

Software 

Operating System (OS) Ubuntu 20.04 LTS 

System type x64-based 

OpenCV 4.5.4 Version 

CUDA Drivers 11.4 Version 

cuDNN 8.3 Version 

 

OpenCV (Open-Source Computer Vision Library) is implemented and used in the YOLOv4 and YOLOv4-p6 

algorithms for real-time object detection and classification. OpenCV aids in preprocessing input images, 

ensuring they are correctly formatted and optimized for the selected YOLO model. Additionally, OpenCV's 

DNN (Deep Neural Network) module supports the loading and execution of YOLO models. 

The CUDA and cuDNN drivers are installed to maximize the utilization of the RTX 3090 graphics card. CUDA 

functions as a parallel computing framework that enables developers to harness the power of Nvidia GPUs 

to improve the efficiency of computationally demanding tasks. cuDNN functions as a specialized library 

containing developed deep neural network protocols designed for efficient use with Nvidia GPUs. 

3.5: Important hyperparameters for YOLOv4-p6 model training 

The objective of this research is to train the model in the most effective way in order to provide near 

optimal mean Average Precision (mAP) results. Model training depends on several hyperparameters that 

affect the efficiency of the training process and the effectiveness of the trained model.  There are two 

different types of hyperparameters:  The ones that are set based on the characteristics of the training 

dataset, and the ones the “trainer” selects to optimize training performance of the selected model. 

The first set of hyperparameters are presented in Table 3.4.  
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Table 3.4 Hyperparameters that are set based on the characteristics of the training dataset 

First set of hyperparameters 

The number of classes 

Number of max batches 

Number of steps (during which the learning rate is kept constant) 

Number of filters of the convolutional layer before each detection head 

 

Subsection 3.5.1, presents the description of each hyperparameter of the first set and the values used 

during our study based on the UAV dataset characteristics. The correct configuration of these 

hyperparameters is essential to improve the mAP results of the model. 

The second set of hyperparameters concerns those that directly influence the model's architecture and 

operation (see Table 3.5). By fine-tuning these hyperparameters, the user can intentionally modify the 

model's interpretation and processing of the input data (images or video frames), resulting in better (or 

worse) detection and classification results.  Unlike the first set of hyperparameters, the adjustments of 

which are based on the characteristics of the UAV dataset, the second set requires thorough testing of 

various hyperparameters and their combinations. The process of experimenting with different 

combinations of hyperparameters is essential for achieving optimal configuration for training. 

Table 3.5 lists all the candidates for the second set of hyperparameters, and those selected for the tuning 

of our experiments. 

Table 3.5 Hyperparameters that influence the model’s architecture and operation 

Candidates for the second set of 

hyperparameters 
Selected for tuning 

Box loss  

Image resize ✔ 

Anchor box dimensions ✔ 

Network depth  

Num anchors  

Num heads  

NMS (Non-Maximum Suppression) ✔ 

Learning rate  

Freeze layer  

Batch size  

Stride size  

Data augmentation techniques ✔ 

Activation function in YOLO layers  

Activation function in structure ✔ 
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The reasons for choosing the hyperparameters of Table 3.5 are outlined below:  

 Image resize determines the input size of images and directly affects both training and inference 

processes, as well as detection accuracy. When a model is trained with high resolution input 

images, it captures more details (corners, shapes, etc.) from the data, leading to the extraction of 

more accurate information that can improve the detection and classification results. However, 

high image resolution requires more computational resources and slows down the training 

process.   

 Anchor box dimensions refine the predetermined anchor boxes to generate better bounding 

boxes, which affects the accuracy of localizing and detecting objects of different scales and aspect 

ratios 

 NMS ensures that only the most suitable bounding boxes are retained, thus improving the model's 

predictions 

 Data augmentation techniques enhance the model's robustness by increasing the diversity and 

quantity of training data 

 Activation function determines the model's non-linear behavior, impacting its capacity to learn 

complex features from the input data. In YOLOv4-p6, the Mish activation function is used in the 

backbone and neck parts of the architecture, while the Sigmoid activation function is used in the 

convolutional layer (included in neck) before each detection head. 

Conversely, the remaining hyperparameters were not selected to be adjusted, for the reasons listed 

below.  In general, however, we had to limit the number of parameters to be tested in this work in order 

to limit the number of parameter combinations (and, thus, save computational effort) without 

compromising the point of this research. 

 Box loss is used for optimizing bounding box predictions during training. YOLOv4 and Scaled 

YOLOv4 apply CIoU loss, which has been found to be superior to other loss mechanisms, such as 

DIoU or GIoU in many cases – this is why we used CIoU and did not test the other IoU approaches 

 As mentioned in Chapter 2, Scaled YOLOv4 models include three different versions known as 

YOLOv4-P5, YOLOv4-P6, and YOLOv4-P7. Each version has a different number of layers to support 

their respective number of detection heads, with YOLOv4-P5 having three heads, YOLOv4-P6 

having four heads, and YOLOv4-P7 having five heads. YOLOv4-P6 and YOLOv4-P7 showed similar 

and better mAP results than YOLOv4-P5, but YOLOv4-P7 required more training time compared 

to the other two versions. Creating a new network with six or seven detection heads requires 

more layers, which would further worsen the problem of the excessive training time. As a result, 

we chose the YOLOv4-P6 architecture because it provides performance results close to YOLOv4-

P7, but with faster training time. This model features a total of 304 layers (network depth) 

configured to support four detection heads, with each head using four anchors to provide optimal 

performance.  

 The learning rate affects the speed at which the model parameters converge during training. 

YOLOv4-p6 performed effectively with its default learning rate setting throughout training, so we 
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did not change it to prevent premature convergence to a local optimum or slowing down the 

training process and preventing the model from converging (Zulkifli, 2018) 

 Batch size was included in the priority (for adjustment) hyperparameters, since decreasing it can 

speed up the training process but may reduce the performance of the model. However, increasing 

the batch size together with the learning rate can produce positive results (Devansh, 2023). Since 

the learning rate remains unchanged and YOLOv4-p6 specifies a batch size of 64, we used this 

configuration for our experiments. Regarding stride size, the YOLO developers did not provide any 

adjustments for smaller objects in YOLOv4-p6, since of the existing four heads in the model’s 

architecture two are designed to detect very small and small objects. Moreover, the convolutional 

layers preceding each detection head use the sigmoid activation function, which is compatible for 

UAV tasks. Therefore no modifications were made to these layers (Shatravin et al., 2022) 

 The freeze layers hyperparameter was tested in a couple of experiments. It turned out to be 

functional only in YOLOv4-p5, while in YOLOv4-p6 and YOLOv4-p7, the models either failed to 

generate any mAP results or produced poor mAP results. 

Lastly, we have ensured that the selected hyperparameters are present in all components of YOLOv4-p6's 

architecture, from the backbone and neck to the detection heads. We even considered including and 

adjusting hyperparameters at the net section of the YOLOv4-p6 configuration file, which influence the 

input data either at the beginning or during the training process. 

3.5.1. Hyperparameters defined based on the characteristics of the dataset 

In the default YOLOv4-p6 model the hyperparameters belonging to the first set (see Table 3.4) were set 

based on the COCO dataset, which the model's developers used for training. In our case we adjusted these 

hyperparameters to optimize training efficiency and tailor the model to match the characteristics of our 

modified UAV dataset. 

The number of classes 

The number of classes represents the variety of different object categories on which the model is trained 

for detection tasks. In the conducted experiments, four different classes are sought, i.e. person, small 

vehicle, large vehicle, and ship. Consequently, the "classes" hyperparameter of the original configuration 

file is adjusted from 80 to 4 classes, as depicted in Figure 3.3 (Patel et al., 2021). 

 

Figure 3.3 Illustrates the location of "classes" within the configuration file 
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The number of max batches 

The number of max batches is the total number of iterations completed by the model throughout its 

training process. The reduction in the number of max batches allows the training process to be 

accelerated, which is advantageous when computational resources are limited. In the default configuration 

file of YOLOv4-p6, the “max batches” hyperparameter is initially set to 500,500.  We adjusted this to 8,000 

(see Figure 3.4) according to the following Equation 3.1 (Solawetz et al., 2020): 

𝑀𝑎𝑥_𝑏𝑎𝑡𝑐ℎ𝑒𝑠 = 2000 × 𝑛 (3.1) 

 

where 𝑛 is the number of classes. For our UAV dataset 𝑛 = 4. 

Equation 3.1 was provided by the model developers to determine the number of max batches for training 

based on a certain dataset. However, for large datasets such as COCO, this equation might not be ideal. 

For example, the original Scaled YOLOv4 models use 500,500 max batches instead of 160,000 

(2000 × 80𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝐶𝑂𝐶𝑂 𝑑𝑎𝑡𝑎𝑠𝑒𝑡). This is based on the fact that the COCO dataset is very large, and 

the developers attempted to achieve better results.  

In our case, we used Equation 3.1 suggested by the developers to adjust the number of max batches for 

our experiments with the modified UAV dataset. Since this dataset contains 61,429 images in the training 

set, the training process passes through the entire training set 8 times (epochs) before it is completed. 

The number of epochs is calculated as follows (GeeksforGeeks, 2023): 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑝𝑜𝑐ℎ𝑠 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑥 𝑏𝑎𝑡𝑐ℎ𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑒𝑝𝑜𝑐ℎ
=

8,000

959.82
= 8,33 ≈ 8 

(3.2) 

 

where, 

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑒𝑝𝑜𝑐ℎ =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡

𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒

=  
61,429

64
= 959.82 

(3.3) 

 

Therefore, we did not follow the practices of the COCO dataset, as the modified UAV dataset has fewer 

classes and images in the training set (COCO has approximately 118,000 training images). If we had 

followed the COCO practices, the increasing number of max batches might cause overfitting due to the 

corresponding increase in the number of epochs (Ghosh et al., 2021), and it would have slowed down the 

training process. 
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Figure 3.4 Illustrates the location of "max_batches" within the configuration file 

The number of steps 

The “steps” hyperparameter defines the iteration numbers at which the learning rate is adjusted during 

training. Initially, the learning rate remains constant for several iterations and then decreases at these 

specified points. Typically, these points are 80% and 90% of the maximum batch value used. Thus, since in 

our case max batches is equal to 8000, the steps hyperparameter is (Solawetz et al., 2020): 

0,8 ∗  𝑚𝑎𝑥 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 = 0,8 ∗  8000 = 6,400 (3.4) 

0,9 ∗  𝑚𝑎𝑥 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 = 0,8 ∗  8000 = 7,200 (3.5) 

 

 

Figure 3.5 Illustrates the location of "steps" within the configuration file 
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The number of filters of the convolutional layer before each detection head 

As shown in Figure 3.6, the filters placed in front of the convolution layer at each detection head are 

responsible for generating a specific number of outputs, which include number of classes, anchor box 

coordinates, objectness score and number of anchors. The filters are calculated by following the 

subsequent equation (Patel et al., 2021):  

𝐹𝑖𝑙𝑡𝑒𝑟𝑠 = (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 + 5) ∗  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑐ℎ𝑜𝑟𝑠 (3.6) 

 

In Equation 3.6, the term “5” represents the following values: 

 4 values for the anchor box coordinates (𝑡𝑥 , 𝑡𝑦 , 𝑡𝑤 𝑎𝑛𝑑 𝑡ℎ  ) 

 1 value for the objectness score   

The number of filters placed in front of the convolution layer must follow Equation 3.6, because YOLO 

architectures are designed with a specific output dimension for each detection head (based on the number 

of anchors and the number of classes). A higher or lower number of filters will cause the algorithm not to 

run. 

The YOLOv4-p6 model includes four detection heads specialized for very small, small, medium, and large 

objects, with each head containing four anchors. As per Equation 3.6, all our experiments have four 

anchors and four classes, thus requiring 36 filters. Consequently, we must adjust the filters before each 

detection head, reducing the number from 255 to 36.  

 

Figure 3.6 Illustrates the location of "filters" within the configuration file 
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In summary, the adjustments to the first set of hyperparameters are presented in Table 3.6: 

Table 3.6 Represents the adjusted values of the first set of hyperparameters 

First set of hyperparameters Default Adjusted 

The number of classes 80 4 

The number of max batches 500,500 8000 

The number of steps 400,000, 450,000 6,400, 7,200 

The number of filters of the convolutional 

layer before each detection head 
255 36 

 

3.5.2 Hyperparameters related to the model’s architecture and operation 

Image resize 

At the beginning of the YOLOv4-p6 configuration file, many hyperparameters are specified in the [net] 

section, including "width" and "height" which adjust the input image dimensions. As shown in Figure 3.7, 

YOLOv4-p6 is trained with an image resolution of 1280𝑥1280 pixels. This high resolution helps the model 

collect more information as the input progresses through the network, but it also increases training time. 

To investigate the trade-off between high image resolution and model effectiveness, we modified the 

"width" and "height" hyperparameters to reduced values for two main reasons: 

 To determine if YOLOv4-p6 can still achieve good results with reduced input image size 

 To identify the optimal combination of hyperparameters that produces the highest mAP. With a 

smaller input image size, training is completed faster, allowing us to test different hyperparameter 

combinations and identify the one that achieves the highest mAP result. We will then use this 

optimal combination to train the model at a higher input resolution to achieve even better results. 

Therefore, we used two levels of image resolution:  The default one of 1280𝑥1280, and a reduced one of 

960𝑥960 pixels. Figure 3.7 shows how we adjusted the “height” and “width” hyperparameters. 

 

Figure 3.7 The locations of "width" and "height" within the configuration file 
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Anchor box dimensions 

The architecture of YOLOv4-p6 includes four detection heads, each with two specific hyperparameters: 

"mask" and "anchors" (refer to Figure 3.8). The hyperparameter "anchors" refers to anchor boxes, which 

are predefined bounding boxes of various sizes and aspect ratios, described in detail in the Appendix B.2 .  

As shown in Figure 3.8, the default YOLOv4-p6 model uses the following anchor box sizes: [13,17, 31,25, 

24,51, 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 545,357, 616,618, 1024,1024]. 

Each detection head uses a different set of boxes to predict objects, which is selected by the "masks" 

hyperparameter at each head. The "masks" hyperparameter is an index containing four values that specify 

the anchor boxes used within each grid cell. Figure 3.8 illustrates a small detection head configured with 

the "masks" index [0, 1, 2, 3]. Specifically, index 0 corresponds to the anchor box dimensions of 13x17, 

index 1 to 31x25, and index 2 to 24x51. 

 

Figure 3.8 The locations of “masks” and "anchors" within the configuration file 

Although anchor boxes are refined during training to better enclose objects, it is essential to initialize them 

correctly before training. This ensures that they can be refined effectively and faster during training. The 

original anchor boxes in YOLOv4-p6 were generated using the k-means algorithm applied to the COCO 

dataset. K-means clustering groups objects by their spatial characteristics and identifies centroids that 

define optimal anchor box dimensions (Oti et al., 2021). As shown in the Appendix B.2 (description of the 

command), we applied the same algorithm to our UAV dataset using the following command: 

./darknet detector calc_anchors cfg/"NAME_OF_THE_DATA_FILE".data -num_of_clusters 

"NUMBER_OF_CLUSTERS" -width "NUMBER_OF_IMAGE_WIDTH" -height "NUMBER_OF_IMAGE_HEIGHT" 

An example by applying the code: 

./darknet detector calc_anchors cfg/traffic_lights.data -num_of_clusters 16 -width 1280 -height 1280 
Figure 3.9 Representation of the use of the k-means algorithm 

The application of k-means clustering is to calculate sixteen new optimal anchor box sizes based on our 

UAV dataset. Therefore, we used the k-means algorithm to identify clusters of anchor box sizes that best 

fit the objects in our images of the specified size. 

As mentioned before, our tests use two different image resolutions: 1280𝑥1280 and 960𝑥960. 

Consequently, we executed the k-means algorithm twice to find the sixteen optimal anchor box sizes for 
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both resolutions. As shown in Table 3.7, we adjusted the “anchors” hyperparameters across all the 

detection heads in our tests according to the image resolution of each test, with different anchor box sizes 

applied for images of 1280x1280 and 960x960 pixels, respectively. 

Table 3.7 Representation of the anchor bounding boxes before and after the application of k-means algorithm 

Predetermined 

anchor box sizes 
COCO K-means 960x960 K-means 1280x1280 

Scale/aspect 

ratio 

[13,17, 31,25, 24,51, 61,45, 

48,102, 119,96, 97,189, 

97,189, 217,184, 171,384, 

324,451, 324,451, 545,357, 

616,618, 1024,1024] 

[3,4, 10,9, 6,17, 11,28, 

21,17, 26,31, 17,51, 52,34, 

35,52, 27,104, 50,84, 79,57, 

81,117, 49,198, 142,165, 

145,382] 

[4,5, 7,17, 16,13, 14,36, 

29,24, 33,42, 21,67, 64,43, 

45,69, 36,137, 99,72, 

66,111, 110,150, 66,261, 

189,221, 193,510] 

 

Non-maximum suppression (NMS) 

This methodology preserves the most accurate bounding box while effectively reducing duplications 

caused by overlapping candidates. To do so, it considers both the confidence score assigned by the model 

and the degree of overlap, measured by the Intersection over Union (IOU) metric, among the bounding 

boxes (Hosang et al., 2017). For instance, in Figure 3.10, the model generates multiple bounding boxes, 

along with their respective confidence scores, to identify the car in the image. After the application of the 

NMS algorithm, only one bounding box will be selected. 

NMS takes as input a list of bounding boxes that have predicted an object, along with their confidence 

scores and the overlap threshold. For example, the 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 can be set to 0.5, which means that all 

correctly placed bounding boxes have 𝐼𝑜𝑈 ≥ 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. The output of the algorithm is a list of filtered 

proposals, where each object instance corresponds to one optimal bounding box. 

The approach for determining the optimal bounding box through the application of NMS is described 

below (Singh, 2024): 

1. Begin by selecting the bounding box with the highest confidence score 

2. Transfer this bounding box from the input list to the final proposal list 

3. Calculate and compare the IoU (overlap) of this chosen bounding box with the remaining 

bounding boxes 

4. Remove any proposals from the input list that have an IoU greater than the 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. 

This ensures that highly overlapping proposals are filtered out 

5. If there are still bounding boxes remaining in the input list, repeat steps 1 through 4 until 

there are no more bounding boxes that meet the IoU condition or are left in the input list. 
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Figure 3.10 The bounding boxes preceding and following the implementation of the Non-Max Suppresion (NMS) 

algorithm(Świeżewski, 2020) 

The YOLOv4 and YOLOv4-p6 algorithms use two different variations of Non-Maximum Suppression (NMS). 

