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Abstract 

This thesis focuses on optimizing training of the YOLOv3 (You Only Look Once) model for object detection 

using UAV (Unmanned Aerial Vehicle)-captured imagery. It showcases the importance of hyperparameter 

selection in training effectiveness. Specifically, through extensive analysis, we identified important 

hyperparameters that influence the trained model’s performance. By adjusting these hyperparameters we 

fine-tuned training of the model to achieve higher precision in detecting objects.   

The study utilized annotated UAV datasets that were preprocessed to align with YOLOv3’s requirements. 

These datasets were publicly available and comprised of the UA Vehicle Detection Dataset, Stanford 

Dataset and VisDrone2019DET dataset.  

Training optimization was approached by classifying hyperparameters into two categories. The first 

included hyperparameters that were set according to the characteristics of the training dataset and were 

kept invariant throughout the analysis. These included max batches, number of classes, filters, and steps. 

The second category contained the hyperparameters we selected to adjust; i.e., image resolution, 

backbone network, anchor box dimensions, dilated convolution, box loss and data augmentation 

techniques.  

A Full-Factorial experimental design was employed to generate 96 (25 𝑥 3) distinct combinations of these 

key hyperparameters. The training process was executed twice for each combination of the selected 

hyperparameters, resulting in a total of 192 trained models. During training, validation was performed 

every 100 iterations. Finally, after training, we conducted the testing process to evaluate model 

performance. 

Each of the 192 experiments produced outputs consisting of the highest mAP achieved during validation 

and testing. The results of these experiments were analyzed using ANOVA, which revealed that all 

hyperparameters significantly influence model performance. Among them, the most impactful 

hyperparameters on are the backbone network, data augmentation and image resolution. Additionally, 

two significant two-way interactions were observed: a) between the backbone network and data 

augmentation, and b) between the backbone network and dilated convolution. 

The best-performing model achieved mAP values of 60.99% during training/validation and 52.51% during 

testing. The model that achieved this performance corresponds to the following hyperparameter 

combination: 

o Image Resolution: 832x832  

o Dilated Convolution: No  

o Box Loss: DIoU  

o Anchor Dimensions: Default  

o Backbone: Darknet-53  

o Data Augmentation: Mosaic 
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On the other hand, the performance of the worst performing models was very low, indicating that 

hyperparameter selection and tuning plays an important role and could lead to significant improvements 

in YOLOv3’s detection performance. 

The study demonstrates the important role of tailored training processes, dataset preparation, 

hyperparameter selection and tuning in enhancing YOLOv3’s effectiveness for object detection.  
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Περίληψη 

Η παρούσα διπλωματική εργασία επικεντρώνεται στη βελτιστοποίηση της διαδικασίας εκπαίδευσης του 

Once) για την ανίχνευση και ταξινόμηση αντικειμένων από εικόνες που καταγράφονται από UAV (Μη 

Επανδρωμένα Εναέρια Οχήματα) και συγκεκριμένα ανθρώπων, αυτοκινήτων, ποδηλάτων και μεγάλων 

οχημάτων. Η επίτευξη της βελτιστοποίησης πραγματοποιήθηκε μέσω της ρύθμισης κατάλληλων 

υπερπαραμέτρων του YOLOv3 μοντέλου, με στόχο τη μεγιστοποίηση της μέσης τιμής της μέσης ακρίβειας 

ή mAP). Συγκεκριμένα, μέσα από εκτενή ανάλυση, εντοπίστηκαν οι υπερπαράμετροι που επηρεάζουν 

την απόδοση του YOLOv3 μοντέλου και μας ενδιαφέρουν για την δική μας έρευνα. Με την κατάλληλη 

προσαρμογή αυτών των υπερπαραμέτρων, έγινε η σωστή ρύθμιση της εκπαίδευσης του μοντέλου, και 

αποδείχθηκε ότι ορισμένοι υπερπαράμετροι επέφεραν υψηλότερα αποτελέσματα mAP συγκριτικά με τις 

προεπιλεγμένες ρυθμίσεις του YOLOv3.  

Στην έρευνα μας χρησιμοποιήσαμε δημόσια διαθέσιμα σύνολα δεδομένων εικόνων από UAV, όπως τα 

Dataset, το Stanford Dataset και το VisDrone2019DET dataset. Τα συγκεκριμένα αυτά σύνολα δεδομένων 

εικόνων τροποποιήθηκαν προκειμένου να περιλαμβάνουν μόνο τις κατηγορίες αντικειμένων που μας 

ενδιέφεραν για την έρευνά μας. 

Η βελτιστοποίηση της εκπαίδευσης του YOLOv3 πραγματοποιήθηκε με την ταξινόμηση των 

υπερπαραμέτρων σε δύο κατηγορίες. Η πρώτη περιλάμβανε υπερπαραμέτρους που καθορίστηκαν 

σύμφωνα με τα χαρακτηριστικά του συνόλου δεδομένων εκπαίδευσης και παρέμειναν αμετάβλητες καθ' 

όλη τη διάρκεια της ανάλυσης. Η δεύτερη κατηγορία περιλάμβανε τις υπερπαραμέτρους που 

ρυθμίστηκαν για τη βελτιστοποίηση της απόδοσης εκπαίδευσης του YOLOv3.  

Για τον σχεδιασμό πειραμάτων χρησιμοποιήθηκε η μέθοδος πλήρους παραγοντικού σχεδιασμού (Full-

design), δημιουργώντας 96 (2⁵ x 3) διακριτούς συνδυασμούς των επιλεγμένων για την έρευνα  

υπερπαραμέτρων. Η διαδικασία εκπαίδευσης εκτελέστηκε δύο φορές για κάθε συνδυασμό των 

επιλεγμένων υπερπαραμέτρων, με αποτέλεσμα να δημιουργηθούν συνολικά 192 εκπαιδευμένα 

μοντέλα. Έπειτα, μετά την εκπαίδευση των μοντέλων, πραγματοποιήθηκε η διαδικασία δοκιμής 

απόδοσης του μοντέλου (testing) για την αξιολόγηση της απόδοσης του μοντέλου. Σκοπός της 

εκπαίδευσης και της διαδικασίας δοκιμής απόδοσης είναι να πραγματοποιηθεί η ανάλυση των 

αποτελεσμάτων μέσω της Ανάλυσης Διακύμανσης (ANOVA). 

Η ανάλυση των τιμών του mAP που προέκυψαν από την διαδικασία εκπαίδευσης και δοκιμών μέσω 

ANOVA αποκάλυψε ότι όλες οι υπερπαράμετροι επηρεάζουν σημαντικά την απόδοση του μοντέλου. 

Ωστόσο, οι υπερπαράμετροι με τη μεγαλύτερη επίδραση ήταν ο κορμός δικτύου (backbone network), η 

αύξηση δεδομένων (data augmentation) και η ανάλυση εικόνας (image resolution). Επιπλέον, 

παρατηρήθηκαν δύο σημαντικές αλληλεπιδράσεις μεταξύ παραγόντων: α) μεταξύ του κορμού δικτύου 

network) και της αύξησης δεδομένων (data augmentation), και β) μεταξύ του κορμού δικτύου (backbone 

network) και της διατεταμένης συνελικτικής (dilated convolution). 

Το καλύτερο εκπαιδευμένο μοντέλο πέτυχε τιμές mAP 60,99% κατά την εκπαίδευση/επικύρωση και 

52,51% κατά τη δοκιμή απόδοσης. Το μοντέλο που πέτυχε αυτήν την απόδοση αντιστοιχεί στον ακόλουθο 

συνδυασμό υπερπαραμέτρων: 



University of the Aegean Department of Financial and Management Engineering 
 
 

[vii] 
 

 Ανάλυση εικόνας (Image Resolution): 832x832 

 Διατεταμένη Συνελικτική (Dilated Convolution): Όχι 

 Απώλεια Κουτιού (Box Loss): DIoU 

 Διαστάσεις των περιγραμμάτων (Anchor Dimensions): Default 

 Κορμός Δικτύου (Backbone Network): Darknet-53 

 Αύξηση Δεδομένων (Data Augmentation): Mosaic 

Από την άλλη πλευρά, η σημαντικά χαμηλή απόδοση ορισμένων μοντέλων, υποδεικνύει ότι η επιλογή 

και ρύθμιση των υπερπαραμέτρων παίζει σημαντικό ρόλο και μπορεί να οδηγήσει σε σημαντικές 

βελτιώσεις στην αποτελεσματικότητα του YOLOv3 για την ανίχνευση και ταξινόμηση αντικειμένων. 
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Chapter 1 Introduction 

In the broad domain of computer vision, object recognition and object detection are two significant and 

distinct areas. Object recognition is the process of identifying and categorizing predefined objects, in the 

classes of interest, within an image based on their visual features. It determines the classes of objects 

present in an image without providing detailed information about their location. On the other hand, object 

detection recognizes the objects in the image (or video stream) and encloses each within an appropriate 

bounding box.  Thus, in addition to classifying the objects in the image, it also determines the position and 

size of each object (Voulodimos et al., 2018).  

In this thesis, we analyze the YOLOv3 algorithm within the specific context of UAV-captured images, aiming 

to better understand the related training process and improve it through available training parameters 

that may be tuned. YOLOv3 (You Only Look Once) is a single-pass object detection algorithm recognized 

for its real-time processing capabilities and high accuracy (Kamal, 2021). The scope of this research 

involves a detailed exploration of the YOLOv3 architecture, and its distinguishing features compared to its 

predecessors, and an examination of how various training hyper-parameters influence its performance in 

the recognition and localization of objects in UAV imagery. 

To achieve these objectives, we begin by explaining how YOLOv3 differentiates itself from earlier one-stage 

and two-stage object detectors. We then present an in-depth analysis of YOLOv3's architecture, focusing 

on its convolutional layers, anchor boxes, and detection techniques. The study preparation phase involved 

selecting appropriate UAV datasets and setting up the necessary hardware and software for our 

experiments. We introduced appropriate classes in the selected datasets, modified and organized the raw 

and unprocessed data appropriately to support our research needs. 

For the hyperparameter study, we performed necessary modifications of the YOLOv3 configuration files to 

be able to adjust systematically the hyperparameters during training.  The first step of this study included 

training and validation experiments  using UAV datasets that were purposely  selected. Subsequent, we 

systematically varied key training hyperparameters such as image resolution, activation functions, anchor 

dimensions, backbone architecture, data augmentation strategies, and the incorporation of dilated 

convolutions.  These parameters were selected from a larger set based on a thorough examination of 

YOLOv3 characteristics, architecture and training possibilities. After the execution of 96 training tests, the 

best value of mean Average Precision (mAP) achieved was 60.89%. By using a new UAV dataset (deopsys 

dataset), that was created by our lab, we tested the best weights of the trained YOLOv3 model. The highest 

tests results provided a mean Average Precision (mAP) of 84.59%. This specific mAP percentage was noted 

for a height of 15m, and various lighting conditions. 

The results of this thesis highlight the impact of key training hyperparameters on the YOLOv3 algorithm's 

performance. Through detailed analysis, we identified how adjustments to image resolution, activation 

functions, anchor dimensions, and other factors affect the algorithm's accuracy and speed in detecting 

objects in UAV-captured images. These findings offer guidelines for enhancing the YOLOv3 training 

process, ultimately advancing its effectiveness in UAV image recognition and localization tasks. 
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The structure of the remainder of this thesis is as follows:  In Chapter 2, we will delve into how YOLOv3 

distinguishes itself from its predecessors by comparing one-stage and two-stage detectors. In Chapter 3, 

we provide an in-depth analysis of the YOLOv3 architecture, examining its key components and 

mechanisms. In Chapter 4, we detail the preparation of UAV datasets and the experimental set up, 

including the dataset selection process, hardware, and software setup, as well as the procedures we 

followed for data preparation. This chapter also covers a detailed analysis of the parameters that were 

selected for our research. Chapter 5 focuses on analyzing the impact of key hyperparameter on YOLOv3’s 

training and performance in recognizing and localizing objects in UAV imagery.  Finally, Chapter 6 presents 

the conclusions of this work and provides insights into possible future research directions. 
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Chapter 2 Understanding object detection and YOLO 

In this chapter , we will go through the fundamental elements of object detection as well as the evolution 

of YOLO algorithms over time. Beginning with an overview over computer vision and an analysis of the 

purpose and the key components of object detection. Following up, we will explore the object detection 

approaches, including R-CNN (Region-based Convolutional Neural Network), SSD (Single Shot Detection), 

and YOLO (You Only Look Once). In the next subsection, we will focus on the evolution of YOLO algorithms 

and their key features. We will go through a detailed overview of the initial versions, YOLOv1 and YOLOv2, 

highlighting their key features, innovations, and the improvements that each version brought to address 

existing limitations, concluding to YOLOv3 and its significance overs its predecessors. 

2.1 Fundamentals of object detection 

In this Section, we aim to gain insights into the evolution and current state-of-the-art techniques in the 

field of object detection. We will define the concept of object detection, highlighting its purpose and its 

importance. Additionally, we will explore the key components of object detection systems, clarifying the 

processes involved in identifying and localizing objects within images. Moreover, we will discuss object 

detection approaches, including R-CNN (Region-based Convolutional Neural Network), SSD (Single Shot 

Detection), and YOLO (You Only Look Once), focusing on the respective methodologies and contributions 

to advancing object detection technology. 

2.1.1 Overview of computer vision 

Computer Vision (CV) is a cross-disciplinary field that combines computer science and image processing. 

More particularly computer vision provides computing systems with the ability to extract high level 

understanding from digital images and video streams. It tries to give machines the ability to understand 

visual data in a way similar to humans. Over the decades, CV has undergone a revolutionary transition 

from early image processing algorithms and manually constructed features to the current deep learning 

approaches, particularly Convolutional Neural Networks (CNNs). This radical change enables computers to 

autonomously learn hierarchical representations directly from annotated raw data, leading to significant 

breakthroughs in tasks such as object detection, image classification, and semantic segmentation. Despite 

considerable progress, there are still many challenges including maintaining model robustness, resolving 

ethical concerns, and improving clarity. Current research aims to make deep learning models more 

adaptable to real-world circumstances, and able to address more complex problems (Bi et al., 2023; 

Voulodimos et al., 2018). 

2.1.2 Definition and purpose of object detection 

Object detection is a key computer vision task that detects and marks semantic objects of defined classes 

(such as humans, cars, or birds) in digital images and videos. It is different from image classification, which 

only assigns labels to the image. Object detection also defines the exact boundaries of each object, using 

bounding boxes. So, it not only identifies the class instance of any object within an image, but also encloses 

it in a bounding box, thus determining the object’s location within the image and its size.  When the object 

detection task searches for a single class instance in an image, it is called single class object detection. 
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When it searches for all defined class instances of the objects in an image, it is called multi class object 

detection.  

The primary purpose of object detection is to provide machines with the capability of understanding visual 

scenes mirroring human cognitive processes. For example, object detection enables the identification of 

pedestrians, vehicles, and other objects, thereby facilitating real-time decision-making to complex 

problems, such as real life-like safe navigation. Object detection is essential in applications that need 

accurate object recognition and localization, such as autonomous cars, surveillance systems, medical 

imaging, and augmented reality. The overarching goal is to improve the capabilities of intelligent systems 

in interpreting and understanding the visual world (Pathak et al., 2018). 

2.1.3 Key components of object detection systems 

Object detection systems use various techniques and components to achieve accurate and efficient 

detection. However, there are basic key components which are similar in every object detection system, 

and they are important parts of its framework.  

The procedure begins with obtaining input data, typically comprising images or video frames.  

Preprocessing methods such as resizing, normalization, and data augmentation are employed to optimize 

quality and facilitate subsequent analysis. Deep neural networks, particularly Convolutional Neural 

Networks (CNNs), are utilized for feature extraction. More specifically CNN extracts the features of the 

image into a “feature map”, which is the outcome of applying a filter in the output of the previous layer. 

After passing from a number of layers, the result of the process is to obtain several sets of extracted 

“feature maps” of different sizes. The framework also involves object classification and bounding box 

regression. Object classification requires assigning a class label to each object. Simultaneously, bounding 

box regression fine-tunes the spatial coordinates of proposed bounding boxes, improving the accuracy of 

object localization. To reduce redundancy and eliminate overlapping predictions, a non-maximum 

suppression (NMS) step is introduced, which makes it easier to maintain the most confident and non-

overlapping object detections. 

The comprehensive training of the framework requires labeled datasets, where each object is annotated 

with a class label and a bounding box. The training process involves adjusting the model’s parameters to 

optimize them with the use of a loss function that measures  the difference between predicted outputs 

and ground truth labels  (Papageorgiou et al., 1998). A step-by-step procedure of the object detection 

process is overviewed in Figure 2.1. 

 

Figure 2.1 Object detection in visual recognition (Pathak et al., 2018) 
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As already mentioned, CNNs play an important role in all CV systems: they are responsible for extracting 

the features of an image into a “feature map”. A “feature map” is basically the outcome of applying a filter 

in the output of the previous layer. After repeating this process multiple times, the result is several sets of 

extracted “feature maps” in different sizes. As illustrated in Figure 2.2, the layered architecture of CNNs 

for object detection involves input images with activation functions to generate feature maps. 

Subsequently, pooling layers are applied to abstract these feature maps and reduce spatial complexity. 

This process is iterated across multiple filters to create diverse feature maps. Finally, fully connected layers 

process these feature maps to produce output images with confidence scores for predicted class labels 

(Pathak et al., 2018). 

 

Figure 2.2 Use of Convolutional Neural Network for object detection (Pathak et al., 2018) 

To mitigate network complexity and reduce the number of parameters, CNN employs various types of 

pooling layers, as descripted in the table (Table 2.1) below. 

Table 2.1 Pooling layers used for object detection (Pathak et al., 2018) 

Pooling layer Description 

Max pooling It is a widely used pooling mechanism  in CNNs. Max pooling 
selects the maximum value from the result of the convolution 
operation which is applied to the input feature map. After a 
convolutional layer processes an image and produces a feature 
map, the max pooling layer scans over small regions within this 
feature map and keeps only the highest value from each region, 
resulting in detecting the most important feature in the area.  

Average pooling Average pooling calculates the average value within each region, as 
it considers all values in the region rather than focusing on the 
most important one. This results in a more generalized feature 
representation of the input features. 

Spatial pyramid pooling (He et 
al., 2015) 

This pooling mechanism performs down-sampling of the image 
and produces a feature vector with a fixed length. 
This feature vector can be used for object detection without 
making any deformations on the original 
image. 

Scale dependent pooling (Yang 
et al., 2016) 

This pooling mechanism handles scale variation in object detection 
and helps to improve the accuracy of detection. 
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2.1.4 Object detection approaches (R-CNN, SSD, YOLO) 

The development of object detection algorithms has attracted intense interest during recent years. The 

most known algorithms include Single Shot Detection (SSD), Regional CNN (R-CNN), Faster R-CNN and the 

You Only Look Once (YOLO) algorithms. These algorithms specify the coordinates of bounding boxes 

around the objects and provide at the same time the exact location of the object regarding the bounds of 

the image, with the intention of classifying the objects inside the image. The YOLO family and SSD are 

representative of one-stage detectors, while the R-CNN family is an example of  two-stage detectors. 

 

Starting with the analysis of the one-stage detectors, Single Shot Detection (SSD) is an object detection 

technique developed by Google and introduced by Wei Liu in 2016 (Liu et al., 2016). The SSD model is a 

single-stage object detection network, as it executes object detection in a single “pass” through the 

network, that enhances both detection speed and accuracy. It uses a Convolutional Neural Network (CNN) 

to process images and produce a feature map, which is a simplified version of an image that highlights 

important details. The SSD model consists of three main components:  

1) the backbone network, which extracts key features from the image 

2) the bounding box creation, which generates potential boxes around objects 

3) the convolutional prediction, in which the model generates potential boxes around objects based 

on the extracted features. (Shuai and Wu, 2020).      

A distinctive characteristic of SSD is its capability to predict bounding boxes at multiple stages within the 

network. To achieve this, a series of convolutional layers with a small kernel size 3x3 are applied. These 

convolutional layers are designed to focus on objects of various sizes, including small, medium, and large 

ones.  As the network progresses through these convolutional layers, it gradually reduces the image's 

resolution, effectively enabling the extraction of all the image details (Liu et al., 2016). This multi-scale 

feature extraction is crucial for identifying objects of different sizes.  

In the later stages of convolutional operations, SSD accomplishes two critical tasks simultaneously. First, it 

generates classification probabilities for each detected object, determining the type of object present in 

the image. Second, it computes the coordinates of bounding boxes, localizing the detected objects within 

the image.  

To optimize object detection results, SSD incorporates a non-maximum suppression step. This step ensures 

that only the most suitable bounding boxes are retained for each detected object, reducing redundancy 

and overlapping bounding boxes. In summary, SSD integrates feature extraction, object classification, and 

bounding box prediction within a single detection through a CNN. It is applied in different scales to adapt 

on objects of varying sizes and employs non-maximum suppression to produce precise and reliable object 

detection outcomes (Shuai and Wu, 2020).  

 In Figure 2.3 is illustrated the SSD architecture. Starting at the left side with the input image, this image is 

processed by the base network, which is shown as a large block next to it, which is a pre-trained CNN 

named VGG-16. This network extracts feature maps from the image, capturing different levels of 

complexity in an image, from basic to more complex objects. Next to the base network, we see 

several additional feature layers, each represented by blocks at various resolutions. These layers process 

the feature maps further to detect objects at different scales. Each feature layer is connected to detection 
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heads, which are convolutional layers responsible for predicting bounding boxes and class scores for 

objects. In the right side of the image, the last step labeled as Non-Maximum Suppression (NMS) is 

responsible for filtering the overlapping boxes to output the most accurate detections. 

 

Figure 2.3 Architecture of SSD algorithm (Rohan et al., 2019) 

YOLO, which stands for "You Only Look Once," is a technology used for detecting objects in images. Unlike 

older methods that involve multiple steps (first finding possible object areas and then classifying them), 

YOLO processes the entire image in one single step. This approach allows YOLO to quickly identify and 

locate objects like people, cars, animals etc. with great speed and accuracy. The key to YOLO’s performance 

lies in its architecture. YOLO uses a single convolutional neural network (CNN) to divide the image into a 

grid and simultaneously predict bounding boxes and class probabilities for each grid cell. This means that 

YOLO doesn’t need separate stages for object detection and classification, which speeds up the whole 

process. The network is designed to predict multiple bounding boxes and object classes in one forward 

pass, making it ideal for real-time applications. Additionally, YOLO excels in detecting small objects, which 

can be challenging for other models. It achieves this through its detailed grid-based approach, which helps 

it focus on smaller details within each part of the image. YOLO’s design also includes features like anchor 

boxes and advanced techniques for managing overlapping objects, enhancing its accuracy and efficiency. 

managing overlapping objects effectively.((Jiang et al., 2022). A more detailed understanding of the YOLO 

algorithm will be given in the next chapter. 

R-CNN is an object recognition model that follows a multi-step process (Girshick et al., 2014) and it is an 

example of a two-staged detector (see Figure 2.4.) Initially, it estimates potential object positions within 

an image, and then, it performs object classification. The estimation of object positions relies on a 

selective search algorithm which generates approximately 2000 region proposals, each representing a 

potential object location within the image (Uijlings et al., 2013). These region proposals are then inserted 

into a Convolutional Neural Network (CNN) to extract image features, resulting in 4,096-dimensional 

feature vectors for each proposal. A feature vector, whose dimensions came up after experiments and 

tuning during the development of the model, because it provides greater accuracy in object detection 

tasks. The extracted features from the CNN are further processed by a Support Vector Machine (SVM) 

algorithm, primarily used for classification tasks. The SVM's goal is to distinguish different object 

categories (Tepteris et al., 2023). 
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R-CNN has some limitations, including being slow and computational heavy.  It processes each region 

proposal separately, which takes a lot of time and resources. Additionally, R-CNN faces difficulties in 

adapting to different image patterns effectively due to the fact that inherits patterns slower. This slowness 

comes from the need to process the 2,000 region proposals, since the feature extractor must repeatedly 

perform the same task for each of these regions. Another issue is the dependency on a fixed algorithm 

during the selective search, preventing the network from learning patterns within the image. This 

limitation stems from the fact that the algorithm combines similar regions into large ones, potentially 

resulting in the creation of inferior region proposals. To cope with these inefficiencies, an improved model 

was developed, known as Faster R-CNN (Ren et al., 2015). Unlike its predecessor, Faster R-CNN no longer 

employs the Selective Search method for generating region proposals. Instead, the model is trained to 

predict region proposals using a Convolutional Neural Network (CNN), as illustrated in Figure 2.5. These 

predicted region proposals are then fed into separate CNNs to determine the presence of objects of 

interest within these regions. Faster R-CNN outputs both the object class and its position within the image, 

marking a significant improvement in efficiency and accuracy compared to the original R-CNN model(Ren 

et al., 2015). 

