University of the Aegean
School of Engineering

Department of Financial Management and Engineering

FINE TUNING OF YOLOv3 TRAINING FOR OBJECT DETECTION IN IMAGES
RECORDED BY A UAV

Tsiflitzi Anna

Supervisor: Prof. Georgios Dounias
Committee Members: Associate Prof. Vasileios Zeimpekis

Associate Prof. Vasileios Koutras

Chios, January 2025

University of the Aegean Department of Financial and Management Engineering

To my family...

[ii]

University of the Aegean Department of Financial and Management Engineering

Acknowledgements

First and foremost, | would like to express my sincere gratitude to Professor loannis Minis and my
supervisor, Professor Georgios Dounias, for their invaluable guidance, inspiration, and support throughout
this academic endeavor. Their insights and expertise have been a source of inspiration throughout this
journey. Their continuous and constructive feedback on my analysis enabled me to optimize my thesis,
while their insightful advice helped me grow personally and pushed me towards my academic excellence.

| am deeply thankful to George Tepteris for his invaluable support through every step of my analysis,
experiments, and knowledge sharing on the field. His dedication, technical expertise and willingness to
assist have been important in overcoming challenges and achieving meaningful results.

Another special thank you is extended to my colleague, Panos Lapsanis, for his exceptional teamwork,
productive collaboration, and fruitful academic discussions. The knowledge exchange and cooperative
spirit we shared have not only enriched the outcomes of my thesis but also made this knowledge journey
more fulfilling.

Finally, | am deeply grateful to my family and friends for their unwavering support, encouragement, and
belief in me throughout this journey of learning and growth. To my parents, who have always been by my
side in every step in my life, being my constant source of strength and showing me the value of hard work
and patience. Their love and sacrifices have been the foundation of all my achievements. To my sibling,
whose cheerfulness and continuous support helped me overcome any challenges, your constant
encouragement has meant more than | can express. To my friends, whose encouragement, understanding
and patience in my progress kept me motivated. Thank you for being by my side.

[iii]

University of the Aegean Department of Financial and Management Engineering

Abstract

This thesis focuses on optimizing training of the YOLOv3 (You Only Look Once) model for object detection
using UAV (Unmanned Aerial Vehicle)-captured imagery. It showcases the importance of hyperparameter
selection in training effectiveness. Specifically, through extensive analysis, we identified important
hyperparameters that influence the trained model’s performance. By adjusting these hyperparameters we
fine-tuned training of the model to achieve higher precision in detecting objects.

The study utilized annotated UAV datasets that were preprocessed to align with YOLOv3’s requirements.
These datasets were publicly available and comprised of the UA Vehicle Detection Dataset, Stanford
Dataset and VisDrone2019DET dataset.

Training optimization was approached by classifying hyperparameters into two categories. The first
included hyperparameters that were set according to the characteristics of the training dataset and were
kept invariant throughout the analysis. These included max batches, number of classes, filters, and steps.
The second category contained the hyperparameters we selected to adjust; i.e., image resolution,
backbone network, anchor box dimensions, dilated convolution, box loss and data augmentation
techniques.

A Full-Factorial experimental design was employed to generate 96 (2° x 3) distinct combinations of these
key hyperparameters. The training process was executed twice for each combination of the selected
hyperparameters, resulting in a total of 192 trained models. During training, validation was performed
every 100 iterations. Finally, after training, we conducted the testing process to evaluate model
performance.

Each of the 192 experiments produced outputs consisting of the highest mAP achieved during validation
and testing. The results of these experiments were analyzed using ANOVA, which revealed that all
hyperparameters significantly influence model performance. Among them, the most impactful
hyperparameters on are the backbone network, data augmentation and image resolution. Additionally,
two significant two-way interactions were observed: a) between the backbone network and data
augmentation, and b) between the backbone network and dilated convolution.

The best-performing model achieved mAP values of 60.99% during training/validation and 52.51% during
testing. The model that achieved this performance corresponds to the following hyperparameter
combination:

Image Resolution: 832x832
Dilated Convolution: No
Box Loss: DloU

Anchor Dimensions: Default
Backbone: Darknet-53

Data Augmentation: Mosaic

O O O O O O

[iv]

University of the Aegean Department of Financial and Management Engineering

On the other hand, the performance of the worst performing models was very low, indicating that
hyperparameter selection and tuning plays an important role and could lead to significant improvements
in YOLOv3's detection performance.

The study demonstrates the important role of tailored training processes, dataset preparation,
hyperparameter selection and tuning in enhancing YOLOv3's effectiveness for object detection.

[v]

University of the Aegean Department of Financial and Management Engineering

NepiAnyn

H mapoloa SUTAWUATLKY EpYAcia ETUKEVIPWVETAL 0TN BeATiotomnoinon tng dtadikaciag ekmaidsvong tou
Once) yla TNV aviyveuon Kal TaflVOUNon OVTLKELLEVWY aTtO ELKOVEC TIOU Kataypadovtal ano UAV (Mn
Enavépwiéva Evagpla OxUata) KoL CUYKEKPLLEVO QVOPWTIWY, QUTOKLVATWY, TIOSNAATWY KAl LEYOAWY
oxnuatwv. H emiteuén tng PBeAtiotomoinong mpayupatonolnnke péow tNg puBULONG KOTAAANAWVY
UTIEPTIOPAUETPWY TOU YOLOV3 HOVTEAOU, [UE OTOXO TN HEYLOTOTOINON TNG LEONG TLUAG TNG LEONC OKpiBELag
N MAP). JUYKEKPLUEVQ, LECA ATO EKTEVH QVAAUOTK, EVTIOTILOTNKAV OL UTIEPTIAPAETPOL TIOU EMNPEAlOUV
v anodoon tou YOLOV3 povtéAou Kal pog evoladEpouv yia TV Sk pag épeuva. Me tnv Kat@AAnAn
T(POCOPHOYN AUTWV TWV UTIEPTIAPAUETPWY, EYWVE N CWOTH PUBLLON TNG EKMALSEUCNG TOU HOVTEAOU, Kall
amnodeixbnke OTL oplopEVOL UTIEPTIAPAUETPOL eEMEDEPAV UPNAOTEPA ATIOTEAEGUATA MAP GUYKPLTLIKA LIE TLG
TPOETUAEYUEVEG puBUioeLg Tou YOLOV3.

JTnv £peuva pag xpnotponotnoape dnuoota Stabéoipa cuvola dedopévwy elkovwy amo UAV, onwg ta
Dataset, to Stanford Dataset kot 1o VisDrone2019DET dataset. Ta cuykeKpLUEVA oUTA cUVOAQ SeSoUEVWV
ELKOVWV TPOTIOTOLNONKAV TIPOKELUEVOU VA TTEPIAAUBAVOUV HOVO TLG KATNYOPLEG AVTIKELUEVWY TIOU HOG
evllEdepayv yLa TV EPEUVA LOG.

H PBeAtlotomoinon tng ekmaibeuong tou YOLOvV3 mpayupatomolibnke pe tnv taflvopnon Ttwv
UTtEPTIOPAUETPWY O U0 Katnyoplec. H mpwtn mepAduBove umepmopapeTpous mou kabopiotnkav
cUUPWVA LLE TO XOPOKTNPLOTLKA TOU CUVOAOU Sebopévwy ekmaibeuong kal mapépelvay apetaBAnteg kab'
OAn tn 8lapkela TnG avaluvong. H Seltepn katnyopio TmeplAAuBOvVeE TIC UTEPTIAPOUETPOUC TIOU
puBuiotnkav yla tn BeAtiotomnoinon tng anodoong eknaibeuong tou YOLOV3.