Specifically, YOLOv4 uses Greedy-NMS, while YOLOv4-p6 uses Distance-Intersection over Union - Non-

Maximum Suppression (DIoU-NMS). 

In this study, we propose to use Greedy-NMS, in addition to DIoU-NMS, for YOLOv4-p6. Our objective is to 

determine whether Greedy-NMS or DIoU-NMS produces superior or inferior results when combined with 

the other selected hyperparameters. 

Greedy-NMS 

Greedy Non-Maximum Suppression (Greedy-NMS) is designed to refine detection results by iteratively 

selecting the bounding box with the highest confidence score and suppressing others that overlap 

it. Specifically, it is used to reduce duplicate detections and reduce false positives. However, in scenarios 

where objects are crowded together, Greedy-NMS faces difficulties. Even with a reliable detector that 

accurately identifies bounding boxes that match the ground truth bounding boxes, Greedy-NMS can still 

struggle due to its dependence on a set 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (usually set at 0.5). This threshold determines when 

overlapping boxes are considered duplicates and thus suppressed. A lower IoU threshold might fail to filter 

out highly overlapped objects effectively, leading to more false positives in the final detections. Conversely, 

increasing the 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 could result in more objects being incorrectly suppressed, potentially missing 

legitimate detections. Therefore, while Greedy-NMS offers a simple approach to post-processing in object 

detection, its effectiveness can vary depending on the density and arrangement of objects within an image 

(Liu and Huang, 2019). 

Distance-Intersection over Union - Non-Maximum Suppression (DIoU-NMS) 

The Distance Intersection over Union (DIoU) method (Zheng et al., 2019b) improves the effectiveness of 

NMS by considering both the IoU and the distance between the central points of the bounding boxes.  

Equation 3.8 defines the criterion for retaining or removing a bounding box 𝐵𝑖  based on its confidence 

score 𝑠𝑖. Equation 3.7 defines the DIoU metric 𝑅𝐷𝐼𝑜𝑈(𝑀, 𝐵𝑖), 𝑀 is the bounding box with the highest 

confidence score.  
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𝑅𝐷𝐼𝑜𝑈(𝑀, 𝐵𝑖)  =
𝜌2(𝑏, 𝑏𝑔𝑡)

𝑐2
 (3.7) 

 

where, 

 𝑏 and 𝑏𝑔𝑡: represent the central points of the predicted bounding box (𝐵) and the ground truth 

bounding box (𝐵𝑔𝑡), respectively 

 𝜌: denotes the Euclidean distance between the central points 𝑏 and 𝑏𝑔𝑡  

 𝑐: represents the diagonal length of the smallest enclosing box that includes the predicted 

bounding box and the ground truth bounding box. 

The suppression criterion is set by 𝜀, which determines whether a box should be suppressed. In the 

YOLOv4-p6 model, this suppression criterion is based on the 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, which is set to 0.2. If the 

difference between IoU and DIoU is less than 𝜀, the box 𝐵𝑖  is retained (i.e., its confidence score 𝑠𝑖  remains 

unchanged). Otherwise, if this difference is greater than or equal to 𝜀, the box 𝐵𝑖  is removed (i.e., its 

confidence score 𝑠𝑖  is set to 0). 

𝑠𝑖 = {
𝑆𝑖  , 𝐼𝑜𝑈 − 𝑅𝐷𝐼𝑜𝑈  (𝑀, 𝐵𝑖)  <  𝜀

0 , 𝐼𝑜𝑈 − 𝑅𝐷𝐼𝑜𝑈  (𝑀, 𝐵𝑖)  ≥  𝜀
 (3.8) 

 

Figure 3.11 compares the performance of Non-Maximum Suppression (NMS) with Distance-IoU Non-

Maximum Suppression (DIoU-NMS) for detecting ships in UAV images. The original images (top row) show 

multiple ships scattered across the water. The middle row with NMS results indicates areas where some 

ships are missed, marked by green arrows. The bottom row with DIoU-NMS results shows improved 

detection, identifying more ships in areas where NMS was less effective. The green arrows highlight the 

locations where DIoU-NMS successfully detected ships that NMS missed.  

 

Figure 3.11 Illustrates a comparison between NMS and DIoU-NMS for ship detection (Chen et al., 2023) 
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The application of the two NMS levels requires only a minimal implementation in the code. As shown in 

Figure 3.12, we can adjust the NMS within each detection head by modifying the "nms_kind" 

hyperparameter. Specifically, DIoU-NMS is used by adding “diounms” next to “nms_kind”, and Greedy-

NMS is used by adding “greedynms” next to “nms_kind”, respectively. 

 

Figure 3.12 Illustrates the nms_kind location within the configuration file and the implementation of DIoU-NMS and Greedy-

NMS 

Data augmentation techniques 

YOLOv4 introduces innovative data augmentation techniques that are used to improve the training 

performance of our model. Specifically, data augmentation techniques produce altered versions of the 

input images while preserving their annotations, thus expanding the training set (Solawetz, 2020a).  As a 

result, these augmentation techniques were created to enhance the model's training process by enriching 

the training dataset. 

For the creation of our tests, we used either the Mosaic technique alone or the combination of Mosaic 

and Mixup techniques. Our objective is to determine which of the two approaches produces superior or 

inferior results when combined with the other selected hyperparameters. The two techniques are 

described below: 
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Mosaic 

The “Mosaic” data augmentation technique has been introduced by Bochkovskiy et al. in 2020 as part of 

the YOLOv4 model.  It combines four randomly selected input images (along with their annotations) during 

the training process (refer to Figure 3.13). Therefore, it merges different sections from four images into 

one. This approach challenges the model with different backgrounds and objects within each training 

batch. As a result, it helps to improve the model's ability to detect objects in unlikely scenarios 

(Bochkovskiy et al., 2020). 

 

 

Figure 3.13 Implementing the Mosaic technique on image datasets (Solawetz, 2020b) 

This method is specified within the [net] section of the configuration file, as depicted in Figure 

3.14. 

 

Figure 3.14 Illustrates the location of the mosaic data augmentation technique 
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Mixup 

Mixup is a data augmentation technique designed for classification tasks, which works by combining two 

randomly selected training instances and their corresponding annotations to create a new sample (Zhang 

et al., 2018). 

As illustrated in Figure 3.15, the process involves creating a new synthetic image by blending two images 

of dogs: one of a St. Bernard and another of a Poodle. The Mixup technique generates this new image by 

forming a weighted combination of the original images and their associated annotations. The weights for 

this combination are determined by a mixing coefficient, which is randomly chosen from a beta 

distribution. The beta distribution is a probability distribution defined on the interval [0, 1]. 

 

Figure 3.15 Implementing the MixUp technique on image datasets (Yun et al., 2019b) 

In the example with the St. Bernard and Poodle images, consider the following mixing coefficient value 

𝜆1 = 0.3. According to the MixUp method, a new synthetic image 𝑥 and label 𝑦 are generated using the 

following equations: 

𝑥 = 𝜆1 ∗  𝑥𝑆𝑡.𝐵𝑒𝑟𝑛𝑎𝑟𝑑 + (1 − 𝜆1)  ∗  𝑥𝑃𝑜𝑜𝑑𝑙𝑒  (3.9) 

𝑦 = 𝜆1 ∗  𝑦𝑆𝑡.𝐵𝑒𝑟𝑛𝑎𝑟𝑑 + (1 − 𝜆1)  ∗  𝑦𝑃𝑜𝑜𝑑𝑙𝑒  (3.10) 

 

Here, 𝑥𝑆𝑡.𝐵𝑒𝑟𝑛𝑎𝑟𝑑  and 𝑥𝑃𝑜𝑜𝑑𝑙𝑒  are the image representations of the St. Bernard and Poodle, respectively, 

and 𝑦𝑆𝑡.𝐵𝑒𝑟𝑛𝑎𝑟𝑑  and 𝑦𝑃𝑜𝑜𝑑𝑙𝑒  are their corresponding labels. With 𝜆1 = 0.3, the new image 𝑥 mostly reflects 

the features of the Poodle image (70% influence), while also incorporating some characteristics of the St. 

Bernard image (30% influence). Similarly, the label 𝑦 for this new synthetic sample blends the labels "St. 

Bernard" and "Poodle" based on the same ratio. 
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By sampling from the beta distribution, Mixup obtains random mixing coefficients. These coefficients 

determine the degree to which each instance contributes to the final merged sample. Consequently, the 

new sample and its label represent a blend of the characteristics of the St. Bernard and Poodle images, 

with the influence of each instance varying according to the sampled coefficient. 

To apply the two data augmentation levels, simply add them to the [net] section of the configuration file 

and set their values to 1, as shown in Figure 3.16. This way we can implement mosaic, mixup, or any other 

data augmentation technique. 

 

Figure 3.16 Illustrates the placement of data augmentation techniques within the configuration file 

Activation function 

Activation functions are included in neural networks to add non-linear characteristics to the outputs of 

neurons in network layers. Thereby, with the application of activation functions, the model is capable of 

detecting complicated patterns. 

For the creation of our tests, we applied two activation functions: Mish and Swish.  Specifically, we used 

the Mish activation function for a certain number of tests, and we used the Swish activation function for 

the remaining ones.  Our objective is to determine whether the Mish or Swish activation function produces 

superior or inferior results when combined with the other selected hyperparameters. These two 

activation functions are described below: 

Swish activation function 

The Swish is a smooth and non-monotonic activation function, which consistently shows performance 

comparable to or better than the Rectified Linear Unit (ReLU). As depicted in Figure 3.17, it is unbounded 
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in its upper range and bounded in its lower range, deriving its distinctive non-monotonic characteristic 

(Ramachandran et al., 2017). 

 

Figure 3.17 Illustration of Swish activation function (Singh, 2020) 

Swish is formally expressed as an activation function represented by the following equation: 

𝑓(𝑥) = 𝑥 ∗  𝜎(𝛽𝑥) (3.11) 

 

where, 

 𝜎: symbolizes the sigmoid activation function (Nwankpa et al., 2018), which is expressed as: 

𝜎(𝑥) =
1

(1 + 𝑒−𝑥)
 (3.12) 

 

 𝛽: can be either a constant or a trainable parameter. This parameter results into the following 

cases: 

 If 𝛽 = 0, the Swish activation function is simplified to a scaled linear function 

 As 𝛽 tends to infinity, the Swish function approximates the ReLU function 

 𝑥: is the input value for the Swish activation function. 

In Equation 3.11, the Swish activation function is using the self-gating method, where the function uses its 

own value to control or "gate" itself. Instead of using an external or different value to influence the output 

(like ReLU function), the function initially modifies the input using 𝜎(𝛽𝑥) and then combines this modified 

value with the original input 𝑥.  Here, the input 𝑥 is multiplied with the 𝜎(𝛽𝑥). 

Mish activation function 

Mish is the updated version of the Swish activation function, designed to have similar characteristics to 

Swish (Misra, 2019). That is, Mish is also a smooth and non-monotonic activation function like Swish, and 

it is unbounded in its upper range and bounded in its lower range (see Figure 3.18). 
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Figure 3.18 Illustration of Mish activation function (Li et al., 2022) 

The Mish activation function is characterized by the subsequent equation: 

f(x) = x ∗  tanh(ln(1 + ex)) 

 
(3.13) 

Similarly to Swish, Mish uses the self-gating method. As shown in Equation 3.13, the input x is multiplied 

with tanh(ln(1 + ex)). 

Thanks to Equation 3.13, Mish provides a smoother transition from negative to positive values to improve 

the flow of information during training. Consequently, it has improved training stability, resulting in the 

reduction of vanishing gradients issue (see Figure 3.18, Mish has a sharper rise and narrower spread on 

the graph). Despite these improvements, both activation functions are considered effective for training 

the YOLOv4-p6 model. 

Mish was applied to the original YOLOv4 and Scaled YOLOv4 models. It was applied to all convolutional 

layers throughout their structures, except for the convolutional layers preceding each detection head. 

These convolutional layers use logistic activations, which are referred to as sigmoid function (Nwankpa et 

al., 2018). 

Figure 3.19 illustrates the application of Mish activation function in the configuration file. To convert the 

Mish into the Swish activation function, replace “activation = mish” with “activation = swish” in all 

convolutional layers throughout the structure, except for the convolutional layers preceding each 

detection head. 
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Figure 3.19 Illustrates the implementation of activation functions within the configuration file 

Table 3.8 presents the second set of hyperparameters, adjusted to the following two levels, which will be 

used to create our experiments: 

 

Table 3.8 Represents the two levels of the second set of hyperparameters 

Second set of hyperparameters First level (default) Second level 

Image resize 1280 x 1280 pixels 960 x 960 pixels 

Anchor box dimensions 

[13,17, 31,25, 24,51, 61,45, 
48,102, 119,96, 97,189, 

97,189, 217,184, 171,384, 
324,451, 324,451, 545,357, 

616,618, 1024,1024] 

For 1280 x 1280: 
[4,5, 7,17, 16,13, 14,36, 29,24, 

33,42, 21,67, 64,43, 45,69, 
36,137, 99,72, 66,111, 110,150, 

66,261, 189,221, 193,510] 

For 960 x 960: 
[3,4, 10,9, 6,17, 11,28, 21,17, 
26,31, 17,51, 52,34, 35,52, 
27,104, 50,84, 79,57, 81,117, 
49,198, 142,165, 145,382] 

Non-maximum suppression (NMS) DIoU-NMS Greedy-NMS 

Data augmentation techniques Mosaic Mosaic + Mixup 

Activation function Mish Swish 
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Chapter 4 Experimental Investigation 

In this Chapter, we present the experiments we conducted to optimize the performance of the YOLOv4-p6 

model by systematically adjusting its hyperparameters that affect model training.  The performance of the 

model was assessed by the mean Average Precision (mAP) metric.  To assess the effect of each hype-

rparameter and each hyperparameter interaction on mAP we used Analysis of Variance (ANOVA). 

4.1 Full Factorial Experiments 

Full factorial designs are used to ensure that the effects of all hyperparameters and of all their interactions 

may be determined from the experimental results. One major drawback is that full factorial designs are 

more extensive compared to fractional factorial designs. In our case, however, the limited number of 

factors (5) and levels (2) allows the use of the full factorial design (see also (JMP, 2023). The design 

comprises thirty-two (25) experiments presented in Table 4.1. 

Table 4.1  The 25 full factorial design 

Model 

Number 
Image resize 

Activation function 

in the structure* 

Non-maximum 

suppression 
Data augmentation 

Anchor box 

dimensions 

1 1280*1280 mish diounms mosaic default 

2 960*960 mish diounms mosaic default 

3 1280*1280 swish diounms mosaic default 

4 960*960 swish diounms mosaic default 

5 1280*1280 mish greedynms mosaic default 

6 960*960 mish greedynms mosaic default 

7 1280*1280 swish greedynms mosaic default 

8 960*960 swish greedynms mosaic default 

9 1280*1280 mish diounms mosaic + mixup default 

10 960*960 mish diounms mosaic + mixup default 

11 1280*1280 swish diounms mosaic + mixup default 

12 960*960 swish diounms mosaic + mixup default 

13 1280*1280 mish greedynms mosaic + mixup default 

14 960*960 mish greedynms mosaic + mixup default 

15 1280*1280 swish greedynms mosaic + mixup default 

16 960*960 swish greedynms mosaic + mixup default 

17 1280*1280 mish diounms mosaic new 

18 960*960 mish diounms mosaic new 

19 1280*1280 swish diounms mosaic new 

20 960*960 swish diounms mosaic new 

21 1280*1280 mish greedynms mosaic new 

22 960*960 mish greedynms mosaic new 

23 1280*1280 swish greedynms mosaic new 
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Model 

Number 
Image resize 

Activation function 

in the structure* 

Non-maximum 

suppression 
Data augmentation 

Anchor box 

dimensions 

24 960*960 swish greedynms mosaic new 

25 1280*1280 mish diounms mosaic + mixup new 

26 960*960 mish diounms mosaic + mixup new 

27 1280*1280 swish diounms mosaic + mixup new 

28 960*960 swish diounms mosaic + mixup new 

29 1280*1280 mish greedynms mosaic + mixup new 

30 960*960 mish greedynms mosaic + mixup new 

31 1280*1280 swish greedynms mosaic + mixup new 

32 960*960 swish greedynms mosaic + mixup new 

* Activation functions in structure are those used in all convolutional layers of the model, except for the 

convolutional layers before each detection head 

The above Table contains all possible combinations of the second set of hyperparameters (as defined in 

Subsection 3.5.2), using both levels (default and new).  Note that for the first set of hyperparameters we 

applied the adjustments described in Subsection 3.5.1 and we kept them invariant throughout the 

experimental study.  The remaining hyperparameters (those not included in the first and second sets), 

such as batch size, were kept at their default levels. 

4.2 Experiment execution 

According to Table 4.1, we created thirty-two configuration files (.cfg files) and placed them in a folder, as 

shown in Figure 4.1. Each .cfg file contains a combination of hyperparameters as shown in Table 4.1. 

 

Figure 4.1 Folder including both .cfg and .data files 

Together with each .cfg file, there is a .data file with the same name. For our experimentation, we named 

each file “YV4P6” followed by a number from 1 to 32 to indicate the combination presented in Table 4.1. 

Figure 4.2 presents the information included in each .data file. 
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Figure 4.2 Information included in the first .data file corresponding to the first .cfg file used for training 

where, 

 classes: shows that the model is being trained to detect four different object classes (person, small 

vehicle, large vehicle, and ship) 

 train: specifies the path to a text file (Train.txt) that lists the file paths of all training images. As 

mentioned in Section 3.3, we split our modified UAV dataset into three sets: training, validation, 

and testing sets 

 valid: specifies the path to a text file (Val.txt) that lists the file paths of all validation images 

 names: specifies the path to a text file that contains the names of the object classes (see Figure 

4.3) 

 

Figure 4.3 Txt file including the object classes 

 backup: specifies the directory where the trained model weights will be saved. During training, 

we set up the algorithm to save the trained weights every 1000 iterations, as will be explained 

later in this Section. 

The only difference between each .data file is the "backup" path, which changes (corresponding to each 

.cfg file) to prevent overwriting the generated training weights. 