 

Figure 2.4 Two-stage object detectors R-CNN (Diwan et al., 2023) 

 

 

Figure 2.5 Two-stage object detectors Faster R-CNN (Diwan et al., 2023) 
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2.2 Evolution of YOLO algorithms and key features 

The "You Only Look Once" (YOLO) algorithm has significantly impacted the field of object detection, setting 

new standards for speed and accuracy. This chapter is divided into two sections and attempts to provide 

an understanding of this technology. The first section introduces the foundational concepts behind the 

YOLO algorithm, explaining briefly how it transforms object detection into a single regression problem. 

The second section offers a detailed overview of the initial versions, YOLOv1 and YOLOv2, highlighting their 

key features, innovations, and the improvements that each version brought to address the limitations of 

its predecessor.  

2.2.1 Introduction to YOLO (You Only Look Once) algorithms 

The YOLO algorithm is an open-source object detection technique that employs convolutional neural 

networks (Redmon et al., 2016). Its core strength lies in its small model size, enabling fast calculations. 

YOLO directly outputs bounding box positions and categories through a single neural network, facilitating 

real-time detection, including video processing. This single-stage detection architecture (Figure 2.3) treats 

object detection as a regression problem applied on the whole image.  

Firstly, the YOLO algorithm imposes to the input picture a grid of 𝑆𝑥𝑆 cells. The size of this grid may differ. 

For example, grids of sizes 3x3, 5x5, 19x19 may be used. Each cell within a grid assesses independently the 

presence of an object, its size and class. The aim of these operations is the creation of bounding boxes. 

The generation of bounding boxes is followed by the creation of an estimation vector for each grid, which 

encapsulates significant metrics. These metrics are the confidence score, 𝐵𝑥 (x coordinate of the object's 

midpoint), 𝐵𝑦 (y coordinate of the midpoint of the object), 𝐵𝑤 (w the width of the object), 𝐵ℎ (h the height 

of the object) and the dependent class probability (Ati̇k et al., 2022). However, YOLO has some limitations. 

The first YOLO version can only detect 49 objects and if objects are small there are many possibilities of 

not been detected. Another issue is the inaccurate localization, in many cases the model faces difficulties 

in localizing precisely an object. To address these issues, newer versions improve the YOLO algorithm, both 

in quality and speed (Jiang et al., 2022). 

 

Figure 2.6 Architecture of YOLOv1 algorithm (Redmon et al., 2016)  

Performance metrics are used to evaluate the detection performance of a model. Important metrics 

include precision, recall, F1-score, Average Precision (AP) and mean Average Precision (mAP).  All are based 
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on the model’s classification and detection results, that are identified as True Positives (TP), False Positives 

(FP), True Negatives (TN), False Negatives (FN). The focus of this Section is to provide an overview of these 

metrics, which are significant for all object detection models. 

2.2.2 Overview of YOLOv1 and YOLOv2 

Below is provided a brief description of the two YOLO versions.  Readers that are interested to further 

details may refer to (Redmon et al., 2016; Redmon and Farhadi, 2017). 

The first version of YOLO uses a 7x7 grid, with the restriction of any grid cell to be able to detect only one 

object. This is the reason why YOLOv1 can detect maximum 49 objects. At the same time, YOLOv1 was 

trained to detect only 20 different classes, so for any grid cell it will output 20 class probabilities, one for 

each class. Although each grid offers the option of two bounding boxes, the process continues only with 

the boxes that have higher confidence score.  This architecture yields an output of S × S × (B × 5 + C), where 

B represents the number of bounding boxes that each grid cell predicts, and C represents the number of 

object classes the network can detect. Therefore, for S=7, B=2 and C=20, the final output of the network 

will be 7x7x30 tensor of predictions (Figure 2.6). 

The model comprises 24 convolutional layers followed by 2 fully connected layers, employing ReLU 

activation function except for the final layer, which utilizes linear activation. Pre-training on the ImageNet 

dataset and fine-tuning on PASCAL VOC datasets enhanced the performance of YOLOv1, reducing 

localization errors compared to other methods. Nonetheless, YOLOv1 faces some limitations based on the 

number of detected objects, high localization error and inability of detecting smaller objects. That were 

some of the reasons for releasing the next version (Atik̇ et al., 2022). 

YOLOv2, an advanced version of YOLO, introduces improvements in localization and recall ability while 

preserving classification accuracy. YOLOv2 simplifies the architecture and employs non-max suppression 

to select bounding boxes with the highest Intersection Over Union (IOU) (Jiang et al., 2022). The algorithm 

focuses on better and faster detection, emphasizing the handling of large and small objects through the 

design of an effective loss function. YOLOv2 maintains its performance while improving the mean Average 

Precision (mAP). Through the introduction of new features, the YOLOv2 model adapts to different image 

sizes, offering a balance between speed and accuracy.  

Significant enhancements include the integration of batch normalization for input data preprocessing, 

which is used in neural networks to standardize the inputs to each layer. The addition of batch 

normalization leads to an improvement in mAP by 2%. Another improvement refers to the adoption of a 

high-resolution classifier from 224x224 to 448x448 for detection, yielding a 4% rise in mAP. YOLOv2 

introduces for the first time anchor boxes. Instead of predicting the coordinates of bounding boxes directly 

using fully connected layers on top of convolutional feature extractor, YOLOv2 uses Faster R-CNN, which 

predicts bounding boxes using hand-picked priors ((Ren et al., 2015). YOLOv2’s architecture is based on 

the usage of a new network which works in a "network in network" concept, that has a new classification 

model as a backbone network, Darknet-19, and 5 max-pooling layers. It also utilizes fewer filters. YOLOv2 

has 25 convolutional layers instead of 24 of the first YOLO version (Redmon and Farhadi, 2017). 
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The utilization of convolutional layers with anchor boxes contributes to a higher performance. Additionally, 

the introduction of multi-scale output offers to the network the ability to detect objects at different scales 

or resolutions. This means that YOLOv2 can detect small objects as well as larger ones in the same image 

(Jiang et al., 2022). All these advances make YOLOv2 a more accurate model for object detection in 

comparison with its predecessor. 

2.2.3 Innovations in YOLOv3 and its significance 

YOLOv3, the third version of the You Only Look Once (YOLO) algorithm, represents a notable evolution 

from its predecessor, YOLOv2, and introduces several key differences. A considerable improvement lies in 

the refined network architecture, using three distinct detection heads. The latter are added to YOLOv3’s 

architecture offering the algorithm the ability to classify small, medium, and large objects respectively, 

improving accuracy for objects of varying sizes.  

Furthermore, YOLOv3 uses a new backbone network with 53 convolutional layers, called Darknet-53, 

which is a hybrid approach between Darknet-19 (YOLOv2’s network) and the residual network, providing 

more speed to the algorithm. Another significant improvement includes the adoption of a feature pyramid 

network (FPN), enabling the algorithm to capture object details at multiple resolutions.  

YOLOv3 also integrates skip connections to access features from earlier layers, enhancing its contextual 

understanding (Jiang et al., 2022). By using independent classifiers, YOLOv3 adds the ability to classify the 

detected object in a bounding box to more than once classes . More specifically, during training, a binary 

cross-entropy loss function is used for class prediction. 

Additionally, YOLOv3 embraces the use of multiple anchor boxes per grid cell, facilitating more precise 

object localization. Another important enhancement is the addition of a confidence score, determined 

through logistic regression, for each bounding box prediction. This score is expected to be 1 if the bounding 

box effectively covers a ground truth box than any other bounding box prior, based on the highest 

Intersection over Union (IOU). The system ensures that only one bounding box prior is assigned to each 

ground truth box. If the box does not have the highest IOU but does overlap a ground truth box by more 

than a threshold (0.5), the prediction is disregarded (Kamal, 2021). These innovations contribute to 

YOLOv3's better performance in real-time object detection tasks. 

Table 2.2 below illustrates the differences between the three YOLO versions:  The parameters that were 

changed or added in the algorithm’s architecture, as well as those related to the training procedure. 
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Table 2.2 Evolution of YOLO Algorithms (Alexey, 2024) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.4 Concluding remarks 

When considering YOLOv3 over its predecessors, YOLOv1 and YOLOv2, several key advancements 

distinguish it as a superior choice in various object detection applications. YOLOv3 introduces significant 

improvements in detection accuracy, speed, and versatility compared to its predecessors. Through the 

adoption of a deeper network architecture, YOLOv3 achieves enhanced detection performance, 

particularly in detecting small objects and handling object occlusion. Additionally, YOLOv3 incorporates a 

feature pyramid network (FPN) and utilizes multiple scale detections, enabling the model to effectively 

capture objects at different scales and resolutions. Furthermore, YOLOv3 introduces the use of anchor 

boxes to improve bounding box predictions, offering greater flexibility and accuracy in object localization. 

Notably, YOLOv3 maintains a remarkable balance between detection accuracy and speed, making it well-

suited form object detection. Based on all these advantages we proceed in the selection of the YOLOv3 

algorithm for our experimental research (Redmon and Farhadi, 2018). 

  

 Evolution of YOLO Algorithms and Key Features 

Parameters for Backbone Network 
YOLOv1 YOLOv2 YOLOv3 

Architecture 

Backbone Depth 24 19 (Darknet-19) 53 (Darknet-53) 

Training  

Input Size 224x224 224x224 variable sizes 

Input Normalization No Yes Yes 

Data Augmentation No Yes Yes 

Multi-scale Training No Yes Yes 

Parameters for YOLO Network  

Architecture  

Number of layers 24 25 53 

Spatial Pyramid Pooling (SPP) No No Yes 

Multi-scale Output No Yes Yes 

Training  

Anchor Boxes per cell of the grid 0 5 9 

Batch Normalization No Yes Yes 
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Chapter 3 Deep Dive into YOLOv3 

In this Chapter, we overview the YOLOv3 algorithm. We analyze some of its components, explore the 

network layers and explain their functionalities and roles in the YOLOv3 architecture. Key areas of focus of 

this overview include a) Darknet-53, which is the backbone of YOLOv3 and is responsible for feature 

extraction; b) the feature pyramid network (FPN), the main component of the algorithm’s neck, which 

employes additional convolutional layers with the purpose of enabling the network to detect objects at 

multiple scales; c) the YOLO heads, the final stage of the object detection process. In the last Section of 

this Chapter, we describe the process of training, testing and validation. 

3.1 YOLOv3 architecture overview 

The inputs of the YOLOv3 model are images or video streams. The default image resolutions that YOLOv3 

typically accepts are 416x416 and 608x608 pixels. These input sizes are the most commonly used because 

they offer a good balance between detection accuracy and computational efficiency. However, YOLOv3 is 

a fully convolutional network, which means that it does not use any fully connected layers that require a 

fixed-size input.  Thus, the network may process images of various sizes. It can technically accept images 

of any resolution, as long as the dimensions are divisible by 32. 

 

The network architecture of YOLOv3 includes a series of convolutional layers, some of which have strides 

greater than 1. Note that a stride of 1 means that the filter of the convolution process moves one pixel at 

a time, resulting in a high-resolution output. On the other hand, a stride of 2 means that the filter moves 

two pixels at a time, resulting in a downsampled output with reduced spatial dimensions.  
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Figure 3.1 YOLOv3 network architecture (Palma, 2020) 

The YOLOv3 network has three main parts, each highlighted in different colors and steps (Figure 3.1). First 

is the backbone which is responsible for feature extraction. The backbone is illustrated by the grey section 

and its functionality is to process the input image to extract features. It includes steps 1 to 11, where 

several layers reduce the image size while increasing the detail in the features detected.  

 

The second major part of the architecture is the Feature Pyramid Network (FPN) or else the neck, which 

is highlighted by orange, purple, and blue in Figure 3.1. FPN is responsible for combining features from 

different stages of the backbone to help detect objects of various sizes. This involves upsampling and 

concatenation in steps 13 to 20 (will be analyzed in detail in Section 3.2.2), allowing the network to detect 

both medium and small objects. Step 12 is also part of FPN, but it is used for processing large objects 

without the need of going through upsampling and concatenation techniques. 

 

Finally, the YOLO heads are where the actual object detection occurs. YOLO heads are the latter parts of 

the orange, purple, and blue colored sections of Figure 3.1. They use the combined features from the neck 

to identify objects at three different scales, small (steps 17-20, orange section), medium (steps 13-16, 

purple section), and large (steps 12, blue section). In the YOLO heads the network predicts the class 

probabilities for each detected object. This allows YOLOv3 to classify objects within the detected bounding 

boxes based on the features extracted and processed by the backbone and the neck of the network.  

 

In the following Sections we focus on each of the key components of YOLOv3’s architecture and present 

its functionalities.  

FPN 



University of the Aegean Department of Financial and Management Engineering 
 
 

[27] 
 

3.2 The YOLOV3 architecture 

In this Section we describe the three main components of YOLOv3 architecture, the Darknet-53 backbone, 

the Feature Pyramid Network (FPN), which comprises the network’s neck, and the detection heads.  

3.2.1 Darknet-53 backbone and feature extraction 

The backbone of YOLOv3 serves as the feature extractor responsible for capturing semantic information 

from input images. Typically, this part consists of a deep convolutional neural network (CNN) pretrained 

on large-scale image classification datasets such as ImageNet. There are many choices for backbones in 

YOLOv3, including Darknet-53 and ResNet-152.  Darknet-53 comprises 53 convolutional layers   organized 

into convolution and residual blocks, providing robust feature extraction capabilities (see Fig. 3.2). It is 

characterized by its simplicity and effectiveness, making it a suitable backbone for YOLOv3 (Tepteris et al., 

2023). On the other hand, Resnet-152 consists of 151 convolutional layers and 1 fully connected layer at 

the end of its network. It is a deep convolutional network which offers high accuracy in more complex 

patterns. It has increased computational requirements that make it slower to train, but it provides higher 

accuracy (Xu et al., 2019). 

 

Figure 3.2 Darknet-53 architecture (Ma et al., 2020) 

The Darknet-53 architecture (see Fig. 3.2) comprises convolutional blocks and residual blocks. Each 

convolutional block includes a 2d convolutional layer, a batch normalization layer and a LeakyReLU layer.  

These layers perform basic feature extraction and dimensionality reduction, enabling the network to 

capture low-level visual patterns. On the other hand, residual blocks contain a series of convolutional 

layers followed by a shortcut connection that skips these layers and adds the original input to the output. 

This shortcut is important because it helps the network learn more effectively and capture more complex 

patterns, enhancing network’s overall performances (He et al., 2016).  
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Figure 3.3 A 3×3 kernel (per channel) slides over the input to generate the output(Tepteris et al., 2023) 

The convolution block 

Convolution operation 

The convolution operation in deep learning involves using convolutional filters, also known as kernels to 

extract features from input data. These filters are small numeric matrices with fixed dimensions. More 

precisely, a kernel (filter) is a small matrix of weights and is used to perform convolution operations on the 

input image and on the outputs of previous convolution blocks. The output of each convolution step is 

obtained by element-wise multiplication between the kernel matrix and a corresponding region of the 

color channel, concluding by summing the results. This process is repeated for all three-color channels, 

and the resulting numbers are summed together to form the elements of the output matrix (see also Fig. 

3.3).  The convolution operation progresses the kernel across the input image (at a specific stride) 

producing a new matrix called a feature map. Common kernel sizes are 1x1, 3x3, or 5x5. In the YOLOv3 

case, the kernel sizes are 3x3 and 1x1. During training, the weights of the kernels are adjusted to improve 

the network's ability to extract relevant features from the input data.  

 

In the architecture of Fig. 3.2, the first convolution block consists of 32 filters, each with a size of 3x3 and 

a stride value of 1. This block is repeated once, and the output size remains the same as the input size (e.g. 

416 pixels x 416 pixels). This operation is repeated for all 32 kernels, generating a total of 32 feature maps 

(Tepteris et al., 2023). 

 

Batch normalization 

 Batch normalization (BN) is a technique used in deep learning to make training more efficient and stable. 

It works by normalizing the inputs to each layer, making sure that the activations (the outputs of a layer) 

have a consistent distribution across the mini-batches used during training. This helps to address a 

problem called “internal covariate shift”, which occurs when the distribution of inputs to a layer changes 

during training, making it harder for the model to adapt on the new changes. This process always runs 
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between a convolution operation and an activation function and allows successive layers of the network 

to learn more independently (Ioffe and Szegedy, 2015a). 

 

More specifically, for each mini-batch, batch normalization calculates the mean and variance of the 

activation values (the outputs of the previous layer). It then normalizes the activations so that they have 

a mean of 0 and a variance of 1. This ensures that the input distribution remains consistent across layers 

during training. After normalization, two parameters, 𝛾 (𝑔𝑎𝑚𝑚𝑎) and 𝛽 (𝑏𝑒𝑡𝑡𝑎), are introduced. The 𝛾 

parameter controls the scaling (how stretched or compressed the values are), and the 𝛽  parameter 

controls the shifting (moving the values up or down). These parameters allow the model to "un-normalize" 

the data if needed, so that the network can adapt to a wider range of patterns. These two parameters are 

adjusted during training to optimize the network’s performance. By keeping the input to each layer 

normalized, batch normalization makes the training process more stable and faster, reducing overfitting 

as it adapts more accurately to the new input layers.(Tepteris et al., 2023). 

 

LeakyReLu 

After each batch normalization process, the Leaky Rectified Linear Unit (LeakyReLU) is activated. This is an 

improved version of the ReLU activation function.  LeakyReLU addresses the issue of negative values 

turning into zeros. By introducing a small slope for negative values, the LeakyReLU prevents this problem 

and ensures that the weights of neurons are still affected during training. This activation function is 

commonly used due to its simplicity and low computational requirements (Dubey and Jain, 2019). 

 

The residual block 

The residual block combines the output of the previous layer, denoted as x, with the output of the current 

layer, denoted as f(x) (see Figure 3.4). Specifically, it adds the feature maps generated by the previous 

convolution block to the feature maps produced by the convolution layers in the residual block. To ensure 

that the dimensions of 𝑥 match those of 𝑓(𝑥), a 1x1 convolutional layer is applied to x  before it is added 

to the output of the residual block. This 1x1 convolution adjusts the number of channels and the spatial 

dimensions of x, making it compatible with 𝑓(𝑥). Within the residual block, the convolution layers typically 

include a 3x3 convolutional layer with stride 2, followed by Batch Normalization and a Leaky ReLU 

activation. A stride of 2 is used to downsample the feature maps, reducing their spatial dimensions by half. 

This choice of stride 2 is important for capturing higher-level, more abstract features, increasing the area 

that each neuron can “see” effectively and improve computational efficiency. The addition of 𝑥 and 𝑓(𝑥) 

helps deeper networks to learn more efficiently (He, Zhang, Ren, & Sun, 2016 ).  
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Figure 3.4 YOLOv3 Residual block structure (Xu & Wu, 2020) 

3.2.2 Feature Pyramid Network (FPN) 

The neck of YOLOv3 acts as an intermediary between the backbone and the YOLO heads. It improves the 

features extracted by the backbone, enhancing the capability of detecting objects at different scales. This 

component often applies additional convolutional layers and feature based techniques to integrate multi-

scale information effectively. 

 

The Feature Pyramid Network (FPN) is a widely used architecture for the neck in YOLOv3.  Its architecture 

is presented in Fig. 3.5. It creates a multi-scale feature pyramid by combining features from different levels 

of abstraction within a convolutional neural network (CNN). In YOLOV3’s architecture (Figure 3.1), steps 

12, 13, 14, 17 and 18 are the ones that comprise the FPN architecture.  
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Figure 3.5 Network architecture of feature pyramid network (FPN) (Zhang et al., 2021). 

 

As shown in Fig. 3.5, FPN has two main components: the bottom-up pathway, downsampling and the top-

down pathway, upsampling.  Downsampling reduces the spatial resolution of feature maps while 

increasing their depth, enabling the network to capture higher-level features. On the other hand, 

upsampling increases the spatial resolution of feature maps, allowing the network to reconstruct higher-

resolution features from lower-resolution inputs.  

 

Before we describe Fig. 3.5 in detail, please note that: 

 The downsampling operation reduces the spatial dimensions (height and width) of the feature 

maps, allowing the network to capture more complicated and abstract features at higher layers. 

This is achieved through operations like convolution with stride > 1. Convolution with a stride 

greater than 1 reduces the number of positions where the filter is applied across the input feature 

map. As a result, the output feature map has fewer spatial dimensions (height and width). Pooling 

layers are another method used to downsample feature maps in CNNs. Downsampling occurs in 

Step 1, Step 3, Step 5, Step 8, and Step 11 in the context of YOLOv3 (Figure 3.1) . These steps 

involve convolutional layers with a stride of 2 (s2) , which reduces the spatial resolution of the 

feature maps progressively through the network (Xu et al., 2019).  

 The upsampling operation increases the spatial resolution of feature maps, allowing lower-

resolution feature maps to be scaled up and aligned with higher-resolution feature maps from 

earlier layers. The nearest neighbor method is used during upsampling.  Specifically, an empty 
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initial upsample grid is generated. Subsequently, every pixel in the upsample grid is filled with the 

nearest pixel in the original image patch. This process is repeated until all pixels in the unsampled 

grid are filled with the image patch values (Figure 3.6) (Tepteris et al., 2023). In the context of 

YOLOv3, this can be seen in Step 13 (Conv 256x1x1 + UpSample) and Step 17 (Conv 128x1x1 + 

UpSample) (Figure 3.1). 

 

Figure 3.6 Upsampling layer (Tepteris et al., 2023) 

 The concatenation operation combines these “upsampled” feature maps with feature maps from 

earlier layers, merging high-resolution with lower resolution. This operation combines the depth 

of two feature maps to capture low-level features and detect small objects (Tepteris et al., 2023). 

For instance, in the YOLOv3 model, the output of step 18 (Figure 3.1) receives the outputs of steps 

6 (52x52x256) (Figure 3.1) and 17 (52x52x128) (Figure 3.1), which have the same width and height 

but different depth dimensions (Figure 3.7). So, the outcome of the concatenation operations is 

sized  at 52x52x384. In the context of YOLOv3, this can be seen in Step 14 (Concatenate with batch 

size: 26, 26, 768) and Step 18 (Concatenate with batch size: 52, 52, 384) (Figure 3.1). 

 

Figure 3.7 Concatenation of two inputs (Tepteris et al., 2023). 

 

 

Now let’s turn to Fig. 3.5.  In the Figure, the bottom-up pathway, feature maps labeled c2, c3, c4, and c5 

are extracted from different layers of a convolutional neural network (CNN). As we progress from c2 to c5, 

the spatial resolution of the feature maps decreases due to downsampling, while the quality of 

information contained within a feature map increase.  In a CNN, earlier layers (like the ones producing c2) 

typically learn to detect basic features such as edges, textures, or simple shapes. These features are 

fundamental and low-level. As we move deeper into the network, the layers (producing feature maps such 

as c3, c4, and c5) start combining these basic features to recognize more complex patterns, objects, or 

high-level concepts. By this process the network learns to increasingly detect more information about the 

input image. Specifically, c2 represents a feature map from an earlier layer of the CNN (high resolution, 
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low semantic information), c3 from a deeper layer (lower resolution, higher semantic information), c4 

from an even deeper layer, and c5 from the deepest layer (lowest resolution, highest semantic 

information).  

 

In the top-down pathway, feature maps labeled p5, p4, p3, and p2, where p is the prediction, are 

progressively upsampled and combined with corresponding bottom-up feature maps. Specifically, p5 is 

obtained from c5 using a 1×1 convolution to adjust the channel dimension, p4 is obtained by upsampling 

p5 and combining it with c4, p3 by upsampling p4 and combining it with c3, and p2 by upsampling p3 and 

combining it with c2. Each “upsampled” feature map is combined with a corresponding “downsampled” 

feature map, leveraging both high-level information from deeper layers and more detailed one from earlier 

layers giving the ability to the network to detect objects at various scales (Alexey, 2024). 

 

By integrating upsampling, downsampling and concatenation operations, YOLOv3 creates a more detailed 

feature representation that improves the network's ability to detect objects of different sizes (Alexey, 

2024). 