Mo Tov oxedlaopuo MelpapdTwy Xpnotpomnotionke n pébodog mMAnpouc mapayovtikol oxedtaopou (Full-
design), &nuioupywvtag 96 (2° x 3) Slakpltou¢ cuvduAOHOUC TwWV EMIAEYUEVWY Yla TNV €peuva
umepropapétpwy. H Sladikacia ekmaidsuong ekteAéotnke dUo ¢opéc yla kabe cuvduaopd Twv
ETUAEYUEVWV UTIEPTIOPAUETPWY, HE amotédecpa va Snuoupynbolv ocuvohikd 192 ekmoadeupéva
MovTéAa. Emerta, META TNV ekmaidsuon Twv HoViEAwv, Tpaypatonolionke n Siadikacia SoKLung
anodoong tou Hoviédou (testing) ylwa tnv afloAdynon tng amoddoong Tou HOVTEAOU. ZKOTOC TNG
ekmaldevong kat tng Sadikaciog Sokipung amoddoong eival vo mpaypatormowinBel n avaluvon twv
QMOTEAECUATWY HECW TNG AvaAuong Alakupavong (ANOVA).

H avaluon twv Tipwv tou mAP mou mpogkuav amnd tnv Stadikacia eknaidsuong kol SOKIHWY HECW
ANOVA amok@Aue OTL OAEC OL UTEPTIAPAETPOL EMNPEALOUV ONUOVTIKA TNV amodoon Tou HOVIEAOU.
Q0TO00, Ol UTIEPTIOPALETPOL LE TN LeyaAUTepn enidpaon Atav o koppog Siktvou (backbone network), n
ovénon 6ebopévwv (data augmentation) kat n avdAuon ewdvag (image resolution). EmutAéov,
napatnpendnkav Vo oNUAVTIKEG AAANAETILOPACELG PETAED TTOPAYOVTWY: O) LETAEY TOU KOPHUOU SIKTUOU
network) kat tg avénoncg dedopévwy (data augmentation), kot B) peta€d Tou koppou diktuou (backbone
network) kat tng Stotetopévng ocuveliktikng (dilated convolution).

To KaAUTEPO €KMOLSEUUEVO LOVTENO METUXE TIUEG MAP 60,99% katd tnv ekmaibsuon/emkipwon Kot
52,51% katd tn Sokuun anodoonc. To LOVTEAO TTOU TTETUXE QUTHV TNV andSoon avTLoToLXel oTov akoAouBo
OUVOUOOUO UTIEPTIOPAUETPWV:

[vi]

University of the Aegean Department of Financial and Management Engineering

Avdluon ewkovag (Image Resolution): 832x832

e Awatetapévn Zuveliktikn (Dilated Convolution): Oxt

e AnwAsla KoutwoU (Box Loss): DloU

e Al0oTAOELG TWV MEPLypappdaTwy (Anchor Dimensions): Default
e Kopuog Aktuou (Backbone Network): Darknet-53

e Al&non Asbopévwy (Data Augmentation): Mosaic

ATO TNV AAAN TAEUPQA, N CNUOVTIKA XaUnAn anodoon OpLOUEVWY LOVTEAWY, UTIOSEIKVUEL OTL N €TAOYN
Kal pUBULON TWV UTEPTIAPAUETPWY TIALlEL ONUAVTIKO POAO KOL WTMOPEL Vo 08NYNOEL OE ONUOVTLIKEG
BeAtuwoelg TNV AMOTEAECUATIKOTNTA ToUu YOLOV3 yLa TV avixveuon Kot TOEWOUNGCN OVTIKELUEVWV.

[vii]

University of the Aegean Department of Financial and Management Engineering

Table of Contents

Chapter 1 INtrodUCHIONuiiiiiie e e e e st ee e e s st e e e s sbteeessbeeeessnbeeeesaseeeessnnes 13
Chapter 2 Understanding object detection and YOLOcccoooiiiiiiiiiie ettt 15
2.1 Fundamentals of object detection...............coooiiiiiiiiiii i e e 15
2.1.1 Overview Of COMPUEET VISION...........coiiiiiiiiiiiiiiie ettt e e s bee e e s sbee e e s sbeeeessnnes 15
2.1.2 Definition and purpose of object detectionc.cccceeiiiiiiiiiiiiii e 15
2.1.3 Key components of object detection systems..............cccceovviiiiiiiiiii i 16
2.1.4 Object detection approaches (R-CNN, SSD, YOLO)...........ccoocviiiiiiiiieeccieee et e e eveeee e 18

2.2 Evolution of YOLO algorithms and key features..............cc.ooeeviiiiicciiiie e e 21
2.2.1 Introduction to YOLO (You Only Look Once) algorithms.............ccccoeeiieiiiieccie e, 21
2.2.2 Overview of YOLOVL and YOLOV2...........cc.cooiiiiiiiieenieeeiie et ettt e sttt e sveeesabeesbeesneeesareeenaees 22
2.2.3 Innovations in YOLOvV3 and its Significancecccccviiiiiiiii e 23
2.2.4 ConClUdING FEMAIKS..........oooiiiiiie et e et e e et e e e e tte e e s eebte e e e ebteeesesteeesesteeaesastanaesnnes 24
Chapter 3 Deep DIive into YOLOV3oooiiiiiiieiiee ettt ettt e e tte e e e etee e e s e bte e e e ebaeeessaseseesenseseessstenaesnnes 25
3.1 YOLOV3 architecture OVEIVIEW.............coocuiiiiiiiiiiieiie ettt ettt et e s tee e sate e s bt e e sabeesabeesbeeesbeeenns 25
3.2 The YOLOV3B @rchit@CtUureccocuiiiiiiiiiieiiee ettt ettt ettt e st e st e e sab e e sareesnteesabeeenns 27
3.2.1 Darknet-53 backbone and feature extractionccoceiiiriiiiiiininee e 27
3.2.2 Feature Pyramid NetWOrk (FPN)ccoiiiiiiiii ettt et e e e erae e e e rae e e eennaeeeean 30
3.2.3 Detection hEadS..........c.coiiiiiiiiieeete ettt sttt et et e sbe e she e saee e 33

3.3 Training, validation and teSting.............ccccuiiiiiiiii i e 35
3.3.1 Training Process Of YOLOV3.........cooociiiiiiiiiie e ctee et e ettt e e e ita e e s sata e e e saaaee s ssnsaaeesnnnsaeeenn 36
3.3.2 Validation process of YOLOVScoooiiiiiiiiiiiei ettt e e et e e e eeata e e e e satae e e eeatae e e e ataeeeennnaeeeean 40
3.3.3 Testing process Of YOLOVSooooiiiiiiiiiie ettt e et e e e et e e e e s eaaae e e e aba e e e e ntaeeeeennsaeanan 41

3.4: 0Peration OF YOLOVS.........oooeeiiiii ittt e e e e e et e e e e e e e e e s tbbaeeeeeeee s aatssaeeeeeeeessstraaeeeeeeenans 45
Chapter 4 Data preparation and parameter selection for training the YOLOv3 algorithm..................... 47
4.1 Data collection and anNOtationcccooiiiiiiiiiiiiiee s 47
4.1.1 Data COllECHION.......co..eiiiii ettt ettt sttt b e be e be e sae e st e et s 47
4.1.2 Annotation and consolidationc..cooiiiiiiiiii e 49

4.2 EXPEriMeENtal SEL UPoooiiiiiiii ettt e e e tre e e e te e e e et ae e e et e e e e e nabaae e e nbreeeenraeas 50
4.3 YOLOV3 hYPEIPAramMELEIScccuveiiiiiiieeieiiee e eeiteeeeeiteeeeeateeeesetbaeesesabaeeeeansaeesannseeesesnseeesensseeesesssenes 51
4.3.1 Hyperparameters determined by the characteristics of the datasetc.ccccveeenenen. 52
4.3.2 Hyperparameters associated with the YOLOv3 architecture and functionality...................... 56
4.3.3 Hyperparameters selection for ourresearchcccccoviieiiiiii e 60

[viii]

University of the Aegean Department of Financial and Management Engineering

Chapter 5 EXperimental AN@lYSisccouiiiiiiiiiiiiiiiee ettt e e st e e s sbee e e s sbaeeessbeaeesssneeeessnes 73
L VLI T o T I D T -4 TP PSPPI 73
5.2 Experimental set-up and @XECULIONcooiiiiiiiiie et e e e nrre e e e aaeeas 76
5.3 Experimental results and analysisooooiiiiiiiiiii e e e 81
5.4 Hyperparameter effects on mean Average Precision (MAP)............ccccoociieiiiiecie e 88