The training process is conducted through the following command: 

for i in {1..32}; do ./darknet detector train cfg/cfg_panos/Experiments/YV4P6_${i}.data 

cfg/cfg_panos/Experiments/YV4P6_${i}.cfg yolov4-p6.conv.289 -map | tee 

/media/deopsys/Hard_Disk/panos/Experiments/cfg${i}.txt; done 

Figure 4.4 Execution command for conducting the experiments 

This contains a loop from 1 to 32, which selects iteratively the .cfg file (e.g.  YV4P6_1.cfg) and the 

corresponding .data file (e.g. YV4P6_1.data). Additionally, it uses the pre-trained weights “yolov4-

p6.conv.289” that the developers published as initial weights in the process. The command also saves the 

training progress chart (see Figure 4.9) in the Darknet directory and terminal information in line reports 
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(as shown in Figures 4.5 and 4.6) in a chosen path. Thus, once the training of the first model is completed, 

the process moves to the second model with the same pre-trained weights, saving the training progress 

chart and terminal information in line reports under a unique file name to avoid overwriting the results 

of the previous model. This continues until all thirty-two experiments have been trained. As discussed 

already, with the application of this command, we obtained the training progress chart, model weights, 

and a text file containing the report information for each experiment. 

Once all thirty-two experiments were completed, we re-trained them all over again, resulting in a total of 

sixty-four experiments. The reasons for conducting each experiment twice are the following: 

 To facilitate the analysis of the results (using ANOVA) by quantifying the variability within groups 

 To evaluate the robustness of training under the same hyperparameter settings. Small differences 

between the mAP results of the two runs indicate that the model is trained consistently. 

In Section 3.4, we have presented the components of our lab’s system. Despite its computational power, 

the YOLOv4-p6 required 60 hours to complete one experiment with an image resolution of 1280x1280, 

and approximately 36 hours for an experiment with a 960x960 image resolution. With the application of 

the command presented in Figure 4.4, the first run of thirty-two experiments took forty-five days to 

complete, and ninety days to complete both runs. As a result, the primary and only problem we 

encountered during training was the extended training time. 

The report presented in Figure 4.5 provides the evolution of key quantities of the training process per 

iteration. 

 

Figure 4.5 Key quantities of the training process 

In this Figure, 

 1,606 is the ID of the current training iteration 

 11.410105 is the total loss value 

 9.284472: is the average loss. The purpose is to minimize the average loss, approaching zero if 

possible 

 0.001000 is the current learning rate, which is defined in the YOLOv4-p6 configuration file 

 16.538288 is the total time spent processing the batch identified by iteration ID 1,606 

 102,784: is the total number of images used in training up to this batch. This total is calculated 

by multiplying the number of batches (1,606) by the batch size (64), resulting in 102,784 images. 

Part of the overall training process is the validation process. The latter tests the weights that the algorithm 

creates during training and generates a mAP result for each validation run (see Figure 4.6). We set up our 

models to begin their first validation run in the 600th iteration and then repeat it every 100 iterations (e.g., 
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700, 800, 900, 1000, …) until the 8000th training iteration, where the training process of one model is 

completed. This means that each experiment included seventy-five validation runs and generated 

seventy-five different mAP results. Furthermore, the trained weights were saved every 1000 iterations in 

the path we set in the .data file (backup path). 

Figure 4.6 presents a representative example of the results of one validation run (Tepteris et al., 2023). 

The results change from one validation run to another as the model constantly updates its training 

weights. 

 

Figure 4.6 Display of key class metrics during validation 

In the validation report, for each class, the following are provided: 

 𝑐𝑙𝑎𝑠𝑠_𝑖𝑑: For example, index value 3 represents the class "ship" 

 𝑛𝑎𝑚𝑒: the name of the class 

 𝐴𝑃 (𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛): provides the average precision result of the class 

 𝑇𝑃 (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒): is the number of correctly identified class objects 

 𝐹𝑃 (𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒): is the number of incorrectly identified class objects 

 𝑅𝑒𝑐𝑎𝑙𝑙: is the ratio of true positives to the sum of false negatives and true positives for the 

particular class 

 𝑎𝑣𝑔 𝐼𝑜𝑈: represents the average Intersection over Union (IoU) across all images in the validation 

set for the particular class. 

It is reminded that the evaluation metrics for all classes in all training images are: 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛: is the overall prediction accuracy across all classes 

 𝑅𝑒𝑐𝑎𝑙𝑙: evaluates the ability of the detector to locate the trained objects within the image for all 

classes 

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒: is the harmonic mean of precision and recall 

 𝑇𝑃 (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒): is the number of correctly detected objects across all classes 

 𝐹𝑃 (𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒): is the number of incorrectly detected objects across all classes 

 𝐹𝑁 (𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒): is the number of missed detections across all classes 

 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝐼𝑜𝑈: represents the average IoU across all images in the validation set for all classes 

 𝑚𝐴𝑃 (𝑚𝑒𝑎𝑛 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛): summarizes the Average Precision (AP) of each individual 

class and then divides the total AP value by the number of the classes. 
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After the training process was completed, we performed the testing process for each of our thirty-two 

(times two) experiments. Both in training and testing, the model generates multiple results used for 

evaluation, as presented in Figure 4.6. From all the metrics contained in the line reports, we used the 

mean Average Precision (mAP) metric to evaluate the performance of the models (from training and 

testing). However, in each of these stages, the mAP results are used for different purposes: 

 During the training process, the model adjusts its parameters to better detect the objects of 

interest in the input data. These adjusted parameters are stored in the weights. To ensure the 

model is learning correctly from the data, these weights are used in validation, an intermediate 

process. In this process, the model applies the trained weights to the validation set to test its 

detection and classification capabilities. During the validation process the model's detection 

metrics, including mAP, are computed and presented throughout training and are displayed in the 

progress chart (showing only mAP results). Consequently, the mAP results during training are used 

to confirm whether the models is being trained correctly. Models achieving high mAP values in 

validation indicate that overfitting is avoided and training in the related dataset is progressing 

well 

 During the testing process, we use the best weights of the model (which is generated in training 

and contains the parameters that achieved the highest mAP result during validation) on the 

testing set. The testing results (including mAP) confirm the detection and classification 

performance of the model in independent data.  If the value of the testing mAP is close to the 

better mAP values obtained from validation, then the model has been trained and performs as 

expected.  If the testing mAP value is significantly lower than the better validation mAP values, 

this indicates that even under the same type of data the performance of the model is lower than 

expected (and obtained during validation), and, thus, training has not been successful. 

For testing our trained models, we used the testing set of the modified UAV dataset (as discussed in 

Section 3.3) and the respective best weights (which achieved the highest mAP in validation) obtained from 

both training runs. Furthermore, we modified the information contained in the .data files and left the .cfg 

files unchanged (see Figure 4.1). Specifically, for testing, all .data files contained the information displayed 

in Figure 4.7. To execute the command for performing the testing process, as shown in Figure 4.8, we 

replicated and numbered the same .data file thirty-two times (as shown in Figure 4.1) to match each one 

with a corresponding .cfg file.  

Figure 4.7 presents the information included in the .data files used for testing our trained YOLOv4-p6 

models. 

 

Figure 4.7 Information included in all .data files used for testing 
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In Fig. 4.7, the “classes” and “names” parameters remain the same as those used in training. The “valid” 

parameter was changed to specify the path to a text file (Test.txt) that contains the file paths of all testing 

images. Additionally, the “train” and “backup” parameters were omitted in the .data files for testing, as 

they are only used for training. 

The following command is used to execute the testing process after completing both runs in training per 

hyperparameter combination. 

for i in {1..32}; do ./darknet detector map cfg/cfg_panos/Testing/YV4P6_${i}.data 

cfg/cfg_panos/Testing/YV4P6_${i}.cfg 

/media/deopsys/Hard_Disk/panos/Weights/First_run/4V4P6_${i}_best.weights -points 101 -thresh 

0.25 -iou_thresh 0.5 > /media/deopsys/Hard_Disk/panos/Testing/testing_${i}.txt; done 
Figure 4.8 Execution command for testing the experiments 

The command contains a loop from 1 to 32, which selects iteratively the .cfg file (e.g.  YV4P6_1.cfg), the 

corresponding .data file (e.g. YV4P6_1.data) and the best weights file created from the first training run 

of the corresponding .cfg file. The command also saves the terminal information in line reports in a chosen 

path. Thus, once the testing of the first model (first .cfg file) is completed, the process moves to the second 

model with its corresponding best weights file, saving the terminal information in line reports under a 

unique file name to avoid overwriting the results of the previous model. This continues until all thirty-two 

models have been tested using their corresponding best weights from the first training run. Once testing 

of the 32 models are completed, we execute the same command using the best weights files from the 

second training run. Consequently, from both runs of the testing process, we obtained line reports that 

contain the mAP metric of testing for each model of each run. 

4.3 Experimental results and analysis 

In this Section, we analyze the results obtained from training (generated during the validation process) 

and testing runs.  

 To characterize the training performance of each model, we extracted the highest mAP (referred 

to as the best mAP) produced during the model’s validation process. Note that during each 

training session, 75 validation mAP values were obtained (one every 100 iterations after iteration 

600), and the highest among them is designated as the best mAP. 

 In the case of testing, we used the single mAP result obtained from applying the model on the 

testing dataset. 

Table 4.2 presents the mAP results from the training and testing runs of YOLOv4-p6 using the modified 

UAV dataset. In this table, we used both the best and average mAP to analyze our results. Since each 

process (training and testing) was executed twice, we also used the average mAP, which is the average of 

the best mAP from the two runs of each model during training or testing. This metric provides a clearer 

and more balanced view of the results by incorporating both runs, rather than relying on a single run's 

outcome. Consequently, the best mAP indicates the peak performance of each model in either training or 

testing, while the average mAP reflects the overall performance across both runs. 
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The differences between the two runs (Δ % (1-2)) characterize the consistency of the models per 

hyperparameter combination.  Small differences suggest that the models are consistent and stable, while 

larger differences indicate inconsistency. The trained YOLOv4-p6 models demonstrated consistent 

performance in both the training and testing processes, as there are no significant differences between 

the two runs (under 4-5% difference between the two runs in both processes).   

What is more important is the last column of Table 4.2 that indicates the differences between the average 

mAP values of validation/training vs testing. Two important observations are relevant here: 

1. The difference values in the last column are low. Moreover, the testing average mAP is higher than 

the validation average mAP, indicating robust model performance and no overfitting during 

training.  Of course, the testing dataset is (an independent) part of the modified UAV dataset, and 

thus similar performance is expected between validation and testing in case of proper training.  

The performance in totally new image dataset (such as the DeOPSys one) is expected to be lower.  

2. The effect of the hyperparameters appears to be similar in training/validation and in testing.  This 

is analyzed further below. 
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Table 4.2 mAP results obtained from training and testing 

Model 

Training process Testing process 

Difference between the average 

mAP values (training - testing) 
Best mAP 

run 1(%) 

Best mAP 

run 2 (%) 
Δ % (1-2) 

Average 

best mAP 

% (1-2) 

mAP run 

1 (%) 

mAP run 

2 (%) 
Δ % (1-2) 

Average 

mAP % (1-2) 

1 49.2 51.6 -2.4 50.4 51.4 53.4 -2.0 52.4 -2.0 

2 44.3 43.0 1.3 43.7 46.8 47.2 -0.4 47.0 -3.3 

3 46.8 49.3 -2.5 48.0 49.6 51.3 -1.7 50.5 -2.4 

4 43.4 39.1 4.3 41.3 47.5 43.2 4.2 45.3 -4.1 

5 52.3 50.1 2.3 51.2 53.5 52.9 0.6 53.2 -2.0 

6 44.2 41.0 3.1 42.6 48.0 44.0 4.0 46.0 -3.4 

7 45.0 47.8 -2.7 46.4 47.3 51.3 -4.1 49.3 -2.9 

8 39.7 40.0 -0.3 39.8 43.8 44.2 -0.3 44.0 -4.2 

9 48.5 50.1 -1.7 49.3 51.5 52.6 -1.2 52.1 -2.8 

10 41.2 43.9 -2.7 42.5 46.5 48.0 -1.5 47.3 -4.7 

11 49.1 46.0 3.0 47.6 51.0 48.7 2.2 49.9 -2.3 

12 39.6 40.4 -0.8 40.0 44.0 45.5 -1.5 44.7 -4.7 

13 51.4 47.8 3.6 49.6 52.7 49.9 2.7 51.3 -1.7 

14 44.1 44.3 -0.2 44.2 47.0 48.4 -1.4 47.7 -3.5 

15 48.2 46.9 1.3 47.5 49.8 50.4 -0.6 50.1 -2.5 

16 39.2 40.9 -1.7 40.0 42.9 45.5 -2.5 44.2 -4.2 

17 50.7 52.5 -1.8 51.6 52.1 53.5 -1.4 52.8 -1.1 

18 43.9 45.7 -1.8 44.8 47.6 48.8 -1.2 48.2 -3.4 

19 51.3 49.1 2.2 50.2 51.9 50.2 1.7 51.0 -0.8 

20 38.8 42.5 -3.7 40.7 41.4 46.7 -5.3 44.1 -3.4 

21 51.9 50.4 1.5 51.1 52.9 51.9 1.1 52.4 -1.3 
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Model 

Training process Testing process 

Difference between the average 

mAP values (training - testing) 
Best mAP 

run 1(%) 

Best mAP 

run 2 (%) 
Δ % (1-2) 

Average 

best mAP 

% (1-2) 

mAP run 

1 (%) 

mAP run 

2 (%) 
Δ % (1-2) 

Average 

mAP % (1-2) 

22 45.7 47.3 -1.5 46.5 48.4 49.6 -1.2 49.0 -2.5 

23 49.1 50.2 -1.1 49.6 51.1 51.3 -0.2 51.2 -1.5 

24 44.1 41.0 3.1 42.6 46.6 43.9 2.8 45.3 -2.7 

25 51.6 52.3 -0.7 52.0 53.2 53.3 -0.1 53.3 -1.3 

26 47.8 44.0 3.8 45.9 50.6 47.3 3.3 48.9 -3.0 

27 49.0 52.4 -3.4 50.7 50.3 53.9 -3.6 52.1 -1.4 

28 43.6 45.9 -2.4 44.8 45.6 47.3 -1.8 46.5 -1.7 

29 52.2 51.8 0.4 52.0 53.4 53.2 0.3 53.3 -1.3 

30 44.7 42.5 2.2 43.6 47.9 46.1 1.9 47.0 -3.4 

31 47.4 48.7 -1.3 48.1 48.9 49.1 -0.3 49.0 -1.0 

32 43.9 41.5 2.4 42.7 46.5 45.6 0.9 46.1 -3.3 



Based on Table 4.2, the results of the training process indicate the highest average mAP in two different 

models: the 25th model with 52% mAP (51.6% best mAP in the 1st run and 52.3% best mAP in the 2nd run) 

and the 29th model with 52% mAP (52.2% best mAP in the 1st run and 51.8% best mAP in the 2nd run).  

Figure 4.9 displays the training progress chart of the 29th experiment (1st run). The x-axis shows the number 

of iterations as training progresses. The y-axis measures two different values: the value of the loss function, 

and mAP.  The blue curve of the graph represents the training loss curve, and the red one represents the 

mAP results during training. The training loss curve shows whether the model has adapted well to the 

dataset, with lower values indicating better results. During training, this curve decreases and then 

stabilizes with some fluctuation within the interval of (4, 8). The red curve shows the model's ability to 

detect the specified objects in the input data during validation. The increasing mAP values observed in the 

red curve, ranging from 10% to 52%, indicate that the model is performing well. However, there are signs 

of overfitting, notably around the 7000th iteration, where the mAP drops to 18%. Despite this overfitting, 

the model demonstrates effective object detection and classification capabilities on the modified UAV 

dataset, achieving a maximum mAP of 52%. 

 

Figure 4.9 Training progress chart on the modified UAV dataset 

Continuing with the results of Table 4.2, the results of the testing runs indicated that the 25th and 29th 

models also achieved the highest average mAP. Specifically, the 25th model with 53.3% mAP (53.2% best 

mAP in the 1st run and 52.3% in the 2nd run) and the 29th model with 53.3% mAP (53.4% best mAP in the 

1st run and 52.2% best mAP in the 2nd run).  
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Based on the above findings, we can draw the following conclusions: 

 The 25th and 29th models achieved the highest average mAP results in both the training and testing 

runs 

 There is good agreement between the training/validation vs. testing results; i.e. the highest mAP 

values in both sets of results correspond to the same hyperparameter combinations.  This also 

holds for the lowest mAP values 

 The effects of the hyperparameters on mAP are very significant.  Indicatively, the best performing 

hyperparameter combination has a mAP value of 52%, while the worst performing combination 

has a mAP value of 39.8%. This indicates the great importance of selecting the appropriate 

hyperparameters in training, depending on the characteristics of the training dataset 

 Conclusions on the effects of the hyperparameters and their combinations on mAP may be drawn 

from either the validation or the testing map.  

Tables 4.3 presents the average precision (AP) results of the four objects under consideration of all models 

of Table 4.2.  For each hyperparameter combination, the Table presents the average APs of the two runs 

for both validation (first five columns) and testing (five last columns).  For instance, according to the first 

five columns of Table 4.3, model number 20 achieved an average AP of 32.1% for the person class, 36% 

for the small vehicle class, 45.9% for the large vehicle class, and 48.8% for the ship class in training. The 

average mAP is (32.1 + 36 + 45.9 + 48.8)/4 = 40.7%. 