3.2.3 Detection heads 

The primary function of the YOLO heads is to predict bounding boxes for objects detected within the input 

image. YOLOv3 employs three separate detection heads, each responsible for detecting objects at different 

scales. These heads are associated with feature maps of different sizes. More specifically: 

 The large-scale detection head is designed to capture large objects and operates on the output 

feature map from the final layer of the network 

 The medium-scale detection head captures medium-sized objects 

 The small-scale detection head is responsible for detecting small objects  

Each detection head is associated with three anchor boxes. These anchor boxes are predefined and 

help in predicting the bounding box dimensions. Each anchor box has a fixed width and height, and 

these values are adjusted during training to better fit the objects in the dataset. (Redmon and Farhadi, 

2018). 
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Figure 3.8 YOLOv3 Output vector per anchor in each cell (Tepteris et al., 2023) 

 

Regarding the architectural perspective, each detection head is placed before a convolutional layer with a 

1x1 kernel size which is responsible for the attributes of the anchor boxes (see Fig. 3.8). Therefore, the 

number of filters in this layer is determined by the number of anchor boxes and classes (see Eq. 3.1).  

More specifically it is determined by the formula: 

𝑓𝑖𝑙𝑡𝑒𝑟𝑠 =  𝑛𝑢𝑚𝑎𝑛𝑐ℎ𝑜𝑟𝑠  × (4 + 1 + 𝑛𝑢𝑚𝑐𝑙𝑎𝑠𝑠𝑒𝑠) 

 

(3.1) 

where, 

𝑛𝑢𝑚𝑎𝑛𝑐ℎ𝑜𝑟𝑠 = the number of anchor boxes, 

𝑛𝑢𝑚𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = the number of classes 

Value 4 indicates the four anchor box coordinates which define the location (𝑡𝑥, 𝑡𝑦) and the size (𝑡𝑤, 𝑡ℎ) 

of the bounding box that contains the detected object (Figure 3.8). 

Value 1 indicates the objectness score (𝑝𝑜), that is the probability that an object is present in the bounding 

box and its value ranges between 0 to 1 (Figure 3.8). See also the black box in Figure 3.8. 

For example, if there are 3 anchor boxes and 80 classes the number of filters in the convolutional layer of 

each detection head would be 3 × (4 + 1 + 80) = 255 filters. This equation is applied in each filter of 

convolution layer before the detection heads. 
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The output of each detection head has a dimension:  

(𝑔𝑟𝑖𝑑𝑠𝑖𝑧𝑒 , 𝑔𝑟𝑖𝑑𝑠𝑖𝑧𝑒 , 𝑓𝑖𝑙𝑡𝑒𝑟𝑠) 

In this case, different grid sizes are used to detect objects at various scales: 

 Large grid (52x52): Downsampled by a factor of 8 (416 / 8 = 52), detecting small objects 

 Medium grid (26x26): Downsampled by a factor of 16 (416 / 16 = 26), detecting medium-sized 

objects 

 Small grid (13x13): Downsampled by a factor of 32 (416 / 32 = 13), detecting large objects. 

In Figure 3.1, that describes the YOLOv3 architecture, the detection head for large objects is illustrated in 

steps 12 and 13. In step 12, a convolutional block with a 1x1 kernel size is applied directly to the feature 

map from the backbone network, preparing the feature map for detecting large objects. In step 13, a 

𝐶𝑜𝑛𝑣 255 × 1 × 1 layer is applied with a 1x1 kernel size to reduce the number of channels in the feature 

map to the size required for the final detection. This step produces the final detection output for large 

objects which has a dimension of (𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 , 13, 13, 255).  

The detection head for medium objects is illustrated in steps 15 and 16. In step 15, a convolutional block 

is applied to the feature map resulting from the previous upsampling and concatenation operation (step 

14). In step 16, a 𝐶𝑜𝑛𝑣 255 × 1 × 1 layer with a 1x1 kernel size is used to reduce the number of channels 

to 255, similar to the detection head for large objects. This layer outputs a feature map of dimensions 

(𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 , 26, 26, 255), designed for detecting medium-sized objects.  

The detection head for small objects is illustrated in steps 19 and 20. In step 19, a convolutional block is 

applied to the feature map from the upsampling and concatenation operation (step 18). In step 20, again 

a  𝐶𝑜𝑛𝑣 255 × 1 × 1  layer is applied with a 1x1 kernel size to produce the feature map for detecting small 

objects. This feature map, designed for detecting small objects, has dimensions of (𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 , 52, 52, 255)  

(Alexey, 2024). 

3.3 Training, validation and testing 

In this Section, we overview training, validation and  testing processes of YOLOv3 algorithm.  

Training is the process by which the YOLOv3 algorithm learns to detect and classify objects in images. 

During training, the model is fed with a large set of annotated images, where each image is paired with its 

corresponding ground truth labels (the coordinates of bounding boxes and the class of the objects). The 

algorithm adjusts its parameters repeatedly to minimize the difference between its anchor boxes and the 

ground truth bounding boxes. Also, each anchor box is assigned to the ground truth bounding box that 

has the highest IoU with it. The corresponding class label of the ground truth box is then used to train the 

network to predict the correct class. Therefore, training is used to enable the models to learn and 

understand the patterns in the data (Redmon and Farhadi, 2018). 

Validation is the process used to evaluate the performance of the YOLOv3 model during training. For this 

process, a separate subset of the dataset, called the validation set, is used. After each round of training 

(an epoch), the model’s performance is tested on this validation set, to detect any overfitting or 
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underfitting that might occur. Overfitting happens when a model learns too much detail from the training 

data, including irrelevant patterns. As a result, the model becomes very good at predicting the training 

data but fails to perform well on new data because it has "memorized" the training data instead of learning 

general patterns. Underfitting occurs when a model does not learn enough from the training data. It fails 

to capture more complex patterns in the data and therefore performs poorly both on the training and the 

new data. Thus, the validation process is used to tune the models hyperparameters and prevent 

overfitting, ensuring that the model generalizes well to new data (Redmon and Farhadi, 2018). 

Testing is the process of evaluating the final performance of the trained YOLOv3 model on a separate set 

of images that were not used during training or validation. This dataset is called the test set. The model’s 

evaluation metrics are calculated on the test set to measure how effectively it can detect and classify 

objects. Therefore, testing is used to evaluate the final model’s performance and confirm its accuracy 

(Tepteris et al., 2023). 

For all three processes, training, validation and testing, an annotated dataset of images is used. This 

dataset consists of images that are labeled with the ground truth boxes and class of objects. Note that the 

training set used for model learning comprises typically 80% of the dataset), the validation set 10%, and 

the testing set comprises also 10% of the dataset. 

3.3.1 Training process of YOLOv3 

 

 

Figure  3.9 Training process of YOLOv3 (Tepteris et al., 2023) 

Figure 3.9 overviews the step-by-step actions that take place in the training process. Initially, the training 

dataset's images are divided into smaller batches. This division helps speed up the training process by 

allowing the neural network's weights to be updated more frequently. Each batch contains images, such 

as color images with dimensions 416x416 pixels, represented as arrays of size (416, 416, 3). The batch size 

is set prior to training.  For instance, if the batch size is 32, it means that 32 images are fed to the model 

in each iteration to update the weights of YOLOv3 model. On the other hand, when the entire dataset of 

images is passed through the YOLOv3 network once, this is one epoch. For example, consider a 4000 

images dataset, divided in batches of 32 images. It will take 125 iterations to complete one epoch. More 

specifically, an iteration is when the model processes a small batch of images, and in this case, the batch 

size is 32. Since the dataset has 4000 images, it takes 125 (4000 32⁄ ) iterations to go through all images 

once, which is one epoch.       

In the second step of Fig. 3.9 the image batches are passed through a classification neural network, which 

extracts features from the images, such as object outlines. In the third step, the model predicts classes for 
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objects at three different scales, enabling the detection of small, medium, and large objects. Step four 

involves detecting objects within each of the three scales and enclosing them within bounding boxes. In 

step five, a loss value is calculated using the loss function. This value is a combination of how accurate the 

class predictions are and how well the bounding boxes fit the predicted objects.  

 

In YOLOv3, the loss value is computed for batches of images rather than individual images. This means 

that the loss function is applied to a group of images, and the resulting outputs are combined to calculate 

a single loss value for that batch. The optimizer then uses this loss value to adjust the model's weights. 

This process is repeated for multiple batches until the model converges or a predetermined number of 

iterations is reached (Tepteris et al., 2023). 

 

Key technical tools used in training 

Intersection over Union (IoU) 

Intersection over Union (IoU) is the region where the ground truth bounding box and predicted bounding 

box intersect over the region where they are united (Figure 3.10). According to the definition of IoU, an 

IoU can have a value of 0 or 1, and the objective of training is to choose the predicted box that most closely 

resembles the ground truth box in order to obtain an IoU as close to 1 as possible. An IoU threshold value 

is used during training to keep only the "good"  predicted box and throw out the ones below the threshold.  

A typical threshold value is 0.5 (Kamal, 2021). 

 

Figure 3.10 Computing Intersection over Union (IoU) (Padilla, Netto, & Silva, 2020) 

The ground truth box and the predicted box are represented by the red and yellow boxes in Figure 3.11, 

respectively. Because of the tiny area of intersection in the left image, the IoU is low. In contrast, the right 

image's area of intersection between the two boxes is nearly equal to their union, meaning the IoU is near 

to 1 (Kamal, 2021). 

 

Figure 3.11 IoU of bounding boxes (Kamal, 2019) 



University of the Aegean Department of Financial and Management Engineering 
 
 

[38] 
 

Objectness and Class Scores 

The objectness score in YOLOv3 explains us how confident the model is that a bounding box contains an 

object, regardless of its class (e.g., car, person, bike) and how well that bounding box aligns with the actual 

object. 

This score is a combination of two factors: 

1. Probability of Object Presence (Pc(𝑜𝑏𝑗𝑒𝑐𝑡)): This is the probability that the predicted bounding 

box contains any object, as predicted by the model. 

2. Intersection Over Union (IoU): This measures how much the predicted bounding box overlaps with 

the actual object’s ground truth bounding box. 

 

Objectness score is calculated by multiplying these 2 values (Huang et al., 2022): 

 

𝑃0 = Pc(𝑜𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑜𝑈  (3.2) 

If Pc(𝑜𝑏𝑗𝑒𝑐𝑡) is high, close to 1, it means the model is highly confident that an object exists. If 𝐼𝑜𝑈 has a 

value close to 1, it means that there is a significant overlap between ground truth box and the predicted 

box, suggesting a more accurate prediction. Therefore, for an accurate prediction, 𝑃0 should ideally be 

greater than 0.5 and as close to 1 as possible. A high 𝑃0 indicates both confidence in object presence and 

accurate localization of the object's bounding box, which is important for accurate object detection 

(Tepteris et al., 2023). 

 The class score indicates the probability that the detected object belongs to a certain class (e.g., car, 

person, bike), with the highest score indicating the predicted class. More specifically, for each anchor box, 

the model computes a probability over all predefined classes included in the dataset. For instance, if there 

are 80 classes, the model outputs 80 probabilities corresponding to these classes (Redmon et al., 2016). 

For example, if the class scores are: 

 0.7 for "car" 

 0.2 for "person" 

 0.1 for "bike" 

 0 for all other classes. 

Then, the model predicts that the object is a car (since 0.7 is the highest score). 

As illustrated in Figure 3.12, the output of the YOLOv3 model consists of bounding boxes that enclose each 

detected object, along with a label displaying the objectness score and the name of the class to which the 

object belongs. 
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Figure 3.12  YOLOv3 detection with class score (Shivaprasad, 2019). 

 

Non-Maximum Suppression (NMS) 

In Figure 3.13, the class probabilities are shown in the left corner of each bounding box next to the class 

name of the detected object.  As it can be seen in this Figure two bounding boxes are drawn around the 

same object (dog and person). To ensure accurate object detection, the bounding box that best encloses 

the object, with the highest confidence score (1.00 for the class = “dog”) should be retained, while the 

other inaccurate and redundant bounding boxes (0.31 for the class = “person”) should be ignored. This 

process is known as Non-Maximum Suppression (NMS) and is purpose is to reduce duplicate detections 

and keep only the most accurate prediction for each object. It basically works by comparing the confidence 

scores of all bounding boxes and keeping the ones with the highest scores while removing those with a 

high overlap with the chosen bounding box (Hosang et al., 2017). 

 

 

Figure 3.13 YOLOv3 prediction example (Gilbert, 2020). 

 

The NMS algorithm's threshold is a hyperparameter that can be adjusted to balance accuracy and recall 

(Tepteris et al., 2023). 
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Loss Function 

The loss function is utilized to optimize the model's parameters throughout the training procedure. 

Training continues until the loss function reaches its minimum value, signifying that the model has 

successfully learned to detect objects in an image.  YOLOv3’s loss function is computed at the last output 

layer of YOLOv3.  

The loss function in YOLOv3 consists of three parts (Huang, Lin, & Liu, 2022): 

1. 𝐸𝑟𝑟𝑜𝑟𝑐𝑜𝑜𝑟𝑑: refers to the coordinate prediction error 

2. 𝐸𝑟𝑟𝑜𝑟𝑜𝑏𝑗𝑒𝑐𝑡𝑛𝑒𝑠𝑠: refers to an Intersection Over Union (IoU) error 

3. 𝐸𝑟𝑟𝑜𝑟𝑐𝑙𝑎𝑠𝑠: refers to the classification error 

 

𝐿𝑜𝑠𝑠 = 𝐸𝑟𝑟𝑜𝑟𝑐𝑜𝑜𝑟𝑑 + 𝐸𝑟𝑟𝑜𝑟𝑜𝑏𝑗𝑒𝑐𝑡𝑛𝑒𝑠𝑠 + 𝐸𝑟𝑟𝑜𝑟𝑐𝑙𝑎𝑠𝑠 (3.3) 

 

For further information on YOLOv3 loss function see (Tepteris et al., 2023). 

3.3.2 Validation process of YOLOv3 

The validation process evaluates the performance of the YOLOv3 model during training using a separate 

subset of the dataset known as the validation set. After each round of training (an epoch or in our study 

several iterations), the model’s performance is tested on this validation set to detect any overfitting or 

underfitting occurs during the training process. Overfitting occurs when the model learns too much detail 

from the training data, including irrelevant patterns, resulting in high accuracy on the training data but 

poor performance on new data. Underfitting happens when the model does not learn enough from the 

training data, failing to capture complex patterns and thus performing poorly on both training and new 

data. During this process, the network uses a separate dataset, called the validation set, which is different 

from the training dataset. The validation process is crucial for tuning hyperparameters and preventing 

overfitting, ensuring that the model generalizes well to new data (Redmon and Farhadi, 2018). 

 

Figure 3.14 Validation process of YOLOv3 

As illustrated in Fig., 3.14, in step 2 of the validation process the model continues with the feature 

extraction from the input image without updating the weights, as it does during training. In step 3, the 

model generates predicted outputs, including class labels and bounding boxes. In step 4, the model's 

performance is evaluated by comparing the predicted outputs with the actual labels using various 

evaluation metrics, such as precision, recall, Average Precision (AP) and mean Average Precision (mAP). In 

step 5, the validation loss is calculated to assess how well the model is performing on the new input image 

data. Then, in step 6, a decision is made, if the model's performance is acceptable, meaning the validation 
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loss is low and the evaluation metrics are satisfying, the process moves to Step 7, completing the 

validation. When the model's performance is not acceptable during validation, adjustments are made to 

improve it, typically by tuning hyperparameters. This process can happen by stopping training and starting 

over with new hyperparameters. After evaluating the model during validation, hyperparameters like 

learning rate, batch size, can be adjusted and the training process starts over again. 

 

Satisfactory validation result 

A good validation result occurs when the validation loss is low and close to the training loss, indicating that 

the model generalizes well to new data. Additionally, high values for evaluation metrics, such as precision, 

recall, Average Precision (AP), or mean Average Precision (mAP) reflect that the model is accurately making 

predictions across the predetermined classes and identifies true positives. Additionally, when the training 

and validation losses are similar and stable after multiple iterations (epochs), it means that the model is 

well-trained with no overfitting or underfitting issues.  

Unsatisfactory validation result 

On the other hand, an inferior validation result is characterized by a high validation loss compared to 

training loss. This indicates overfitting issues when the model performs well on training data and 

underfitting issues when the model fails to learn from new data. Low precision or recall values are also a 

sign that the model is missing information or is making incorrect predictions.  

 

Nevertheless, if the validation results are not the desirable ones, there are several strategies we can follow 

to improve the model’s performance. One of them is the hyperparameter tuning, where parameters, such 

as learning rate, batch size, or the number of epochs is adjusted. If the model is overfitting, techniques, 

such as reducing model’s complexity (fewer layers) can help. In cases of underfitting, increasing model 

complexity or training for more epochs may be necessary. Data augmentation can be also used to expand 

the training data and prevent overfitting by generating new examples from existing data (e.g., rotating or 

flipping images). A technique which was used in our research too. 

 

All in all, the validation process is important for making sure a machine learning model is reliable, accurate, 

and works well with new data. It helps us check how well the model performs and shows where 

adjustments are needed to avoid issues like overfitting or underfitting. By analyzing the performance 

metrics and making small changes to improve the model’s performance, we can get the best possible 

results (Redmon et al., 2016). 

3.3.3 Testing process of YOLOv3 

 

 

Figure 3.15 Testing process of YOLOv3 (Tepteris et al., 2023) 
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The testing process is essential because it evaluates how well the trained model adapts to new data. The 

performance metrics obtained during testing indicate how accurately the model detects objects and 

handles different conditions on which it was not trained on. Figure 3.15 overviews of the testing process. 

During this process each annotated image from the testing subset is fed into the trained network for object 

detection. The first four steps of the testing process are similar to those in the training process except that 

the weights are not updated during testing. The model uses the weights that were learned during training 

to make predictions on the test data, but it does not modify them. Testing is a separate process where the 

model's performance is evaluated on the data of the testing subset, with no further learning or weight 

updates. In step five, after obtaining the detection results, evaluation metrics (such as Precision, Recall, 

F1-Score, Mean Average Precision (mAP), etc.) are calculated to analyze the performance of the model on 

the testing subset (see below).  

Step six involves checking if the termination conditions have been met.  These conditions could be related 

to processing a certain number of images or completing all images in the test set. If the conditions are 

met, the testing process is completed. Otherwise, the next image is processed, and the steps are repeated 

(Tepteris et al., 2023). 

Successful testing process 

Successful testing means that the model has reached the expected thresholds for evaluation metrics, such 

as precision, recall, F1 score, average precision (AP) or mean average precision (mAP). For example, if the 

goal was to achieve 70% precision and recall on a specific dataset, the test is successful if these targets are 

met. It also shows us that the model performs with consistency across the different testing subsets; i.e. 

data subsets that might have different lighting conditions, object sizes and orientations than the training 

dataset. Testing can also indicate a low number of false positives (detecting an object that isn’t there) and 

false negatives (missing an object that is present), which means the model reliably detects objects without 

significant errors. 

 

Unsuccessful testing process 

A non-successful test occurs when the model fails to meet the performance goals. This means that model's 

performance metrics fall below the acceptable thresholds. For instance, if the target precision is 70% and 

the model only achieves 50%, this would be considered unsuccessful. Also, when testing fails the model 

generates too many false positives or false negatives, concluding to an unreliable object detection process. 

If the model performs well on the training dataset but its performance is low on the testing dataset, it 

indicates overfitting. This means that the model is memorizing training data rather than learning general 

patterns. Finally, if the model performs poorly on both training and testing datasets, it means that it was 

not trained well, indicating underfitting. If a test is unsuccessful, the next steps typically involve making 

adjustments and analyzing the errors. For example, if the dataset faces specific difficulties, such as small 

objects or crowded scenes, we analyze what changes can be made to the algorithm to help the model 

improve detection under these conditions. If  the weaknesses are identified, e.g. for the detection of small 

objects, we could proceed with modifying the model's architecture to help improve its performance. After 

making appropriate changes, the model should be trained, validated, and tested again to check if the 

issues are solved. This cycle continues until the desired performance is achieved (Zhang and Wallace, 

2015). 
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Evaluation metrics  

 

As discussed above, evaluation metrics are utilized to evaluate the performance of a model and they are 

calculated during the algorithm’s validation and testing process (Fig. 3.14 and Fig. 3.15). Key evaluation 

metrics include recall, precision, F1-score, Average Precision (AP), and mean Average Precision (mAP). 

These metrics are derived from the model's classification and detection outcomes, which are identified as 

False Positives (FP), False Negatives (FN), True Positives (TP) and True Negatives (TN)  

 

True positives (TP), False positives (FP), False Negatives (FN), True Negatives (TN) 

True positives (TP) can occur, when the both conditions below are met :  

1) 𝐼𝑜𝑈 ≥ 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, indicating that the predicted bounding box overlaps or matches the ground 

truth bounding box. 

2) The class of the object within the ground truth bounding box is predicted correctly. 

 

False positives (FP) can occur in four distinct cases when: 

1) 𝐼𝑜𝑈 < 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, indicating that the predicted bounding box locates the object incorrectly 

2) 𝐼𝑜𝑈 ≥ 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, but the object is assigned to the wrong class 

3) A predicted bounding box has appeared without a corresponding ground truth bounding box with 

the respective class. 

4) The model generates multiple bounding boxes with with 𝐼𝑜𝑈 ≥ 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. In this case, only 

the bounding box with the highest IoU will be considered a true positive. The remaining bounding 

boxes are classified as false positive.  

 

False negatives (FN) can occur in three distinct cases: 

1) 𝐼𝑜𝑈 ≤ 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. FP and FN outcomes occur when the object is mislocated due to insufficient 

overlap between the predicted and ground truth boxes, leading to an unsuccessful detection. In 

FP case, the predicted bounding box locates the object incorrectly, thus in FN case the ground 

truth box fails to detect the object 

2) 𝐼𝑜𝑈 ≥ 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, but the model is not able to predict the class of the object correctly within 

the ground truth bounding box. This can result in both FP and FN outcomes. Nevertheless, the FP 

occurs because the predicted bounding box misclassifies the object, while the FN represents the 

model's failure to correctly identify the object in the ground truth bounding box 

3) The model fails to detect an object although it is present in an image, because although a ground 

truth box exists, the model does not predict a bounding box for the corresponding object. 

 

Finally, True Negatives (TN) are the scenarios when the model successfully identifies the non-existence of 

an object in the image (Xiong et al., 2024). 

 

Precision 



University of the Aegean Department of Financial and Management Engineering 
 
 

[44] 
 

The precision metric is used to assess the accuracy of a model in identifying objects. It is calculated by 

(Vakili et al., 2020):  

Precision =
TP 

TP + FP 
 (3.4) 

  

An increased precision can be observed, either when the model generates a larger number of accurate 

positive classifications, thereby maximizing the number of true positives, or when the model minimizes 

the occurrence of incorrect positive classifications, thereby reducing the number of false positives (Gad, 

2020) 

 

Recall 

The recall metric measures the ability of a model to accurately locate objects within an image. It is 

calculated by dividing the number of correctly identified objects (true positives) by the total number of 

objects (true positives and false negatives) (Vakili et al., 2020). 

Therefore, recall can be calculated using the formula:  

 

Recall =
TP 

TP + FN 
 

(3.5) 
 

  

A high recall value suggests that the model is able to find most of the objects in the image, reducing the 

risk of missing any. On the other hand, a lower recall value indicates that the model is missing a significant 

number of objects, which can result in inaccurate object detection and lower performance (iguazio, 2022). 

 

F1-score 

Precision and recall evaluate different aspects of a model's performance. The F1-score is proportional to 

the harmonic mean of precision and recall.  It is calculated by the formula:  

F1 − score = 2 ∗
Precision ∗ Recall 

Precision + Recall 
 (3.6) 

 

The value of F1-score ranges from 0 to 1 (0%-100%) and represents the balance between precision and 

recall, reflecting the model’s overall performance (Vakili et al., 2020).  

 

Average Precision (AP) 

Average Precision (AP) is a metric that calculates the mean precision across the range of recall values 

generated by the model when applied to multiple images. In other words, AP measures the overall 

precision performance of the model across different levels of recall. It provides a single value that 

summarizes the model's ability to accurately identify true positives while minimizing the number of false 

positives across the range of recall values observed in the dataset. 
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Average Precision (AP) is calculated as the mean precision value across the entire range of recall values 

generated by the model. (Anwar, 2022).  

Mathematically, it is evaluated by the formula: 

𝐴𝑃𝑖 = ∫ 𝑝(𝑟)𝑑𝑟
1

𝑟=0

 

 

(3.7) 

where, 

 𝐴𝑃𝑖: represents the Average Precision calculated for each class 𝑖 

 𝑝(𝑟): represents the precision-recall curve across multiple images 

 𝑟: represents the recall values ranging from 0 to 1. 