5.4.1 ANOVA analysis on best mAP results from the training/validation process........................... 89
5.4.2 ANOVA analysis for the testing ProCess............cccccuviiiiiiiieieiiiee e e eesaaee e 106
5.4.3 Similarities and differences in the analysis results of validation vs. testing 114
5.4.4 Evaluation Metrics for YOLOV3: Performance...........ccccoeceevieeneenienieniceeeieescesee e 115
[0 T] =T o3 oo T Uol [V ' 4 T3P 118

[ix]

University of the Aegean Department of Financial and Management Engineering

Table of Figures

Figure 2.1 Object detection in visual recognition (Pathak et al., 2018)cceeeeeiiiieeeiiiee e, 16
Figure 2.2 Use of Convolutional Neural Network for object detection (Pathak et al., 2018) 17
Figure 2.3 Architecture of SSD algorithm (Rohan et al., 2019)coooviiiiiiciieee e e 19
Figure 2.4 Two-stage object detectors R-CNN (Diwan et al., 2023)ccceeciieviieciie e 20
Figure 2.5 Two-stage object detectors Faster R-CNN (Diwan et al., 2023)ccceeveeevieeeceeecee e 20
Figure 2.6 Architecture of YOLOv1 algorithm (Redmon et al., 2016).......ccccccuveeeiiiiieeeiiiee e 21
Figure 3.1 YOLOv3 network architecture (Palma, 2020)ccceeciieiiieeiiieeee e ere e ee e e 26
Figure 3.2 Darknet-53 architecture (Ma et al., 2020)cccocouiiieeiiieee e e rree e e e e e eareeas 27
Figure 3.3 A 3x3 kernel (per channel) slides over the input to generate the output(Tepteris et al., 2023)28
Figure 3.4 YOLOv3 Residual block structure (Xu & WU, 2020)ccccueeiieeeiiieenriesieeerieeeeieeeseeeseseessveeesens 30
Figure 3.5 Network architecture of feature pyramid network (FPN) (Zhang et al., 2021).........cccvveeennnneen. 31
Figure 3.6 Upsampling layer (Tepteris €t al., 2023)....c..cciiiiiiieeeiee et eee et steeetre e ve e e sae e sre e e raeeennas 32
Figure 3.7 Concatenation of two inputs (Tepteris et al., 2023).......cccceiiieeciiiecie e e 32
Figure 3.8 YOLOv3 Output vector per anchor in each cell (Tepteris et al., 2023)ccccvieeeeiiieeeeciiee e, 34
Figure 3.9 Training process of YOLOV3 (Tepteris et al., 2023)cooiiieiieeecie et 36
Figure 3.10 Computing Intersection over Union (loU) (Padilla, Netto, & Silva, 2020)ccccceeeecvveeeennnenn. 37
Figure 3.11 loU of bounding boxes (Kamal, 2019)c..ueiiiiiiiieeiiieeecee et e e 37
Figure 3.12 YOLOv3 detection with class score (Shivaprasad, 2019).ccceeviveeriieeiieeccee e 39
Figure 3.13 YOLOv3 prediction example (Gilbert, 2020).........coeecciiieeiiiiee e e e e e 39
Figure 3.14 Validation process Of YOLOV3.......coiiiiiiiiiiiieeeiiiee e eriee e ssree e es e e s s svte e e s s sbee e s sabeeessnbeeessnseeas 40
Figure 3.15 Testing process of YOLOV3 (Tepteris et al., 2023)oveiiieiieeeeeecee et 41
Figure 3.16 Operation process of YOLOV3 (Tepteris et al., 2023) ...cocoorieeeiiiiee et et 46
Figure 3.17 Image after the applying of YOLOv3 object detection algorithm (Cruz Martinez, 2021)......... 46
Figure 4.1 The number of training, validation and testing images included in the consolidated dataset..50
Figure 4.2 Hardware Configuration Of the SYStEMueiiiiiiie e e e 50
Figure 4.3 Software components of the SYStEMcociiiii i 51
Figure 4.4 lllustration of "classes" adjustment in the configuration file.........ccccccoiieieiiii e, 53
Figure 4.5 lllustration of "max_batches" in the configuration file..........cccoeiiiiiiiiie e, 54
Figure 4.6 lllustration of “filters” in the configuration fileccuveieiiiiiirici e, 55
Figure 4.7 lllustration of “steps” in the configuration file..........cccouiiieiiii e 56
Figure 4.8 lllustration of the three different image resolution options in the configuration file................ 61
Figure 4.9 lllustration of the default anchor dimensions for the YOLO head responsible for detecting

] 10T 11 o] o<1 3PP PUPPPRNt 61
Figure 4.10 lllustration of the default anchor dimensions for the YOLO head responsible for detecting

[Y=Te [TUT 0 0T o] o [Tt £ USURRRN 62
Figure 4.11 lllustration of the default anchor dimensions for the YOLO head responsible for detecting
T ={=I o] o} [Tt £ URURRN 62
Figure 4.12 lllustration of the updated anchor dimensions in the configuration fileccccccceceieeenneen. 63
Figure 4.13 lllustration of mosaic augmentation (Alexey, 2020)..........ccceeeiererireeriieeerreeeree e eseeeeereeeeenes 65
Figure 4.14 lllustration of “mosaic” in the configuration file...........ccccciiiiiiiii e, 66
Figure 4.15 Dilated convolution filters with dilation rates D=1, D = 2, D = 3 respectively (Heffels and
VaNSCNOIEN, 2020)uvviiiiiiiiee ettt et ee e et e e eeetteeeeeetaeeeeeetaeesesesteeeeeastaesesastaesesasssesesassassesasssesesassresesassrnnenns 67

University of the Aegean Department of Financial and Management Engineering

Figure 4.16 lllustration of the DloU in the configuration fileccooviiiiiiiiiiiiii e, 70
Figure 5.1 Configuration files (.cfg) along with the corresponding data files (.data).........ccccceeeeerveernnnnn. 76
Figure 5.2 Variables from the first .data file corresponding to the first .cfg file in our experiments.......... 76
Figure 5.3 Txt file including the 0bject ClassSes.......uuiiiiiiiiiiie e 76
Figure 5.4 Execution command for conducting the eXperiments........ccceeeecieeeeciieee e e 77
Figure 5.5 Information included in all .data files used for testingccccevvviieeiiiiiiii e, 79
Figure 5.6 Execution command for the testing process of our experiments.........cccceecveeeeeicieececcviee e e, 79
Figure 5.7 Training progress chart of the 90th eXperiment ..o e 87
Figure 5.8 Training progress chart of the 74th eXperiment ... 87
Figure 5.9 Pareto chart of the standardized effects during training Process.......ccccceeecvvveeeeicieeeeecciiee e e, 96
Figure 5.10 Main effects plot for mAP during training ProCessccucueeeeriiieeeiiiiiee et esree e e 98
Figure 5.11 Interaction plot for mMAP during training ProCess......cc.uueiicieiiiriiiiee e cereee e e sree e 98
Figure 5.12 Pareto chart of the standardized effects during testing processccccveeeeecireeeccrveeeeenneen. 112
Figure 5.13 Main Effects Plot for mAP during testing proCess.......cccoecveeiiecieieeciiee et 114

[xi]