Table 4.3 Training and testing results: Class AP values 

Model 

Training process Testing process 

Average AP values per class % 
Average 

mAP % 

Average AP values per class % 
Average 

mAP % Person 
Small 

vehicle 

Large 

vehicle 
Ship Person 

Small 

vehicle 

Large 

vehicle 
Ship 

1 43.5 40.5 54.9 62.8 50.4 43.3 57.6 54.9 53.8 52.4 

2 37.5 38.1 51.4 47.7 43.7 37.3 54.4 50.7 45.5 47.0 

3 42.1 40.7 53.3 56.1 48.0 41.5 57.8 54.2 48.4 50.5 

4 37.7 37.1 50.2 40.2 41.3 37.5 53.0 49.4 41.4 45.3 

5 43.6 40.9 55.1 65.1 51.2 43.1 58.1 55.8 55.8 53.2 

6 35.3 37.8 50.3 47.1 42.6 34.7 53.8 49.2 46.2 46.0 

7 39.2 40.1 53.6 52.8 46.4 38.9 57.2 53.5 47.5 49.3 

8 34.8 37.8 50.9 35.7 39.8 34.7 54.1 50.1 37.1 44.0 

9 44.9 40.2 54.4 57.8 49.3 44.5 57.3 55.1 51.3 52.1 

10 38.9 38.3 52.3 40.7 42.5 38.2 54.5 51.4 45.0 47.3 

11 42.8 40.1 53.8 53.6 47.6 41.7 57.2 53.7 46.8 49.9 

12 35.8 37.4 50.4 36.3 40.0 35.1 53.4 49.6 40.7 44.7 

13 43.2 40.1 52.9 62.1 49.6 42.5 57.0 53.4 52.3 51.3 

14 38.6 38.1 50.9 49.1 44.2 38.2 54.5 50.3 47.7 47.7 

15 40.1 40.2 51.8 58.1 47.5 40.0 57.0 53.1 50.2 50.1 
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Model 

Training process Testing process 

Average AP values per class % 
Average 

mAP % 

Average AP values per class % 
Average 

mAP % Person 
Small 

vehicle 

Large 

vehicle 
Ship Person 

Small 

vehicle 

Large 

vehicle 
Ship 

16 38.1 37.6 51.7 32.7 40.0 38.0 53.9 51.0 33.9 44.2 

17 43.3 41.8 54.1 67.4 51.6 42.4 59.0 54.1 55.5 52.8 

18 40.7 38.7 48.5 51.2 44.8 40.8 55.6 48.5 47.9 48.2 

19 44.8 42.2 50.8 63.1 50.2 44.4 59.2 49.7 50.8 51.0 

20 32.1 36.0 45.9 48.8 40.7 32.3 51.8 45.4 46.8 44.1 

21 43.6 41.2 51.9 67.8 51.1 43.1 58.2 51.8 56.5 52.4 

22 39.0 39.4 50.8 56.8 46.5 39.2 56.0 50.2 50.7 49.0 

23 38.8 40.3 51.2 68.2 49.6 37.9 57.4 52.1 57.2 51.2 

24 35.4 37.5 48.1 49.3 42.6 34.9 53.6 47.5 45.0 45.3 

25 43.8 42.2 52.6 69.4 52.0 43.5 59.4 54.0 56.1 53.3 

26 41.6 39.5 48.8 53.9 45.9 41.1 56.2 48.3 50.2 48.9 

27 42.4 41.1 53.8 65.5 50.7 41.5 58.4 54.8 53.8 52.1 

28 36.0 38.1 46.1 58.8 44.8 35.2 54.6 45.1 50.9 46.5 

29 45.1 42.2 53.8 66.9 52.0 44.7 59.5 53.8 55.1 53.3 

30 38.2 38.2 49.6 48.5 43.6 37.6 54.7 49.9 45.8 47.0 

31 37.3 41.2 50.4 63.4 48.1 36.6 58.1 50.8 50.5 49.0 

32 36.9 37.4 49.5 47.1 42.7 36.4 53.2 48.8 45.9 46.1 

 

As shown in Table 4.3, the highest average AP values achieved during training for each class were mostly 

produced by different models across both runs. The highest average AP values (in training) for each class 

were 45.1% (29th model) for person, 42.2% (19th and 29th models) for small vehicle, 55.1% (5th model) for 

large vehicle, and 69.4% (25th model) for ship. Similarly, the highest AP values in the testing process were 

also from different models. The highest average AP values (in testing) for each class were 44.7% (29th 

model) for person, 59.5% (29th model) for small vehicle, 55.8% (5th model) for large vehicle, and 57.2% 

(23rd model) for ship. 

Table 4.4, presents the AP values for the model achieving the highest average mAP value, as well as the 

models that produced the highest AP values per class in training and testing, respectively. Since two 

different models achieved the highest average mAP value, we selected the 29th model to study (the one 

analyzed in Figure 4.9). Then, we calculated the deviation of the best performing model 

( ⌊𝐴𝑃 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑚𝑜𝑑𝑒𝑙 − 𝑏𝑒𝑠𝑡 𝐴𝑃⌋/𝑏𝑒𝑠𝑡  𝐴𝑃) to determine whether the best performing model has a 

high or low deviation from the best AP values in training or testing. For instance, the deviation of the 29th 

model for large vehicle class is -2.36%: ( ⌊53.8 − 55.1⌋/55.1). 
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Table 4.4 Average Precision (AP) deviation of the best performing model in training and testing 

  Training process Testing process 

  

Best 

performing 

model 

Models produced the 

best AP per class 

Deviation 

w.r.t. the 

29th 

model % 

Best 

performing 

model 

Models produced the 

best AP per class 

Deviation 

performing

w.r.t. the 

29th 

model % 
Model 29th 29th 29th 5th 25th 29th 29th 29th 5th 23rd 

C
la

ss
es

 

Person 45.1 45.1    0 44.7 44.7    0 

Small 

vehicle 
42.2  42.2   0 59.5  59.5   0 

Large 

vehicle 
53.8   55.1  -2.36% 53.8   55.8  -3.58% 

Ship 66.9    69.4 -3.60% 55.1    57.2 -3.67% 

 

Table 4.4 clearly indicates that the 29th model that corresponds to the highest mAP does have a robust 

performance in terms of AP for the classes of interest, as evidenced by the very limited deviation from 

the  best AP values. 

4.4 Hyperparameter effects on mean Average Precision (mAP) 

By applying Analysis of Variance (ANOVA), we can evaluate the effect of each factor (hyperparameter) and 

of the factor interactions on mAP. This allows us to identify the significant factors (hyperparameters) and 

the combination(s) of factors that result in optimal training of the YOLOv4-p6 model in terms of mAP. 

As explained in Appendix D, the ANOVA tests the following hypotheses: 

 The null hypothesis (H₀) states that a factor or a factor interaction has no significant effect on mAP 

 The alternative hypothesis (Hₐ) states that a factor or a factor interaction has a significant effect 

on mAP. 

We performed two ANOVA analyses with the MiniTab software, which utilized the experimental results 

shown in Table 4.1. 

The first ANOVA drill down was conducted using the best mAP results from the training/validation runs. 

The purpose of this analysis was to identify the effect of the hyperparameters and their combinations in 

the effectiveness of training. Identifying these effects could assist developers in creating better detection 

models, reducing the risk of overfitting and improving detection performance. 

The second ANOVA drill down was conducted using the best mAP results from the testing runs. The 

purpose of this analysis was to verify that the hyperparameter combinations resulting in effective training, 

show consistent superior performance during testing. 
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The following Table 4.5 provides the "design summary" of both analyses. 

Table 4.5 Full factorial design summary 

Full Factorial Design 

Design Summary    

Factors 5 Base Design 5, 32 

Runs 64 Replicates 2 

Blocks 1 Center pts (total) 0 

All terms are free from 

aliasing. 
   

As indicated in Table 4.5, the experimental design encompasses five factors (our selected second set of 

hyperparameters): 

 Image resolution 

 Activation function - structure 

 Non-Maximum Suppression (NMS) 

 Data augmentation technique 

 Anchor dimensions. 

Within the experimental setup a single block is applied, meaning that all experiments are performed under 

uniform conditions. This reduces variability. In addition, we selected zero center points before the 

execution of ANOVA, in order not to perform experimental runs at the mid-level of each factor in the 

design. Although this limits the test’s ability to evaluate nonlinear effects, we assumed that such effects 

are not present. The base design includes 5 factors, and since each factor has 2 levels, this leads to 32 

experimental runs (i.e., 25 = 32). With 2 replicates, the total number of runs increases to 64. Lastly, the 

“all terms are free from aliasing” means that none of the factors and their interactions are mixed with 

each other and can be estimated independently. 

4.4.1 ANOVA on best mAP results from training runs 

The ANOVA analysis of the training (validation) results is presented in Table 4.6.  Note the following: 

 Adjusted Sum of Squares (Adj SS) isolates and measures the variance in mAP that is explained by 

each factor or interaction after removing the effects of other factors and their interactions in the 

model. For instance, the Adjusted Sum of Squares for image resolution is 0.075196. This value 

represents the variance in mAP explained by changes in image resolution (Kutner, 2005). 

 Adjusted Mean Squares (Adj MS) is the average variance associated with each factor or 

interaction, accounting for the relevant degrees of freedom in the model. For instance, the 

Adjusted Mean Square for “image resolution” is 0.075196. This value is calculated by dividing the 

Adjusted Sum of Squares for “image resolution” by its corresponding degrees of freedom, which 

in this case is 1 (Kutner, 2005). 
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The Adjusted Mean Squares is: 

𝑀𝑆𝑎𝑑𝑗 =
𝑆𝑆𝑎𝑑𝑗

𝐷𝐹
 

(4.1) 

 

 The F-value is the ratio of the Adjusted Mean Square of a factor or interaction to the Adjusted 

Mean Square of the error (see Equation 4.2). A high F-value (beyond a certain threshold provided 

in tables based on the DOF, risk, etc.) indicates that the factor or interaction has a statistically 

significant impact on mAP. For example, “image resolution”, “activation function in the structure” 

and “anchor dimensions” have high F-values, indicating that they have a statistically significant 

effect on mAP. In contrast, factors like “NMS” and “data augmentation technique” have lower F-

values, indicating that they do not have a significant effect on mAP (Archdeacon, 1994). 

 

The F-Value is provided from: 

𝐹 − 𝑉𝑎𝑙𝑢𝑒 =
𝑀𝑆𝑎𝑑𝑗

𝑀𝑆𝑎𝑑𝑗/𝑒𝑟𝑟𝑜𝑟
 

(4.2) 

 

 The p-value represents the probability of obtaining results (e.g. F-value) as extreme as those 

observed, assuming the null hypothesis is true. A small p-value (less than 0.05) shows that the 

observed results are statistically significant, leading to the rejection of the null hypothesis (H₀). 

Conversely, a high p-value suggests that the observed results could reasonably occur by chance, 

leading to accepting the null hypothesis. For example, “image resolution”, “activation function in 

the structure” and “anchor dimensions” have low p-values, indicating that they have a significant 

effect on mAP. In contrast, “NMS”  and “data augmentation technique” have a high p-value, 

indications that they have no significant effect on mAP (Archdeacon, 1994). 

At the end of Table 4.6, two additional terms are presented: 

 Error: represents the unexplained variance in the model, showing the difference between the 

observed results and the results predicted by the model. In our model, 𝑆𝑆𝑒𝑟𝑟𝑜𝑟 = 0.00883 (Adj 

SS) represents the unexplained variance in the mAP that is not accounted for by the model. It 

equals to the sum of squares of the differences between each observed result and the result 

predicted by the model, as presented below (Kutner, 2005): 

 

𝑆𝑆𝑒𝑟𝑟𝑜𝑟 = ∑ (𝑦𝑖  −  𝑦 
𝑖
)
2

𝑛

𝑖=1
 (4.3) 

 

where, 

 𝑦𝑖: is the observed result for the i-th observation 

 𝑦 
𝑖
: is the predicted result for the i-th observation 

 𝑛: is the number of observations. 

 

 Total: represents the total variance that is separated into explained variance (model) and 

unexplained variance (error). It provides a baseline against which the model's performance is 
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evaluated. In our model, 𝑆𝑆𝑡𝑜𝑡𝑎𝑙 = 0.106443 represents the total variance in the mAP. It is 

calculated as the sum of squares of the differences between each observed result and the overall 

mean of the dependent variable, as presented below (Kutner, 2005): 

 

𝑆𝑆𝑡𝑜𝑡𝑎𝑙 = ∑ (𝑦𝑖 − 𝑦 )2
𝑛

𝑖=1
 (4.4) 

 

where, 

 𝑦𝑖: is the observed result for the i-th observation 

 𝑦 :  is the mean of the observed results 

 𝑛: is the number of observations. 

The small relative value of unexplained variance in the model shows that a large portion of the total 

variance is accounted for by the variables included in the model. This indicates that the model is effective 

in explaining the variability in the data, which makes the model valuable for understanding the results we 

are studying. 

Table 4.6 presents the significance of each factor and their interactions on the mAP. 

Table 4.6 ANOVA training results 

Factorial Regression 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value p-Value 

Model 31 0.097611 0.003149 11.41 0 

Linear 5 0.092651 0.01853 67.14 0 

Image resolution 1 0.075196 0.075196 272.47 0 

Activation function - structure 1 0.010521 0.010521 38.12 0 

NMS 1 0.000216 0.000216 0.78 0.383 

Data augmentation technique 1 0 0 0 0.979 

Anchor dimensions 1 0.006718 0.006718 24.34 0 

2-Way Interactions 10 0.001182 0.000118 0.43 0.922 

Image resolution*Activation function - structure 1 0.000053 0.000053 0.19 0.663 

Image resolution*NMS 1 0.000048 0.000048 0.17 0.679 

Image resolution*Data augmentation technique 1 0.000094 0.000094 0.34 0.565 

Image resolution*Anchor dimensions 1 0.000029 0.000029 0.11 0.748 

Activation function - structure*NMS 1 0.000301 0.000301 1.09 0.304 

Activation function - structure*Data 

augmentation technique 
1 0.000187 0.000187 0.68 0.416 

Activation function - structure*Anchor 

dimensions 
1 0.000133 0.000133 0.48 0.493 

NMS*Data augmentation technique 1 0.000106 0.000106 0.38 0.54 
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Factorial Regression 

Analysis of Variance 

NMS*Anchor dimensions 1 0.000056 0.000056 0.2 0.655 

Data augmentation technique*Anchor 

dimensions 
1 0.000175 0.000175 0.63 0.432 

3-Way Interactions 10 0.001765 0.000176 0.64 0.769 

Image resolution*Activation function - 

structure*NMS 
1 0.000092 0.000092 0.33 0.568 

Image resolution*Activation function - 

structure*Data augmentation technique 
1 0.000071 0.000071 0.26 0.616 

Image resolution*Activation function - 

structure*Anchor dimensions 
1 0.000006 0.000006 0.02 0.885 

Image resolution*NMS*Data augmentation 

technique 
1 0.000067 0.000067 0.24 0.625 

Image resolution*NMS*Anchor dimensions 1 0.000063 0.000063 0.23 0.635 

Image resolution*Data augmentation 

technique*Anchor dimensions 
1 0.000006 0.000006 0.02 0.881 

Activation function - structure*NMS*Data 

augmentation technique 
1 0.000015 0.000015 0.05 0.817 

Activation function - structure*NMS*Anchor 

dimensions 
1 0.000038 0.000038 0.14 0.712 

Activation function - structure*Data 

augmentation technique*Anchor dimensions 
1 0.00002 0.00002 0.07 0.788 

NMS*Data augmentation technique*Anchor 

dimensions 
1 0.001386 0.001386 5.02 0.032 

4-Way Interactions 5 0.001788 0.000358 1.3 0.29 

Image resolution*Activation function - 

structure*NMS*Data augmentation technique 
1 0.000004 0.000004 0.01 0.909 

Image resolution*Activation function - 

structure*NMS*Anchor dimensions 
1 0.00004 0.00004 0.14 0.706 

Image resolution*Activation function - 

structure*Data augmentation technique*Anchor 

dimensions 

1 0.001102 0.001102 3.99 0.054 

Image resolution*NMS*Data augmentation 

technique*Anchor dimensions 
1 0.000575 0.000575 2.08 0.159 

Activation function - structure*NMS*Data 

augmentation technique*Anchor dimensions 
1 0.000068 0.000068 0.25 0.623 

5-Way Interactions 1 0.000225 0.000225 0.82 0.373 

Image resolution*Activation function - 

structure*NMS*Data augmentation 

technique*Anchor dimensions 

1 0.000225 0.000225 0.82 0.373 
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Factorial Regression 

Analysis of Variance 

Error 32 0.008831 0.000276  

Total 63 0.106443  

 

MiniTab also generates convenient graphical representations to help the assessment of the 

factor/interaction effects. These include: 

 Pareto chart of the standardized effects 

 Main effects plot for mAP 

 Interaction plot for mAP. 

Pareto chart of the standardized effects 

As shown in Figure 4.10, the Pareto chart of the standardized effects illustrates the impact of various 

factors and interactions on the mAP. The factors are labeled A through E, representing the following 

variables: 

 A: Image resolution 

 B: Activation function in the structure 

 C: NMS (Non-Maximum Suppression) 

 D: Data augmentation technique 

 E: Anchor dimensions. 

The red dashed line at the standardized effect value of 2.04 shows the significance threshold at 𝑎 = 0.05. 

Factors with bars extending beyond this red dashed line have a significant impact on mAP. However, this 

also means that there is a 5% (𝑎 = 0.05) risk of identifying a factor or an interaction of factors as significant 

while it is not. 

The significant factors and combination of factors for training according to the Pareto chart are the 

following: 

 Image resolution (A) has the greatest standardized effect on mAP 

 Activation function in the structure (B) 

 Anchor dimensions (E) 

 The combination of factors CDE (NMS, data augmentation technique and anchor dimensions). 
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Figure 4.10 First Pareto chart of the standardized effects 

The remaining hyperparameters or their combinations do not have a significant effect on mAP, since their 

values are less than 2.04 (Navarro Tuch et al., 2019). 

Commenting on the above results: 

 “Image resolution” changes the resolution of the input data, which greatly influences the training 

process. Larger image resolutions provide better detection and classification results 

 “Activation function in the structure” is significant for feature extraction from the input data. 

Newer versions of activation functions offer better non-linear characteristics, which help to 

capture more details (information) from the available images 

 “Anchor dimensions” assist the model to generate more appropriate bounding boxes by adjusting 

the size of the anchor bounding boxes during the training process. The most suitable configuration 

of anchor box dimensions, in relation to the dataset that is used to train the model, is likely to 

result in improved model performance. 

Main effects plot for mAP 

Figure 4.11 presents the main effects plot for training (Kim et al., 2007) that quantifies the effect in mAP 

for factors A, B, C, D and E, respectively.  The following observations can be made regarding these five 

factors: 

 Varying image resolution from 969x960 to 1280x1280 improves mAP by |42.9% − 49.7%| =

6.8% 

 Varying activation function from Swish to Mish improves mAP by |45% − 47.5%| = 2.5% 

 Varying anchor box sizes from the original set to new set improves mAP by |45.2% − 47.3%| =

2.1%. 
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Therefore, the best options for our significant factors are: 

 1280x1280 for image resolution 

 Mish function for the activation function in the structure 

 New set of anchor box sizes for anchor dimensions. 

 

 

Figure 4.11 Main effects plot for mAP (training) of A, B and E factors 

Interaction plot for CDE 

Figure 4.12 presents an interaction plot (Ibrahim et al., 2011) showing the only significant three-way 

interaction CDE (involving C: NMS, D: Data augmentation techniques, and E: Anchor dimensions) emerging 

from the training analysis. Note that the interaction plots in MiniTab display the interaction between only 

two factors per plot. As a result, our three-way interaction is analyzed in three different two-way 

interaction plots.  

Overall, the interaction plot shows that the combination of CDE factors yields better mAP results with: 

 Distance-Intersection over Union - Non-Maximum Suppression (DIoU-NMS) for NMS 

 Mosaic + mixup for data augmentation 

 New set of anchor box sizes for anchor dimensions. 
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Figure 4.12 Interaction plot for CDE 

4.4.2 ANOVA on best mAP results from testing runs 

We created a similar Table (see Table 4.7) for the ANOVA results of the testing runs. 