 

Mean Average Precision (mAP) 

The mean Average Precision (mAP) metric is a measure that summarizes the Average Precision (AP) of 

each individual class and calculates the average across all classes. Mathematically, mAP is represented as 

(Henderson and Ferrari, 2017): 

𝑚𝐴𝑃 =
1

𝑁
∑𝐴𝑃𝑖

𝑁

𝑖=1

 (3.8) 

where, 

 𝐴𝑃𝑖: represents the Average Precision calculated for each class 

 𝑁: represents the total number of classes 

3.4: Operation of YOLOv3 

Post successful training, validation and testing, the model may be used for object detection, using the 

weights computed during the training phase.  During operation, a raw input image (non-annotated) is fed 

to the trained model for object detection.  

The model outputs: 

 The spatial information of a bounding box that encapsulated each detected object in the image 

represented as (𝑏𝑥, 𝑏𝑦, 𝑏ℎ, 𝑏𝑤),   where 𝑏𝑥, and 𝑏𝑦 are the center coordinates of the bounding 

box, and 𝑏ℎ and 𝑏𝑤 are its height and width, respectively. 

 The objectness score, which represents the model’s confidence that a bounding box contains an 

object. This score ranges from 0 to 1, where a higher value indicates a greater possibility that the 

bounding box contains an actual object 

 The class confidence probabilities 𝑝(𝑐) for each object in the image, where 𝑐 = 1,2,3,… 𝑐 and 

represents the object classes. These probabilities indicate how likely it is that the detected object 

belongs to each class (Tepteris et al., 2023). 
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Figure 3.16 Operation process of YOLOv3 (Tepteris et al., 2023) 

Figure 3.16 overviews model operation. In step one, the trained weights are loaded into the YOLOv3 

network. These weights are the result of training the network and are responsible for detecting objects in 

real-time.  In step two a raw input image, which can be a live video stream or a single image, is fed into 

the YOLOv3 network. Following, in step three, the input image is processed by the backbone of the YOLOv3 

network to extract relevant features, which are essential for identifying objects in the image. In step four, 

during multiscale detection, the model identifies objects of different sizes by predicting bounding boxes 

at three different scales within the feature pyramid. Following in step five, the model refines these 

predictions, placing bounding boxes around the detected objects. Finally, in step six, the operation process 

is completed, providing the final outputs (bounding boxes, objectness score and class probabilities). 

 

Figure 3.17 illustrates the output after the YOLOv3 algorithm has run. The output image showcases the 

detected objects with their corresponding bounding boxes, allowing for visual identification and 

localization of the objects within the image. 

 

Figure 3.17 Image after the applying of YOLOv3 object detection algorithm (Cruz Martinez, 2021) 
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Chapter 4 Data preparation and parameter selection for training the 

YOLOv3 algorithm 

In this chapter, we will focus on the process followed for preparing the  dataset and selecting the right 

hyperparameters for training the YOLOv3 algorithm. 

First, we focus on the training data.  We describe how we collected the images from existing UAV datasets, 

which parameters we considered for the dataset selection and which datasets are finally chosen. The steps 

required to adjust the annotations to suit the characteristics of our UAV datasets, including adjustments 

such as aligning label names and numbering to ensure consistency across datasets, are presented. 

Subsequently, we describe the experimental setup, covering both the hardware and software used. 

Secondly, we present the pre-determined hyperparameters of YOLOv3, as well as  the hyperparameters 

that are  associated with YOLOv3’s architecture and functionality. After analyzing these hyperparameters, 

we describe the ones selected for our research and what modifications we made to the initial algorithm 

to include the new values of these hyperparameters. 

4.1 Data collection and annotation 

In this Section, we describe the process followed to identify the appropriate data for our research. We 

discuss the characteristics of each chosen dataset and analyze the modifications made to the final 

consolidated dataset to meet the requirements of our study. Additionally, we describe the training, 

validation, and testing subsets, as well as the presence of objects within each predefined class for our 

research.  

4.1.1 Data collection 

The success of training object detection and recognition models relies on the quantity and quality of data 

utilized in the process. Utilizing extensive and diverse datasets is essential to reduce errors, overfitting, 

and limit bias. Various resources, including cloud repositories, web platforms, resources from universities 

and research institutions provide annotated image collections for computer vision tasks. While some 

datasets are freely available, others may require payment or subscription for access.  

 

For this thesis, the predetermined classes for training the object detection model are four. More 

specifically, the classes are: 

 Person 

 Car 

 Long vehicle that refers to vehicles such as buses, trucks  

 Bike 

In this thesis, the selection of datasets that already contain the predetermined classes was a prerequisite 

as the image annotation is a time-consuming process that needs specific tools. The image datasets were 

sourced from open-source datasets containing images captured by drones. In the selection of the datasets, 

two parameters were kept in mind, the quantity and the quality of captured images. It is essential to have 
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a large dataset, capturing images from various perspectives. The qualitative characteristics are also 

important. The dataset should consist of multicolored images, with numerous objects. with variations in 

lighting conditions. Furthermore, images should be free from distortions such blurs, ensuring clear object 

detection.  

There are many publicly available open labelled datasets, including ImageNet (Yang et al., 2022), Common 

Objects in Context (COCO) (Lin et al., 2014) etc. Each one of them is a set of digital pictures that developers 

use to train and validate the performance of their algorithms.  

Considering the above requirements and characteristics, the datasets selected for YOLOv3 algorithm 

training, in our research, are analyzed in detail below: 

 

 The “UA Vehicle Detection Dataset” is downloaded from GitHub and is a dataset specifically 

selected for UAV (Unmanned Aerial Vehicle) vehicle detection tasks. It contains a collection of 

images captured by UAVs, focusing on scenes where vehicles are present. The dataset is annotated 

to include bounding boxes around vehicles, enabling the training and evaluation of vehicle 

detection algorithms. Additionally, it includes various environmental conditions, lighting 

scenarios, and vehicle types to ensure robustness of the trained models. Specifically, it includes 

1,470 images that contain vehicles such as cars, long vehicles, and bikes, but any of the dataset 

images contain the object person (which is one of the classes of our study). The size of each image 

in this dataset is 224×224 pixels (Wang, 2024). 

 The "Stanford Drone Dataset" is an extensive collection of aerial videos captured by a UAV 

platform. Hosted on the Stanford Computer Vision and Geometry Lab (CVGL) website, this dataset 

offers a diverse range of scenes and scenarios, including urban environments, campus settings, 

and outdoor landscapes. Furthermore, the dataset provides high-resolution images captured from 

different viewpoints, enabling the exploration of scale and perspective variations. The Stanford 

drone dataset contains images categorized into six different classes: pedestrians, bikers, skaters, 

carts, cars, and buses. It includes 6.748 annotated images, displaying diverse image resolutions 

ranging from 1322x1079 to 1640x1948 pixels. Within these UAV-captured images, all four classes, 

people, cars, long vehicles, and bikes, are represented. The numerous other labeled objects are 

excluded intentionally for the purposes of our study (Robicquet et al., 2016). 

 "VisDrone2019DET" dataset contains a variety of high-resolution images captured by unmanned 

aerial vehicles (UAVs). It consists of images from various urban and natural environments, 

including the objects of interest that serve our study. Due to the great number of images that 

contain,  across different classes and environmental conditions, this dataset provides a solid basis 

for training, validation, and testing purposes. It contains a total of 10,209 annotated images, which 

are obtained from urban and countryside landscapes, showcasing diverse resolutions ranging from 

480x360 to 2,000x1,500 pixels. Additionally, the images within the training and validation sets 

contain ten distinct classes: pedestrian, person, bicycle, car, van, truck, tricycle, bus, and 

motorcycle. For the purpose of this thesis only the four predetermined classes are used and, 

therefore, the rest of them are excluded. More specifically, the class person which integrates both 

pedestrian and people, the class bike which contains the bicycle and tricycle categories, the class 
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long-vehicle which contains the categories van, truck and bus and the class car which remains the 

same (Zhu et al., 2021). 

4.1.2 Annotation and consolidation 

Before combining the three datasets, we standardized their annotations to be compatible with the YOLO 

model. This involves aligning label names and numbering to establish similarity across datasets. 

Specifically, the objective is to categorize annotations into four distinct classes: "person", "car", "long 

vehicle", and "bike", corresponding to classes zero to three in YOLO format. More information on image 

annotation in deep learning may be found in (Khan, 2023). 

Table 4.1 The number of training, validation and testing objects in the consolidated dataset 

 

 

Once datasets are standardized, the datasets are merged to a single  set that is split into training, validation 

and testing subsets. The training one comprises 80% of the initial dataset, the validation one 10%, used to 

evaluate model performance during training, and the testing one also 10%. Each set includes annotations 

for the specified classes.  

The numbers of objects and images in each dataset and their distribution into training, validation and 

testing are presented in Table 4.1 and illustrated in Figure 4.1, respectively. 

Number of Objects  

 UA Vehicle 
Detection 
Dataset 

Stanford 
Dataset 

VisDrone2019DET TOTAL NUMBER OF 

OBJECTS IN EACH 

CLASS 

Number 
of total 
objects 

26,218 203,722 372,300  

Number 
of persons 

0 92,880 120,365 ,
 

Number 
of Cars 

20,647 26,332 158,914 ,
 

Number 
of Long 
Vehicles 

5,330 910 46,721 ,
 

Number 
of Bikes 

241 83,600 46,300 ,
 

Total number of objects in all the selected datasets  
,
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Figure 4.1 The number of training, validation and testing images included in the consolidated dataset. 

4.2 Experimental set up 

Training and evaluating the YOLOv3 model require significant computational resources and a high-

performance system. The hardware configuration (Figure 4.2) and software environment (Figure 4.3) are 

discussed below. 

 

Figure 4.2 Hardware Configuration of the system 
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The CPU that is used for our study has 12 cores.  The GPU is RTX 3090 and is able to handle deep learning 

and object detection tasks.  In terms of Graphics Card Memory  (GCM), we used 24GB that may handle 

images and complex textures (Mu et al., 2011).  The RAM of the computing system is 32GB, and the system 

is equipped with 512 GB SSD and 4TB HDD. 

 

 

Figure 4.3 Software components of the system 

The OpenCV toolkit is an open-source computer vision library known for its extensive range of features, 

appropriate for image and video processing. This toolkit plays a crucial role in object detection applications 

and is also integrated into the YOLOv3 model (Culjak et al., 2012).  

The CUDA (Compute Unified Device Architecture) and cuDNN drivers were installed in order to optimize 

the utilization of the RTX 3090 graphics card. CUDA is a platform with computing capabilities and API 

developed by NVIDIA. This platform allows developers to utilize GPUs for general-purpose computing 

tasks, accelerating  computation-heavy processes, such as deep learning, leading to faster execution and 

performance (Kirk, 2007) . CuDNN (CUDA Deep Neural Network) is a GPU library developed by NVIDIA as 

well that offers highly optimized implementations of deep learning operations, such as convolutions, 

pooling, normalization, and activation functions. It is designed to work along with CUDA, enabling faster 

training by leveraging the processing power of NVIDIA GPUs (Chetlur et al., 2014). 

4.3 YOLOv3 hyperparameters 

Hyperparameters play a critical role in training any neural network model, since they can significantly 

affect the performance and accuracy of the model. YOLOv3 provides its users  the capability of adjusting 

various model parameters to improve training and, ultimately, model performance. Generally, the choice 

of hyperparameters should be based on the available computational resources, the requirements of the 

specific study/task, and the performance of the model on the validation data.  
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4.3.1 Hyperparameters determined by the characteristics of the dataset 

In YOLOv3, pre-trained convolutional weights are used from the model initially trained on the ImageNet 

dataset. This method, known as transfer learning, accelerates the training process by leveraging general 

features like edges and textures learned during ImageNet training. During fine-tuning on a new dataset, 

the Darknet backbone's pre-trained weights are adjusted, while the YOLO detection layers are fine-tuned 

to adapt to the specific task. The detection layers are not trained from scratch, but they are updated based 

on the pre-trained weights.   

During fine-tuning on a new dataset, the Darknet backbone's pre-trained weights are typically adjusted or 

optionally frozen, while the YOLO detection layers are fine-tuned to adapt to the specific task. The 

detection layers are not trained from scratch but are updated based on the pre-trained weights. 

To adjust the model to the new data, certain configuration options are set in the YOLOv3 ".cfg" file. The 

".cfg” file is used to define the the architecture and hyperparameters of the neural network. The 

adjustments in the “cfg” file for our study, are shown in the following table and analyzed below (Redmon 

and Farhadi, 2018). 

 

T
a
b
l
e

 Hyperparameters. 

Hyperparameter Default Value Updated Value 

Backbone Network Darknet-53 Resnet-152 Darknet-53 Resnet-152 

Classes 80 1 4 4 

Max Batches 500,200 10,000 8,000 8,000 

Filters 255 24 27 36 

Steps 400000, 450000 4000, 6000, 8000, 
9000 

6400, 7200 
 

3200, 4800,  
6400,7200 

 

In this research, specific changes were made to four of the hyperparameters:  

 The maximum number of classes  

 The maximum number of batches 

 The filters that are before the convolutional level of each detection head 

 The number of steps 

Classes 

The number of classes has been reduced from 80 to 4 for the YOLOv3 with Darknet-53 backbone network 

(Table 4.2) and increased from 1 to 4 for the YOLOv3 with Resnet-152 backbone network (Table 4.2 – see 

also class adjustment in Figure 4.4. The class numbering is as follows: 



University of the Aegean Department of Financial and Management Engineering 
 
 

[53] 
 

 Person indicated as class 0 

 Car indicated as class 1 

 Long vehicle indicated as class 3 

 Bike indicated as class 4 

 

Figure 4.4 Illustration of "classes" adjustment in the configuration file 

 

Max Batches 

The number of batches has been changed from 500,200 to 8,000 for the Darknet-53 network and from 

10,000 to 8,000 for the Resnet-152 backbone network (Figure 4.5) The total number of iterations 

represents the number of times the model processes a batch of data during training. The maximum 

number of batches refers to the number of batches per epoch. The number of maximum batches is 

provided by (Sujee et al., 2020): 

 

𝑀𝑎𝑥_𝑏𝑎𝑡𝑐ℎ𝑒𝑠 = 2000 × 𝑛 (4.1) 

where,  

 n is the number of classes   

 2000 is a proposed value from YOLOv3 (Alexey, 2024) 

Given that in this case we have four classes, the number of max batches was set to 8,000 in the 

configuration file. Note that in the original YOLOv3 model  500,200 max batches is used, although the 

COCO dataset, which was originally used for training, includes 80 classes. Based on Equation 4.1, max 

batches should be 160,000 (2000 × 80) instead of 500,200. This happens because our UAV dataset has 

fewer classes and images in the training set rather than COCO dataset which has approximately 118,000 

training images. If we had followed the COCO dataset approach, an increase in the number of iterations 

would have possibly led to overfitting due to the corresponding increase in the number of epochs (Ghosh 

et al., 2021). This approach would have slowed down the training process of our study. 

 Therefore, to achieve a better performance we followed Equation 4.1, which might not be the ideal for 

large datasets like COCO. The same approach was followed for Resnet-152. 

An epoch represents one complete pass through the entire training dataset by the model. After each 

epoch, the model updates its weights based on the errors it made during that pass. Since a single pass 
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through the data is usually not enough for the model to learn effectively, multiple epochs are typically 

required to achieve optimal performance.  

For estimating the number of epochs, we need to firstly calculate the number of iterations per epoch from 

the formula below: 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑒𝑝𝑜𝑐ℎ =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡

𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒

=  
13,041

64
= 203,77 

 
 

(4.2) 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑝𝑜𝑐ℎ𝑠 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓max 𝑏𝑎𝑡𝑐ℎ𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑒𝑝𝑜𝑐ℎ
=  

8,000

203,77
= 39,3 ≈ 40 

(4.3) 

 

where, 

batch size refers to the number of training examples processed by the model in one iteration before 

updating its internal parameters (weights).  

 

 

Figure 4.5 Illustration of "max_batches" in the configuration file 

Filters 

The filters are placed in front of the convolutional layer, in each detection head, and are used for feature 

extraction/detection to produce the characteristics of the anchor boxes. They are numeric matrices the 
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dimensions of which are set during initialization and cannot be modified afterwards. Every filter consists 

of weights/numeric values that are adapted during training.  

In Darknet-53, we reduced this number from 255 to 27 (Figure 4.6). At the same time the number of filters 

in Resnet-152 was increased from 24 to 36 (Table 4.2) The number of filters is computed by the equation 

below (Tepteris et al., 2023):  

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = (𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠 + 5) × 𝑛𝑎𝑛𝑐ℎ𝑜𝑟 𝑏𝑜𝑥𝑒𝑠 (4.4) 

where,  

 𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠 is the number of classes 

 𝑛𝑎𝑛𝑐ℎ𝑜𝑟 𝑏𝑜𝑥𝑒𝑠 represents the number of anchor boxes in YOLOv3 

 5 represents the 4 characteristics of the bounding box plus an objectness score 

 

Darknet-53 utilizes 3 anchor boxes in each head, therefore the number of filters was set to 27 (Figure 4.6). 

In the configuration files that Resnet-152 was selected as a backbone network, the number of filters takes 

the value of 36 because it utilizes 4 anchor boxes in each head. 

 

 

Figure 4.6 Illustration of “filters” in the configuration file 

Steps 

The number of steps specifies for how many steps the learning rate will remain constant. This parameter 

is suggested to be 80% and 90% of the maximum value of the batch. In our case the maximum number of 

batches is 8000. Therefore, this means that the steps will take the values of (Sujee et al., 2020) = see Figure 

4.7. 

0.8 × max𝑏𝑎𝑡𝑐ℎ𝑒𝑠 = 0.8 × 8000 = 6400 
 

(4.5) 

0.9 × max𝑏𝑎𝑡𝑐ℎ𝑒𝑠 = 0.9 × 8000 = 7200 (4.6) 
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Figure 4.7 Illustration of “steps” in the configuration file 

The same process is also followed in order to calculate the accurate number of steps for the Resnet-152 

backbone. In summary, these parameter adjustments were made to improve the performance and 

efficiency of the YOLOv3 model for the specific object detection task. 

4.3.2 Hyperparameters associated with the YOLOv3 architecture and functionality 

Hyperparameters are known for their significant role in shaping the model's performance. In this Section, 

we overview of YOLOv3 hyperparameters related to both the backbone network and the YOLO heads.  

Table 4.3 and Table 4.4 illustrate the hyperparameters of the backbone network. They briefly describe 

their functionality and explain the impact on the YOLOv3 algorithm when their values are altered. 

Table 4.3 Hyperparameters in the backbone network related to architecture 

Hyperparameter Functionality Impact 

Backbone Depth Number of layers in the 
backbone network for 
feature extraction (Redmon 
and Farhadi, 2018). 

Increasing depth improves feature 
extraction but raises computational cost 
and risk of overfitting. Decreasing depth 
reduces feature complexity and detection 
capability 

Convolution Kernel 
Size 

Size of the filter applied to 
the input data (Öztürk et 
al., 2018). 

Changing size affects receptive field and 
feature extraction but may not yield 
significant improvements and could 
increase computational demands 

Convolutional Stride Defines how much the filter 
moves across the input 
image (Riad et al., 2022). 

Default strides balance resolution and 
efficiency. Changing strides affects feature 
map resolution which can impact both the 
model's accuracy and processing speed. 
Larger strides reduce the resolution but 
increase efficiency, while smaller strides are 
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Table 4.4 Hyperparameters in the backbone network related to training 

 

Table 4.5 and Table 4.6 overview the hyperparameters of the YOLO heads. They briefly describe their 

functionality and explains the impact on the YOLOv3 algorithm when their values are altered. 

Table 4.5 Hyperparameters in the YOLO heads related to architecture 

able to capture more details but require 
more computational resources. 

Dilated Convolution Introduces gaps in kernels 
to cover larger receptive 
fields (Zhang et al., 2017). 

YOLOv3 uses standard convolutions. Adding 
dilated convolutions might capture more 
context and improve performance 

Hyperparameter Functionality Impact of Changing Values 

Input Size Dimensions of the input 
images fed into the 
network (Kamal, 2021). 

Affects detection accuracy and 
computational cost. Larger sizes improve 
detail but increase processing time; smaller 
sizes reduce detail but speed up processing 

Input Normalization Scaling of pixel values to a 
specific range (e.g., [0,1]) 
(Aksu et al., 2019). 

Ensures consistency and stability during 
training. Improper normalization can affect 
model’s performance 

Data Augmentation Techniques to artificially 
increase training data (e.g., 
flips, rotations) (van Dyk 
and Meng, 2001). 

Enhances model robustness and 
generalization 

Image Distortion Altering image properties 
(e.g., blurring) (Buczkowski 
and Stasiński, 2019). 

Can improve model robustness by 
simulating real-world variations. Excessive 
distortion can affect the quality of training 
data 

Hyperparameter Functionality Impact 

Number of Layers Number of layers in the YOLO 
detection heads responsible 
for predicting bounding boxes 
and class probabilities 
(Redmon and Farhadi, 2018). 

Increasing the number of 
layers can improve feature 
representation but may add 
complexity and risk of 
overfitting. YOLOv3 uses a fixed 
number of layers for a 
balanced approach 

Dropout Regularization technique 
where a subset of layers is 
randomly dropped (or 
disabled) during training to 
prevent overfitting (Alexey, 
2024). 

Adding dropout can help 
prevent overfitting but may 
reduce model capacity if set 
too high.  



University of the Aegean Department of Financial and Management Engineering 
 
 

[58] 
 

 

Table 4.6 Hyperparameters in the YOLO heads related to architecture related to training 

Spatial Pyramid Pooling (SPP) Technique used to handle 
varying object scales and 
improve feature extraction by 
pooling over different spatial 
resolutions (He et al., 2015). 

Can enhance the model’s 
ability to detect objects at 
multiple scales, but YOLOv3 
does not use SPP in its default 
architecture. 

Path Aggregation Network 
(PAN) 

Enhances feature 
representation by combining 
features from different layers 
(Liu et al., 2018). 

Improves feature combination 
and detection performance, 
but YOLOv3 does not include 
PAN by default. 

Multi-scale Output Predicts bounding boxes at 
multiple scales to detect 
objects of various sizes (Cai et 
al., 2016) 

Helps in detecting objects at 
different scales but increases 
computational complexity. 
YOLOv3 uses multi-scale 
outputs by default for better 
detection 

Hyperparameter Functionality Impact of Changing Values 

Batch Size Number of images processed 
in one training iteration 
(Redmon et al., 2016). 

Larger batch sizes improve 
training stability and use GPU 
resources more effectively but 
require more memory. Smaller 
batch sizes may reduce 
memory usage but could 
increase training time. 

Learning Rate  Learning rate controls the step 
size during optimization (Igiri et 
al., 2021). 

Higher learning rates can speed 
up training but may lead to 
instability. Lower rates can 
offer more stability but may 
lead to local minimums 

Subdivision   The process of dividing a 
batch of training data into 
smaller subsets to manage 
memory during training. The 
model's weights are updated 
after all subsets of the batch 
have been processed (Liu et al., 
2020). 

Subdividing the batch allows 
training on larger effective 
batch sizes with less GPU 
memory. Higher subdivisions 
reduce memory usage but may 
slow down training. 

Anchor Boxes Predefined bounding box sizes 
used to predict object locations 
(Kamal, 2021) 

Properly tuned anchor boxes 
improve detection 
performance. Not well defined 
anchors can reduce detection 
accuracy 

IoU Threshold Intersection over Union 
threshold for considering a 

Higher thresholds increase 
precision but might miss some 
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predicted box as a positive 
detection (Kamal, 2021) 

detections. Lower thresholds 
increase recall but may include 
false positives 

Confidence Threshold Minimum confidence score 
required for a prediction to be 
considered (Wenkel et al., 
2021) 

Higher thresholds reduce false 
positives but might miss some 
true positives. Lower 
thresholds may increase false 
positives 

NMS Threshold Threshold for Non-Maximum 
Suppression to filter out 
overlapping bounding boxes 
(Bodla et al., 2017). 

A higher NMS threshold results 
in fewer boxes being 
suppressed, which might 
increase overlap. A lower 
threshold suppresses more 
boxes, reducing overlap 

Activation Function Function applied to the output 
of neurons (e.g., ReLU, Leaky 
ReLU) (Sharma et al., 2020). 

Different activation functions 
can impact the training 
dynamics and final 
performance 

Loss Function Function used to measure the 
difference between predicted 
and ground truth values 
(Kamal, 2021) 

YOLOv3 uses a combination of 
localization, confidence, and 
classification losses. Adjusting 
this can affect how well the 
model learns 

Freeze Layers Layers that are not updated 
during training (frozen layers) 
(Brock et al., 2017). 

Freezing layers can help in 
transfer learning or stabilize 
training. Unfreezing layers 
allows the model to adapt 
more fully to new data 

Focal Loss Loss function that reduces the 
relative loss for well-classified 
examples and puts more focus 
on hard, misclassified examples 
(Mukhoti et al., 2020). 

Improves detection of small or 
difficult objects by addressing 
class imbalance. 