University of the Aegean Department of Financial and Management Engineering

List of Tables
Table 2.1 Pooling layers used for object detection (Pathak et al., 2018)ccoviviieeeiiiiieeeeee e, 17
Table 2.2 Evolution of YOLO Algorithms (AleXeY, 2024)uueeeeeuieeeeeieeeeeieee e e eetre e e eeree e e evaee e e eareeas 24
Table 4.1 The number of training, validation and testing objects in the consolidated dataset.................. 49
Table 4.3 Hyperparameters in the backbone network related to architecturecccovveeeciieeecciiee e, 56
Yable 4.4 Hyperparameters in the backbone network related to trainingccccceeeeeicciiieeee e, 57
Pable 4.5 Hyperparameters in the YOLO heads related to architecturecccoecveeeeecieeeecciee e, 57
Eable 4.6 Hyperparameters in the YOLO heads related to architecture related to training 58
Rable 4.7 Default and updated values of hyperparameters selected for our research........ccccccceeuuvnnneenen. 60
Table 4.8 Representation of the use of the k-means algorithm..........ccccoeiiiiiiici e, 62
Table 4.9 Anchor boxes for DAarkNet-53.........uiiiiiiiiieciee e e s e e e s e e e s abee e e s areeas 63
Table 4.10 ANChor boXes fOr RESNET-152.......ccciiiiciiiiieeriie e cceeeree e siee e sae e ste e e sbee e snbeeebeeenseeesnseeesnees 64
Kable 4.11 Illustration of ‘dilation’ in the configuration file.........ccccoeeiciii i, 68
Table 4.12 Hyperparameter values for Darknet-53.........ooiiiiiiiiiiiiieciiee et 71
Yable 4.13 Hyperparameter values for RESNET-152........cccuieieieeirieeiieceiee et ctee et ere e e eteeesaeeeeaee e e 71
Table 5.1 Multilevel factorial design of OUr StUAYc..veiiiiiiiiiie e 73
Table 5.2 Key class metrics during validation..........coieiiiiiiiiiie et s 80
Table 5.3 Best mAP and the average best mAP in the 1%t and 2" run of the training and testing processes
ettt e oo e e ettt ettt et et et e e et ee et e et e et ettt e et e s e s e e e se e eneee e eeeee e neeerenraees 82
Table 5.4 Number of objects in the training, validation and testing datasetscccccccveeeecieeececiieeeeennen. 84
o
Ehble 5.6 Analysis of Variance during training ProCessiucuieiieciiieeiiiieeeriee e esee e sree e sree e s sbee e e e sareeas 91
Yable 5.7 The best and worst hyperparameters’ interactions on the mAP..........cccccoeecieiecciiee e, 99
Pable 5.8 Analysis of Variance during teSting ProCeSS.cccuueiiiciiiei ittt e e e 107
lable 5.9 Comparison of the effects of the main factors on mAP between validation and testing. The
Ralues indicate the difference between High and LOWooieciieiiiiii et e 114
Pable 5.10 Evaluation metrics of YOLOV3 90™ @XPErimENtc.cvvveueeverireereeteeeereeeeteeeteseseseeseeseseeeeseenenes 115
P
Bl
K
3
\
|
T
a
b
T
e
e g o1 g o = 10 4 <L (=T T PP PPPPPPPPPO 52

[xii]

O N W NN O O -

Chapter 1 Introduction

In the broad domain of computer vision, object recognition and object detection are two significant and
distinct areas. Object recognition is the process of identifying and categorizing predefined objects, in the
classes of interest, within an image based on their visual features. It determines the classes of objects
present in an image without providing detailed information about their location. On the other hand, object
detection recognizes the objects in the image (or video stream) and encloses each within an appropriate
bounding box. Thus, in addition to classifying the objects in the image, it also determines the position and
size of each object (Voulodimos et al., 2018).

In this thesis, we analyze the YOLOv3 algorithm within the specific context of UAV-captured images, aiming
to better understand the related training process and improve it through available training parameters
that may be tuned. YOLOv3 (You Only Look Once) is a single-pass object detection algorithm recognized
for its real-time processing capabilities and high accuracy (Kamal, 2021). The scope of this research
involves a detailed exploration of the YOLOv3 architecture, and its distinguishing features compared to its
predecessors, and an examination of how various training hyper-parameters influence its performance in
the recognition and localization of objects in UAV imagery.

To achieve these objectives, we begin by explaining how YOLOv3 differentiates itself from earlier one-stage
and two-stage object detectors. We then present an in-depth analysis of YOLOv3's architecture, focusing
on its convolutional layers, anchor boxes, and detection techniques. The study preparation phase involved
selecting appropriate UAV datasets and setting up the necessary hardware and software for our
experiments. We introduced appropriate classes in the selected datasets, modified and organized the raw
and unprocessed data appropriately to support our research needs.

For the hyperparameter study, we performed necessary modifications of the YOLOv3 configuration files to
be able to adjust systematically the hyperparameters during training. The first step of this study included
training and validation experiments using UAV datasets that were purposely selected. Subsequent, we
systematically varied key training hyperparameters such as image resolution, activation functions, anchor
dimensions, backbone architecture, data augmentation strategies, and the incorporation of dilated
convolutions. These parameters were selected from a larger set based on a thorough examination of
YOLOv3 characteristics, architecture and training possibilities. After the execution of 96 training tests, the
best value of mean Average Precision (mAP) achieved was 60.89%. By using a new UAV dataset (deopsys
dataset), that was created by our lab, we tested the best weights of the trained YOLOv3 model. The highest
tests results provided a mean Average Precision (mAP) of 84.59%. This specific mAP percentage was noted
for a height of 15m, and various lighting conditions.

The results of this thesis highlight the impact of key training hyperparameters on the YOLOv3 algorithm's
performance. Through detailed analysis, we identified how adjustments to image resolution, activation
functions, anchor dimensions, and other factors affect the algorithm's accuracy and speed in detecting
objects in UAV-captured images. These findings offer guidelines for enhancing the YOLOv3 training
process, ultimately advancing its effectiveness in UAV image recognition and localization tasks.

University of the Aegean Department of Financial and Management Engineering

The structure of the remainder of this thesis is as follows: In Chapter 2, we will delve into how YOLOv3
distinguishes itself from its predecessors by comparing one-stage and two-stage detectors. In Chapter 3,
we provide an in-depth analysis of the YOLOv3 architecture, examining its key components and
mechanisms. In Chapter 4, we detail the preparation of UAV datasets and the experimental set up,
including the dataset selection process, hardware, and software setup, as well as the procedures we
followed for data preparation. This chapter also covers a detailed analysis of the parameters that were
selected for our research. Chapter 5 focuses on analyzing the impact of key hyperparameter on YOLOv3's
training and performance in recognizing and localizing objects in UAV imagery. Finally, Chapter 6 presents
the conclusions of this work and provides insights into possible future research directions.

[14]

University of the Aegean Department of Financial and Management Engineering

Chapter 2 Understanding object detection and YOLO

In this chapter, we will go through the fundamental elements of object detection as well as the evolution
of YOLO algorithms over time. Beginning with an overview over computer vision and an analysis of the
purpose and the key components of object detection. Following up, we will explore the object detection
approaches, including R-CNN (Region-based Convolutional Neural Network), SSD (Single Shot Detection),
and YOLO (You Only Look Once). In the next subsection, we will focus on the evolution of YOLO algorithms
and their key features. We will go through a detailed overview of the initial versions, YOLOv1 and YOLOv2,
highlighting their key features, innovations, and the improvements that each version brought to address
existing limitations, concluding to YOLOv3 and its significance overs its predecessors.

2.1 Fundamentals of object detection

In this Section, we aim to gain insights into the evolution and current state-of-the-art techniques in the
field of object detection. We will define the concept of object detection, highlighting its purpose and its
importance. Additionally, we will explore the key components of object detection systems, clarifying the
processes involved in identifying and localizing objects within images. Moreover, we will discuss object
detection approaches, including R-CNN (Region-based Convolutional Neural Network), SSD (Single Shot
Detection), and YOLO (You Only Look Once), focusing on the respective methodologies and contributions
to advancing object detection technology.