Table 4.7 ANOVA testing results 

Factorial Regression 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value p-Value 

Model 31 0.056872 0.001835 7.28 0 

Linear 5 0.053675 0.010735 42.59 0 

Image resolution 1 0.04256 0.04256 168.85 0 

Activation function - structure 1 0.009347 0.009347 37.08 0 

NMS 1 0.000303 0.000303 1.2 0.281 

Data augmentation technique 1 0.000019 0.000019 0.07 0.787 

Anchor dimensions 1 0.001446 0.001446 5.74 0.023 

2-Way Interactions 10 0.000594 0.000059 0.24 0.99 

Image resolution*Activation function - structure 1 0.000064 0.000064 0.25 0.618 

Image resolution*NMS 1 0.000014 0.000014 0.06 0.812 

Image resolution*Data augmentation technique 1 0.00017 0.00017 0.68 0.417 

Image resolution*Anchor dimensions 1 0.00004 0.00004 0.16 0.694 

Activation function - structure*NMS 1 0.000058 0.000058 0.23 0.634 

Activation function - structure*Data 

augmentation technique 
1 0.000028 0.000028 0.11 0.741 
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Factorial Regression 

Analysis of Variance 

Activation function - structure*Anchor 

dimensions 
1 0.000004 0.000004 0.01 0.905 

NMS*Data augmentation technique 1 0.000167 0.000167 0.66 0.421 

NMS*Anchor dimensions 1 0 0 0 0.966 

Data augmentation technique*Anchor 

dimensions 
1 0.000048 0.000048 0.19 0.667 

3-Way Interactions 10 0.000916 0.000092 0.36 0.954 

Image resolution*Activation function - 

structure*NMS 
1 0.00011 0.00011 0.44 0.513 

Image resolution*Activation function - 

structure*Data augmentation technique 
1 0.000026 0.000026 0.1 0.749 

Image resolution*Activation function - 

structure*Anchor dimensions 
1 0.000043 0.000043 0.17 0.682 

Image resolution*NMS*Data augmentation 

technique 
1 0.000004 0.000004 0.02 0.897 

Image resolution*NMS*Anchor dimensions 1 0.000127 0.000127 0.5 0.484 

Image resolution*Data augmentation 

technique*Anchor dimensions 
1 0.000027 0.000027 0.11 0.744 

Activation function - structure*NMS*Data 

augmentation technique 
1 0 0 0 0.997 

Activation function - structure*NMS*Anchor 

dimensions 
1 0.000013 0.000013 0.05 0.819 

Activation function - structure*Data 

augmentation technique*Anchor dimensions 
1 0.000024 0.000024 0.1 0.76 

NMS*Data augmentation technique*Anchor 

dimensions 
1 0.000541 0.000541 2.14 0.153 

4-Way Interactions 5 0.001249 0.00025 0.99 0.439 

Image resolution*Activation function - 

structure*NMS*Data augmentation technique 
1 0.000012 0.000012 0.05 0.83 

Image resolution*Activation function - 

structure*NMS*Anchor dimensions 
1 0.000146 0.000146 0.58 0.452 

Image resolution*Activation function - 

structure*Data augmentation technique*Anchor 

dimensions 

1 0.000857 0.000857 3.4 0.074 

Image resolution*NMS*Data augmentation 

technique*Anchor dimensions 
1 0.000092 0.000092 0.37 0.549 

Activation function - structure*NMS*Data 

augmentation technique*Anchor dimensions 
1 0.000141 0.000141 0.56 0.459 

5-Way Interactions 1 0.000438 0.000438 1.74 0.197 
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Factorial Regression 

Analysis of Variance 

Image resolution*Activation function - 

structure*NMS*Data augmentation 

technique*Anchor dimensions 

1 0.000438 0.000438 1.74 0.197 

Error 32 0.008066 0.000252  

Total 63 0.064938  

 

Pareto chart of standardized effects 

In the Pareto chart of the standardized effects, shown in Figure 4.13, the labeling of the factors is consistent 

with the analysis of Subsection 4.4.2. Similarly to the first Pareto chart, the factors are labeled A through 

E, representing the following variables: 

 A: Image resolution 

 B: Activation function in the structure 

 C: NMS (Non-Maximum Suppression) 

 D: Data augmentation technique 

 E: Anchor dimensions. 

In this chart the red dashed line representing the standardized effect has a value of 2.04, indicating the 

significance threshold at α=0.05. Factors with bars extending beyond this red dashed line have a significant 

impact on mAP. Therefore, the significant factors for testing according to the Pareto chart are the following: 

 Image resolution (A) has the greatest standardized effect on mAP 

 Activation function in the structure (B) 

 Anchor dimensions (E). 

 

Figure 4.13 Second Pareto chart of the standardized effects 
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The remaining hyperparameters or their combinations do not have a significant effect on mAP, since their 

values are less than 2.04.  Comparing the ANOVA results of training/validation vs. testing, we may conclude 

that 

1. The effects of the three factors, image resolution (factor A), activation function in the 

structure (factor B) and anchor dimensions (factor E), are significant in both cases 

2. The three-way interaction CDE is not significant in the testing ANOVA; however, it still has 

a relatively high standardized effect close to the threshold of Fig. 4.13 

These conclusions are very important; they indicate that a model trained under optimal hyperparameter 

settings, has also superior performance when tested on data that the model has not been exposed to 

(although from the same dataset that all three, training, validation and testing sets have been created). 

Main effects plot for mAP (testing) 

Figure 4.14 presents a main effects plot for testing (Kim et al., 2007) that quantifies the effect in mAP for 

factors A, B, C, D and E, respectively. The following observations can be made regarding these five factors: 

 Varying image resolution from 969x960 to 1280x1280 improves mAP by |46.3% − 51.4%| =

5.1% 

 Varying activation function from Swish to Mish improves mAP by |47.6% − 50.1%| = 2.5% 

 Varying anchor box sizes from the original set to new set improves mAP by |48.4% − 49.3%| =

0.9%. 

The effects of image resolution (A) and activation function (B) on mAP resulting from the testing 

experiments are very close to those resulting from the training/validation experiments.  The effect of 

anchor size dimensions (E), although significant, has a lower value from the one observed from the latter 

experiments. This consistency between the two sets of experiments is quite encouraging, indicating that 

the effects of the hyperparameters on the performance of the trained model has been identified correctly 

and are significant. 

The best options for our significant factors are: 

 1280x1280 for image resolution 

 Mish function for the activation function in the structure 

 New set of anchor box sizes for anchor dimensions. 
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Figure 4.14 Main effects plot for mAP (testing) of A, B and E factors 

4.5 Concluding remarks 

After completing both ANOVA analyses, the results from training and testing runs agreed to a high degree.  

From training, three hyperparameters (factors) and one hyperparameter three-way interaction have been 

found to affect mAP with statistical significance. The main effects, including image resolution (factor A), 

activation function in the structure (factor B), and anchor dimensions (factor E), are shown to affect mAP 

by 6.8%, 2.5%, and 2.1%, respectively. The significant hyperparameter CDE three-way interaction involves 

NMS, the data augmentation technique, and anchor dimensions.  It positively impacts mAP when using 

the combination of DIoU-NMS, Mosaic + Mixup, and the new set of anchor box sizes for anchor 

dimensions. 

From testing, the same three hyperparameters as in training have been found to affect mAP with statistical 

significance. The main effects, including image resolution (factor A), activation function in the structure 

(factor B), and anchor dimensions (factor E), are shown to affect mAP, increasing it by 5.1%, 2.5%, and 

0.9%, respectively. 

As mentioned in Section 4.4, based on the comparison of the ANOVA results for training/validation versus 

testing, the following findings can be reported: 

1. The same factors are significant: Both the training/validation and testing ANOVAs reveal image 

resolution (factor A), activation function (factor B), and anchor dimensions (factor E) as significant 

factors 

2. The effects are similar: The magnitude of the effects observed in the training/validation ANOVA 

are comparable to those found in the testing ANOVA, with a similar pattern of significance across 

the factors. 
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Note that the results achieved by a model in an application depends on the fit of the trained model to 

the application dataset. In Chapter 5, we use our trained models on our lab’s dataset, referred to as the 

DeOPSys dataset, to assess the performance of the trained models on this independent UAV dataset that 

has quite different characteristics than the modified UAV dataset we used for model training. 
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Chapter 5 Testing the trained YOLOv4-p6 models on DeOPSys dataset 

In this Chapter, we present the evaluation of the proposed hyperparameter optimization method using 

the best trained models (25th and 29th models) to detect objects from UAV images obtained by our lab 

(DeOPSys dataset).  The objective of this exercise is to validate that the best performing models in the 

training/validation process are performing well in the DeOPSys dataset. 

5.1 DeOPSys UAV dataset 

The DeOPSys dataset (ENIRISST+, 2023)  includes annotated images containing  the following three classes:  

 Person  

 Car  

 Boat 

The images were captured by a drone in two locations on the island of Chios: the port/shipyard in the 

Tholos area (see example (a) in Figure 5.1) and a rural area near Lagada (see example (b) in Figure 5.1). 

These images were taken at different altitudes (15m, 30m, and 50m) and at different times of the day 

(morning and evening).  Note that: 

 Images taken from different heights offered varying levels of detail and viewpoints. Lower altitudes 

result in more detailed views of objects, but they cover a smaller area, while images taken from 

higher altitudes covered a wider area with less detail 

 Daylight images generally had higher quality due to better natural light, while images taken in low 

light conditions were less clear, making it harder to decipher some object details. In addition, 

weather conditions, like cloudy or clear skies, also impacted the image quality. 

 

Figure 5.1 Sample images from the DeOPSys dataset featuring (a) the Tholos Port (daylight conditions) and (b) Lagada Rural 

Area (low light conditions)  
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Furthermore,  

 The objects of interest varied in size 

 There were variations in the spatial placement of objects within the environment and the 

characteristics of the environment itself.  For example, in some cases the dataset involved two 

persons and a car. 

Finally, the dataset included 722 images with multiple annotated objects for detection, captured at various 

heights. Table 5.1 shows the objects in the images of the DeOPSys dataset’s testing sets. 

Table 5.1 The labelled objects of DeOPSys dataset 

  Number of objects 

DeOPSys dataset 
Number of 

images 

Number of 

persons 

Number of 

cars 

Number of 

boats 

Total Number 

of objects 

Images 15m 241 244 229 0 473 

Images 30m 240 256 117 62 435 

Images 50m 241 257 123 476 856 

Morning images 350 373 285 538 1196 

Evening images 372 384 184 0 568 

Total images 722 757 469 538 1764 

 

The testing sets of Table 5.1 are the following: 

1. Images taken from a drone at a height of 15 meters during the morning and evening hours 

2. Images taken from a drone at a height of 30 meters during the morning and evening hours 

3. Images taken from a drone at a height of 50 meters during the morning and evening hours 

4. Images taken from a drone at heights of 15, 30 and 50 meters during the morning hours 

5. Images taken from a drone at heights of 15, 30 and 50 meters during the evening hours 

6. Images taken from a drone at heights of 15, 30 and 50 meters during the morning and evening 

hours. 

5.2 Testing execution on DeOPSys dataset 

Referring to Section 4.3, the 25th and 29th models showed the highest average mAP during training, 

achieving 52% mAP value. For this reason, we tested the selected models on the DeOPSys dataset. The 

execution of the testing process is similar to the one discussed in Section 4.2, where we kept the .cfg files 

unchanged and only modified the information included in the .data files. However, DeOPSys contains six 

different testing sets, as explained at the end of Section 5.1. This means that we have six .data files for 

each .cfg file, that is, we test the six testing sets with these models (see Figure 5.3). Furthermore, we 

executed the testing process in DeOPSys twice, just like the previous training and testing on the modified 

UAV dataset. 
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 By way of example, the first two .data files contain the information shown in Figure 5.2. 

 

Figure 5.2 Data files of the first and second testing sets 

All six .data files retain the same “classes” and “names” parameters used in training or previous testing of 

the modified UAV dataset used for training. The “valid” parameter changes for every .data file, as 

presented in Figure 5.2 “valid = … /all_experiement_ [number 1 to 6].txt", to represent the testing set that 

is going to be used for testing the respective model (.cfg file). Similarly to our previous testing, the “train” 

and “backup” parameters were omitted in the .data files for testing, as they are only used for training. 

To perform the testing process on DeOPSys, we created two folders, named Model_25 and Model_29, 

each containing one .cfg file with its six corresponding .data files used for testing the respective model. 

Figure 5.3 represents the folders and the first folder (Model_25), which includes the .cfg file of the 25th 

model and its six corresponding .data files. 

 

Figure 5.3 Setup for testing the 25th and 29th models on DeOPSys dataset 
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The names of the .cfg files are the same as the .data files, e.g., YV4P6_25. However, the .data files have 

an extra number at the end to represent the number of the testing set. For example, YV4P6_25_3 specifies 

the settings and paths for the 25th model's testing process, including the location of the third testing set. 

After this setup, we executed the command of Figure 5.4 to begin the testing process on DeOPSys dataset. 

The command in Figure 5.4 is different from the one used in Section 4.2, because this time we have six 

.data files for each .cfg file.  

for i in 25 29; do > /media/deopsys/Hard_Disk/panos/testing/testing_${i}.txt; for j in {1..6}; do ./darknet 

detector map cfg/cfg_panos/Testing/Model_${i}/YV4P6_${i}_${j}.data 

cfg/cfg_panos/Testing/Model_${i}/YV4P6_${i}.cfg 

/media/deopsys/Hard_Disk/panos/Testing_process/Weights/First_run/4V4P6_${i}_best.weights -points 101 

-thresh 0.25 -iou_thresh 0.5 >> /media/deopsys/Hard_Disk/panos/testing/testing_${i}.txt; done; done 
Figure 5.4 Execution command for testing the experiments 

It contains a double loop: an outer loop explicitly targeting only folders Model_25 and Model_29 and an 

inner loop iterating through the six .data files for each folder. The outer loop selects the corresponding 

.cfg file and the best weights file created from the first training run of the selected folder. The inner loop 

then selects the first .data file and tests the respective .cfg file (included in the folder). Once testing of the 

model with the first testing set (.data file) is complete, it moves to the second .data file, continuing until 

the model is tested with all six .data files.  

After testing the first folder, the process moves to the second folder with its corresponding best weights 

file, saving the terminal output for each .data file in a single line report under a unique file name to avoid 

overwriting the results of the previous model. This process continues until the two models have been 

tested using their corresponding best weights. Once completed, the same command is executed again 

using the best weight files from the second training run. As a result, from the testing process on the 

DeOPSys dataset, we obtain line reports similar to our previous testing, containing the mAP metric for 

each model of each run, which will be evaluated in the next Section. 

In summary, to perform the DeOPSys testing process, we used the six testing sets, our trained models, 

and the best weights (which achieved the highest mAP in validation) generated from the training runs. 

 5.3 Testing results of DeOPSys dataset 

For the DeOPSys dataset, we set up our models to detect only the person and small vehicle classes. 

Although the DeOPSys dataset includes the class small boat, the models have not been trained in this third 

class.  Note that the ship class included in training has quite different characteristics than the small boat 

class. 

Table 5.2 presents the mAP results of the DeOPSys tests using the 25th and 29th models (rows of the table). 

The columns correspond to: a) three testing sets (three columns) containing images photographed from 

15, 30 and 50 m height, b) the next two columns correspond to images photographed from all heights (15, 
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30, 50 m) corresponding to morning and evening conditions, respectively.  The last column corresponds 

to all images. Note that for each column, the average mAP of the two models corresponding to each of 

the 25 and 29 training runs are presented. 

From Table 5.2 it is clear that both models yielded very encouraging mAP results for the images taken at 

heights of 15, 30, and 50 meters during the morning and evening hours (as mentioned in Section 5.1), 

achieving average mAP of 77.6% and 76.3%, respectively. Furthermore, the two models 

 Achieved the highest average mAP on images captured at a height of 15 meters during the 

morning and evening hours, with the 25th model achieving 85.3% mAP and the 29th model 

achieving 82.8% mAP. 

 Conversely, they achieved the lowest average mAP on images captured at a height of 30 meters 

during the morning and evening hours, with the 25th model achieving 70.8% mAP and the 29th 

model achieving 72.0% mAP.  

In general: 

 Both trained models displayed exceptional performance 

 Morning and evening images taken at a lower height are the easier to detect by both models 

 Morning and evening images taken at a 30m height are the harder to detect. 

Table 5.2 Average mAP testing results of 25thand  29thmodels. 

Model 
Average mAP (%) 

Images 15m Images 30m Images 50m Morning images Evening images All images 

25 85.3 70.8 75.4 82.4 74.3 77.6 

29 82.8 72.0 74.8 80.4 74.5 76.3 

 

Table 5.3 presents the average AP (Average Precision) values of the two runs for the person and small 

vehicle classes obtained from testing the 25th and 29th models on the six testing sets from DeOPSys. The 

rows of the table represent the testing sets (same as in Table 5.2), and the columns correspond to: a) the 

average AP values of the two runs for the person and small vehicle classes on each testing set separately 

(two columns), and b) the average mAP results of the models on each testing set (one column). As 

described in Section 2.6, the AP values are used to calculate the mAP metric. Likewise, utilizing the average 

AP values, we can calculate the average mAP results. For instance, the average mAP of the 25th model on 

the images 50m testing set is calculated as: (51.3 + 99.6 2⁄ ) = 75.4%. 

Table 5.3 AP testing results of 25th and 29th models. 

Model Testing sets 
Average AP values per class % 

Average mAP % 
Person Small vehicle 

M
o

d
el

 2
5

 Images 15m 70.7 99.9 85.3 

Images 30m 49.5 92.1 70.8 

Images 50m 51.3 99.6 75.4 

Morning images 65.4 99.3 82.4 
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Model Testing sets 
Average AP values per class % 

Average mAP % 
Person Small vehicle 

Evening images 53.1 95.5 74.3 

All images 57.4 97.7 77.6 
M

o
d

el
 2

9
 

Images 15m 65.7 100.0 82.8 

Images 30m 47.7 96.3 72.0 

Images 50m 49.6 100.0 74.8 

Morning images 61.4 99.4 80.4 

Evening images 50.8 98.2 74.5 

All images 54.2 98.3 76.3 

 

From Table 5.3, we conclude three primary findings: 

 The person class confirms that the models have limited performance with images captured at a 

height of 30 meters, while they perform better using images captured at heights of 15 and 50 

meters. The highest AP value for the person class is 70.7% (images 15m testing set), and the lowest 

is 47.7% (images 30m testing set) 

 The small vehicle class produces great results even from images captured at a height of 30 meters. 