Input Color Space Color space of the input 
images (e.g., RGB, BGR) (Díaz-
Cel et al., 2019). 

Consistent color space helps in 
accurate feature extraction 

Transfer Learning Using pre-trained weights to 
initialize the model (Ribani and 
Marengoni, 2019). 

Can speed up feature merging 
and improve performance. 
Without transfer learning, 
training from scratch may be 
required 

Batch Normalization Normalization technique to 
stabilize and accelerate training 
(Ioffe and Szegedy, 2015b). 

Helps in faster feature 
inheritance and improves 
model stability. YOLOv3 
includes batch normalization in 
its default architecture 
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4.3.3 Hyperparameters selection for our research 

After investigation on the YOLOv3 hyperparameters, we ended up on selecting the six  hyperparameters 

presented in Table 4.7: image resolution, anchor dimensions, backbone network, data augmentation, 

dilated convolution, and box loss.  The Table also indicates the hyperparameter levels to be used on the 

experiments. 

Table 4.7 Default and updated values of hyperparameters selected for our research 

Hyperparameter Name Default Value Updated Value 1 Updated Value 2 

Image Resolution 416 x 416 352 x 352 832 x 832 

Anchor Dimensions Default  New  

Backbone Network Darknet-53 ResNet-152  

Data Augmentation Default  Mosaic  

Dilated Convolution Yes No  

Box Loss IoU DioU  

 

More specifically: 

Image Resolution 

Image resolution refers to the dimensions (width x height) of the input images provided to the YOLOv3 

algorithm during training. It affects the level of detail available for object detection and influences 

computational requirements. YOLOv3 is trained with an image resolution of 416x416. As shown in Table 

4.7 we reduced the image resolution to 352x352 pixels in order to decrease the training time needed. We 

also used the default image input size as well as an increased level to 832x832 pixels (see also Fig. 4.8). 

This higher resolution helps the model to collect more information as the input progresses through the 

network, but it also increases training time.  

 

Group Normalization Normalization technique 
applied across groups of 
channels (Wu and He, 2018) 

Alternative to batch 
normalization, useful for small 
batch sizes. YOLOv3 uses batch 
normalization instead of group 
normalization 
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Image Resolution 352x352 Image Resolution 416x416 Image Resolution 832x832 

   
Figure 4.8 Illustration of the three different image resolution options in the configuration file 

 

Backbone Network 

Backbone Network, as mentioned in chapter 3, serves as the feature extraction component of the 

algorithm, responsible for processing input images and extracting hierarchical features that facilitate 

object detection. The backbone network architecture used in YOLOv3 is Darknet-53, which is also used in  

experiments. We also experimented with ResNet-152. Resnet-152 consists of 152 layers instead of the 53 

layers of Darknet-53. 

Anchor Dimensions 

Anchor dimensions define the default bounding boxes that are used to predict object locations and sizes. 

Once the anchor dimensions are determined, they are used during training to predict bounding boxes for 

detected objects. YOLOv3 predicts bounding box coordinates relative to these anchor boxes, along with 

confidence scores for object presence and class probabilities, as it mentioned in Chapter 3. The default 

anchor dimensions that are used in the yolov3.cfg file with Darknet-53 as a backbone layer are:  

[ 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326 ] as illustrated in Figure 4.9. 

 

Figure 4.9 Illustration of the default anchor dimensions for the YOLO head responsible for detecting small objects 

Each detection head uses a different set of boxes to predict objects, selected by the "masks" parameter in 

each head. The "masks" parameter is an index containing three values that specify the anchor boxes used 

in each grid cell. The green box in Figure 4.9 illustrates a small detection head configured with the "masks" 

index [0, 1, 2]. Specifically, index 0 corresponds to anchor box dimensions of 10x13, index 1 to 16x30, and 

index 2 to 33x23. The medium detection head is configured with the “mask” index [4, 5, 6] (Figure 4.10) 

corresponding to anchor box dimensions 30x61, 62x45, 59x119 respectively. Finally, a large detection head 
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is configured with the “mask” index [6, 7, 8] (Figure 4.11) corresponding to anchor dimensions 116x90, 

156x198, 373x326 respectively. 

 

Figure 4.10 Illustration of the default anchor dimensions for the YOLO head responsible for detecting medium objects 

 

 

Figure 4.11 Illustration of the default anchor dimensions for the YOLO head responsible for detecting large objects 

Even though anchor boxes are fine-tuned during training to fit objects better, it is important to start with 

good initial anchor boxes. This helps them get refined more effectively and quickly during training. In 

YOLOv3, the original anchor boxes were created using the k-means algorithm on the COCO dataset. This 

algorithm groups objects by their size and shape, and finds the best anchor box sizes (Oti et al., 2021).  We 

used the same algorithm for our UAV dataset and applied by using the command in Table 4.8. The function 

calc_anchors (Table 4.8) analyzes the dataset's bounding boxes and clusters them to generate optimized 

anchor boxes by specifying the four parameters below: 

calc_anchors cfg/"NAME_OF_THE_DATA_FILE".data, which specifies the configuration file that contains 

information about the dataset (e.g., the path to the images and labels). 

num_of_clusters "NUMBER_OF_CLUSTERS", which defines the number of clusters (anchor boxes) to 

calculate. These clusters are determined using a k-means clustering to optimize the anchor boxes for the 

dataset. 

-width "NUMBER_OF_IMAGE_WIDTH" and -height "NUMBER_OF_IMAGE_HEIGHT" specify the width and 

height of the images for which the anchor boxes will be optimized. This helps improve the detection 

accuracy of the YOLO model by better matching the size and shape of the objects in the dataset. 

 

 

 

Table 4.8 Representation of the use of the k-means algorithm 



University of the Aegean Department of Financial and Management Engineering 
 
 

[63] 
 

Command ./darknet detector calc_anchors cfg/"NAME_OF_THE_DATA_FILE".data -num_of_clusters 
"NUMBER_OF_CLUSTERS" -width "NUMBER_OF_IMAGE_WIDTH" -height "NUMBER_OF_IMAGE_HEIGHT" 

Example ./darknet detector calc_anchors cfg/UAV_65.data -num_of_clusters 9 -width 832 -height 832 

 

We applied k-means clustering to calculate nine new optimal anchor box sizes (three aspect ratios for each 

head) based on our UAV dataset. This algorithm was used to find the best-fitting anchor box sizes for 

objects in our images at specific resolutions. As shown in Tables 4.9 and 4.10, we adjusted the “anchors” 

hyper-parameter across all the detection heads in our study to match the image resolution derived. 

Different anchor box sizes were applied for images with resolutions of 352x352, 416x416 and 832x832 

pixels, respectively on both backbone networks, Darknet-53 (Table 4.9) and Resnet-152 (Table 4.10). 

Therefore, we conducted the k-means clustering algorithm three times to identify the 9 optimal anchor 

boxes in the Darknet-53 backbone case and the 12 optimal anchor boxes in the ResNet-152 backbone case 

(Wu et al., 2019). Note that Resnet-152 has 12 anchor boxes in total, as it is a deeper network utilizing 

more layers (Alexey, 2024) 

 

Figure 4.12 Illustration of the updated anchor dimensions in the configuration file 

The updated values for anchor boxes in Darknet-53 backbone network, based on the three different image 

resolutions, are illustrated in the table below. In Table 4.9, the first three pairs ([10,13,  16,30,  33,23, …]) 

correspond to the three anchor boxes of the YOLO head that detects small objects. The next three pairs 

([…, 30,61,  62,45,  59,119, …]) are referring to the three anchor boxes of the YOLO heads responsible for 

detecting medium objects and the last three pairs ([…, 116,90,  156,198,  373,326, …]) for the YOLO heads 

detecting large objects. The same approach is followed for the rest of the image resolutions selected for 

our study. 

Table 4.9 Anchor boxes for Darknet-53 

Image Resolution Anchor Boxes 

YOLOv3 with Daknet-53 as backbone (trained on COCO dataset) 

416x416 
[ 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  
156,198,  373,326 ] 

YOLOv3 with Daknet-53 as backbone (trained on UAV datasets) 

352X352 [2,5,   7,7,   5,13,  10,12,   9,21,  17,16,  17,31,  30,30,  44,61] 

416X416 
[7, 10,  11, 11,   8, 18,  12, 17,  18, 15,  15, 24,  25, 21,  23, 
34,  40, 59] 

832X832 
[13, 22,  21, 25,  17, 39,  33, 24,  27, 36,  32, 52,  45, 39,  48, 
69,  82,121] 
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The updated values for anchor boxes in Resnet-152 backbone network, based on the three different 

image resolutions, are illustrated in the table below. In Resnet-152 backbone network we have four 

anchor boxes. Therefore, in Table 4.10, the first four pairs ([8,8,   10,13,  16,30,  33,23, …]) are 

responsible for the four anchor boxes of the yolo head that detects small objects. The next four pairs ([…, 

32,32,  30,61,  62,45,  59,119,   …]) are referring to the four anchor boxes of the yolo heads responsible 

for detecting medium objects and the last four pairs ([…, 80,80,  116,90,  156,198,  373,326, …]) for the 

yolo heads detecting large objects. The same approach is followed for the rest of the image resolutions 

selected for our study. 

Table 4.10 Anchor boxes for Resnet-152 

Image Resolution Anchor Boxes 

YOLOv3 with ResNet-152 as backbone (trained on COCO dataset) 

416x416 
[8,8,   10,13,  16,30,  33,23,  32,32,  30,61,  62,45,  59,119,   
80,80,  116,90,  156,198,  373,326] 

YOLOv3 with ResNet-152 as backbone (trained on UAV datasets) 

352X352 
[2,4,   3,9,   7,7,   6,13,  10,12,   8,22,  16,12,  14,19,  25,20,  
18,33,  34,39,  50,71] 

416X416 
[7, 10,  11, 11,   8, 18,  12, 17,  18, 15,  15, 24,  25, 21,  23, 
35,  42, 59] 

832X832 
[13, 22,  20, 24,  17, 39,  32, 23,  26, 33,  31, 49,  44, 38,  47, 
68,  80,118] 

 

Data Augmentation 

Data Augmentation artificially increases the diversity of training data by applying various transformations 

to the original images. Techniques such as random cropping, flipping, and rotation are incorporated in the 

data augmentation hyperparameter. YOLOv3 does not explicitly specify a standard set of data 

augmentation techniques.  

To differentiate our experiments and investigate how efficiently the YOLOv3 algorithm will work after the 

introduction of data augmentation, we added the mosaic augmentation. Mosaic augmentation is a 

method that combines multiple images to form a single mosaic image (Figure 4.13). This mosaic image is 

then exposed to random transformations like flipping, scaling, and translation. This creates a synthetic 

training sample that contains information from multiple original images, effectively increasing the 

variability and complexity of the training data (Li et al., 2023). 
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Figure 4.13 Illustration of mosaic augmentation (Alexey, 2020) 

The mosaic augmentation process in YOLOv3 typically follows these steps  (Bochkovskiy et al., 2020): 

1. Source Image Selection: Four images are randomly chosen from the training dataset 

2. Mosaic Image Creation: The selected images are organized into a mosaic layout, with each image 

filling one quadrant 

3. Random Transformations: Various transformations, including flipping and scaling are applied 

randomly to the entire mosaic image 

4. Bounding Box Adjustments: Bounding box coordinates and object labels within the mosaic image 

are modified to align with their new positions and orientations 

5. Training Phase: The augmented mosaic image is utilized as input during training to refine the 

parameters of the YOLOv3 model.  

The modification applied to the configuration (cfg) files includes the introduction of a parameter denoted 

as "mosaic," set to a value of 1 (mosaic=1) (Figure 4.14). This parameter is added within the section that 

specifies how the training data is augmented during each epoch of training (Shorten and Khoshgoftaar, 

2019). 
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Figure 4.14 Illustration of “mosaic” in the configuration file 

 

Dilated Convolution 

Dilated convolution is a technique that involves modifying the convolutional kernel by inserting zeros 

between its weights. Normally, a convolutional kernel is a small grid of numbers (weights) that processes 

over the image to detect features, such as patterns, edges, textures etc. In dilated convolutions, zeros are 

inserted between these weights, increasing the distance between the points the kernel captures from the 

image (see Figure 4.15). This increases the receptive field of each neuron, meaning each neuron can "see" 

a larger area of the input image. As a result, the neuron can gather more information without increasing 

the number of parameters or computational resources. YOLOv3 does not use dilated convolutions by 

default. However, applying different dilation rates in various layers can help the network capture features 

at multiple scales (Gashi et al., 2017). 

The default setting in YOLOv3 configuration file is dilation=1, even though it’s not written in the 

configuration file. A dilation rate of 1 means that the convolutional kernel operates normally without any 

added zeros, functioning just like a standard convolution (Zhang et al., 2017). 
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Figure 4.15 Dilated convolution filters with dilation rates D = 1, D = 2, D = 3 respectively (Heffels and Vanschoren, 2020) 

For our research, we modified the convolutional layers in the YOLOv3 configuration file to include dilation, 

by setting two different values 2 and 3 in two of the heads, respectively. More specifically: 

 Dilation=2: The model inserts one zero between each weight in the convolutional kernel. This 

doubles the receptive field, meaning the network can "see" more of the image around each point 

it processes. This can be useful for detecting larger objects (Figure 4.15). 

 Dilation=3: The model adds two zeros between each weight, tripling the receptive field. This 

allows the network to capture even more context, which can help in detecting even larger objects 

or understanding more complex scenes (Figure 4.15).  
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Table 4.11 Illustration of ‘dilation’ in the configuration file 

Dilation = 3 Dilation = 2 Dilation = 3 

   
 

Specifically, for the first YOLO head, we set dilation=3 andfor the second YOLO head we used dilation=2. 

For the last YOLO head, we kept the default dilation=1. We did this in the hope that the model detect 

objects of different sizes more effectively. The first YOLO head, with dilation=3, looks at a larger area of 

the image, which is useful for spotting bigger objects or understanding the overall scene. The second YOLO 

head, with dilation=2, focuses on medium-sized features, balancing between the big picture and smaller 

details. Finally, the third YOLO head, with dilation=1, focuses on the smallest details, helping to accurately 

detect small objects. This approach allows the network to first gather broad information and then 

gradually zoom in, making it better at detecting objects of all sizes. 

 

Box Loss 

In YOLOv3, the box loss is the part of the loss function that is responsible for measuring how well the 

predicted bounding boxes match the ground truth bounding boxes. By minimizing box loss during training, 

YOLOv3 predicts bounding boxes that accurately contain objects and assign high confidence scores to grid 

cells that contain objects. In the original YOLOv3 configuration file, the default loss function is not 
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described as a single function but is defined by the structure of the network.  For further information on 

YOLOv3 loss function see (Tepteris et al., 2023). 

 

Intersection over Union (IoU) and Distance Intersection over Union (DIoU) are metrics used to evaluate 

and improve the accuracy of these bounding box predictions, with DIoU providing additional geometric 

context to enhance performance.  

More specifically: 

1. Intersection over Union (IoU): IoU measures the overlap between a predicted bounding box and 

the ground truth bounding box. IoU-based loss functions focus on the area of overlap between 

the two boxes, providing a more direct measure of how well the predicted box matches the ground 

truth in terms of spatial dimensions. More specifically IoU loss is defined by the formula: 

 

𝐼𝑜𝑈 𝐿𝑜𝑠𝑠 = 1 − 𝐼𝑜𝑈 = 1 − 
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 

 

(4.7) 

 

where IoU ranges from 0 to 1 (area of Intersection: The overlapping area between the predicted 

and ground truth bounding boxes. Area of Union: The total area covered by both the predicted 

and ground truth bounding boxes). An IoU value of 1 means a perfect overlap, while a value closer 

to 0 indicates minimal overlap. By minimizing this IoU loss, we encourage the model to maximize 

the overlap between the predicted and ground truth boxes. Nevertheless, IoU faces some 

limitations. Although it provides a measure of overlap, it doesn't consider the distance between 

the centers of the predicted and ground truth boxes, which can be an issue when boxes have 

similar IoU values but different placements.  

2. Distance IoU (DIoU): Extends IoU by taking into account the distance between the center points 

of the predicted and ground truth bounding boxes. DIoU considers not only the overlap but also 

the distance between the centers of the boxes, addressing situations where two boxes may have 

similar IoU values but different placements. More specifically DIoU loss is calculated by the 

formula: 

𝐷𝐼𝑜𝑈 𝐿𝑜𝑠𝑠 = 1 − 𝐼𝑜𝑈 + 
𝑑2 (𝑐𝑝, 𝑐𝑔)

𝑐2
 

(4.8) 

where, 

-  𝑑2 (𝑐𝑝, 𝑐𝑔) is the Euclidean distance between the center points of the predicted box 𝑐𝑝 and 

the ground truth box 𝑐𝑔. 

- 𝑐 is the diagonal length of the smallest enclosing box that contains both the predicted and the 

ground truth boxes. 
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DIoU encourages the model to predict boxes that are not only overlapping but also more accurately 

located (Zheng et al., 2020). 

The loss function, including box loss, is usually defined within the training script. By adjusting certain 

parameters and settings in the YOLOv3 cfg files, box loss can be influenced.  

 

Figure 4.16 Illustration of the DIoU in the configuration file 

Specifically, while we are setting iou_loss = diou  in the configuration file (Figure 4.16, red box), additional 

parameters such as iou_thresh and iou_normalizer are specified to control aspects of the loss function and 

how it is applied during training (Figure 4.16, blue box). These parameters (iou_loss=diou, iou_thresh=0.5, 

iou_normalizer=0.07) would be added to all three YOLO layers. This happens because each layer requires 

settings that determine how the model calculates and optimizes the bounding box predictions for different 

scales.  

In detail: 

- The iou_loss = diou parameter specifies that the loss function for bounding box prediction 

should use Distance IoU (DIoU) instead of the default loss function 

- The iou_thresh=0.5 (proposed by literature: (Alexey, 2024)) parameter sets the threshold for 

determining whether a predicted bounding box is considered as correct (true positive (TP)) or 

not (false positive(FP)). During training, if the IoU between the predicted box and any ground 

truth box is greater than or equal to 0.5, the prediction is considered as correct. Otherwise, if 

the IoU is less than 0.5, the prediction is considered as incorrect. This parameter is added to 

help us filter out low-quality bounding boxes during training and validation processes. Setting 

the IoU threshold to 0.5 helps us in  identifying objects accurately without being too tolerant 

or too strict. It is a standard, widely accepted value that has been empirically tested to perform 

well in most object detection scenarios.  

- The iou_normalizer=0.07 (proposed by literature: (Alexey, 2024)) used to control how much 

the IoU loss (related to the accuracy of the bounding boxes) affects the overall training of the 

model. This parameter is added to keep a balance between different types of errors the model 

needs to minimize.  The 0.07 value was chosen based on experiments to balance training. It is 

low enough to ensure that while IoU contributes to defining the box locations, it doesn't skip 

other important tasks, like finding objects or recognizing them in an image (Alexey, 2024). 
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Synopsis 

Summarizing all the details analyzed in this last Section, the hyperparameter values for Darknet-53 and 

Resnet-152 are illustrated in Table 4.12 and Table 4.13 respectively. The final configuration files for our 

study are conducted based on the combination of these values. 

 

Table 4.12 Hyperparameter values for Darknet-53 

Hyperparameter Name Darkent-53 as Backbone Network 

Image Resolution 352 x 352 416 x 416 832 x 832 

Anchor Dimensions [2,5,   7,7,   5,13,  

10,12,   9,21,  17,16,  

17,31,  30,30,  44, 61] 

[7, 10,  11, 11,   8, 

18,  12, 17,  18, 15,  

15, 24,  25, 21,  23, 

34,  40, 59] 

[13, 22,  21, 25,  17, 

39,  33, 24,  27, 36,  

32, 52,  45, 39,  48, 

69,  82, 121] 

Data Augmentation None / Mosaic None / Mosaic None / Mosaic 

Dilated Convolution None / 1,2,3 None / 1,2,3 None / 1,2,3 

Box Loss IoU / DioU IoU / DioU IoU / DioU 

 

Table 4.13 Hyperparameter values for Resnet-152 

Hyperparameter Name Resnet-152 as Backbone Network 

Image Resolution 352 x 352 416 x 416 832 x 832 

Anchor Dimensions [2,4,   3,9,   7,7,   

6,13,  10,12,   8,22,  

16,12,  14,19,  25,20,  

18,33,  34,39,  50,71] 

[7, 10,  11, 11,   8, 

18,  12, 17,  18, 15,  

15, 24,  25, 21,  23, 

35,  42, 59] 

[13, 22,  20, 24,  17, 

39,  32, 23,  26, 33,  

31, 49,  44, 38,  47, 

68,  80,118] 

Data Augmentation None / Mosaic None / Mosaic None / Mosaic 

Dilated Convolution None / 1,2,3 None / 1,2,3 None / 1,2,3 
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Hyperparameter Name Resnet-152 as Backbone Network 

Box Loss IoU / DioU IoU / DioU IoU / DioU 
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Chapter 5 Experimental Analysis 

In Chapter 5 we study how to optimize the training process of YOLOv3 by tuning selected training 

hyperparameters of the algorithm. We also analyze the effect of these hyperparameters and their 

interactions on model performance. For tuning the training hyperparameters, we conducted full factorial 

experiments by varying their levels and measuring their impact.  For quantifying the effects of the 

hyperparameters on mean Average Precision (mAP), we use Analysis of Variance (ANOVA). We have also 

identified the best-performing combinations of hyperparameters and explained the reasons that models 

trained under these combinations perform better and improve object detection accuracy. 

5.1 Full Factorial Design 

The hyperparameters used in the experimental investigation are those identified in Chapter 4; i.e., image 

resolution, the use of dilated convolutions, box loss functions, anchor dimensions, backbone network 

types, and data augmentation methods. For the experimentation, we used a fill factorial design with two 

levels per hyperparameter (factor) except for image resolution that was varied in three levels.  The full 

factorial generates all possible combinations of the among the factor levels, aiming to identify the 

significant effects of the hyperparameters and their interactions on training effectiveness, as well as the 

best combination that optimizes the performance of YOLOv3 model. The full factorial design consists of 

96 (25 × 3) experiments, as shown in Table 5.1. This Table provides the full experimental design, that is all 

hyperparameter combinations used in our work. 