2.1.1 Overview of computer vision

Computer Vision (CV) is a cross-disciplinary field that combines computer science and image processing.
More particularly computer vision provides computing systems with the ability to extract high level
understanding from digital images and video streams. It tries to give machines the ability to understand
visual data in a way similar to humans. Over the decades, CV has undergone a revolutionary transition
from early image processing algorithms and manually constructed features to the current deep learning
approaches, particularly Convolutional Neural Networks (CNNs). This radical change enables computers to
autonomously learn hierarchical representations directly from annotated raw data, leading to significant
breakthroughs in tasks such as object detection, image classification, and semantic segmentation. Despite
considerable progress, there are still many challenges including maintaining model robustness, resolving
ethical concerns, and improving clarity. Current research aims to make deep learning models more
adaptable to real-world circumstances, and able to address more complex problems (Bi et al., 2023;
Voulodimos et al., 2018).

2.1.2 Definition and purpose of object detection

Object detection is a key computer vision task that detects and marks semantic objects of defined classes
(such as humans, cars, or birds) in digital images and videos. It is different from image classification, which
only assigns labels to the image. Object detection also defines the exact boundaries of each object, using
bounding boxes. So, it not only identifies the class instance of any object within an image, but also encloses
itin a bounding box, thus determining the object’s location within the image and its size. When the object
detection task searches for a single class instance in an image, it is called single class object detection.

[15]

University of the Aegean Department of Financial and Management Engineering

When it searches for all defined class instances of the objects in an image, it is called multi class object
detection.

The primary purpose of object detection is to provide machines with the capability of understanding visual
scenes mirroring human cognitive processes. For example, object detection enables the identification of
pedestrians, vehicles, and other objects, thereby facilitating real-time decision-making to complex
problems, such as real life-like safe navigation. Object detection is essential in applications that need
accurate object recognition and localization, such as autonomous cars, surveillance systems, medical
imaging, and augmented reality. The overarching goal is to improve the capabilities of intelligent systems
in interpreting and understanding the visual world (Pathak et al., 2018).

2.1.3 Key components of object detection systems

Object detection systems use various techniques and components to achieve accurate and efficient
detection. However, there are basic key components which are similar in every object detection system,
and they are important parts of its framework.

The procedure begins with obtaining input data, typically comprising images or video frames.
Preprocessing methods such as resizing, normalization, and data augmentation are employed to optimize
quality and facilitate subsequent analysis. Deep neural networks, particularly Convolutional Neural
Networks (CNNs), are utilized for feature extraction. More specifically CNN extracts the features of the
image into a “feature map”, which is the outcome of applying a filter in the output of the previous layer.
After passing from a number of layers, the result of the process is to obtain several sets of extracted
“feature maps” of different sizes. The framework also involves object classification and bounding box
regression. Object classification requires assigning a class label to each object. Simultaneously, bounding
box regression fine-tunes the spatial coordinates of proposed bounding boxes, improving the accuracy of
object localization. To reduce redundancy and eliminate overlapping predictions, a non-maximum
suppression (NMS) step is introduced, which makes it easier to maintain the most confident and non-
overlapping object detections.

The comprehensive training of the framework requires labeled datasets, where each object is annotated
with a class label and a bounding box. The training process involves adjusting the model’s parameters to
optimize them with the use of a loss function that measures the difference between predicted outputs
and ground truth labels (Papageorgiou et al., 1998). A step-by-step procedure of the object detection
process is overviewed in Figure 2.1.

Detection & A .
orifices e S
Verification Locatization Classification Naming Description

Verify the —» Detect presence |—»| Decide possible |—»| Determine the —» Describe actions

presence of of object & categories of location & |labels & relationship of
object in the provide its object and of the objects in objects according
image accurate location classify objects the image to image context

Figure 2.1 Object detection in visual recognition (Pathak et al., 2018)

[16]

University of the Aegean

Department of Financial and Management Engineering

As already mentioned, CNNs play an important role in all CV systems: they are responsible for extracting
the features of an image into a “feature map”. A “feature map” is basically the outcome of applying a filter
in the output of the previous layer. After repeating this process multiple times, the result is several sets of
extracted “feature maps” in different sizes. As illustrated in Figure 2.2, the layered architecture of CNNs
for object detection involves input images with activation functions to generate feature maps.
Subsequently, pooling layers are applied to abstract these feature maps and reduce spatial complexity.
This process is iterated across multiple filters to create diverse feature maps. Finally, fully connected layers
process these feature maps to produce output images with confidence scores for predicted class labels

(Pathak et al., 2018).

Convolution

Input Image Feature Maps Feature Maps Featqgf Maps utput ¥k
Feature Maps \EL'.‘ Fox
Zebra
Subsampiing Fully Fully

Connected Connected

Figure 2.2 Use of Convolutional Neural Network for object detection (Pathak et al., 2018)

To mitigate network complexity and reduce the number of parameters, CNN employs various types of

pooling layers, as descripted in the table (Table 2.1) below.

Table 2.1 Pooling layers used for object detection (Pathak et al., 2018)

Pooling layer
Max pooling

‘ Description

It is a widely used pooling mechanism in CNNs. Max pooling
selects the maximum value from the result of the convolution
operation which is applied to the input feature map. After a
convolutional layer processes an image and produces a feature
map, the max pooling layer scans over small regions within this
feature map and keeps only the highest value from each region,
resulting in detecting the most important feature in the area.

Average pooling

Average pooling calculates the average value within each region, as
it considers all values in the region rather than focusing on the
most important one. This results in a more generalized feature
representation of the input features.

Spatial pyramid pooling (He et
al., 2015)

This pooling mechanism performs down-sampling of the image
and produces a feature vector with a fixed length.

This feature vector can be used for object detection without
making any deformations on the original

image.

Scale dependent pooling (Yang
et al., 2016)

This pooling mechanism handles scale variation in object detection
and helps to improve the accuracy of detection.

[17]

University of the Aegean Department of Financial and Management Engineering

2.1.4 Object detection approaches (R-CNN, SSD, YOLO)

The development of object detection algorithms has attracted intense interest during recent years. The
most known algorithms include Single Shot Detection (SSD), Regional CNN (R-CNN), Faster R-CNN and the
You Only Look Once (YOLO) algorithms. These algorithms specify the coordinates of bounding boxes
around the objects and provide at the same time the exact location of the object regarding the bounds of
the image, with the intention of classifying the objects inside the image. The YOLO family and SSD are
representative of one-stage detectors, while the R-CNN family is an example of two-stage detectors.

Starting with the analysis of the one-stage detectors, Single Shot Detection (SSD) is an object detection
technique developed by Google and introduced by Wei Liu in 2016 (Liu et al., 2016). The SSD model is a
single-stage object detection network, as it executes object detection in a single “pass” through the
network, that enhances both detection speed and accuracy. It uses a Convolutional Neural Network (CNN)
to process images and produce a feature map, which is a simplified version of an image that highlights
important details. The SSD model consists of three main components:

1) the backbone network, which extracts key features from the image

2) the bounding box creation, which generates potential boxes around objects

3) the convolutional prediction, in which the model generates potential boxes around objects based
on the extracted features. (Shuai and Wu, 2020).

A distinctive characteristic of SSD is its capability to predict bounding boxes at multiple stages within the
network. To achieve this, a series of convolutional layers with a small kernel size 3x3 are applied. These
convolutional layers are designed to focus on objects of various sizes, including small, medium, and large
ones. As the network progresses through these convolutional layers, it gradually reduces the image's
resolution, effectively enabling the extraction of all the image details (Liu et al., 2016). This multi-scale
feature extraction is crucial for identifying objects of different sizes.

In the later stages of convolutional operations, SSD accomplishes two critical tasks simultaneously. First, it
generates classification probabilities for each detected object, determining the type of object present in
the image. Second, it computes the coordinates of bounding boxes, localizing the detected objects within
the image.

To optimize object detection results, SSD incorporates a non-maximum suppression step. This step ensures
that only the most suitable bounding boxes are retained for each detected object, reducing redundancy
and overlapping bounding boxes. In summary, SSD integrates feature extraction, object classification, and
bounding box prediction within a single detection through a CNN. It is applied in different scales to adapt
on objects of varying sizes and employs non-maximum suppression to produce precise and reliable object
detection outcomes (Shuai and Wu, 2020).