The highest AP value for the small vehicle class is 100% (images 15m testing set and images 50m 

testing set), and the lowest is 92.1% (images 30m testing set) 

 The models achieved good average AP results on the testing set containing all images. Specifically, 

the 25th model produced average AP results of 57.4% for the person class and 97.7% for the small 

vehicle class, while the 29th model produced average AP results of 54.2% for the person class and 

98.3% for the small vehicle class. These AP values of the person class are significantly lower than 

those of the small vehicle class.  The reason is that the person images correspond to a much 

smaller number of pixels in each photo of the datasets as compared to the vehicle class and, thus, 

the identification/detection uncertainty is higher in the former class. 
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Chapter 6 Conclusions 

This thesis proposes a new method to optimize training of models that may effectively detect and classify 

objects in real time from images taken at logistics facilities, including ports.  These objects include 

"persons", "small vehicles", "large vehicles", and "ships". The proposed approach is based on YOLO, an 

advanced image detection system.  We reviewed several versions of this system YOLOv1, YOLOv2, YOLOv3, 

YOLOv4, and Scaled YOLOv4 models, and compared their performance based on the Average Precision 

(AP) metric. Evidence indicates that YOLOv4-p6 achieves better results on the COCO dataset compared to 

its previous versions. Therefore, this study focused on optimizing training of the YOLOv4-p6 model to 

achieve the highest attainable mean AP (mAP) results. The mAP metric was selected as our primary 

evaluation metric for training and testing. This metric measures the model's performance across multiple 

classes. 

For our study, we generated a training dataset used by combining the following publicly available UAV 

image datasets that included the selected classes: Aerial vehicle, DOTA, VisDrone-DET, Stanford drone, and 

DAC-SDC. Prior to combining the datasets, the following modifications were made: 1) annotations were 

converted into YOLO format, 2) unnecessary classes were removed, and 3) the classes under interest were 

adjusted in the following order: person, small vehicle, large vehicle, and ship. The resulting combined UAV 

dataset consists of 76,872 images with 876,388 annotations across the four selected classes. The dataset 

was divided into three different sets: training (80% of the dataset), validation (10%), and testing (10%), 

which correspond to 61,429 images with 665,506 annotations, 7,678 images with 105,998 annotations, 

and 7,680 images with 101,830 annotations, respectively.  

Training optimization was studied by tuning the training hyperparameters of YOLO.  Our goal was to 

determine the most favorable set of hyperparameters that maximize the mAP results.  To do so, we 

1. Split the available training hyperparameters of YOLOv4-p6 into two sets. The first set included 

hyperparameters adjusted based on the characteristics of the training set; i.e., the number of 

classes, max batches, steps, and filters (of the convolutional layer before each detection head).  

We maintained the values/levels of these hyperparameters fixed throughout the experiments. The 

hyperparameters of the second set were tuned through the experimental work.  The 

hyperparameters in this second set were varied at two levels (1st level: default hyperparameter 

values of YOLOv4-p6 and 2nd level: new hyperparameter values) 

2. Utilized the second set of hyperparameters to generate our experiments design using a Full-

Factorial approach. The five hyperparameters under study and tuning resulted in thirty-two (25) 

different factor combinations. 

Model training was performed under these 32 hyperparameter combinations, thus generating 32 trained 

models.  (Actually, since for analysis purposes, we performed two training rounds for each combination, 

the total number of models were 32x2=64.) Note that in each training session, every 100 training iterations 

validation is conducted. At the end of the session, testing of the trained model is performed. 

The outputs of each of the 64 experiments were the highest mAP achieved in validation, and the mAP 

value resulting from training. The outputs of the experiments were analyzed using ANOVA.  This analysis 
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of the validation results revealed that the hyperparameters impacting mAP in a statistically significant way 

are: image resolution, activation function, and anchor box sizes.  Non-Maximum Suppression (NMS) 

methods and data augmentation techniques did not have a significant effect on mAP.  Similar outcomes 

were obtained from analyzing the results obtained from the testing process. Furthermore, the analysis 

indicated a single significant three-way interaction (only in training) between NMS, data augmentation 

techniques and anchor dimensions. The quantitative effects on mAP of the three significant 

hyperparameters are as follows:  

 Varying image resolution from 969x960 to 1280x1280 improves mAP by 6.8% in training and 5.1% 

in testing 

 Varying activation function from Swish to Mish improves mAP by 2.5% in training and testing 

 Varying anchor box sizes from the original set to new set improves mAP by 2.1% in training and 

0.9% in testing. 

The best trained models (corresponding to the 25th and 29th hyperparameter combinations achieved in 

validation a 52% average mAP and 53.3% in testing.  

The considerable effects of the hyperparameters on model effectiveness support strongly our thesis that 

careful tuning of the hyperparameters during training may yield to major improvements in model 

effectiveness.  The results from testing the two best trained models on the independent DeOPSys dataset 

validate the above thesis.  

During this completely independent testing process, which used images never employed during training, 

both models achieved superior object detection results.  The highest average mAP values were achieved 

for images taken from a height of 15m: mAP of 85.3% for the 25th model and 82.8% for the 29th model.  

Even the lowest model performance, corresponding to images taken from the 30m height, was very good 

with mAP values of 70.8% for the 25th model and 72.0% for the 29th model.  

This exercise showed that the proposed method for tuning the training hyperparameters of YOLO is 

successful. 

 It illustrated the significance of appropriate hyperparameter tuning 

 It revealed the effects of the various hyperparameters on the significant mAP output 

 It paves the way towards a systematic method for successful hyperparameter tuning to optimize 

model training. 

Future directions for research include: 

 Consider the hyperparameters of newer versions of YOLO  

 Utilize more efficient and accurate backbone and neck components from updated algorithms on 

Scaled YOLOv4 models 

 Incorporate updated modules; e.g. SPFF (Spatial Pyramid Pooling Fast) module used in YOLOv11 

 Develop efficient methods for hyperparameter tuning.  
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Appendix A.  IoU and CIoU losses 

A.1 Intersection over Union (IoU) 

The Intersection over Union (IoU) is used during the training process of the YOLO algorithm, where it 

facilitates the determination of an anchor box that seeks optimal matching with a specified object 

(referred to as the ground truth bounding box). IoU represents the ratio of the intersecting area between 

two bounding boxes (ground truth and anchor) to their combined area.  

To better understand the IoU, we will explain the following concepts: 

 Anchor boxes: are predetermined bounding boxes of different sizes and aspect ratios 

 Ground truth bounding box: is the manually annotated box that precisely encloses an object and 

provides its respective label. 

The mathematical representation for IoU is delineated as follows (Števuliáková and Hurtik, 2023): 

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛
 (A.1) 

 

The IoU values ranges from 0 to 1 (Ultralytics, 2023), where: 

 0 indicates that the two boxes do not overlap, showing a complete misfit between the two 

 1 signifies that the predicted box aligns perfectly with the ground truth box, thus indicating a 

perfect detection 

 0.5 or 0.75 IoU thresholds are widely used as benchmarks for the training process of a model. 

A.2 Complete Intersection over Union (CIoU) 

Complete Intersection over Union (CIoU) is an updated version of IoU, which optimizes the performance 

of the model by suppressing differences between the predicted bounding boxes and the ground truth 

bounding boxes (Zheng et al., 2021). 

Figure A.1 shows a predicted bounding box (green box) and a ground truth bounding box (black box) with 

their centers marked by a green and black circle, respectively. The purple line represents the Euclidean 

distance 𝜌 between the centers, and the gold line 𝑓 is the diagonal of the smallest enclosing box that can 

contain both the predicted bounding box and the ground truth bounding box. Therefore, CIoU combines 

IoU, the center distance 𝜌, and the aspect ratio matching. From the above factors, CIoU tries to improve 

the accuracy of bounding box predictions in respect of location, size, and shape, resulting in better 

detection performance. 
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Figure A.1 Complete Intersection over Union (CIoU) (Wang et al., 2022) 

The equation of CIoU is described below: 

𝑅𝐶𝐼𝑜𝑈 =
𝜌2(𝑏, 𝑏𝑔𝑡)

c2
+ 𝛼𝑢 

 

(A.2) 

where, 

 𝑏 and 𝑏𝑔𝑡: represent the central points of the predicted bounding box (𝐵) and the 

ground truth bounding box (𝐵𝑔𝑡), respectively 

 𝜌: is the Euclidean distance between the centroids of the predicted and ground truth 

bounding boxes 

 𝑐: is the length of the diagonal line that covers both the predicted and ground truth 

bounding boxes when they are enclosed in the smallest possible area 

 𝛼: can be adjusted to balance the importance of the distance between objects and their 

size differences when calculating CIoU 

 𝑢: functions as a standardizing factor, accommodating the difference in aspect ratio 

between the predicted and ground truth bounding boxes. 

 

In Equation A.2, “α” and “u” are calculated as follows: 

 

  

 

𝑎 =
𝑢

(1 − 𝐼𝑜𝑈) + 𝑢′
 (A.3) 

𝑢 =
4

𝜋2
(𝑎𝑟𝑐𝑡𝑎𝑛

𝑤𝑔𝑡

ℎ𝑔𝑡
− 𝑎𝑟𝑐𝑡𝑎𝑛

w

h
)

2

 (A.4) 

 

where, 

 𝑤 and ℎ: are the width and the height of the predicted bounding box 𝑏 

 𝑤𝑔𝑡  and ℎ𝑔𝑡: are the width and the height of the ground truth bounding box 𝑏𝑔𝑡  

 𝐼𝑜𝑈: is the Intersection over Union. 
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The YOLOv4 and YOLOv4-p6 contain the CIoU in all their detection heads, as shown in Figure A.2. 

 

Figure A.2 Position of the Complete Intersection over Union (CIoU) in YOLOv4 configuration file 
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Appendix B. Functionality of bounding boxes  

Both YOLOv4 and YOLOv4-p6 algorithms use the head component of their networks to detect objects. This 

component includes the detection heads, which use the bounding boxes to predict and detect the desired 

objects during the validation and testing processes.  

 

The following sections of this appendix describe the use of ground truth bounding boxes, anchor bounding 

boxes and bounding boxes. 

B.1 Ground truth bounding boxes 

Ground truth bounding boxes are manually created and their spatial information is provided as input data 

at the beginning of training. Specifically, we fed the algorithm with a UAV dataset containing images with 

annotations that specify the coordinates of all objects the model has been (or will be) trained on. These 

coordinates form a rectangular box which is referred to as the ground truth bounding box (see Figure B.1). 

Consequently, these boxes are labelled rectangular boxes that indicate the position of an object within the 

image and its corresponding class. Each detected object in the image has a single ground truth bounding 

box (Subramanyam, 2021). 

 

Figure B.1 Ground truth bounding box containing a dog (SuperAnnotate, 2023) 

B.2 Anchor boxes 

Anchor boxes are predetermined bounding boxes of different sizes and aspect ratios used to capture the 

selected object classes during detection. Instead of applying bounding boxes instantly, the model refines 

the provided anchor boxes during the training process to create accurate bounding boxes. The 

predetermined aspect ratios of the anchor boxes are established using K-means clustering (Redmon and 

Farhadi, 2016b). This algorithm finds the anchor box parameters that result in optimal Intersection over 

Union (IoU) results, in order to optimize the fit of the anchor boxes to the training data by determining the 

most suitable dimensions.  Consequently, the selected distance metric is mathematically represented as 

follows: 

𝑑(𝑏𝑜𝑥, 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑) = 1 − 𝐼𝑜𝑈(𝑏𝑜𝑥, 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑) (B.1) 
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where, 

 𝑏𝑜𝑥: represents the ground truth bounding box 

 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑: indicates the center point of the anchor bounding box 

 𝑑(𝑏𝑜𝑥, 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑): returns the percentage of the non-intersecting area between the ground truth 

bounding box and the anchor bounding box. 

Throughout the training process, each grid cell is associated with a set of anchor boxes (Mantripragada, 

2020). Their purpose is to include objects of different scales and shapes, functioning as predefined 

reference boxes. In YOLOv4, each cell the grid includes three anchor boxes. These are categorized into 

small, medium and large detection scales, resulting in a total of nine anchor boxes across all detection 

heads. In contrast, YOLOv4-p6 has four anchor boxes because the network is bigger and has four detection 

heads. Consequently, it has a total of sixteen anchor boxes across all detection heads (4 anchor boxes for 

each detection head). 

The objective of the training process is to refine the initial anchor boxes during training to create better 

bounding boxes that match better the ground truth bounding boxes. Specifically, during the training 

iterations, the model adjusts the sizes and positions of anchor boxes based on the ground truth boxes. 

This process involves refining the initial dimensions and central positions of the anchor box that has the 

highest IoU with the ground truth box, ensuring that the anchor box with the most significant overlap is 

selected for adjustment. After adjustment, each selected anchor box produces a single bounding box that 

predicts the presence of an object of a particular class with a confidence score at that specific location. 

YOLOv4 and YOLOv4-p6 are configured with anchor box dimensions originally based on the COCO 

(Microsoft Common Objects in Context) dataset (COCO, 2017), which includes 328,000 images of persons 

and various common objects.  Since we are using a different dataset, we need to readjust our anchor box 

sizes to match with both the selected image resolutions of 1280𝑥1280 and 960𝑥960. One method is with 

the application of k-means algorithm, as described below: 

./darknet detector calc_anchors cfg/"NAME_OF_THE_DATA_FILE".data -num_of_clusters 

"NUMBER_OF_CLUSTERS" -width "NUMBER_OF_IMAGE_WIDTH" -height "NUMBER_OF_IMAGE_HEIGHT" 

An example by applying the code: 

./darknet detector calc_anchors cfg/traffic_lights.data -num_of_clusters 16 -width 1280 -height 1280 
Figure B.2 Command for applying the k-means algorithm in Darknet 

where, 

 ./darknet: is the executable file of Darknet 

 detector calc_anchors: instructs Darknet to calculate the anchor boxes corresponding to the 

object detection model 

 cfg/"NAME_OF_THE_DATA_FILE".data: specifies the path to the data file, as shown in Figure B.3. 

The placeholder "NAME_OF_THE_DATA_FILE" needs to be replaced with the name of the data 

file that contains information about the paths to the training and validation or testing sets, the 
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number of classes and the backup path. The backup path saves the weights of the model (every 

1,000 iterations) during the training process 

 

Figure B.3 Representation of a data file 

-num_of_clusters "NUMBER_OF_CLUSTERS": specifies the number of clusters into which the 

anchor boxes should be grouped. This number depends on the model being trained. Therefore, 

"NUMBER_OF_CLUSTERS" should be replaced with the actual number of clusters specified in the 

corresponding configuration file. For example, as shown in Figure B.4, the YOLOv4-p6 model uses 

sixteen pairs of anchor box sizes in the “anchors” hyperparameter, indicating that there are 

sixteen clusters 

 

Figure B.4 Position of anchors in YOLOv4-p6 configuration file 

 -width "NUMBER_OF_IMAGE_WIDTH": specifies the input image width that is included in the 

configuration file 

 -height "NUMBER_OF_IMAGE_HEIGHT": specifies the input image height that is included in the 

configuration file. 

By providing better dimensions for our initial anchor boxes, we improve the detection performance of our 

model, as the model can create more accurate bounding boxes. 

B.3 Bounding boxes 

The model does not directly use bounding boxes to predict the desired objects. Instead, it uses refined 

anchors to assist in generating bounding boxes during training. These bounding boxes learn and predict 

spatial offsets (vertical and horizontal) and sizes (height and width) from the refined anchors. As a result, 

the final feature map represents different offset and size predictions for each anchor defined in the output 

feature map, resulting in object detection for each class (Tepteris et al., 2023). Subsequently, the generated 

bounding boxes are evaluated during the validation process by measuring their overlap with the ground 

truth bounding boxes using IoU (YOLOv4 and YOLOv4-p6 use an updated version of IoU known as Complete 

Intersection over Union (CIoU), as discussed previously). 

As illustrated in Figure B.5, the light green rectangular boxes represent bounding boxes showing the spatial 

locations within the image where cars are located (Subramanyam, 2021). 
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Figure B.5 Displaying bounding boxes for the car class within light green boundaries (Dupont, 2023) 

As mentioned above, YOLOv4 uses three different grid sizes to detect objects at different scales. 

Specifically, the model applies a 19 by 19 grid generating 1,083 (19𝑥19𝑥3) bounding boxes for the 

detection of large objects, a 38 by 38 grid generating 4,332 (38𝑥38𝑥3)  bounding boxes for the detection 

of medium objects and a 76 by 76 grid generating 17,328 (76𝑥76𝑥3)   bounding boxes for the detection 

of small objects. Consequently, YOLOv4 generates a total number of 22,743 bounding boxes, which are 

then reduced using Non-Maximum Suppression (NMS). 

Similarly, YOLOv4-p6 model creates a total of 102,000 bounding boxes, and specifically: 

 For very small object detection: (160𝑥160𝑥3) = 76,800 

 For small object detection: (80𝑥80𝑥3) = 19,200 

 For medium object detection: (40𝑥40𝑥3) = 4,800 

 For large object detection: (20𝑥20𝑥3) = 1,200 

In the detection heads of YOLOv4, the grid responsible for detecting large objects is defined with 

dimensions of 19𝑥19𝑥255. Each cell within this grid contains three anchor boxes, which are tasked with 

generating three predicted bounding boxes possessing the following characteristics: 

 The variables 𝑡𝑥  and 𝑡𝑦 represent the coordinates of the center 

 𝑡𝑤 and 𝑡ℎ  are the predicted width and height, respectively 

 𝑃0 signifies the objectness score 

 𝑃𝑐𝑖
 represents an array of confidence scores corresponding to each class category within the 

predicted bounding box. 

For each of the three predicted bounding boxes in a cell, the objectness score is calculated by multiplying 

the 𝑃𝑐(𝑜𝑏𝑗𝑒𝑐𝑡) (representing the probability that the box contains an object) by the Intersection over 

Union (IoU) between the predicted and ground truth bounding boxes. Then, the resultant objectness score 

is multiplied by the predicted class probability for each class in that box to calculate the confidence score 
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for each class. After calculating the confidence scores in the bounding box, the highest score across all 

classes is selected as the predicted object (class) for that bounding box (Redmon and Farhadi, 2018). 