Table 5.1 Multilevel factorial design of our study 

A/A 
Image 

Resolution 
Dilated 

Convolution 
Box Loss 

Anchor 
Dimensions 

Backbone 
Network 

Data 
Augmentation 

1 352x352 Yes IoU Default Darknet-53 Default 

2 352x352 Yes IoU Default Darknet-53 Mosaic 

3 352x352 Yes IoU Default ResNet-152 Default 

4 352x352 Yes IoU Default ResNet-152 Mosaic 

5 352x352 Yes IoU New Darknet-53 Default 

6 352x352 Yes IoU New Darknet-53 Mosaic 

7 352x352 Yes IoU New ResNet-152 Default 

8 352x352 Yes IoU New ResNet-152 Mosaic 

9 352x352 Yes DIoU Default Darknet-53 Default 

10 352x352 Yes DIoU Default Darknet-53 Mosaic 

11 352x352 Yes DIoU Default ResNet-152 Default 

12 352x352 Yes DIoU Default ResNet-152 Mosaic 

13 352x352 Yes DIoU New Darknet-53 Default 

14 352x352 Yes DIoU New Darknet-53 Mosaic 

15 352x352 Yes DIoU New ResNet-152 Default 

16 352x352 Yes DIoU New ResNet-152 Mosaic 

17 352x352 No IoU Default Darknet-53 Default 
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A/A 
Image 

Resolution 
Dilated 

Convolution 
Box Loss 

Anchor 
Dimensions 

Backbone 
Network 

Data 
Augmentation 

18 352x352 No IoU Default Darknet-53 Mosaic 

19 352x352 No IoU Default ResNet-152 Default 

20 352x352 No IoU Default ResNet-152 Mosaic 

21 352x352 No IoU New Darknet-53 Default 

22 352x352 No IoU New Darknet-53 Mosaic 

23 352x352 No IoU New ResNet-152 Default 

24 352x352 No IoU New ResNet-152 Mosaic 

25 352x352 No DIoU Default Darknet-53 Default 

26 352x352 No DIoU Default Darknet-53 Mosaic 

27 352x352 No DIoU Default ResNet-152 Default 

28 352x352 No DIoU Default ResNet-152 Mosaic 

29 352x352 No DIoU New Darknet-53 Default 

30 352x352 No DIoU New Darknet-53 Mosaic 

31 352x352 No DIoU New ResNet-152 Default 

32 352x352 No DIoU New ResNet-152 Mosaic 

33 416x416 Yes IoU Default Darknet-53 Default 

34 416x416 Yes IoU Default Darknet-53 Mosaic 

35 416x416 Yes IoU Default ResNet-152 Default 

36 416x416 Yes IoU Default ResNet-152 Mosaic 

37 416x416 Yes IoU New Darknet-53 Default 

38 416x416 Yes IoU New Darknet-53 Mosaic 

39 416x416 Yes IoU New ResNet-152 Default 

40 416x416 Yes IoU New ResNet-152 Mosaic 

41 416x416 Yes DIoU Default Darknet-53 Default 

42 416x416 Yes DIoU Default Darknet-53 Mosaic 

43 416x416 Yes DIoU Default ResNet-152 Default 

44 416x416 Yes DIoU Default ResNet-152 Mosaic 

45 416x416 Yes DIoU New Darknet-53 Default 

46 416x416 Yes DIoU New Darknet-53 Mosaic 

47 416x416 Yes DIoU New ResNet-152 Default 

48 416x416 Yes DIoU New ResNet-152 Mosaic 

49 416x416 No IoU Default Darknet-53 Default 

50 416x416 No IoU Default Darknet-53 Mosaic 

51 416x416 No IoU Default ResNet-152 Default 

52 416x416 No IoU Default ResNet-152 Mosaic 

53 416x416 No IoU New Darknet-53 Default 

54 416x416 No IoU New Darknet-53 Mosaic 

55 416x416 No IoU New ResNet-152 Default 

56 416x416 No IoU New ResNet-152 Mosaic 

57 416x416 No DIoU Default Darknet-53 Default 

58 416x416 No DIoU Default Darknet-53 Mosaic 



University of the Aegean Department of Financial and Management Engineering 
 
 

[75] 
 

A/A 
Image 

Resolution 
Dilated 

Convolution 
Box Loss 

Anchor 
Dimensions 

Backbone 
Network 

Data 
Augmentation 

59 416x416 No DIoU Default ResNet-152 Default 

60 416x416 No DIoU Default ResNet-152 Mosaic 

61 416x416 No DIoU New Darknet-53 Default 

62 416x416 No DIoU New Darknet-53 Mosaic 

63 416x416 No DIoU New ResNet-152 Default 

64 416x416 No DIoU New ResNet-152 Mosaic 

65 832x832 Yes IoU Default Darknet-53 Default 

66 832x832 Yes IoU Default Darknet-53 Mosaic 

67 832x832 Yes IoU Default ResNet-152 Default 

68 832x832 Yes IoU Default ResNet-152 Mosaic 

69 832x832 Yes IoU New Darknet-53 Default 

70 832x832 Yes IoU New Darknet-53 Mosaic 

71 832x832 Yes IoU New ResNet-152 Default 

72 832x832 Yes IoU New ResNet-152 Mosaic 

73 832x832 Yes DIoU Default Darknet-53 Default 

74 832x832 Yes DIoU Default Darknet-53 Mosaic 

75 832x832 Yes DIoU Default ResNet-152 Default 

76 832x832 Yes DIoU Default ResNet-152 Mosaic 

77 832x832 Yes DIoU New Darknet-53 Default 

78 832x832 Yes DIoU New Darknet-53 Mosaic 

79 832x832 Yes DIoU New ResNet-152 Default 

80 832x832 Yes DIoU New ResNet-152 Mosaic 

81 832x832 No IoU Default Darknet-53 Default 

82 832x832 No IoU Default Darknet-53 Mosaic 

83 832x832 No IoU Default ResNet-152 Default 

84 832x832 No IoU Default ResNet-152 Mosaic 

85 832x832 No IoU New Darknet-53 Default 

86 832x832 No IoU New Darknet-53 Mosaic 

87 832x832 No IoU New ResNet-152 Default 

88 832x832 No IoU New ResNet-152 Mosaic 

89 832x832 No DIoU Default Darknet-53 Default 

90 832x832 No DIoU Default Darknet-53 Mosaic 

91 832x832 No DIoU Default ResNet-152 Default 

92 832x832 No DIoU Default ResNet-152 Mosaic 

93 832x832 No DIoU New Darknet-53 Default 

94 832x832 No DIoU New Darknet-53 Mosaic 

95 832x832 No DIoU New ResNet-152 Default 

96 832x832 No DIoU New ResNet-152 Mosaic 
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5.2 Experimental set-up and execution 

The first step before we start executing the experiments was to create the appropriate configuration files 

(.cfg) containing all  combinations of hyperparameters of Table 5.1; these files represent the models used 

in our study. Thus, we created 96 configuration files along with the corresponding 96 .data file (Figure 5.1) 

Each .data file has the same name with the .cfg file and it contains information which is essential for 

training. 

 

Figure 5.1 Configuration files (.cfg) along with the corresponding data files (.data) 

More specifically, as illustrated in Figure 5.2, there are five variables included within each .data file. 

 

Figure 5.2 Variables from the first .data file corresponding to the first .cfg file in our experiments 

More specifically: 

 classes: the variable “classes” (Figure 5.2) indicates the number of classes on which the model is 

being trained. In our case we have 4 classes, person, car, long vehicle and bike (Figure 5.3).  

 
Figure 5.3 Txt file including the object classes 

 train: the variable ”train” (Figure 5.2)  refers to the path of a text file that contains a list of file 

paths for all training images. This file, named Train.txt, contains paths to images from the training 

subset used in our research.  
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 valid: the variable "valid" indicates the path to a text file that contains a list of file paths for all 

validation images. This file, named Val.txt, contains paths to images from the validation subset 

used in our research.  

 names: the variable “names” (Figure 5.2) specifies the path of a file that contains the names of 

the object classes. 

 backup: the variable “backup” (Figure 5.2) specifies the directory where the weights of the trained 

model will be stored. During training, the algorithm is configured to save these weights every 1000 

iterations. 

The only difference between each .data file is the "backup" path, which is modified to correspond to 

each .cfg file. This prevents the generated training weights from being overwritten. 

The training process is executed using the following command: 

 

Terminal Command for training process with Darknet-53 as backbone network 

for i in 1 2 5 6 9 10 13 14 17 18 21 22 25 26 29 30 33 34 37 38 41 42 45 46 49 50 53 54 57 58 61 

62 65 66 69 70 73 74 77 78 81 82 85 86 89 90 93 94; do ./darknet detector train 

/home/deopsys/Documents/darknet/cfg/Anna_experiments/cfg/UAV_${i}.data 

/home/deopsys/Documents/darknet/cfg/Anna_experiments/cfg/UAV_${i}.cfg 

darknet53.conv.74 -map | tee UAV_output${i}.txt; done 

Terminal Command for training process with ResNet-152 as backbone network 

for i in 3 4 7 8 11 12 15 16 19 20 23 24 27 28 31 32 35 36 39 40 43 44 47 48 51 52 55 56 59 60 

63 64 67 68 71 72 75 76 79 80 83 84 87 88 91 92 95 96; do ./darknet detector train 

/home/deopsys/Documents/darknet/cfg/Anna_experiments/cfg/UAV_${i}.data 

/home/deopsys/Documents/darknet/cfg/Anna_experiments/cfg/UAV_${i}.cfg resnet152.201 -

map | tee UAV_output${i}.txt; done 

Figure 5.4 Execution command for conducting the experiments 

These commands above (Figure 5.4) are used to automate the training process of YOLOv3 using the 

Darknet framework, with different backbone networks (Darknet-53 and ResNet-152).  

More specifically: 

 for i in ...; do ... done: This loop iterates through a predefined sequence of numbers (e.g., 1, 2, 5, 

6, etc.) that have Darknet-53 as backbone network. Each number corresponds to a specific .cgf 

file 

  ./darknet detector train: This is the Darknet command to start training a certain model 

 /home/deopsys/Documents/darknet/cfg/Anna_experiments/cfg/UAV_${i}.data: This specifies 

the path to the .data file for the corresponding .cfg file. The variable ${i} dynamically changes the 

file based on the loop iteration 
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 /home/deopsys/Documents/darknet/cfg/Anna_experiments/cfg/UAV_${i}.cfg: This specifies the 

path to the .cfg file, which contains the model architecture and hyperparameters 

 darknet53.conv.74: This file contains the pre-trained weights for the Darknet-53 backbone 

network, used to initialize the training process 

 -map: This flag enables the calculation and display of the Mean Average Precision (mAP) during 

training 

 | tee UAV_output${i}.txt: This part of the command logs the output of the training process to a 

file named UAV_output${i}.txt, allowing for later review. 

This 2nd command follows the same structure as the Darknet-53 command, but it has some 

differences, on loop sequence and the type of backbone network. 

 for i in ...; do ... done: This loop iterates through a predefined sequence of numbers (e.g., 3, 4, 7, 

8, etc.), that have ResNet-152 as backbone network. Each number corresponds to a specific .cgf 

file. The sequence of numbers is different, indicating that different configurations or experiments 

are being run 

 resnet152.201: This file contains the pre-trained weights for the ResNet-152 backbone network, 

which is used to initialize the model training instead of Darknet-53. 

All 96 experiments were conducted two times in order to support the analysis of the experimental results 

using Analysis of Variance (ANOVA).  Thus, the total number of experiments was 192. It is noted that by 

conducting our experiments twice we are able to have a more robust training process using the same 

hyperparameter settings. Minor differences between the mAP results from the two runs suggest that the 

model is consistently trained. 

As part of the overall training process, the validation process is also conducted to evaluate the weights 

generated by the algorithm during training, producing a mean Average Precision (mAP) result for each 

validation run (see Table 5.3). Our models were configured to perform the first validation run at the 400th 

iteration, with subsequent validations occurring every 100 iterations (e.g., 400, 500, 600, …, 7900, 8000) 

up to the 8000th iteration, which marks the completion of the training process for a single model. 

Consequently, each experiment consisted of 77 validation runs, resulting in 77 distinct mAP values. 

Additionally, the trained weights were saved every 1000 iterations in the backup path specified in the 

.data file. 

After completing the training process, we conducted the testing phase for each of our 96 experiments.  

For testing our trained models, we used the testing set from the modified UAV dataset and applied the 

best weights from both training runs (those achieving the highest mAP during validation). We modified 

the .data files accordingly, while the .cfg files remained unchanged (Figure 5.1). Specifically, for the testing 

phase, all .data files contained the information shown in Figure 5.5.  

Once we set-up our experiments and created the 96 .cfg and .data files, we started the testing process by 

conducting a command in the terminal (Figure 5.6). 
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Figure 5.5 Information included in all .data files used for testing 

 

In Figure 5.5, the "classes" and "names" parameters remain unchanged from those used during training. 

However, the "valid" parameter was modified to point to a text file (all_experiments_1.txt), which 

contains the file paths for all the testing images. Additionally, the "train" and "backup" parameters were 

excluded from the .data files used for testing, as these parameters are only relevant during the training 

phase. 

The following command was used to execute the testing process after completing both training runs for 

each hyperparameter combination: 

Terminal Command for testing process 

for i in {1..96}; do ./darknet detector map 

/home/deopsys/Documents/darknet/cfg/Anna/UAV.data 

/home/deopsys/Documents/darknet/cfg/Anna/UAV_${i}.cfg 

/media/deopsys/Hard_Disk/Anna/Experiments/UAV_${i}_cfg/UAV_${i}_best.weights -points 

101 -thresh 0.25 -iou_thresh 0.5; done 

>/media/deopsys/Hard_Disk/Anna/Experiments/output_${i}.txt 

Figure 5.6 Execution command for the testing process of our experiments 

The command in Figure 5.6 executes a loop that runs 96 iterations (𝑓𝑟𝑜𝑚 𝑖 = 1 𝑡𝑜 𝑖 = 96), each time 

evaluating a different YOLO model. The command ./darknet detector map activates the testing process of 

YOLOv3. For each iteration, it loads the configuration file (.cfg) (𝑈𝐴𝑉_${𝑖}. 𝑐𝑓𝑔), the corresponding .data 

file (𝑈𝐴𝑉. 𝑑𝑎𝑡𝑎)  and the best weights file (𝑈𝐴𝑉_${𝑖}_𝑏𝑒𝑠𝑡. 𝑤𝑒𝑖𝑔ℎ𝑡𝑠) created from the first training run 

of the corresponding .cfg files,  to compute the mean average precision (mAP) for the model using the 

detector map command. The evaluation is performed with a confidence threshold of 0.25 and an 

Intersection over Union (IoU) threshold of 0.5, which affects which detections are considered valid. The -

points 101 argument specifies that the precision-recall curve should be evaluated at 101 points. After each 

evaluation, the output is saved into a separate text file (𝑜𝑢𝑡𝑝𝑢𝑡_${𝑖}. 𝑡𝑥𝑡), where ${𝑖} corresponds to the 

current iteration number, allowing the results of all 96 evaluations to be stored separately.  

Therefore, in this command we have the input files, the evaluation parameters and the output files: 

 Input files: For each iteration the configuration file (.cfg), the data file (.data), and trained weights 

(.weights) are loaded 

 Evaluation parameters: The detection threshold is set to 0.25, and the IoU threshold is set to 0.5 

 Output files: The results of each evaluation are finally saved in a corresponding text file in the 

𝑜𝑢𝑡𝑝𝑢𝑡_${𝑖}. 𝑡𝑥𝑡. 
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Once the testing process of the 96 models is completed, we execute the same command using the best 

weights files from the second training run. As a result, from both runs of the testing process, we obtain 

detailed line reports that include the mAP metric for each model in each run. 

During both training and testing, the model generates multiple results for evaluation, as illustrated in 

Table 5.2. 

Table 5.2 Key class metrics during validation 

Evaluation 
metrics for 
each class  

Evaluation 
metrics for 
all classes 

 

  

The validation report provides the following information for each class: 

 𝑐𝑙𝑎𝑠𝑠_𝑖𝑑: For example, index value 1 represents the class "car" 

 𝑛𝑎𝑚𝑒: the name of the class 

 𝐴𝑃 (𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛): provides the average precision result of the class 

 𝑇𝑃 (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒): is the number of correctly identified class objects 

 𝐹𝑃 (𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒): is the number of incorrectly identified class objects 

 𝑅𝑒𝑐𝑎𝑙𝑙: is the ratio of true positives to the sum of false negatives and true positives for the class 

 𝑎𝑣𝑔 𝐼𝑜𝑈: represents the average Intersection over Union (IoU) across all images in the validation 

set for the class. 

Also, the validation report provides the following information for all classes: 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛: is the overall prediction accuracy across all classes 

 𝑅𝑒𝑐𝑎𝑙𝑙: evaluates the ability of the detector to locate the annotated objects within the image for 

all classes 

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒: is the harmonic mean of precision and recall 

 𝑇𝑃 (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒): is the number of correctly detected objects across all classes 

 𝐹𝑃 (𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒): is the number of incorrectly detected objects across all classes 

 𝐹𝑁 (𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒): is the number of missed detections across all classes 

 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝐼𝑜𝑈: represents the average IoU across all images in the validation set for all classes 

 𝑚𝐴𝑃 (𝑚𝑒𝑎𝑛 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛): sums the Average Precision (AP) of each individual class and 

then divides the total AP value by the number of the classes.  
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Among the various metrics provided in the line reports, we utilized the mean Average Precision (mAP) to 

assess the performance of the models in both the validation and testing stages. However, the mAP results 

serve different purposes in each phase: 

 During the training process, the model continuously adjusts its parameters to improve object 

detection in the input data. These adjusted parameters are stored in the form of weights. To 

ensure the model is learning effectively, these weights are periodically validated. In this 

intermediate validation step, the model applies the current set of trained weights to a validation 

dataset to evaluate its detection and classification performance. The mAP values calculated 

during validation are displayed in the progress chart (showing only mAP results) throughout 

training. These validation mAP results are crucial for verifying that the model is learning correctly. 

High validation mAP values during validation indicate that the model is avoiding overfitting and 

that training on the given dataset is proceeding as expected. 

 During the testing process, the best-performing weights from training (those that achieved the 

highest mAP during validation) are applied to the testing dataset. The testing phase evaluates the 

model's detection and classification performance on independent data. If the mAP value obtained 

during testing is similar to the highest mAP values from validation, it confirms that the model has 

been trained effectively and performs as expected. Conversely, if the testing mAP value is 

significantly lower than the best validation mAP, it suggests that the model’s performance on new 

data is not as robust as indicated during validation, implying that the training may not have been 

successful, perhaps due to overfitting. 

5.3 Experimental results and analysis 

In the validation and testing processes, as mentioned in Chapter 3, several key metrics such as recall, 

precision, F1-score, average precision (AP), and mean average precision (mAP), can be used to evaluate a 

model's performance. Among these metrics, we focused on mAP to analyze the outcomes of our 

experiments. The Average Precision (AP) metric evaluates the accuracy of object detection models by 

measuring how well individual objects are identified. Then the mAP metric is the mean of these AP values 

across all classes, providing an overall evaluation of the model's ability to detect various objects in the 

dataset. This makes it an effective metric for comparing overall model performance.  

More specifically, we used the best mAP achieved in validation to evaluate and compare training 

performance. The best mAP refers to the highest mean average precision (mAP) value achieved by the 

validation process during training for each experiment. In testing, for each model, we used the weights 

corresponding to the best mAP achieved in validation.  To assess model performance in testing, we used 

the mAP value achieved by the trained model using the independent testing dataset. 

The table below presents the best mAP results from both training/validation and testing processes for the 

1st and 2nd experiment runs, the average mAP across the two runs as well as the percentage difference 

between their values. 
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Table 5.3 Best mAP and the average best mAP in the 1st and 2nd run of the training and testing processes 

 Training/Validation Testing Difference between 
the avg mAP values 
(training - testing) 

Model 
Number 

Best mAP  
(1st run) 

Best mAP 
(2nd run) 

Avg mAP 
between 1st 

& 2nd run 

Best mAP  
(1st run) 

Best mAP 
(2nd run) 

Avg  mAP 
between 1st 

& 2nd run 

        

        

        

 1
 

 2
0
 

1
2
 

 4
 

 

        

        

        

        

        

        

        

 2
2
 

 4
 

1
1
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 Training/Validation Testing Difference between 
the avg mAP values 
(training - testing) 

Model 
Number 

Best mAP  
(1st run) 

Best mAP 
(2nd run) 

Avg mAP 
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 Training/Validation Testing Difference between 
the avg mAP values 
(training - testing) 

Model 
Number 

Best mAP  
(1st run) 

Best mAP 
(2nd run) 

Avg mAP 
between 1st 

& 2nd run 

Best mAP  
(1st run) 

Best mAP 
(2nd run) 

Avg  mAP 
between 1st 

& 2nd run 
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The first observation from the values of Table 5.3 is that the training/validation mAP values are higher 

than the testing mAP values.  This is expected, since the testing dataset is not part of the training dataset.  

In some cases, however, the difference between the training/validation and testing average (between the 

two replicates) mAP is significant (e.g. more than 10%).  

Table 5.4 Number of objects in the training, validation and testing datasets 

 

The significant difference in mean Average Precision (mAP) between training/validation and testing can 

be attributed to the following reasons: 

 Overfitting: The model may learn specific patterns in the training data but fail to generalize to 

unseen data. This results in high performance during validation but a notable drop during testing, 

indicating a lack of robustness (Montesinos López et al., 2022). 

 Class Imbalance: The consolidated dataset contains a higher number of objects like people 

(213,245 total objects) (see Table 4.1) and cars (205,893 total objects) (see Table 4.1), leading the 

Number of Objects 

 Training Dataset Validation Dataset Testing Dataset 

Number of people 170,744 16,544 16,730 

Number of Cars 154,478 18,205 16,257 

Number of Long Vehicles 42,068 5,012 4,986 

Number of Bikes 102,893 9,195 8,967 
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model to focus more on these dominant classes. Underrepresented classes like long vehicles 

(52,961 total objects) (see Table 4.1)  and bikes (130,141 total objects) (see Table 4.1) cause  the 

model to perform worse in these classes. During testing, this imbalance in class representation 

can lead to the model being biased toward classes with more samples, resulting in higher mAP 

during training/validation but lower mAP during testing. (Crasto, 2024). 

 Dataset Composition Differences: The testing subset, although it is part of the consolidated 

dataset, may not reflect the class distributions across the individual datasets, enhancing the 

impact of the class representation. For example, the UAV Vehicle Detection dataset includes 

20,647 cars but only 241 bikes (see Table 4.1), while the Stanford dataset includes a larger number 

of bikes (83,600) (see Table 4.1) and has no persons at all (see Table 4.1). Meanwhile, the 

VisDrone2019DET dataset shows a more balanced distribution, with 158,914 persons, 46,721 long 

vehicles, and 46,300 bikes (see Table 4.1). If the testing subset is split disproportionately, it could 

include images from one dataset (e.g., more Stanford images with many bikes or more UAV Vehicle 

Detection images with very few bikes). In this case, the representation of classes is not accurate 

and it contributes to the significant difference in mAP between training and testing (Santos et al., 

2024) 

 Differences in Image Complexity: UAV images often vary in resolution, lighting, and angles. These 

variations can make it difficult for the model to perform consistently across all datasets, especially 

when testing images differ in distribution from those in the training set (Hakala et al., 2013). 

A second observation has to do with the significant differences in performance of models trained under 

different combinations of the hyperparameters. For example, in training/validation the best performing 

models reach a mAP over 60% (see models 74 and 90), while others have significantly lower performance 

with mAP of 15% (dee models 35, 51) .  This illustrates clearly the significance of selecting the appropriate 

levels of the hyperparameters in model training, and the need for optimizing these hyperparameters in 

order to achieve effective training of a high performing model. 

As we can see in Table 5.3 the highest mAP from the validation process is achieved in the 90th experiment 

for both runs. The best mAP in the 90th experiment reaches 60.99%  in our first run and 60.76% This 

indicates result consistency in terms of the mAP value. The model that achieves this performance 

corresponds to the following hyperparameter combination (Table 5.1): 

 Image Resolution: 832x832  

 Dilated Convolution: No  

 Box Loss: DIoU  

 Anchor Dimensions: Default  

 Backbone: Darknet-53  

 Data Augmentation: Mosaic 

At the same, we can observe from Table 5.3 that the highest mAP during the testing process is also 

achieved in the 90th experiment for both runs. More specifically, the best mAP in the 90th testing 
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experiment reaches 52.37%  in our first run and 52.65% (Table 5.3) in the second run. Achieving the 

highest performance across validation and testing by the same model is encouraging and points to the 

ability of the method to correctly tune the training hyperparameters. 

The best trained model performs reliably on unseen data (testing process) with only a slight drop in 

performance from the training process. Furthermore, the selected levels of hyperparameters lead to an 

effective model across different image datasets.  

The 74th experiment also displays good performance, close to that of the 90th experiment. More 

specifically, the best mAP in the 74th experiment reaches 60.72%  in our first run and 60.50% (Table 5.3) 

in the second. Similarly, in the testing process the 74th experiment achieves the second good performance, 

like in the training process. The best mAP reaches 52.27% in the first run and 52.24% in the second run. 

The hyperparameter combination of this model is similar to  the 90th experiment, with the only difference 

in the dilated convolution. The model in the 74th experiment was trained under the following 

hyperparameter parameter combination (Table 5.1): 

 Image Resolution: 832x832  

 Dilated Convolution: Yes  

 Box Loss: DIoU  

 Anchor Dimensions: Default  

 Backbone: Darknet-53  

 Data Augmentation: Mosaic 
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Figure 5.7 Training progress chart of the 90th experiment 

 

 

Figure 5.8 Training progress chart of the 74th experiment 
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Figure 5.7 illustrates the chart for the 90th experiment (the best-performing model). The x-axis represents 

the number of iterations as the training process progresses, while the y-axis. The blue curve of the chart 

represents the training loss, and the red curve shows the mAP results throughout training. The training 

loss curve indicates how effectively the model adapts to the dataset, with lower values reflecting better 

performance. This curve decreases steadily during training and stabilizes between values of 9 and 13 

(Figure 5.7). The red curve represents the model's ability to detect specific objects in the validation data. 

In the chart is illustrated a significant improvement in mAP, increasing from 8% to 61% (Figure 5.7), which 

demonstrates good performance. 

A  similar performance is observed in the 74th experiment. The training loss curve (blue) decreases and 

stabilizes between values of 9 and 13 (Figure 5.8), as seen in the 90th experiment. The red curve is also 

quite similar to the 90th experiment, with the mAP increasing from 5% to 60% (Figure 5.8). 

In both experiments, there are no indications of overfitting or underfitting, as the mAP values remain 

stable without significant drops or rises during training. Therefore, the model, in both cases, demonstrates 

strong object detection and classification abilities on the modified UAV dataset, achieving a high mAP of 

61% and 60%. 