In Figure 2.3 is illustrated the SSD architecture. Starting at the left side with the input image, this image is
processed by the base network, which is shown as a large block next to it, which is a pre-trained CNN
named VGG-16. This network extracts feature maps from the image, capturing different levels of
complexity in an image, from basic to more complex objects. Next to the base network, we see
several additional feature layers, each represented by blocks at various resolutions. These layers process
the feature maps further to detect objects at different scales. Each feature layer is connected to detection

[18]

University of the Aegean Department of Financial and Management Engineering

heads, which are convolutional layers responsible for predicting bounding boxes and class scores for
objects. In the right side of the image, the last step labeled as Non-Maximum Suppression (NMS) is
responsible for filtering the overlapping boxes to output the most accurate detections.

Extra Feature Layers
'GG-16
through Convs_J tayer [—— SniCiosnensd
- o c
-) sened 3 S
% £
8 s
5
o E @ T4.3mAP
2 o § 5oFPS
b} & ~yen ~d g E
-2 -
g =
c
8 =

Figure 2.3 Architecture of SSD algorithm (Rohan et al., 2019)

YOLO, which stands for "You Only Look Once," is a technology used for detecting objects in images. Unlike
older methods that involve multiple steps (first finding possible object areas and then classifying them),
YOLO processes the entire image in one single step. This approach allows YOLO to quickly identify and
locate objects like people, cars, animals etc. with great speed and accuracy. The key to YOLO’s performance
lies in its architecture. YOLO uses a single convolutional neural network (CNN) to divide the image into a
grid and simultaneously predict bounding boxes and class probabilities for each grid cell. This means that
YOLO doesn’t need separate stages for object detection and classification, which speeds up the whole
process. The network is designed to predict multiple bounding boxes and object classes in one forward
pass, making it ideal for real-time applications. Additionally, YOLO excels in detecting small objects, which
can be challenging for other models. It achieves this through its detailed grid-based approach, which helps
it focus on smaller details within each part of the image. YOLO'’s design also includes features like anchor
boxes and advanced techniques for managing overlapping objects, enhancing its accuracy and efficiency.
managing overlapping objects effectively.((Jiang et al., 2022). A more detailed understanding of the YOLO
algorithm will be given in the next chapter.

R-CNN is an object recognition model that follows a multi-step process (Girshick et al., 2014) and it is an
example of a two-staged detector (see Figure 2.4.) Initially, it estimates potential object positions within
an image, and then, it performs object classification. The estimation of object positions relies on a
selective search algorithm which generates approximately 2000 region proposals, each representing a
potential object location within the image (Uijlings et al., 2013). These region proposals are then inserted
into a Convolutional Neural Network (CNN) to extract image features, resulting in 4,096-dimensional
feature vectors for each proposal. A feature vector, whose dimensions came up after experiments and
tuning during the development of the model, because it provides greater accuracy in object detection
tasks. The extracted features from the CNN are further processed by a Support Vector Machine (SVM)
algorithm, primarily used for classification tasks. The SVM's goal is to distinguish different object
categories (Tepteris et al., 2023).

[19]

University of the Aegean Department of Financial and Management Engineering

R-CNN has some limitations, including being slow and computational heavy. It processes each region
proposal separately, which takes a lot of time and resources. Additionally, R-CNN faces difficulties in
adapting to different image patterns effectively due to the fact that inherits patterns slower. This slowness
comes from the need to process the 2,000 region proposals, since the feature extractor must repeatedly
perform the same task for each of these regions. Another issue is the dependency on a fixed algorithm
during the selective search, preventing the network from learning patterns within the image. This
limitation stems from the fact that the algorithm combines similar regions into large ones, potentially
resulting in the creation of inferior region proposals. To cope with these inefficiencies, an improved model
was developed, known as Faster R-CNN (Ren et al., 2015). Unlike its predecessor, Faster R-CNN no longer
employs the Selective Search method for generating region proposals. Instead, the model is trained to
predict region proposals using a Convolutional Neural Network (CNN), as illustrated in Figure 2.5. These
predicted region proposals are then fed into separate CNNs to determine the presence of objects of
interest within these regions. Faster R-CNN outputs both the object class and its position within the image,
marking a significant improvement in efficiency and accuracy compared to the original R-CNN model(Ren
et al., 2015).

Region Proposal
(Selective Search)

RCNN

For Each Rol
; CNN_ i
¢ g C SVM Classifiers

i n [I_ C BB Regressors
: (Pretrained)

R sl

* Input " Region Region Extract (e
Image Proposals CNN Features Classification

Figure 2.4 Two-stage object detectors R-CNN (Diwan et al., 2023)

ch Sp $
Obl ocation i
jectness i
2 Classification Z; Faster RCNN
&
: Bounding Box |
For Each Rol
MultiClass
Classification
Bounding Box
: Regressor
% Fca(urc ans; [S P S ——
:nput Extract Features Fﬁ":“" Projected Region Classification
mage ps Proposals

Figure 2.5 Two-stage object detectors Faster R-CNN (Diwan et al., 2023)

[20]

University of the Aegean Department of Financial and Management Engineering

2.2 Evolution of YOLO algorithms and key features

The "You Only Look Once" (YOLO) algorithm has significantly impacted the field of object detection, setting
new standards for speed and accuracy. This chapter is divided into two sections and attempts to provide
an understanding of this technology. The first section introduces the foundational concepts behind the
YOLO algorithm, explaining briefly how it transforms object detection into a single regression problem.
The second section offers a detailed overview of the initial versions, YOLOv1 and YOLOv2, highlighting their
key features, innovations, and the improvements that each version brought to address the limitations of
its predecessor.

2.2.1 Introduction to YOLO (You Only Look Once) algorithms

The YOLO algorithm is an open-source object detection technique that employs convolutional neural
networks (Redmon et al., 2016). Its core strength lies in its small model size, enabling fast calculations.
YOLO directly outputs bounding box positions and categories through a single neural network, facilitating
real-time detection, including video processing. This single-stage detection architecture (Figure 2.3) treats
object detection as a regression problem applied on the whole image.

Firstly, the YOLO algorithm imposes to the input picture a grid of SxS cells. The size of this grid may differ.
For example, grids of sizes 3x3, 5x5, 19x19 may be used. Each cell within a grid assesses independently the
presence of an object, its size and class. The aim of these operations is the creation of bounding boxes.
The generation of bounding boxes is followed by the creation of an estimation vector for each grid, which
encapsulates significant metrics. These metrics are the confidence score, B, (x coordinate of the object's
midpoint), B), (y coordinate of the midpoint of the object), B,, (w the width of the object), By, (h the height
of the object) and the dependent class probability (Atik et al., 2022). However, YOLO has some limitations.
The first YOLO version can only detect 49 objects and if objects are small there are many possibilities of
not been detected. Another issue is the inaccurate localization, in many cases the model faces difficulties
in localizing precisely an object. To address these issues, newer versions improve the YOLO algorithm, both
in quality and speed (Jiang et al., 2022).

7 .
s
} 3¢|
]r - 31’F S— | e
a8 b e [M S—
< 3 1Pl ' N’ 2| INe?
“) ¥ 5 |))
28 D,) \ \
3 W1 756 7] 034 a4 o 0% %
Conv. Loyer Conv. Layer Conv, Loyers Conv. Layers Conv. Layers Conv. Loyers Conn. Layer Conn. Loyer
7x7x6452 Ix3Ix192 Ix1x128 1x1x2567 4 1x1x512 }!1 3IxIx1024
Maxpool Layer Maxpool Loyer 3Ix3x256 3x3x512 3x3x1024 3x3x1024
2x242 2x242 Ix1x256 1x1x512 3x3x1024
3x3x512 3x3x1024 3x3x102442
Maxpool Loyer Maxpool Loyer
2x242 2x242

Figure 2.6 Architecture of YOLOv1 algorithm (Redmon et al., 2016)

Performance metrics are used to evaluate the detection performance of a model. Important metrics
include precision, recall, F1-score, Average Precision (AP) and mean Average Precision (mAP). All are based

[21]

University of the Aegean Department of Financial and Management Engineering

on the model’s classification and detection results, that are identified as True Positives (TP), False Positives
(FP), True Negatives (TN), False Negatives (FN). The focus of this Section is to provide an overview of these
metrics, which are significant for all object detection models.