In the detection process, the objectness score (Redmon and Farhadi, 2018) within the central cell of the 

ground truth bounding box is indicated as 1, while the objectness scores within other cells included in the 

ground truth bounding box vary between 0 and 1 in relation to their distance from the center of the ground 

truth bounding box. Conversely, cells outside the ground truth bounding box are assigned an objectness 

score of 0. Each cell within the 𝑆𝑥𝑆 grid contains three anchors, and for each anchor, a bounding box is 

proposed, determined by its center coordinates and dimensions (𝑏𝑥 , 𝑏𝑦 , 𝑏ℎ , 𝑏𝑤). As shown in Figure B.6, 

the bounding box with the highest overlap with the ground truth box is considered as the bounding box 

responsible for object prediction, while the remaining two are ignored. 

 

Figure B.6 Calculation of the probability for an anchor to include a specific class (PyLessons, 2019) 

where, 

 𝑃𝑜 represents the objectness score, which is assigned a value of 1 in the central cell of each ground 

truth bounding box. Cells surrounding the central cell have values less than 1, such as 0.95 and 

0.9, while cells distant from the central cell have values close to zero 

 𝑃𝑐𝑖
 represents the class probability for class 𝑖, derived from the YOLOv4 algorithm during the 

training process. 

For instance, Figure B.7 represents a 19x19 grid (large detection head). The red bounding boxes classified 

the objects as “car” because they had the highest overlap with their respective ground truth box. 

Therefore, the detected objects labelled as “car” are assumed to be the most appropriate result for 

detection. 
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Figure B.7  Two bounding boxes representing the class "car" (krishnab, 2018) 

B.4 Calculations regarding the resultant bounding boxes 

In accordance with the methodology introduced in YOLO9000 and YOLOv3 algorithms, YOLOv4 and 

YOLOv4-p6 use dimension clusters as anchor boxes for the prediction of bounding boxes. The model 

generates four coordinates for each bounding box, namely 𝑡𝑥 , 𝑡𝑦 , 𝑡𝑤  and 𝑡ℎ. If the cell is moved from the 

image's top-left corner by coordinates (𝑐𝑥, 𝑐𝑦), and the previous bounding box has a width and height 

represented by 𝑝𝑤 and 𝑝ℎ respectively, the predicted values are related as follows (Bochkovskiy, 2021a): 

𝑏𝑥 = 𝜎(𝑡𝑥)  ∗  1.1 −  0.05 + 𝑐𝑥 (B.2) 

𝑏𝑦 = 𝜎(𝑡𝑦) ∗  1.1 −  0.05 + 𝑐𝑦 (B.3) 

𝑏𝑤 = 𝑝𝑤  𝑒𝑡𝑤  (B.4) 

𝑏ℎ = 𝑝ℎ  𝑒𝑡ℎ (B.5) 

 

In the above equations, the terms are defined as follows: 𝑏𝑥, 𝑏𝑦 , 𝑏𝑤 and 𝑏ℎ. They represent the parameters 

of the bounding box, where 𝑏𝑥 and 𝑏𝑦 are the coordinates of the center of the predicted bounding box, 

while 𝑏𝑤 and 𝑏ℎ indicate its width and height, respectively. 𝑝𝑤 and 𝑝ℎ are the width and height of the 

anchor boxes, where 𝑝𝑤 is calculated as the ratio of the width of the anchor box (𝑤𝑎𝑛𝑐ℎ𝑜𝑟 ) to the width of 

the image (𝑤𝑖𝑚𝑎𝑔𝑒), and 𝑝ℎ  is calculated similarly using the height dimensions. 𝑐𝑥 and 𝑐𝑦 refer to the shift 

of the coordinates of the top-left corner of the cell containing the center of the predicted object from the 

top-left corner of the image. The function 𝜎 represents the sigmoid function, while 𝑡𝑥  and 𝑡𝑦 represent 

the shifts of the anchor from the top-left coordinates of the grid cell to which the anchor belongs, with 

the cell also including the center of the predicted object and the ground truth box. 𝑡𝑤  and 𝑡ℎ  are 

parameters that adjust the width and height of the anchor to match those of the ground truth box. 
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Appendix C. Convolution operations and network architectures 

C.1 Stride operation 

The stride operation refers to the size of the step performed by the filters of convolutional layers during 

the processes of feature extraction, downsampling and pooling. In that way, it controls the filter's 

movement across input images. The amount of movement the filter makes at each step, either 

horizontally, vertically, or both, depends on its configuration (Riad et al., 2022). For instance, the following 

table displays a 4x4 image: 

Image 

1 2 0 1 

4 3 1 2 

2 0 0 4 

1 1 0 2 
Figure C.1 Image size of 4x4 

We are going to perform a 2x2 convolutional operation with a stride of 2, which involves moving a 2x2 

filter with a stride of 2 across the image: 

Filter 

2 1 

0 1 
Figure C.2 Filter size of 2x2 

We start by calculating the top-left element of the feature map, which involves performing the following 

operation: 

(1 ∗ 2) + (2 ∗ 0) + (4 ∗ 1) + (3 ∗ 1) = 8 (C.1) 

 

Then, the filter is shifted to the right by a distance equivalent to 2 pixels, as demanded by the stride, to 

perform a similar operation: 

(0 ∗ 2) + (1 ∗ 0) + (1 ∗ 1) + (2 ∗ 1) = 3 (C.2) 

 

Following the computation of the top row within the feature map, the filter is shifted downward by 2 pixels 

and repeats the same process, till there are no more rows below the table: 

(2 ∗ 2) + (0 ∗ 0) + (1 ∗ 1) + (1 ∗ 1) = 6 (C.3) 

 

(0 ∗ 2) + (4 ∗ 0) + (0 ∗ 1) + (2 ∗ 1) = 2 (C.4) 

 

After completing the 2x2 convolutional operation with a step of 2, the resulting feature map is: 
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Feature map 

8 3 

6 2 
Figure C.3 The output feature map 

The output feature map is 2x2, which is smaller than the input size of 4x4. 

Even if neural networks may adopt larger input images and more complicated filters, the concept of stride 

remains the same. For instance, the YOLOv4 and YOLOv4-p6 algorithms apply the stride operation in their 

algorithms as follows: 

 

Figure C.4 Convolutional layer with stride in YOLOv4-p6 configuration file 

C.2 Feature map 

During the forward pass of the YOLOv4 and Scaled YOLOv4 algorithms, a series of convolutions are applied 

to the input image using different filters. This results in the creation of multiple feature maps, which 

initially capture basic features like edges and corners. As these feature maps progress through the 

networks, they start to represent more complex features such as shapes and textures (Lecun et al., 1998). 

Consequently, at the end of these networks (in the heads component), these refined feature maps are 

applied with bounding boxes to detect and classify objects. 

The use of many feature maps helps detection models to identify more detailed features, but also 

increases the computational requirements and introduces a potential risk of overfitting. 

The following is an example of a 3𝑥3 filter applied to a 5𝑥5 image with stride of 2, creating a 2𝑥2 feature 

map: 

[
 
 
 
 
1 0 1 2 0
0 2 1 0 0
2
1
0

1
0
0

3 0 3
2
2

1 0
0 0]

 
 
 
 

 ∗  [
1 0 1
0 2 0
1 0 1

] =  [
15 7
7 10

] 
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To begin with, we position the filter at the top left corner of the input matrix to calculate the first value of 

the feature map as follows: 

(1 ∗ 1) + (0 ∗ 0) + (1 ∗ 1) + (0 ∗ 0) + (2 ∗ 2) + (1 ∗ 0) + (2 ∗ 1) + (1 ∗ 0) + (3 ∗ 1)  = 15 (C.5) 

 

After we complete the previous step, we shift the filter horizontally 2 pixels to the right to calculate the 

next value in the feature map: 

(1 ∗ 1) + (2 ∗ 0) + (0 ∗ 1) + (1 ∗ 0) + (0 ∗ 2) + (0 ∗ 0) + (3 ∗ 1) + (0 ∗ 0) + (3 ∗ 1)  = 7 (C.6) 

 

Next, starting again from the top left corner, we shift the filter vertically downwards by 2 pixels to calculate 

the next value in the feature map: 

(2 ∗ 1) + (1 ∗ 0) + (3 ∗ 1) + (1 ∗ 0) + (0 ∗ 2) + (2 ∗ 0) + (0 ∗ 1) + (0 ∗ 0) + (2 ∗ 1)  = 7 (C.7) 

 

Finally, we move the filter horizontally 2 pixels to the right of its previous position to calculate the last 

value in the feature map: 

(3 ∗ 1) + (0 ∗ 0) + (3 ∗ 1) + (2 ∗ 0) + (1 ∗ 2) + (0 ∗ 0) + (2 ∗ 1) + (0 ∗ 0) + (1 ∗ 0)  = 10 (C.8) 

  

C.3 Convolutional layers 

In the convolutional layer, a series of changeable filters that are commonly referred to as kernels are used 

to process the input image, resulting in feature extraction. These filters are numeric matrices whose 

dimensions are set during initialization and remain constant. During training, each filter moves across the 

input image, conducting element-wise cross-correlation operations (see Equation C.9) on its adjustable 

parameters and specific sections of the input, resulting in the formation of single values within the 

produced feature map (O’Shea and Nash, 2015). Throughout the same process, the filter weights are 

continually adjusted to minimize the loss function.  

The mathematical expression used for this operation is applied to each colour channel separately, as 

shown in Equation C.9 (Ian Goodfellow, 2016): 

𝐹(𝑖, 𝑗) = (𝐼 ∗  𝐾)(𝑖, 𝑗)∑∑(𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)𝐾(𝑚, 𝑛))

𝑛𝑚

 (C.9) 

where, 

 𝐼: represents the input image 

 𝐾: symbolizes the kernel 

 𝐹: represents the output feature map 

 𝑖 and 𝑗: represent the locations of the pixels to be processed by convolution 

 𝑚: is the width of the kernel 

 𝑛: is the height of the kernel. 
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As illustrated in Figure C.5, a 6x6 colour image with three input colour channels is convolutionally 

processed with the respective filters.  Each filter slides with a stride of 2 (moving two cells at a time) within 

its channel. Consequently, the convolution operations result in a feature map matrix of size 2x2. 

 

Figure C.5 Filter size of 3x3 (for each channel) moves across the input to produce the output 

The first operation of the red channel with the respective filter is: 

(1 ∗ 0) + (1 ∗ 0) + (1 ∗ 2) + (0 ∗ 1) + (1 ∗ 0) + (1 ∗ 1) + (1 ∗ 0) + (0 ∗ 1) + (1 ∗ 0) = 3 (C.10) 

 

The first operation of the green channel with the respective filter is: 

(1 ∗ 2) + (0 ∗ 1) + (0 ∗ 0) + (1 ∗ 1) + (0 ∗ 3) + (2 ∗ 0) + (0 ∗ 0) + (0 ∗ 1) + (0 ∗ 3) = 3 (C.11) 

 

The first operation of the blue channel with the respective filter is: 

(2 ∗ 0) + (1 ∗ 1) + (3 ∗ 0) + (1 ∗ 0) + (1 ∗ 0) + (2 ∗ 1) + (0 ∗ 1) + (0 ∗ 0) + (0 ∗ 0) = 3 (C.12) 

 

By summing the values of 3, 3, and 3, and then adding the bias value of 1, the resulting output is 7, which 

represents the value located at the top-left position of the output feature map matrix. To calculate the 

values of the remaining three cells in the feature map matrix, this process is repeated, moving the kernel 

horizontally and vertically by 2 pixels in each operation (Tepteris et al., 2023). 

With the use of convolutional layers, the network is capable to transfer features (as feature maps) across 

the entire network.  In addition, there are two types of convolutional operations that help with this 

process, and these are: 

 Convolutional layers with 3x3 filters size: The 3x3 convolution operation uses a 3x3 filter to 

analyze input images or feature maps, allowing the identification of localized patterns and features 
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within the input data. By applying multiple 3x3 convolutions, CNN designs build deeper networks 

capable of learning multi-level representations of the input data (Springenberg et al., 2015) 

 Convolutional layers with 1x1 filters size: The convolution 1x1 operation uses a 1x1 filter to 

analyze input images or feature maps. The 1x1 convolutional layer is used for the following reasons 

(Szegedy et al., 2014): 

o A 1×1 filter possesses a single parameter or weight for each channel within the input, similar 

to the application of any filter that results in a single output value. This configuration allows 

the 1×1 filter to function similarly to a single neuron, by combining values from the same 

position across all feature maps in the input. The application of this single neuron, with a stride 

of 1, passes the input left-to-right and top-to-bottom, eliminating the need for padding and 

resulting in a feature map that represents the width and height of the input 

o It functions as a linear weighting or projection of the input, as it does not involve neighboring 

pixels in the input, preventing its classification as a traditional convolutional operation. Since 

traditional convolutional operations involve looking at groups of neighboring pixels to capture 

spatial information. Even though the convolution 1x1 operation is a linear operation, if we add 

a non-linear activation function (like Mish activation function), it can perform better 

computations on the input features 

o The 1×1 filter is used to perform dimensionality reduction and feature transformation within 

the network. With the application of multiple 1×1 filters, the network can adjust the number 

of channels in the feature maps, thus controlling the depth of the feature maps as needed (He 

et al., 2015b). 

A network is capable to adjust the number of feature maps at any desired location by using convolutional 

layers with 1x1 filters size. This operation is called projection layer or feature map pooling. (Brownlee, 

2019). 

C.4 Padding 

Padding in convolutional neural networks (such as YOLO algorithms) involves adding extra pixels around 

the edges of the input feature map, typically filled with zeros, before applying convolution operations. This 

technique ensures that information at the edges of the feature map is processed in the same way as 

information in the central regions during convolution.  

There are two types of padding used (GeeksforGeeks, 2019): 

 Valid Padding: In valid padding, no additional pixels are added to the input feature map, resulting 

in an output feature map that is smaller in size compared to the input. Specifically, it is effective if 

we want to decrease the spatial dimensions of the feature maps 

 Same Padding: In same padding, additional pixels (often zeros) are added to the input feature map 

to ensure the size of the output feature map matches that of the input feature map (see Figure 

C.6). Specifically, it is effective if we want to preserve the spatial dimensions of the feature maps. 
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Figure C.6 Example of same padding (Pedro, 2023) 

C.5 Batch normalization 

Batch normalization takes place between a convolution operation and an activation function to reduce the 

effect of "internal covariate shift" effect. This effect results from the randomness in both the parameter 

initialization and the input data. Specifically, it can distort network training, but batch normalization (BN) 

handles it by standardizing network activations using the mean and variance calculated across instances 

within each mini-batch at each iteration. In addition, it improves model training by allowing the use of 

higher learning rates and reducing vulnerability to changes in input weights. This method is applied after 

the activation function within a convolutional layer and before the successive layers in the network 

architecture (Ioffe and Szegedy, 2015). 

During the training process, batch normalization is applied to transform the input data as described below: 

𝜇𝑡(𝜃𝑡) =
1

𝑚
∑𝑥𝑡,𝑖(𝜃𝑡)

𝑚

𝑖=1

 (C.13) 

𝜎𝑡(𝜃𝑡) = √
1

𝑚
∑(𝑥𝑡,𝑖(𝜃𝑡) −  𝜇𝑡(𝜃𝑡))2

𝑚

𝑖=1

 (C.14) 

𝑥 𝑡,𝑖(𝜃𝑡) =
𝑥𝑡,𝑖(𝜃𝑡)  − 𝜇𝑡(𝜃𝑡)

√𝜎𝑡(𝜃𝑡)2 + 𝜀
 (C.15) 

𝑦𝑡,𝑖(𝜃𝑡) = 𝛾 ∗ 𝑥 𝑡,𝑖(𝜃𝑡) + 𝛽 (C.16) 

 

Equations C.13 and C.14 are applied to calculate the mean and variance of the activation values 

throughout the batch. Subsequently by using Equation C.15, the activation vector 𝑥 𝑡,𝑖(𝜃𝑡) is normalized to 

ensure consistency of each output to a standardized normal distribution within the batch, with the 
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inclusion of a constant 𝜀 to maintain numerical stability throughout this procedure. Following this, the 

batch normalization process calculates the layer's output, referred as 𝑦𝑡,𝑖(𝜃𝑡), through a linear 

transformation involving two adjustable parameters, 𝛾 and 𝛽 (as indicated in Equation C.16). The 

adjustment of the values of 𝛾 and 𝛽 allows the model to effectively control the bias and the standard 

variation, respectively. 

C.6 Downsampling operation 

The downsampling operation reduces the size (number of pixels) of the input image during the training 

process of the model. Specifically, downsampling operation is achieved through the stride operation in 

YOLOv4 and YOLOv4-p6 algorithms (see Figure C.4 and C.7). The purpose of this operation is to: 

 Reduce computational load and memory requirements 

 Prevent overfitting by reducing the resolution of the input images, which allows the model to focus 

on more detailed features. 

 

Figure C.7 Downsampling operation 

C.7 Upsampling operation 

With the application of upsampling operation, the number of pixels within the downsampled images can 

be increased, which improves both the resolution and dimensions of the input images. In the YOLOv4 and 

YOLOv4-p6 algorithms (see Figure C.8), the method applied for upsampling is Nearest Neighbor 

interpolation (GeeksforGeeks, 2021). This method determines the value of a target pixel by identifying the 

nearest pixel in the input image. It does this by rounding the coordinates of the desired interpolation point 

to find the closest pixel. As depicted in Figure C.8, this technique matches each pixel with its closest 

counterpart, therefore enlarging the image (Parsania and Virparia, 2016). 

 

Figure C.8 Upsampling operation 
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In YOLOv4 and YOLOv4-p6 algorithms, the upsampling operation is used in the configuration file as follows: 

 

Figure C.9 Upsample layer in YOLOv4-p6 configuration file 

C.8 Residual blocks 

Residual blocks were introduced to address the issue of the vanishing gradient problem during the training 

process of a network. The fundamental idea in the creation of the residual blocks is the use of skip 

connections, also called shortcut connections. These connections allow information to pass directly 

through one or more layers, making it easier to transfer directly to deeper layers in the network. 

Furthermore, the structure of a residual block can be expanded to include additional convolutional layers 

(He et al., 2015c), as shown in Figure C.10. 