5.4 Hyperparameter effects on mean Average Precision (mAP) 

In our study, we used Analysis of Variance (ANOVA) in order to evaluate the impact of each selected 

hyperparameter and their interactions on the mAP metric. This analysis enables us to identify which 

hyperparameters, and interactions of them, significantly influence the training performance of the YOLOv3 

model as measured by mAP. 

ANOVA tests the following hypotheses: 

 Null hypothesis (H₀): A factor or factor interaction has no significant effect on mAP. 

 Alternative hypothesis (Hₐ): A factor or interaction has a significant effect on mAP. 

We conducted ANOVA using the MiniTab software, analyzing the experiments listed in Table 5.1 and the 

best mAP results from both training runs, as shown in Table 5.5. Following this approach, it enables us to 

identify the key factors influencing model performance and optimizes hyperparameter tuning for mAP 

improvement. 

The table below illustrates the design summary for our analysis. 

T
a
b
l
e
 
 

S
T
Y
L
E
R
E
F

Multilevel Factorial Design 

Design Summary 

Factors 6 Replicates 2 
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Multilevel Factorial Design 

Base Runs 96 Total Runs 192 

Base Blocks 1 Total Blocks 1 

Number of levels: 3, 2, 2, 2, 2, 2 

Table 5.5 provides a design summary of an Analysis of Variance (ANOVA) study conducted in MiniTab. This 

summary indicates that a multilevel factorial design was used to study how different values of the six 

selected hyperparameters, as well as their interactions, affect the mAP. The ANOVA will help us to 

determine which hyperparameters and their interactions have a statistically significant impact on the 

YOLOv3 model's performance. 

More specifically, the table illustrates: 

 Factors: 6 – This means that six different hyperparameters (factors) were selected for our 

experiments, which are image resolution, dilated convolution, box loss, anchor dimensions, 

backbone network and data augmentation (Table 5.1) 

 Replicates: 2 – The experiments were repeated twice  

 Base runs: 96 – The experiment initially consists of 96 base runs, indicating the number of unique 

combinations of hyperparameter levels being tested in one iteration 

 Total runs: 192 – This reflects the total number of runs for the experiment, which is obtained by 

multiplying the number of base runs (96) by the number of replicates (2). So, 192 total runs were 

performed to evaluate the model's performance with different hyperparameter combinations 

 Base blocks: 1 & Total blocks: 1 – No blocking was used in our experiments. This means that there 

were no additional sources of variation (such as time, location, or different batches) that needed 

to be controlled by creating blocks. The entire experiment was treated as one block, meaning the 

focus was on the six selected hyperparameters and their interactions.  

 Number of levels: 3, 2, 2, 2, 2, 2 – This shows the number of levels for each factor 

(hyperparameter). One hyperparameter, image resolution, has 3 different levels (values), while 

the remaining five have 2 levels each. 

5.4.1 ANOVA analysis on best mAP results from the training/validation process 

The training (validation) results of the ANOVA analysis, in our study, are illustrated in Table 5.6, including 

sources of variation with their Degrees of Freedom (DF), Adjusted Sum of Squares (Adj SS), Adjusted Mean 

Squares (Adj MS), F-values, and p-values. 

 Degrees of Freedom (DF) is a statistical term that indicates the number of independent values we 

can use in our calculations. The degrees of freedom depend on the number of levels being 

compared. Generally, for each parameter, the DF is calculated as the number of levels minus one. 

For example, in the image resolution factor, where we selected 3 levels (values) (352x352, 

416x416, 832x832), the degrees of freedom would be 3−1=2. This means that we can freely vary 

2 of the values while the last one is determined by the others. 
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 Adjusted Sum of Squares (Adj SS) measures how much the variance in mAP (mean Average 

Precision) is explained by each hyperparameter or interaction of hyperparameters after removing 

the effects of other factors and their interactions in the model. For example, the Adjusted Sum of 

Squares for image resolution is 0.90764, meaning this amount of variance in mAP is due to changes 

in image resolution (Kutner, 2005). 

 Adjusted Mean Squares (Adj MS) is the average variance related to each hyperparameter or 

interaction of hyperparameters, adjusted for the degrees of freedom in the model. The value of 

Adj MS is calculated by dividing the Adjusted Sum of Squares for image resolution by its degrees 

of freedom, which in our case is 2 (Kutner, 2005). 

More specifically, it is calculated by the formula: 

𝑀𝑆𝑎𝑑𝑗 =
𝑆𝑆𝑎𝑑𝑗

𝐷𝐹
 

(5.1) 

For instance, the Adjusted Mean Square for image resolution is 0.45382. ( 
0.90764

2
 ). 

 F-value measures how much a hyperparameter or interaction of hyperparameters affects 

the results compared to the error.  

It is calculated by dividing the Adjusted Mean Square of the factor by the Adjusted Mean 

Square of the error, as shown in equation 5.2 below: 

 𝐹 − 𝑉𝑎𝑙𝑢𝑒 =
𝑀𝑆𝑎𝑑𝑗

𝑀𝑆𝑎𝑑𝑗/𝑒𝑟𝑟𝑜𝑟
 

(5.2) 

A high F-value suggests that the factor significantly impacts mAP (mean Average 

Precision). For example, in our study, the “Backbone Network” factor has the highest F-

value, 1407.32 (Table 5.6), meaning it has the greatest impact on mAP. As it is illustrated 

in Table 5.6, the second higher F-value is 263.36 (Table 5.6) for the “Image Resolution” 

factor.  

 P-value indicates the likelihood of making an error when  selecting the alternative 

hypothesis.  A small p-value (less than 0.05) means the results are important for our 

study, so we reject the null hypothesis (H₀). On the other hand, a high p-value suggests 

that the results might have happened by chance, which means we don't reject the null 

hypothesis. In our case, all six factors have a p-value equal to 0 (Table 5.6), meaning that 

all of them significantly impact mAP (mean Average Precision). Although, factors like 

“Dilated Convolution” and “Anchor Dimensions” have smaller F-values than the other 

factors, it seems that they also affect mAP (Archdeacon, 1994).  

Table 5.6 below illustrates the importance of each factor selected for our study as well as their 

interactions on the mAP. 
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Table 5.6 Analysis of Variance during training process 

Source DF Adj SS Adj MS F-Value P-Value 

Model 95 4.70604 0.04954 28.75 0 

Linear 7 3.9989 0.57127 331.52 0 

Image Resolution 2 0.90764 0.45382 263.36 0 

Dilated Convolution 1 0.04359 0.04359 25.3 0 

Box Loss 1 0.16424 0.16424 95.31 0 

Anchor Dimensions 1 0.11865 0.11865 68.85 0 

Backbone Network 1 2.42507 2.42507 1407.32 0 

Data Augmentation 1 0.33971 0.33971 197.14 0 

2-Way Interactions 20 0.48613 0.02431 14.11 0 

Image Resolution*Dilated Convolution 2 0.0029 0.00145 0.84 0.434 

Image Resolution*Box Loss 2 0.01322 0.00661 3.84 0.025 

Image Resolution*Anchor Dimensions 2 0.02111 0.01056 6.13 0.003 

Image Resolution*Backbone Network 2 0.00899 0.0045 2.61 0.079 

Image Resolution*Data Augmentation 2 0.02654 0.01327 7.7 0.001 

Dilated Convolution*Box Loss 1 0.00014 0.00014 0.08 0.777 

Dilated Convolution*Anchor Dimensions 1 0.00075 0.00075 0.44 0.51 

Dilated Convolution*Backbone Network 1 0.07844 0.07844 45.52 0 

Dilated Convolution*Data Augmentation 1 0.00673 0.00673 3.91 0.051 

Box Loss*Anchor Dimensions 1 0.02888 0.02888 16.76 0 

Box Loss*Backbone Network 1 0.00018 0.00018 0.1 0.749 

Box Loss*Data Augmentation 1 0.02104 0.02104 12.21 0.001 

Anchor Dimensions*Backbone Network 1 0.00002 0.00002 0.01 0.91 

Anchor Dimensions*Data Augmentation 1 0.00335 0.00335 1.94 0.167 

Backbone Network*Data Augmentation 1 0.27382 0.27382 158.9 0 

3-Way Interactions 30 0.1262 0.00421 2.44 0.001 

Image Resolution*Dilated Convolution*Box Loss 2 0.00713 0.00356 2.07 0.132 

Image Resolution*Dilated Convolution*Anchor 

Dimensions 
2 0.00193 0.00097 0.56 0.572 

Image Resolution*Dilated Convolution*Backbone 

Network 
2 0.01254 0.00627 3.64 0.03 
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Source DF Adj SS Adj MS F-Value P-Value 

Image Resolution*Dilated Convolution*Data 

Augmentation 
2 0.00259 0.00129 0.75 0.474 

Image Resolution*Box Loss*Anchor Dimensions 2 0.00026 0.00013 0.08 0.927 

Image Resolution*Box Loss*Backbone Network 2 0.00108 0.00054 0.31 0.732 

Image Resolution*Box Loss*Data Augmentation 2 0.00076 0.00038 0.22 0.803 

Image Resolution*Anchor Dimensions*Backbone 

Network 
2 0.00728 0.00364 2.11 0.127 

Image Resolution*Anchor Dimensions*Data 

Augmentation 
2 0.00794 0.00397 2.3 0.105 

Image Resolution*Backbone Network*Data 

Augmentation 
2 0.0177 0.00885 5.13 0.008 

Dilated Convolution*Box Loss*Anchor Dimensions 1 0.00083 0.00083 0.48 0.489 

Dilated Convolution*Box Loss*Backbone Network 1 0.00878 0.00878 5.1 0.026 

Dilated Convolution*Box Loss*Data Augmentation 1 0.00006 0.00006 0.03 0.855 

Dilated Convolution*Anchor 

Dimensions*Backbone Network 
1 0.01184 0.01184 6.87 0.01 

Dilated Convolution*Anchor Dimensions*Data 

Augmentation 
1 0 0 0 0.962 

Dilated Convolution*Backbone Network*Data 

Augmentation 
1 0.00537 0.00537 3.12 0.081 

Box Loss*Anchor Dimensions*Backbone Network 1 0.00828 0.00828 4.8 0.031 

Box Loss*Anchor Dimensions*Data Augmentation 1 0.01123 0.01123 6.52 0.012 

Box Loss*Backbone Network*Data Augmentation 1 0.01721 0.01721 9.99 0.002 

Anchor Dimensions*Backbone Network*Data 

Augmentation 
1 0.00339 0.00339 1.97 0.164 

4-Way Interactions 25 0.06498 0.0026 1.51 0.081 

Image Resolution*Dilated Convolution*Box 

Loss*Anchor Dimensions 
2 0.00085 0.00042 0.25 0.782 

Image Resolution*Dilated Convolution*Box 

Loss*Backbone Network 
2 0.00604 0.00302 1.75 0.179 

Image Resolution*Dilated Convolution*Box 

Loss*Data Augmentation 
2 0.00019 0.0001 0.06 0.946 

Image Resolution*Dilated Convolution*Anchor 

Dimensions*Backbone Network 
2 0.00957 0.00478 2.78 0.067 

Image Resolution*Dilated Convolution*Anchor 

Dimensions*Data Augmentation 
2 0.00034 0.00017 0.1 0.906 
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Source DF Adj SS Adj MS F-Value P-Value 

Image Resolution*Dilated Convolution*Backbone 

Network*Data Augmentation 
2 0.0043 0.00215 1.25 0.292 

Image Resolution*Box Loss*Anchor 

Dimensions*Backbone Network 
2 0.0098 0.0049 2.84 0.063 

Image Resolution*Box Loss*Anchor 

Dimensions*Data Augmentation 
2 0.00036 0.00018 0.1 0.901 

Image Resolution*Box Loss*Backbone 

Network*Data Augmentation 
2 0.0005 0.00025 0.15 0.864 

Image Resolution*Anchor Dimensions*Backbone 

Network*Data Augmentation 
2 0.00683 0.00342 1.98 0.143 

Dilated Convolution*Box Loss*Anchor 

Dimensions*Backbone Network 
1 0.01215 0.01215 7.05 0.009 

Dilated Convolution*Box Loss*Anchor 

Dimensions*Data Augmentation 
1 0.00196 0.00196 1.14 0.289 

Dilated Convolution*Box Loss*Backbone 

Network*Data Augmentation 
1 0 0 0 0.966 

Dilated Convolution*Anchor 

Dimensions*Backbone Network*Data 

Augmentation 

1 0 0 0 0.993 

Box Loss*Anchor Dimensions*Backbone 

Network*Data Augmentation 
1 0.01208 0.01208 7.01 0.009 

5-Way Interactions 11 0.02273 0.00207 1.2 0.298 

Image Resolution*Dilated Convolution*Box 

Loss*Anchor Dimensions*Backbone Network 
2 0.01317 0.00658 3.82 0.025 

Image Resolution*Dilated Convolution*Box 

Loss*Anchor Dimensions*Data Augmentation 
2 0.00647 0.00324 1.88 0.159 

Image Resolution*Dilated Convolution*Box 

Loss*Backbone Network*Data Augmentation 
2 0.00008 0.00004 0.02 0.977 

Image Resolution*Dilated Convolution*Anchor 

Dimensions*Backbone Network*Data 

Augmentation 

2 0.00032 0.00016 0.09 0.911 

Image Resolution*Box Loss*Anchor 

Dimensions*Backbone Network*Data 

Augmentation 

2 0.00055 0.00027 0.16 0.854 

Dilated Convolution*Box Loss*Anchor 

Dimensions*Backbone Network*Data 

Augmentation 

1 0.00214 0.00214 1.24 0.268 

6-Way Interactions 2 0.0071 0.00355 2.06 0.133 
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Source DF Adj SS Adj MS F-Value P-Value 

Image Resolution*Dilated Convolution*Box 

Loss*Anchor Dimensions*Backbone 

Network*Data Augmentation 

2 0.0071 0.00355 2.06 0.133 

Error 96 0.16543 0.00172   

Total 191 4.87146    

 

At the end of Table 5.6 two additional values are presented: Error and total: 

 Error represents the unexplained variation in the model. It shows the difference between 

the actual results we observed and the results the model predicted. In our model, 

𝑆𝑆𝑒𝑟𝑟𝑜𝑟 = 0.16543 (Adj SS) indicates the variance in mAP (mean Average Precision) that 

the model is not able explain. 

This value is calculated by finding the sum of the squared differences between each 

observed result and its corresponding predicted result, as shown by the equation 5.3 

below (Kutner, 2005): 

𝑆𝑆𝑒𝑟𝑟𝑜𝑟 =∑ (𝑦𝑖  − 𝑦 𝑖)
2𝑛

𝑖=1
 

(5.3) 

where, 

 𝑦𝑖  is the observed result for the 𝑖𝑡ℎ observation 

 𝑦 𝑖  is the predicted result for the 𝑖𝑡ℎ observation 

 𝑛 is the number of observations. 

 Total represents the overall variance and is made up of the explained variance from the 

model and the unexplained variance (error). This value is aiming to be a reference point 

on evaluating the model's performance. In our model, 𝑆𝑆𝑡𝑜𝑡𝑎𝑙 = 4.87146 indicates the 

total variance in mAP (mean Average Precision). This value is calculated by finding the sum 

of the squared differences between each observed result and the overall average of the 

dependent variable, as shown in  the equation 5.4 below (Kutner, 2005): 

𝑆𝑆𝑡𝑜𝑡𝑎𝑙 =∑ (𝑦𝑖 − 𝑦 )2
𝑛

𝑖=1
 

(5.4) 

where, 

 𝑦𝑖  is the observed result for the 𝑖𝑡ℎ observation 

 𝑦   is the mean of the observed results 

 𝑛 is the number of observations. 
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Apart from the ANOVA analysis, we also used MiniTab to generate graphic representations of our results 

to understand and analyze further the interaction effects between our selected hyperparameters. In our 

study we focused on: 

 Pareto Chart of standardized effects 

 Main effects plot for mAP 

 Interaction plot for mAP 

Pareto Chart of standardized effects 

As illustrated in Figure 5.9, the Pareto chart of standardized effects demonstrates the influence and 

interactions of the different factors on the mAP. The factors labeled from A to F, are the hyperparameters 

we selected for our study. More specifically: 

 A: Image Resolution 

 B: Dilated Convolution 

 C: Box Loss 

 D: Anchor Dimensions 

 E: Backbone Network 

 F: Data Augmentation 

The red-dashed line indicates the standardized effect value of 1.98 when the significance threshold is α = 

0.05. Hyperparameters or interactions of hyperparameters that have blue-bars extended beyond the 

standardized effect value (red-dashed line) have a significant impact on mAP. Longer bars illustrate a more 

important impact on mAP. Nevertheless, we should also mention that there is a 5% risk (α = 0.05) of falsely 

identifying a factor or an interaction of factors as significant when they are not. 

Based on the Pareto Chart in Figure 5.9, the significant hyperparameters and interactions of 

hyperparameters  in the training process of our study are the following ones (starting from the most 

significant to the least significant: 

 Backbone Network (E) 

 Data Augmentation (F) 

 The interaction Backbone Network (E) and Data Augmentation (F) 

 Box Loss (C) 

 Anchor Dimensions (D) 

 Image Resolution (A) 

 The interaction of Dilated Convolution (B) and Backbone Network (E) 

 Dilated Convolution (B) 

 The interaction of Box Loss (C) and Anchor Dimensions (D) 

 The interaction of Box Loss (C) and Data Augmentation (F) 

 The interaction of Image Resolution (A) and Data Augmentation (F) 

 The interaction of Box Loss (C), Backbone Network (E) and Data Augmentation (F) 
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 The interaction of Image Resolution (A) and Anchor Dimensions (D) 

 The interaction of Image Resolution (A), Backbone Network (E) and Data Augmentation 

(F) 

 The interaction of Dilated Convolution (B), Box Loss (C), Anchor Dimensions (D) and 

Backbone Network (E) 

 The interaction of Box Loss (C), Anchor Dimensions (D), Backbone Network (E) and Data 

Augmentation (F) 

 The interaction of Dilated Convolution (B), Anchor Dimensions (D) and Backbone Network 

(E) 

 The interaction of Box Loss (C), Anchor Dimensions (D) and Data Augmentation (F) 

 The interaction of Image Resolution (A) and Box Loss (C) 

 The interaction of Image Resolution (A), Dilated Convolution (B), Box Loss (C), Anchor 

Dimensions (D) and Backbone Network (E) 

 The interaction of Dilated Convolution (B), Box Loss (C) and Backbone Network (E) 

 The interaction of Image Resolution (A), Dilated Convolution (B) and Backbone Network 

(E) 

 The interaction of Box Loss (C), Anchor Dimensions (D) and Backbone Network (E) 

 The interaction of Dilated Convolution (B) and Data Augmentation (F) 

 

Figure 5.9 Pareto chart of the standardized effects during training process 

The six remaining hyperparameter interactions do not have a significant effect on mAP, since their values 

are less than 1.98 (Navarro Tuch et al., 2019). 

Consequently, we conclude that the most significant hyperparameter is the backbone network (E), which 

has the highest standardized effect, indicating that affects mAP the most. It is followed by data 

augmentation (F), box loss (C), anchor dimensions (D) and image resolution (A), all of which also exceed 
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the critical value threshold of 1.98, marked by the red vertical line. Additionally, interactions between 

these factors can significantly impact performance, suggesting a need for careful tuning and optimization 

of these hyperparameters in the training process. 

Main effects plot for mAP 

Figure 5.10 shows the main effects plot for the training process in our study (Kim et al., 2007), which 

measures the impact on mAP of the main factors A, B, C, D, E and F. By analyzing these six factors in the 

main effect plot in Minitab, we can conclude to the following observations below: 

 Increasing image resolution from 352x352 to 416x416 improves mAP by 31% - 27% = 4% and 

increasing the image resolution further from 416x416 to 832x832 improves mAP by 43.2% - 31% 

= 12.2% 

 Adding dilated convolution in our model reduces mAP by 35.2% - 32.2% = 3% 

 Changing the box loss function from IoU to DIoU improves mAP by 36.7% - 30.8% = 5.9% 

 Changing anchor box dimensions from the default model values to a new set of values reduces 

mAP by 36.2% - 31.2% = 5%. 

 Changing the backbone network from Darknet-53 (default) to ResNet-152 (new) reduces mAP by 

45% - 22.5% = 22.5%. 

 Adding data augmentation in our model improves mAP by 37.9% - 29.5% = 8.4% 

From the result above, we conclude that the addition of dilated convolution in our model, the selection of 

new anchor dimensions and the alternation of the backbone network from Darkenet-53 to ResNet-152 

have negative effect on mAP as they reduce its value. As we can see from the plot below (Figure 5.10) the 

choice of ResNet-152 over Darknet-53 has the most negative impact on mAP, reducing its value by half ( 

45% to 22.5%). 

On the other hand, the increase on image resolution, the alternation of box loss function from IoU to DIoU 

and the addition of data augmentation improve the value of mAP, with the image resolution having the 

greatest impact. 

Therefore, the best options for the factors/hyperparameters we selected, which positively affect the mAP 

value, are: 

 832x832 for image resolution  

 Absence of dilated convolution 

 DIoU for box loss function 

 Default values for the anchor dimensions 

 Darknet-53 as the backbone network 

 Addition of the mosaic data augmentation technique 
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Figure 5.10 Main effects plot for mAP during training process 

Interaction plot  

The interaction plot illustrates the effects of factor interactions on the Mean Average Precision (mAP) 

(Figure 5.11). Each graph compares how two factors (like image resolution or data augmentation) interact 

and influence the model's accuracy. More precisely, the horizontal axis of each sub-plot represents the 

selected values of one hyperparameter (e.g., Image Resolution, Box Loss), illustrated with the blue and red 

lines. The vertical axis shows the mean of mAP for each interaction of hyperparameters. The goal is to 

observe how the hyperparameters interact with each other and their influence on mAP.  