2.2.2 Overview of YOLOv1 and YOLOv2

Below is provided a brief description of the two YOLO versions. Readers that are interested to further
details may refer to (Redmon et al., 2016; Redmon and Farhadi, 2017).

The first version of YOLO uses a 7x7 grid, with the restriction of any grid cell to be able to detect only one
object. This is the reason why YOLOv1 can detect maximum 49 objects. At the same time, YOLOv1 was
trained to detect only 20 different classes, so for any grid cell it will output 20 class probabilities, one for
each class. Although each grid offers the option of two bounding boxes, the process continues only with
the boxes that have higher confidence score. This architecture yields an output of Sx S x (B x 5 + C), where
B represents the number of bounding boxes that each grid cell predicts, and C represents the number of
object classes the network can detect. Therefore, for S=7, B=2 and C=20, the final output of the network
will be 7x7x30 tensor of predictions (Figure 2.6).

The model comprises 24 convolutional layers followed by 2 fully connected layers, employing RelLU
activation function except for the final layer, which utilizes linear activation. Pre-training on the ImageNet
dataset and fine-tuning on PASCAL VOC datasets enhanced the performance of YOLOv1, reducing
localization errors compared to other methods. Nonetheless, YOLOv1 faces some limitations based on the
number of detected objects, high localization error and inability of detecting smaller objects. That were
some of the reasons for releasing the next version (Atik et al., 2022).

YOLOv2, an advanced version of YOLO, introduces improvements in localization and recall ability while
preserving classification accuracy. YOLOv2 simplifies the architecture and employs non-max suppression
to select bounding boxes with the highest Intersection Over Union (I0U) (Jiang et al., 2022). The algorithm
focuses on better and faster detection, emphasizing the handling of large and small objects through the
design of an effective loss function. YOLOv2 maintains its performance while improving the mean Average
Precision (mAP). Through the introduction of new features, the YOLOv2 model adapts to different image
sizes, offering a balance between speed and accuracy.

Significant enhancements include the integration of batch normalization for input data preprocessing,
which is used in neural networks to standardize the inputs to each layer. The addition of batch
normalization leads to an improvement in mAP by 2%. Another improvement refers to the adoption of a
high-resolution classifier from 224x224 to 448x448 for detection, yielding a 4% rise in mAP. YOLOv2
introduces for the first time anchor boxes. Instead of predicting the coordinates of bounding boxes directly
using fully connected layers on top of convolutional feature extractor, YOLOv2 uses Faster R-CNN, which
predicts bounding boxes using hand-picked priors ((Ren et al., 2015). YOLOv2’s architecture is based on
the usage of a new network which works in a "network in network" concept, that has a new classification
model as a backbone network, Darknet-19, and 5 max-pooling layers. It also utilizes fewer filters. YOLOv2
has 25 convolutional layers instead of 24 of the first YOLO version (Redmon and Farhadi, 2017).

[22]

University of the Aegean Department of Financial and Management Engineering

The utilization of convolutional layers with anchor boxes contributes to a higher performance. Additionally,
the introduction of multi-scale output offers to the network the ability to detect objects at different scales
or resolutions. This means that YOLOv2 can detect small objects as well as larger ones in the same image
(Jiang et al., 2022). All these advances make YOLOv2 a more accurate model for object detection in
comparison with its predecessor.

2.2.3 Innovations in YOLOv3 and its significance

YOLOv3, the third version of the You Only Look Once (YOLO) algorithm, represents a notable evolution
from its predecessor, YOLOv2, and introduces several key differences. A considerable improvement lies in
the refined network architecture, using three distinct detection heads. The latter are added to YOLOv3’s
architecture offering the algorithm the ability to classify small, medium, and large objects respectively,
improving accuracy for objects of varying sizes.

Furthermore, YOLOv3 uses a new backbone network with 53 convolutional layers, called Darknet-53,
which is a hybrid approach between Darknet-19 (YOLOv2’s network) and the residual network, providing
more speed to the algorithm. Another significant improvement includes the adoption of a feature pyramid
network (FPN), enabling the algorithm to capture object details at multiple resolutions.

YOLOv3 also integrates skip connections to access features from earlier layers, enhancing its contextual
understanding (Jiang et al., 2022). By using independent classifiers, YOLOv3 adds the ability to classify the
detected object in a bounding box to more than once classes . More specifically, during training, a binary
cross-entropy loss function is used for class prediction.

Additionally, YOLOv3 embraces the use of multiple anchor boxes per grid cell, facilitating more precise
object localization. Another important enhancement is the addition of a confidence score, determined
through logistic regression, for each bounding box prediction. This score is expected to be 1 if the bounding
box effectively covers a ground truth box than any other bounding box prior, based on the highest
Intersection over Union (IOU). The system ensures that only one bounding box prior is assigned to each
ground truth box. If the box does not have the highest IOU but does overlap a ground truth box by more
than a threshold (0.5), the prediction is disregarded (Kamal, 2021). These innovations contribute to
YOLOv3's better performance in real-time object detection tasks.

Table 2.2 below illustrates the differences between the three YOLO versions: The parameters that were
changed or added in the algorithm’s architecture, as well as those related to the training procedure.

[23]

University of the Aegean Department of Financial and Management Engineering

Table 2.2 Evolution of YOLO Algorithms (Alexey, 2024)

Evolution of YOLO Algorithms and Key Features

Parameters for Backbone Network

I—— YOLOV1 YOLOv2 YOLOv3
Architecture
Backbone Depth 24 19 (Darknet-19) | 53 (Darknet-53)
Training
Input Size 224x224 224x224 variable sizes
Input Normalization No Yes Yes
Data Augmentation No Yes Yes
Multi-scale Training No Yes Yes

Parameters for YOLO Network

Architecture

Number of layers 24 25 53
Spatial Pyramid Pooling (SPP) No No Yes
Multi-scale Output No Yes Yes
Training

Anchor Boxes per cell of the grid 0 5 9

Batch Normalization No Yes Yes

2.2.4 Concluding remarks

When considering YOLOv3 over its predecessors, YOLOvl and YOLOv2, several key advancements
distinguish it as a superior choice in various object detection applications. YOLOv3 introduces significant
improvements in detection accuracy, speed, and versatility compared to its predecessors. Through the
adoption of a deeper network architecture, YOLOv3 achieves enhanced detection performance,
particularly in detecting small objects and handling object occlusion. Additionally, YOLOv3 incorporates a
feature pyramid network (FPN) and utilizes multiple scale detections, enabling the model to effectively
capture objects at different scales and resolutions. Furthermore, YOLOv3 introduces the use of anchor
boxes to improve bounding box predictions, offering greater flexibility and accuracy in object localization.
Notably, YOLOv3 maintains a remarkable balance between detection accuracy and speed, making it well-
suited form object detection. Based on all these advantages we proceed in the selection of the YOLOv3
algorithm for our experimental research (Redmon and Farhadi, 2018).

[24]

University of the Aegean Department of Financial and Management Engineering

Chapter 3 Deep Dive into YOLOv3

In this Chapter, we overview the YOLOv3 algorithm. We analyze some of its components, explore the
network layers and explain their functionalities and roles in the YOLOv3 architecture. Key areas of focus of
this overview include a) Darknet-53, which is the backbone of YOLOv3 and is responsible for feature
extraction; b) the feature pyramid network (FPN), the main component of the algorithm’s neck, which
employes additional convolutional layers with the purpose of enabling the network to detect objects at
multiple scales; c) the YOLO heads, the final stage of the object detection process. In the last Section of
this Chapter, we describe the process of training, testing and validation.