 

Figure C.10 Residual block architecture 

As depicted in Figure C.10, 𝑥 represents the block’s input image, 𝑍(𝑥) represents the result of the block, 

and the number of convolution layers indicates the number of convolutional layers along with their 

corresponding activations within the layer. In the residual block, the skip connections involve combining 

the input with the output of the convolutional layers, which improves the ability of the network to capture 
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more features. This occurs in the "+" layer, which acts as a shortcut layer. These layers are also used in 

YOLOv4 and YOLOv4-p6, as shown in Figure C.11: 

 

Figure C.11 Residual block in YOLOv4-p6 configuration file 

C.9 Route layers 

In YOLO models, the route layer passes outputs from earlier layers to successive ones without any 

intermediate processing. This allows for the extraction of detailed features from previous network stages 

and the combination of outputs from different layers, as long as they are dimensionally compatible. Similar 

to the residual block in networks, which functions with the use of convolutional and shortcut layers, the 

route layer improves the integration of features from previous layers (Curti, 2020).  In the architecture of 

YOLOv4-p6 model, multiple route layers specified by the "layers" parameter allow the combination of 

feature maps from selected layers, as detailed below: 

 

Figure C.12 Route layer in YOLOv4-p6 configuration file 
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In Figure C.12, the route layer collects feature maps from both the seventh-to-last layer and the last layer. 

Subsequently, it merges these feature maps through concatenation operation, which combines the depths 

of two feature maps to capture low-level features and forwards the combined output to the next layer in 

the network. 

C.10 Cross-stage partial connections (CSP connections) 

Cross-stage partial connections (CSP) allow information to flow not only in a forward direction through the 

layers of the network, but also across different stages or blocks within the network (Wang et al., 2019). 

The output of a layer (or group of layers) is added back to the output of a previous layer, essentially 

skipping certain intermediary levels. This way, the network can learn to focus on the difference between 

the two outputs, instead of having to learn to match the required mapping. 

As depicted in Figure C.13, the basic concept is to divide the output feature map into two different paths 

(Bochkovskiy, 2021b): 

 A primary route (fifty percent of the features pass) improves semantic information generation 

through an extended receptive field, which helps the network capture and process more semantic 

information 

 A secondary bypass route (the remaining fifty percent of the features are directed) allows the 

preservation of spatial information by way of a more restricted perceptual field, which helps 

preserve spatial details by focusing on local information. 

 

Figure C.13 Conventional network (on the left) and CSP-Enhanced network (on the right) (Bochkovskiy, 2021c) 

In the YOLOv4 model, the CSP connections are present in the backbone of the architecture. With the 

application of CSPDarknet-53, the model captures and processes features from images, resulting in better 

accuracy and efficiency in identifying objects. 

In the YOLOv4-p6 model, the CSP connections are used in the entire structure of the network. 
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C.11 Spatial Pyramid Pooling 

The YOLOv4 algorithm uses the Spatial Pyramid Pooling (SPP) to resolve the difficulty of handling images 

with different sizes and resolutions (He et al., 2014). SPP was designed to allow Convolutional Neural 

Networks (CNNs) to process input images of varying sizes and produce fixed-length feature vectors, 

regardless of the image dimensions (see Figure C.14). Since traditional CNNs require fixed-size inputs, this 

is especially helpful when working with pictures of varied sizes throughout the training and testing 

procedures. 

The Spatial Pyramid Pooling layer operates as follows: 

1. Input Image: Consider an input image with varying dimensions, such as height 𝐻 and width 

𝑊 

2. Feature Extraction: The image progresses through the early stages of CNN, going through 

convolution and pooling operations, resulting in feature maps 

3. Spatial Pyramid Pooling: In this step, multiple subregions are created with different spatial 

levels. For each spatial level, the feature maps are pooled separately in a way that the output 

is a fixed-size vector for each subregion, regardless of the input image's size 

• For level 0, the entire feature map is pooled into a single value (global pooling) 

• Level 1 (gray square in Figure C.14) splits the feature map into 1𝑥1 segments and 

processes each segment independently by pooling 

• Similarly, level 2 (light green square in Figure C.14) splits the feature map into 2𝑥2 

segments, pooling each segment independently 

• Similarly, level 3 (blue square in Figure C.14) splits the feature map into 4𝑥4 segments 

and processes each segment independently by pooling 

4. Concatenation: The pooled feature vectors from all spatial levels, including global pooling, are 

combined to generate the overall feature vector of a fixed length. 

Consequently, without scaling or cropping, CNN can handle pictures of various sizes by using spatial 

pyramid pooling. 

 

Figure C.14 Spatial Pyramid Pooling (SPP) applied to network configuration (conv5 represents the terminal convolutional layer 

with a filter count of 256) (He et al., 2014) 
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The YOLOv4 and YOLOv4-p6 networks include the Spatial Pyramid Pooling (SPP) module following the 

backbone component. This module comprises three Maxpool layers of different sizes (5x5, 9x9, and 13x13) 

and three route layers for both networks. 

C.12 Path Aggregation Network (PANet) 

The application of the Path Aggregation Network (PANet) in YOLOv4 and YOLOv4-p6 improves the 

preservation and use of spatial information for more accurate object detection (Liu et al., 2018). This 

method integrates parameters from different levels of the backbone network to address different 

detection stages. It achieves this by feeding information from lower layers upwards (bottom-up) and 

through adaptive feature pooling. These two features are further outlined below (Parico and Ahamed, 

2021): 

 Bottom-up path augmentation reduces the length of the information path and enhances the 

feature pyramid by allowing top layers (the classifiers) to access detailed information from lower 

layers using route layers 

 Adaptive feature pooling restores the distorted flow of information between each segment and 

all feature levels by merging information from different convolutional layers using element-wise 

max operation that extracts the maximum value from each corresponding pair of features. 

There is also a slight modification to PANet that is applied in the YOLOv4 and YOLOv4-p6 models. As 

illustrated in Figure C.15, the process of Bottom-up path augmentation involves the application of a 

concatenation operation rather than the addition of neighboring layers, resulting in an enhancement in 

the accuracy of the predicted results (Bochkovskiy et al., 2020). 

 

Figure C.15 Visualization of (a) PAN and (b) modified PAN(Bochkovskiy et al., 2020) 
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Appendix D. Combination of UAV datasets  

D.1 YOLO format 

YOLOv4 and YOLOv4-p6, like all versions of YOLO, requires the dataset to follow a specific format to use 

the data. The standard method of using the YOLO format involves creating separate text files for each 

image in the dataset. These files include the class number and spatial information about the objects 

present in each image. In addition, the annotations in these files are also scaled to be within the range of 

[0, 1], which makes it easier to handle the data even when the images are resized or modified. Each text 

file has rows of data, each with the following information:  

(<object-class>, <x-center>, <y-center>, <width>, <height>) 
Figure D.1 YOLO format 

where, 

 The "object-class" parameter indicates an integer that represents the object’s class. The classes 

are numbered starting from 0 and increase by 1 for each different class in the dataset 

 "x-center" and "y-center" parameters refer to the normalized coordinates of the ground truth 

bounding box center, which are normalized by the image's width and height, with values ranging 

from 0 to 1. The 𝑥 and 𝑦 coordinates are normalized according to the image size: 

 

𝑥 =

𝑥𝑚𝑎𝑥+ 𝑥𝑚𝑖𝑛
2

𝑖𝑚𝑎𝑔𝑒𝑤𝑖𝑑𝑡ℎ
 (D.1) 

And 

𝑦 =

𝑦𝑚𝑎𝑥+ 𝑦𝑚𝑖𝑛
2

𝑖𝑚𝑎𝑔𝑒ℎ𝑒𝑖𝑔ℎ𝑡
 (D.2) 

 

 "width" and "height" parameters represent the normalized width and height of the ground truth 

bounding box, which surrounds the object, with values also ranging from 0 to 1. These values are 

normalized according to the image size: 

 

𝑤𝑖𝑑ℎ𝑡 =
𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝑏𝑜𝑥𝑤𝑖𝑑𝑡ℎ

𝑖𝑚𝑎𝑔𝑒𝑤𝑖𝑑𝑡ℎ
 (D.3) 

 

And 

ℎ𝑒𝑖𝑔ℎ𝑡 =
𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝑏𝑜𝑥ℎ𝑒𝑖𝑔ℎ𝑡

𝑖𝑚𝑎𝑔𝑒ℎ𝑒𝑖𝑔ℎ𝑡
 (D.4) 
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D.2 Modifications for each UAV dataset 

This appendix describes the steps for making necessary changes in each UAV dataset individually. 

1. Aerial cars dataset 

The Aerial Cars dataset includes five different classes: car, truck, bus, minibus, and cyclist, with 

annotations in YOLO format. Within this dataset, the classes “car”, “truck”, “bus”, and “minibus” 

are retained, while the “cyclist” class was removed. Following this, the retained classes are 

converted by using the convert.py script. Specifically, the class "car" was replaced with number 1 

to represent small vehicles, and the classes "truck", "bus", and "minibus" were replaced with 

number 2 to represent large vehicles. 

2. DOTA dataset 

Each object in the dataset has a shape description called an Oriented Bounding Box (OBB), 

represented as (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5), where (𝑥𝑖 , 𝑦𝑖) is the i-th corner of the OBB. These corners are 

placed in a clockwise order. Besides the OBB, each object instance is categorized and given a 

difficulty flag, indicating if it is challenging to detect (1 for difficult, 0 for not difficult). The 

annotations for each image are stored in a text file with the same name as the image. Each line in 

the text file corresponds to one object instance. Figure D.2 is an illustration of an image annotation 

(Xia et al., 2021): 

Example: 558 523 563 546 501 554 501 529 large-vehicle 0 
Figure D.2 DOTA dataset's annotation format 

Figure D.2 represents an annotated Oriented Bounding Box defined by points (558, 523), (563, 

546), (501, 554), and (501, 529), outlining an OBB that captures a large vehicle in the image. The 

label assigned to this object instance is "large-vehicle," which specifies its type. Furthermore, the 

difficulty indicator associated with the detection of this instance is set to 0, showing that it is 

relatively easy to identify the object in the image. 

To begin with, we converted the unique characteristics of the annotation structure in the DOTA 

dataset to YOLO format. The code provided in the cited GitHub repository-(ringringyi, 2023) 

transformed the DOTA into YOLO format.  Although we combined DOTA versions 1.5 and 2.0 into 

a single dataset, each includes different classes and can operate separately. Specifically, DOTA 

version 1.5 includes sixteen distinct classes while DOTA version 2.0 includes nineteen. 

Consequently, the conversion process involves retaining only the classes "small vehicle," "large 

vehicle," and "ship" from both versions. These retained classes were converted using the 

convert.py script, where the class "small vehicle" was replaced with number 1 to represent small 

vehicles, the class “large vehicle” was replaced with number 2 to represent large vehicles, and the 

class “ship” was replaced with number 3 to represent ships. 

3. Visdrone-DET dataset 

As depicted in Figure D.3, the annotation format used in the Visdrone-DET dataset includes various 

parameters (VisDrone, 2024). These parameters consist of “bbox_left”, which indicates the x-

coordinate of the top-left corner of the predicted bounding box, and “bbox_top”, which shows the 

y-coordinate of the same corner. Additionally, “bbox_width” represents the width of the predicted 

bounding box in pixels, while “bbox_height” represents its height in pixels. The “score” parameter 
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in the "detection" file shows the confidence level associated with the predicted bounding box that 

contains an object instance. In contrast, in the "groundtruth" file, “score” is binary: 1 indicates 

inclusion in evaluation, and 0 indicates exclusion. Furthermore, “object_category” specifies one 

of the ten classes in the VisDrone-DET dataset, as mentioned in Section 3.1. In the "detection" 

result file, “truncation” is uniformly set to -1, where in the "groundtruth" file, it indicates the 

degree to which object parts extend beyond the image, with 0 meaning no truncation and 1 

indicating partial truncation. Similarly, “occlusion” in the "detection" file is always set to -1, while 

in the "groundtruth" file, it represents the degree of object occlusion, with 0 indicating no 

occlusion, 1 indicating partial occlusion, and 2 indicating heavy occlusion. 

Example: 755, 468, 16, 50, 1, 1, 0, 0 

<bbox_left>,<bbox_top>,<bbox_width>,<bbox_height>,<score>,<object_category>,<truncation>,<occlusion> 
Figure D.3 Visdrone dataset's annotation format 

Figure D.3 shows the Visdrone format, which we converted into the YOLO format by using code 

the cited GitHub repository-(Tandon, 2024). We kept the classes: "pedestrian", "persons", "car", 

"van", "truck" and "bus". Then, we used the convert.py script to convert them. In this process, the 

classes "pedestrian" and "persons" were replaced with number 0 to represent persons, the class 

“car” was replaced with class number 1 to represent small vehicles and the classes "van", "truck", 

and "bus" were replaced with number 2 to represent large vehicles. 

4. Stanford dataset 

Similar to the aerial cars dataset, the annotations in this dataset follow the YOLO format, which 

eliminates the need for a transformer code. The classes: "pedestrian", "car" and "bus" were 

included, while "biker", "skater" and "cart" were removed. The retained classes were converted 

using the convert.py script, where the class "pedestrian" was replaced with number 0 to represent 

persons, the class "car" was replaced with number 1 to represent small vehicles, and the class 

"bus" was replaced with class number 2 to represent large vehicles. 

5. DAC dataset 

The DAC dataset uses the XML format for its annotation structure, because it provides guidelines 

for representing different types of data. However, unlike regular programming languages, XML 

does not have built-in functions for computational tasks (Simplilearn, 2023). In the DAC dataset, 

XML is used to organize and manage data with the help of programming languages or software 

systems. It uses markup symbols called tags, as shown in Figure D.4, where tags such as 

“annotation”, “size”, “object”, and “bndbox” can be used to encode information for the following 

annotation: 

<annotation> 

<filename>000002</filename> 

<size> 

<width>640</width> 

<height>360</height> 

</size> 

<object> 
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<name>boat1</name> 

<bndbox> 

<xmax>273</xmax> 

<xmin>196</xmin> 

<ymax>323</ymax> 

<ymin>164</ymin> 

</bndbox> 

</object> 

</annotation> 
Figure D.4 DAC dataset's annotation format 

Figure D.4 provides detailed information about the image with file name “000002”. Specifically, it 

includes the image’s dimensions (640x360), the identification of the object (labelled as boat1), 

and specific coordinates of its ground truth bounding box (xmax: 273, xmin: 196, ymax: 323, ymin: 

164).  

After illustrating the application of XML in processing the DAC dataset, we proceed to convert it 

into YOLO format by using the code from the cited GitHub repository-(Pawar, 2022). We kept the 

classes: "person", "car", and "boat", while removing all the others. Next, we convert the retained 

classes using the convert.py script, where the class “person” was replaced with number 0 to 

represent persons, the class “car” was replaced with number 1 to represent cars and the class 

“boat” was replaced with number 3 to represent ships.  

D.3 Python code for converting the classes in annotation files 

The Python script in Figure D.5 is used to change the order of the existing classes in the UAV datasets used 

in our experiments. Since the five datasets contain different classes, we use this script to convert them as 

follows: “0” for the person class, “1” for the small vehicle class, “2” for the large vehicle class and “3” for 

the ship class. 

#Name: convert.py 

import os 

 

# Define the mapping of original classes to new classes 

class_mapping = { 

 #add classes here, e.g. 

    #'0': '0', 

    #'1': '0', 

    # ... 

} 

 

# Define the path to the main folder containing the subfolders 

main_folder_path = 'write the folder path here' 

 

# Iterate over each subfolder and file in the main folder 

for root, dirs, files in os.walk(main_folder_path): 
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    for filename in files: 

        if filename.endswith('.txt'): 

            file_path = os.path.join(root, filename) 

 

            # Read the contents of the file 

            with open(file_path, 'r') as file: 

                lines = file.readlines() 

 

            # Filter and modify the lines 

            modified_lines = [] 

            for line in lines: 

                parts = line.split() 

 

                # Check if the line is empty or doesn't have enough elements 

                if not parts or len(parts) < 2: 

                    continue 

 

                class_label = parts[0] 

 

                # Check if the class should be ignored 

                if class_label not in class_mapping or class_mapping[class_label] is None: 

                    continue 

 

                # Modify the first number in the line 

                new_class_label = class_mapping[class_label] 

                parts[0] = str(new_class_label) 

 

                # Create a new line with the modified class label 

                modified_line = ' '.join(parts) + '\n' 

                modified_lines.append(modified_line) 

 

            # Write the modified lines back to the file 

            with open(file_path, 'w') as file: 

                file.writelines(modified_lines) 

Figure D.5 Convert.py script 
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Appendix E. Analysis of Variance (ANOVA) 

ANOVA includes various statistical methodologies that divide the total variation observed in a dataset into 

separable systematic and random components. Specifically, systematic factors show significant statistical 

effects on the dataset being studied, as opposed to random factors, which do not have such effects. In 

addition, analysts use the ANOVA test to measure the effect that the independent variables have on the 

dependent variable in regression analysis (Kenton, 2024). 

ANOVA is classified into various categories based on the experimental design and the number of 

independent variables being studied. The following instances are different types of ANOVA: 

 One-way ANOVA 

 Two-way ANOVA 

 Factorial ANOVA 

 Repeated Measures ANOVA 

 Mixed ANOVA 

In this thesis, only one-way Analysis of Variance will be used to analyze the experimental results. 

The one-way Analysis of Variance (ANOVA) is used to compare the means of three or more groups. 

Specifically, it examines if differences in the levels of a single independent variable (referred to as factor) 

or the interactions between multiple factors have an effect on a dependent variable. Consequently, one-

way ANOVA is applicable when there is only one factor and one dependent variable being studied. As it 

helps to determine if there are significant differences in means between the groups, although it does not 

specify which specific pairs of groups show these differences (Seltman, 2018). 

As mentioned above, one-way ANOVA is a statistical methodology used to determine if there is a difference 

between the means of three or more groups. It tests the null hypothesis (𝐻0)  that the means are equal 

against the alternative hypothesis (𝐻1)  that at least one of the means is different. In statistical notation, 

where “𝑘” is the number of means, the hypotheses can be written as follows: 

𝐻0: 𝜇1 = 𝜇2 = 𝜇3 = . . . = 𝜇𝑘 (E.1) 

𝐻1: 𝑛𝑜𝑡 𝑎𝑙𝑙 𝑚𝑒𝑎𝑛𝑠 𝑑𝑒𝑚𝑜𝑛𝑠𝑡𝑟𝑎𝑡𝑒 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑐𝑒 (E.2) 

where, 𝜇𝑖  is the mean value corresponding to the i-th level of the factor. 

Since random samples may not accurately reflect entire populations, there is a risk that the means 

obtained from these samples may not represent the true means of the populations. For this reason, 

hypothesis testing uses a statistical measure known as the p-value. The p-value measures the probability 

of observing differences in sample means that are as significant as those observed, assuming that there is 

no real difference in population means (null hypothesis). If the p-value is less than 0.05, this is considered 

sufficient evidence to reject the null hypothesis, indicating that there is at least one different mean within 

the population. 
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