 

Figure 5.11 Interaction plot for mAP during training process 

Table 5.7 illustrates the most optimal (best) and lest optimal (worst) hyperparameter interaction 

depending on their influence on the mAP. 
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Table 5.7 The best and worst hyperparameters’ interactions on the mAP 

Factor 2 Best Interaction 

Convolution 832x832 with Dilated Conv (Yes) 

Box Loss w
i
t
h
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Factor 2 Best Interaction 

 832x832 with New Anchor Dimensions 

 w
i
t
h
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Factor 2 Best Interaction 

Data Augmentation  

Box Loss Dilated Conv. (Yes) with DIoU 
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Factor 2 Best Interaction 

 Dilated Conv (Yes) with New Anchor Dimensions 

 Dilated Conv (Yes) with ResNet-152 
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Factor 2 Best Interaction 

Data Augmentation Dilated Conv (Yes) with Mosaic Augmentation 

 DIoU with New Anchor Dimensions 
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Factor 2 Best Interaction 

 
with 

 

Data Augmentation w
i
t
h
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Factor 2 Best Interaction 

 New Anchor Dimensions with ResNet-152 

Data Augmentation New Anchor Dimensions with Mosaic Augmentation 
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Factor 2 Best Interaction 

Data Augmentation w
i
t
h
 
 

 

5.4.2 ANOVA analysis for the testing process 

We followed a similar ANOVA process for the testing process. Table 5.8 below illustrates the ANOVA results 

of the testing runs. 
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Table 5.8 Analysis of Variance during testing process 

Source DF Adj SS Adj MS F-Value P-Value 

Model 96 3.50041 0.03646 26.42 0.000 

  Blocks 1 0.00004 0.00004 0.03 0.857 

  Linear 7 2.98687 0.42670 309.16 0.000 

    Image Resolution 2 0.91496 0.45748 331.46 0.000 

    Dilated Convolution 1 0.03135 0.03135 22.71 0.000 

    Box Loss 1 0.07768 0.07768 56.28 0.000 

    Anchor Dimensions 1 0.04532 0.04532 32.84 0.000 

    Backbone Network 1 1.69804 1.69804 1230.30 0.000 

    Data Augmentation 1 0.21952 0.21952 159.05 0.000 

  2-Way Interactions 20 0.33099 0.01655 11.99 0.000 

    Image Resolution*Dilated Convolution 2 0.00193 0.00096 0.70 0.500 

    Image Resolution*Box Loss 2 0.00691 0.00346 2.50 0.087 

    Image Resolution*Anchor Dimensions 2 0.03032 0.01516 10.98 0.000 

    Image Resolution*Backbone Network 2 0.02093 0.01047 7.58 0.001 

    Image Resolution*Data Augmentation 2 0.03326 0.01663 12.05 0.000 

    Dilated Convolution*Box Loss 1 0.00003 0.00003 0.02 0.876 

    Dilated Convolution*Anchor Dimensions 1 0.00168 0.00168 1.22 0.273 

    Dilated Convolution*Backbone Network 1 0.05094 0.05094 36.91 0.000 

    Dilated Convolution*Data Augmentation 1 0.00618 0.00618 4.48 0.037 

    Box Loss*Anchor Dimensions 1 0.01187 0.01187 8.60 0.004 

    Box Loss*Backbone Network 1 0.00001 0.00001 0.01 0.942 

    Box Loss*Data Augmentation 1 0.00902 0.00902 6.54 0.012 

    Anchor Dimensions*Backbone Network 1 0.00074 0.00074 0.54 0.466 

    Anchor Dimensions*Data Augmentation 1 0.00105 0.00105 0.76 0.384 

    Backbone Network*Data Augmentation 1 0.15612 0.15612 113.12 0.000 

  3-Way Interactions 30 0.10889 0.00363 2.63 0.000 

    Image Resolution*Dilated Convolution*Box 

Loss 

2 0.00388 0.00194 1.40 0.251 

    Image Resolution*Dilated 

Convolution*Anchor Dimensions 

2 0.00121 0.00060 0.44 0.647 
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Source DF Adj SS Adj MS F-Value P-Value 

    Image Resolution*Dilated 

Convolution*Backbone Network 

2 0.01060 0.00530 3.84 0.025 

    Image Resolution*Dilated Convolution*Data 

Augmentation 

2 0.00264 0.00132 0.96 0.388 

    Image Resolution*Box Loss*Anchor 

Dimensions 

2 0.00202 0.00101 0.73 0.484 

    Image Resolution*Box Loss*Backbone 

Network 

2 0.00112 0.00056 0.40 0.668 

    Image Resolution*Box Loss*Data 

Augmentation 

2 0.00117 0.00059 0.42 0.655 

    Image Resolution*Anchor 

Dimensions*Backbone Network 

2 0.00439 0.00220 1.59 0.209 

    Image Resolution*Anchor Dimensions*Data 

Augmentation 

2 0.00274 0.00137 0.99 0.374 

    Image Resolution*Backbone Network*Data 

Augmentation 

2 0.02277 0.01139 8.25 0.000 

    Dilated Convolution*Box Loss*Anchor 

Dimensions 

1 0.00046 0.00046 0.33 0.567 

    Dilated Convolution*Box Loss*Backbone 

Network 

1 0.00823 0.00823 5.96 0.016 

    Dilated Convolution*Box Loss*Data 

Augmentation 

1 0.00059 0.00059 0.43 0.515 

    Dilated Convolution*Anchor 

Dimensions*Backbone Network 

1 0.01571 0.01571 11.38 0.001 

    Dilated Convolution*Anchor Dimensions*Data 

Augmentation 

1 0.00023 0.00023 0.16 0.686 

    Dilated Convolution*Backbone Network*Data 

Augmentation 

1 0.00554 0.00554 4.02 0.048 

    Box Loss*Anchor Dimensions*Backbone 

Network 

1 0.00815 0.00815 5.90 0.017 

    Box Loss*Anchor Dimensions*Data 

Augmentation 

1 0.00777 0.00777 5.63 0.020 

    Box Loss*Backbone Network*Data 

Augmentation 

1 0.00826 0.00826 5.99 0.016 

    Anchor Dimensions*Backbone Network*Data 

Augmentation 

1 0.00142 0.00142 1.03 0.313 

  4-Way Interactions 25 0.05280 0.00211 1.53 0.074 

    Image Resolution*Dilated Convolution*Box 

Loss*Anchor Dimensions 

2 0.00127 0.00063 0.46 0.634 



University of the Aegean Department of Financial and Management Engineering 
 
 

[109] 
 

Source DF Adj SS Adj MS F-Value P-Value 

    Image Resolution*Dilated Convolution*Box 

Loss*Backbone Network 

2 0.00663 0.00331 2.40 0.096 

    Image Resolution*Dilated Convolution*Box 

Loss*Data Augmentation 

2 0.00039 0.00020 0.14 0.867 

    Image Resolution*Dilated 

Convolution*Anchor Dimensions*Backbone 

Network 

2 0.01226 0.00613 4.44 0.014 

    Image Resolution*Dilated 

Convolution*Anchor Dimensions*Data 

Augmentation 

2 0.00090 0.00045 0.33 0.723 

    Image Resolution*Dilated 

Convolution*Backbone Network*Data 

Augmentation 

2 0.00357 0.00178 1.29 0.279 

    Image Resolution*Box Loss*Anchor 

Dimensions*Backbone Network 

2 0.00510 0.00255 1.85 0.163 

    Image Resolution*Box Loss*Anchor 

Dimensions*Data Augmentation 

2 0.00059 0.00029 0.21 0.808 

    Image Resolution*Box Loss*Backbone 

Network*Data Augmentation 

2 0.00078 0.00039 0.28 0.756 

    Image Resolution*Anchor 

Dimensions*Backbone Network*Data 

Augmentation 

2 0.00260 0.00130 0.94 0.393 

    Dilated Convolution*Box Loss*Anchor 

Dimensions*Backbone Network 

1 0.00951 0.00951 6.89 0.010 

    Dilated Convolution*Box Loss*Anchor 

Dimensions*Data Augmentation 

1 0.00083 0.00083 0.60 0.440 

    Dilated Convolution*Box Loss*Backbone 

Network*Data Augmentation 

1 0.00044 0.00044 0.32 0.575 

    Dilated Convolution*Anchor 

Dimensions*Backbone Network*Data 

Augmentation 

1 0.00002 0.00002 0.01 0.909 

    Box Loss*Anchor Dimensions*Backbone 

Network*Data Augmentation 

1 0.00793 0.00793 5.74 0.019 

  5-Way Interactions 11 0.01671 0.00152 1.10 0.370 

    Image Resolution*Dilated Convolution*Box 

Loss*Anchor Dimensions*Backbone Network 

2 0.01044 0.00522 3.78 0.026 

    Image Resolution*Dilated Convolution*Box 

Loss*Anchor Dimensions*Data Augmentation 

2 0.00361 0.00181 1.31 0.275 

    Image Resolution*Dilated Convolution*Box 

Loss*Backbone Network*Data Augmentation 

2 0.00012 0.00006 0.04 0.958 
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Source DF Adj SS Adj MS F-Value P-Value 

    Image Resolution*Dilated 

Convolution*Anchor Dimensions*Backbone 

Network*Data Augmentation 

2 0.00073 0.00037 0.27 0.767 

    Image Resolution*Box Loss*Anchor 

Dimensions*Backbone Network*Data 

Augmentation 

2 0.00074 0.00037 0.27 0.765 

    Dilated Convolution*Box Loss*Anchor 

Dimensions*Backbone Network*Data 

Augmentation 

1 0.00106 0.00106 0.77 0.383 

  6-Way Interactions 2 0.00411 0.00205 1.49 0.231 

    Image Resolution*Dilated Convolution*Box 

Loss*Anchor Dimensions*Backbone 

Network*Data Augmentation 

2 0.00411 0.00205 1.49 0.231 

Error  95 0.13112 0.00138   

Total 191 3.63153    

Pareto Chart 

Figure 5.12 illustrates the Pareto chart of standardized effects for the testing process of our study. It 

demonstrates the influence and interactions of the different selected factors, on the mAP like Figure 5.9. 

The factors labeled from A to F, are the hyperparameters we selected for our study. More specifically: 

 A: Image Resolution 

 B: Dilated Convolution 

 C: Box Loss 

 D: Anchor Dimensions 

 E: Backbone Network 

 F: Data Augmentation 

In Figure 5.12, the red-dashed line indicates the standardized effect value of 1.99 when the significance 

threshold is α = 0.05.  

Based on the Pareto Chart in Figure 5.12, the factors and the interaction of factors in the testing process 

of our study are the following ones (starting from the most significant to the least significant): 

 Backbone Network (E) 

 Data Augmentation (F) 

 The interaction Backbone Network (E) and Data Augmentation (F) 

 Image Resolution (A) 

 Box Loss (C) 
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 The interaction of Dilated Convolution (B) and Backbone Network (E) 

 Anchor Dimensions (D) 

 Dilated Convolution (B) 

 The interaction of Image Resolution (A) and Data Augmentation (F) 

 The interaction of Image Resolution (A) and Anchor Dimensions (D) 

 The interaction of Image Resolution (A), Backbone Network (E) and Data Augmentation 

(F) 

 The interaction of Image Resolution (A) and Backbone Network (E) 

 The interaction of Dilated Convolution (B), Anchor Dimensions (D) and Backbone Network 

(E) 

 The interaction of Box Loss (C) and Anchor Dimensions (D) 

 The interaction of Dilated Convolution (B), Box Loss (C), Anchor Dimensions (D) and 

Backbone Network (E) 

 The interaction of Box Loss (C) and Data Augmentation (F) 

 The interaction of Image Resolution (A), Dilated Convolution (B), Anchor Dimensions (D) 

and Backbone Network (E) 

 The interaction of Box Loss (C), Backbone Network (E) and Data Augmentation (F) 

 The interaction of Dilated Convolution (B), Box Loss (C) and Backbone Network (E) 

 The interaction of Box Loss (C), Anchor Dimensions (D) and Backbone Network (E) 

 The interaction of Box Loss (C), Anchor Dimensions (D), Backbone Network (E) and Data 

Augmentation (F) 

 The interaction of Box Loss (C), Anchor Dimensions (D) and Data Augmentation (F) 

 The interaction of Image Resolution (A), Dilated Convolution (B) and Backbone Network 

(E) 

 The interaction of Image Resolution (A), Dilated Convolution (B), Box Loss (C), Anchor 

Dimensions (D) and Backbone Network (E) 

 The interaction of Dilated Convolution (B) and Data Augmentation (F) 

 The interaction of Dilated Convolution (B), Backbone Network (E) and Data Augmentation 

(F) 

The remaining hyperparameters or their interactions do not have a significant effect on mAP, since their 

values are less than 1.99.   

In the testing process the most significant hyperparameter is the backbone network (E), followed by data 

augmentation (F) and image resolution (A). Of course, all factors and factor interactions exceeding the red 

line (threshold 1.99) are also noted as statistically significant. Interactions such as AE, AF, BE, and AB have 

significant effects on mAP.   
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Figure 5.12 Pareto chart of the standardized effects during testing process 

Based on Pareto Chart of the training process (Figure 5.9) and the Pareto Chart of the testing process 

(Figure 5.12), we can conclude that: 

1.  Important hyperparameters: 

 Training: The Backbone Network (E) has the largest standardized effect, followed by Data 

Augmentation (F) and Anchor Dimensions (D). These three hyperparameters are the dominant 

ones in the training process. 

 Testing: Similarly, Backbone Network (E) remains the most important hyperparameter during 

testing, followed by Data Augmentation (F) and Image Resolution (A). 

2. Important interactions of hyperparameters: 

 Training: Significant interactions include EF, CD, AF, and CF. These interactions suggest that 

interactions of backbone network with data augmentation and anchor dimensions are important 

during training. 

 Testing: Interactions such as AE, AF, BE, and AB seem to be more important during testing, 

indicating that factors like image resolution, when combined with data augmentation or the 

backbone network, have a greater influence on mAP. 

Therefore, we can conclude that backbone network (E) and data augmentation (F) consistently remain 

the most significant hyperparameters for improving mAP in both training and testing processes, 

indicating their importance in model performance across both phases. 

 

Main effects plot for mAP 
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Figure 5.13 shows the main effects plot for the testing process in our study (Kim et al., 2007), which 

measures the impact on mAP for the factors A, B, C, D, E and F. By analyzing these six factors in the main 

effect plot in Minitab, we can conclude to the following observations below: 

 Increasing image resolution from 352x352 to 413x416 improves mAP by 24.6% - 20.4% = 4.2%. By 

further increasing the image resolution from 416x416 to 832x832 improves mAP by 36.7% - 24.6% 

= 12.1% 

 Adding dilated convolution in our model reduces mAP by 28.5% - 25.9% = 2.6% 

 Changing the box loss function from IoU to DIoU improves mAP by 29.2% - 25.2% = 4% 

 Changing anchor box dimensions from the default model values to a new set of values reduces 

mAP by 28.8% - 25.7% = 3.1%. 

 Changing the backbone network from Darknet-53 (default) to ResNet-152 (new) reduces mAP by 

36.6% - 17.8% = 18.8%. 

 Adding data augmentation in our model improves mAP by 30.6% - 23.8% = 6.8% 

The addition of dilated convolution in our model, the selection of new anchor dimensions and the 

alternation of the backbone network from Darkenet-53 to ResNet-152 have negative effect on mAP as they 

reduce its value. As we can see from the plot below (Figure 5.13) the choice of ResNet-152 over Darknet-

53 has the most negative impact on mAP, reducing its value approximately by half ( 36.6% to 17.8%). 

On the other hand, the increase on image resolution, the alternation of box loss function from IoU to DIoU 

and the addition of data augmentation improve the value of mAP, with the image resolution having the 

greatest impact, similar to the training process. 

Therefore, we conclude that the best options for the factors/hyperparameters we selected, which 

positively affect the mAP value, are the same with the training process: 

 832x832 for image resolution  

 Absence of dilated convolution 

 DIoU for box loss function 

 Default values for the anchor dimensions 

 Darknet-53 as the backbone network 

 Addition of the mosaic data augmentation technique 
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Figure 5.13 Main Effects Plot for mAP during testing process 

Therefore, from the above results, we can conclude that Darknet-53 as a backbone offers a better 

performance when we have a higher image resolution (832x832), the default anchor dimension, the 

YOLOv3 model suggests, and the dilated convolution before the YOLO heads, is not added. Nevertheless, 

it seems that the addition of data augmentation is important, as the default YOLOv3 model does not use 

data augmentation techniques. Additionally, our performance is better when the box loss function is DIoU 

instead of the IoU that is the default box loss function of YOLOv3.  

5.4.3 Similarities and differences in the analysis results of validation vs. testing 

Table 5.9 compares the effects of the main factors on mAP resulting from the ANOVA of validation vs. 

testing. 

Table 5.9 Comparison of the effects of the main factors on mAP between validation and testing. The values indicate the 
difference between High and Low 

Factor/Interaction Validation effect on mAP in %  ( 
High – Low) 

Testing effect on mAP in %  
(High – Low) 

Image resolution (A) 4.0 +12.2 = 16.2 4.2+12.1 = 16.3 

Dilated Convolution (B) 3 2.6 

Box Loss Function (C) 5.9 4 

Anchor Box Dimensions (D) 5 3.1 

Backbone Network (E) 22.5 18.8 

Data Augmentation (F) 8.4 6.8 

 

More specifically, we can conclude that the effect of Image Resolution (A) on mAP resulting from either 

the validation or testing ANOVA is consistent.  Similar conclusions hold for almost all other Factors.  In 

general, though the effects resulting from the ANOVA of the testing results have slightly lower values as 

those resulting from the ANOVA of the Testing results.  This may be attributed to the lower mAP values 

obtained during testing.   
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Overall, the analysis highlights that hyperparameters, such as image resolution and the backbone 

network, have consistently very significant effects on mAP across both validation and testing phases.  The 

effects of the rest of the factors are still statistically significant but lower in value. 

5.4.4 Evaluation Metrics for YOLOv3: Performance 

As discussed in Chapter 3, key evaluation metrics such as Precision, Recall, F1-Score, Average Precision 

(AP), and mean Average Precision (mAP) are used to assess model performance. As a reminder, Precision 

measures how accurately the model identifies objects, while Recall indicates its ability to detect all 

relevant objects. Thus, Precision is the ratio of True Positives to True Positives + False Positives, while Recall 

is the ratio of True Positives to total objects in the image (True Positives + False Negatives). A True Positive 

occurs when the model correctly detects an object with appropriate Intersection over Union (IoU) and the 

right classification, while a False Positive occurs when the model misclassifies, that is, it detects a non-

existent object or predicts multiple boxes for the same object. A False Negative occurs when the model 

may not detect an object that is present in the image. The F1-score provides a balance between Precision 

and Recall, and AP evaluates the Precision across different Recall values for a single class, whereas mAP 

calculates the average AP across all object classes. A higher mAP suggests improved detection 

performance across multiple categories. Consequently, these metrics are important in evaluating the 

model’s performance. 

The 90th experiment results (see Table 5.10) give a detailed evaluation of the model’s performance using 

the above metrics. Based on these results, it is observed that while the model detects cars accurately, it 

has difficulty identifying bikes and people, which leads to a higher number of false positives. 

Table 5.10 Evaluation metrics of YOLOv3 90th experiment 

 

Specifically,  

Person - Class ID: 0  

 TP (True Positives): 19,033 correctly detected people with sufficient IoU and correct classification 

 FP (False Positives): 9,750 incorrect detections due to misclassification, ghost detections, or 

overlapping bounding boxes 

 FN (False Negatives): 23,263 undetected objects, although they existed in the image 

Car - Class ID: 1  

 TP: 33,299 cars correctly detected with proper IoU and classification 

 FP: 8,054 incorrect detections, likely including misclassified objects or duplicate boxes 

          

          

          

          

          

Overall model 
performance 
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 FN (False Negatives): 6,820 actual cars were not identified by the model despite being in the image 

Long Vehicle - Class ID: 2 

 TP: 6,702 long vehicles correctly identified 

 FP: 3,180 false detections, likely due to incorrect object classification or improper bounding box 

placement. 

 FN (False Negatives): 3,936 long vehicles were present in the image but remained undetected by 

the model 

Bike - Class ID: 3  

 TP: 9,823 bikes correctly detected. 

 FP: 5,757 incorrect detections, possibly caused by confusion with other objects or duplicate 

detections. 

 FN (False Negatives): 17,463 bicycles were missing by the model, leading to missing detections. 

Total Performance  

 TP: 68,857 objects correctly detected. 

 FP: 26,741 incorrect detections due to misclassification, poor bounding box placement, or 

multiple detections of the same object. 

 FN (False Negatives): 51,482 objects were not detected, reducing the model’s recall performance 

Therefore, the model demonstrates strong performance in car detection, achieving the highest AP 

(85.16%), with high precision (0.81) and recall (0.83), making it the most reliable class. However, bike 

detection is the weakest, with low AP (41.88%) and recall (0.36), indicating that the model struggles to 

correctly identify bikes, often missing actual bikes and producing many false positives. Person detection is 

also challenging, having a moderate AP (49.11%), low recall (0.45), high false positives (9,750), and high 

false negatives (23,263) indicating frequent misclassification of objects as people. The high false positive 

rate (FP = 26,741) indicates that the model frequently detects objects incorrectly.  

Based on our experimental results, we can conclude from the last row of Table 5.10: 

1. Precision (0.72) showcases a good accuracy, but false positives exist. The model correctly 

classifies 72% of detected objects, meaning that 28% of detections are false positives. 

2. Recall (0.57) indicates many missed detections. A recall score of 0.57 suggests that while the 

model detects many objects, a large portion remains undetected, missing 43% of actual objects. 

This imbalance between precision and recall indicates that the model avoids making too many 

incorrect detections but still fails to detect many actual objects. 



University of the Aegean Department of Financial and Management Engineering 
 
 

[117] 
 

3. F1-Score (0.64) indicates a moderate balance between precision and recall. A higher F1-score 

would indicate a more effective relationship between detecting all objects and reducing 

misclassifications. 

4. mean Average Precision (60.99%) could indicate good but not optimal performance. This score 

of 60.99% suggests that across all object classes, the model is reliable but not highly accurate, 

especially at detecting objects across different recall levels. The mAP is largely influenced by strong 

performance in car detection (AP = 85.16%) and weaker performance in person and bike 

detection. 

Previous studies report YOLOv3 mAP values ranging from 39.7% to 40.3% on similar UAV datasets 

(Pebrianto et al., 2023). Another study based on UAV imagery, achieved a test mAP of 31.4% on the 

VisDrone dataset using YOLOv3 (Zhang et al., 2023). Our model achieved a mAP of 60.99% in the validation 

process and a mAP of 52.37% (see Table 5.3) in the test process. Consequently, our model outperforms 

these benchmarks, demonstrating improved robustness in detecting various object classes. However, it is 

important to note that different UAV datasets were used in our research and in the studies mentioned. 

It should be mentioned that mAP is the most significant evaluation metric. The mAP value is computed at 

a specific Intersection over Union (IoU) threshold, commonly set at 0.5 (mAP@0.5). A higher IoU threshold 

(e.g., 0.75) requires stricter overlap between predicted and ground-truth bounding boxes, often reducing 

mAP, while a lower threshold (e.g., 0.25) allows less strict detections, potentially increasing mAP. This 

means a model with high mAP (0.75) is more precise in localization. A helpful way to understand mAP is 

to imagine it as a measure of confidence in both detecting and correctly classifying objects. For instance, 

if the model detects a person but mistakenly classifies it as a bicycle, this impacts AP and ultimately 

reduces mAP. A model with a high mAP not only finds most objects but also classifies them correctly with 

high confidence.  

In simply terms, mAP does not indicate the percentage of objects detected in an image. A common mistake 

is that if mAP = 60%, the model detects 60% of the objects in an image. However, mAP is a measure of 

both detection accuracy and classification correctness across multiple recall thresholds. For example, if a 

model predicts 80 bounding boxes but 40 of them have poor localization (𝐼𝑜𝑈 ≤ 0.5) or incorrect class 

labels (𝐶𝑙𝑎𝑠𝑠 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≤ 0.25), the precision and recall values will be affected, leading to a lower mAP 

score. Thus, a model with mAP = 60% does not mean it identifies 60% of objects, but rather that it achieves 

an average precision of 60% over different recall values across multiple object categories. In practice, mAP 

serves as a holistic performance metric that evaluates both how many objects are detected and how 

correctly they are localized and classified rather than just the proportion of objects found in an image. 

 

  

mailto:mAP@0.5


University of the Aegean Department of Financial and Management Engineering 
 
 

[118] 
 

Chapter 6 Conclusions 

This thesis focuses on optimizing training of the YOLOv3 model for object detection using UAV-captured 

imagery. It showcases the importance of hyperparameter selection in training effectiveness. Specifically, 

through extensive analysis, we identified important hyperparameters that influence the trained model’s 

performance. By adjusting these hyperparameters we fine-tuned training of the model to achieve higher 

precision in detecting objects.   

The study utilized annotated UAV datasets that were preprocessed to align with YOLOv3’s requirements. 

The selected datasets were the UA Vehicle Detection Dataset, Stanford Dataset and VisDrone2019DET 

dataset. The consolidated dataset consists of 16,303 images with 602,240 annotations and it was split into 

training (80%), validation (10%), and testing (10%) subsets.  

Training optimization was approached by dividing hyperparameters into two categories. The first one 

included hyperparameters that were set according to the characteristics of the training subset and were 

kept invariant throughout the analysis. These included max batches, number of classes, filters, and steps. 

The second category contained the hyperparameters we selected to adjust; i.e., image resolution, 

backbone network, anchor box dimensions, dilated convolution, box loss and data augmentation 

techniques.  

A Full-Factorial experimental design was employed to generate 96 (25 𝑥 3) distinct combinations of these 

key hyperparameters. The training process was executed twice for each combination of the selected 

hyperparameters, resulting in a total of 192 trained models. During training, validation was performed 

every 100 iterations. Finally, after training, we conducted the testing process to evaluate model 

performance. 

Each of the 192 experiments produced outputs consisting of the highest mAP achieved during validation 

and testing. The results of these experiments were analyzed using ANOVA, which revealed that all 

hyperparameters significantly influence model's performance. Among them, the most impactful 

hyperparameters on performance are: the backbone network, data augmentation and image resolution. 

Additionally, two significant two-way interactions were observed: a) between the backbone network and 

data augmentation, and b) between the backbone network and dilated convolution. 

The best-performing model achieved mAP values of 60.99% during training/validation and 52.51% during 

testing process. The model that achieved this performance corresponds to the following hyperparameter 

combination: 

o Image Resolution: 832x832  

o Dilated Convolution: No  

o Box Loss: DIoU  

o Anchor Dimensions: Default  

o Backbone: Darknet-53  

o Data Augmentation: Mosaic 
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On the other hand, the performance of the lowest performing models was very low, indicating that the 

hyperparameter selection and tuning plays an important role and could lead to significant improvements 

in YOLOv3’s detection performance. 

The thesis contributed in revealing: 

 The important role of hyperparameter selection and tuning in optimizing YOLOv3’s training 

performance 

 The significant and quantifiable impact of hyperparameters and their interactions on the precision 

of object detection. 

Future research investigations could include: 

 Exploring hyperparameters of newer YOLO versions to analyze how they could affect YOLOv3 

performance 

 Integrating another backbone network to validate that the default one (Darknet-53) offers the 

best performance 

 Incorporating other types of data augmentation apart from “mosaic” that was selected in our 

study 

 Testing the performance of the model in a greater variety of datasets 

 Creating balance in class representation to lower the mAP differences between training/validation 

and testing. 
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