3.1 YOLOv3 architecture overview

The inputs of the YOLOv3 model are images or video streams. The default image resolutions that YOLOv3
typically accepts are 416x416 and 608x608 pixels. These input sizes are the most commonly used because
they offer a good balance between detection accuracy and computational efficiency. However, YOLOv3 is
a fully convolutional network, which means that it does not use any fully connected layers that require a
fixed-size input. Thus, the network may process images of various sizes. It can technically accept images
of any resolution, as long as the dimensions are divisible by 32.

The network architecture of YOLOv3 includes a series of convolutional layers, some of which have strides
greater than 1. Note that a stride of 1 means that the filter of the convolution process moves one pixel at
a time, resulting in a high-resolution output. On the other hand, a stride of 2 means that the filter moves
two pixels at a time, resulting in a downsampled output with reduced spatial dimensions.

[25]

University of the Aegean Department of Financial and Management Engineering

vyt
= YOLOV3 Network Architect
Corrw A2ndnd ¢
1 e >
— e 200 208 0 Comnw: Comvolutonal layer Concatenate: concatenate two Inputs
‘ &2: with stride of 2 batch_size: the output size of this layerblock
2 .‘ll““ni-ll“
PRERLIRE-T0N 955, 99 Residual Block: repeated comohmonal layers with ResNet ssrucoure
Cone L38akd o2
3 | s see 104 354 338 “
REECTPEEEEEEREREEEEEREEEE TTY R e 1
P PR SO Zekoo s e
Reacus Wock fx12e ; H ‘
4 | gt e 100 204 129 ' t
1 ' Conv Wik
5 Corne TMaRc3) o2 . Tag u:;-x-;n) f""’“‘,"' n Detection Resut
et se 92, 8f 24 hateh uie 32 33, 2% 1™
l i 18 20 !
1
s . G 120w1xh H
A Tt e N ey et :
. hemh sioe 52 42 1aw
[St % T 7 Scale 1 for detecting small objocts
Mt ane 34 4 g S SR _— SRR §:_) o ¢ IR —] : __________________________ .
d
Conv Black H
7Y Promngie g - L SSTRENS I(rsexiaie125007) F‘ L ,“f"_“'f‘l",‘ > Ortex oo et
oe 2036, 811 '
P e (B 14 15 16 |
! :
H
1 1
1
S| e b i
Conw Rloch | Cone 206xtzl o i
11 e] 13 Scaje 2: for detecting medium objects
bt st 33 13 1004 Danch sw 36 26 798 H
- i
. i
1
: f:_mw n'\‘-hx “ : Detection R
T sow 13, 33 2 H
1
YOLOV3| 12 Scaje 3: for detecting big objects
]

Figure 3.1 YOLOv3 network architecture (Palma, 2020)

The YOLOv3 network has three main parts, each highlighted in different colors and steps (Figure 3.1). First
is the backbone which is responsible for feature extraction. The backbone is illustrated by the grey section
and its functionality is to process the input image to extract features. It includes steps 1 to 11, where
several layers reduce the image size while increasing the detail in the features detected.

The second major part of the architecture is the Feature Pyramid Network (FPN) or else the neck, which
is highlighted by orange, purple, and blue in Figure 3.1. FPN is responsible for combining features from
different stages of the backbone to help detect objects of various sizes. This involves upsampling and
concatenation in steps 13 to 20 (will be analyzed in detail in Section 3.2.2), allowing the network to detect
both medium and small objects. Step 12 is also part of FPN, but it is used for processing large objects
without the need of going through upsampling and concatenation techniques.

Finally, the YOLO heads are where the actual object detection occurs. YOLO heads are the latter parts of
the orange, purple, and blue colored sections of Figure 3.1. They use the combined features from the neck
to identify objects at three different scales, small (steps 17-20, orange section), medium (steps 13-16,
purple section), and large (steps 12, blue section). In the YOLO heads the network predicts the class
probabilities for each detected object. This allows YOLOv3 to classify objects within the detected bounding
boxes based on the features extracted and processed by the backbone and the neck of the network.

In the following Sections we focus on each of the key components of YOLOv3's architecture and present
its functionalities.

[26]

University of the Aegean Department of Financial and Management Engineering

3.2 The YOLOV3 architecture

In this Section we describe the three main components of YOLOv3 architecture, the Darknet-53 backbone,
the Feature Pyramid Network (FPN), which comprises the network’s neck, and the detection heads.

3.2.1 Darknet-53 backbone and feature extraction

The backbone of YOLOv3 serves as the feature extractor responsible for capturing semantic information
from input images. Typically, this part consists of a deep convolutional neural network (CNN) pretrained
on large-scale image classification datasets such as ImageNet. There are many choices for backbones in
YOLOv3, including Darknet-53 and ResNet-152. Darknet-53 comprises 53 convolutional layers organized
into convolution and residual blocks, providing robust feature extraction capabilities (see Fig. 3.2). It is
characterized by its simplicity and effectiveness, making it a suitable backbone for YOLOv3 (Tepteris et al.,
2023). On the other hand, Resnet-152 consists of 151 convolutional layers and 1 fully connected layer at
the end of its network. It is a deep convolutional network which offers high accuracy in more complex
patterns. It has increased computational requirements that make it slower to train, but it provides higher
accuracy (Xu et al., 2019).

Layer Filters size Repeat Output size

Image 41¢ 416

Conv 323 * 3 1 316 % 316

Conv 643 X 32 1 208 X 208 Conv

Conv 21 X% 11 Conv 208 x 208 Con2d BN [LeakyRelt
Y 13X YV Conv I % 1% 08 ~ 3
Conv 64 £l Lo X1 208208 Layes Layer | | Layer
Residual Residual; 208 X 208

Conv 1283 X 32 1 104 X 104

Conv 641 % IN Conv | 104 X 104

Conv 1283 X 31 Conv 1'% 2 104 X 104

Residual Residual | 104 x 104

Conv 2563 X AR 1 52 X 52 Residual

Conv 1281 X I/1 Conv ™ 52 X'52

Conv 2563 % /1 ‘Conv 52 X 52 Add

Residual Resdual 52 X 52 Conv | | Conv
: . Lo .

Conv 5123 % 32 1 26 X ¢ 1xX1) | (3x3)

Conv 2561 X 111 Conv 26 X 2

Conv 5123 x 3N Conv “ 8 26 X 2¢

Residual Residual 26 X 2

Cony 10243 x 372 1 13x 13

Cony 5121 % 111 Conv 13 % 13

Cony 10243 X 31 Conv x4 13 X 13

Residual R.-\u.lu,ﬂf 1I3x 13

Figure 3.2 Darknet-53 architecture (Ma et al., 2020)

The Darknet-53 architecture (see Fig. 3.2) comprises convolutional blocks and residual blocks. Each
convolutional block includes a 2d convolutional layer, a batch normalization layer and a LeakyRelLU layer.
These layers perform basic feature extraction and dimensionality reduction, enabling the network to
capture low-level visual patterns. On the other hand, residual blocks contain a series of convolutional
layers followed by a shortcut connection that skips these layers and adds the original input to the output.
This shortcut is important because it helps the network learn more effectively and capture more complex
patterns, enhancing network’s overall performances (He et al., 2016).

[27]

University of the Aegean Department of Financial and Management Engineering

Kernels

Figure 3.3 A 3x3 kernel (per channel) slides over the input to generate the output(Tepteris et al., 2023)

The convolution block
Convolution operation

The convolution operation in deep learning involves using convolutional filters, also known as kernels to
extract features from input data. These filters are small numeric matrices with fixed dimensions. More
precisely, a kernel (filter) is a small matrix of weights and is used to perform convolution operations on the
input image and on the outputs of previous convolution blocks. The output of each convolution step is
obtained by element-wise multiplication between the kernel matrix and a corresponding region of the
color channel, concluding by summing the results. This process is repeated for all three-color channels,
and the resulting numbers are summed together to form the elements of the output matrix (see also Fig.
3.3). The convolution operation progresses the kernel across the input image (at a specific stride)
producing a new matrix called a feature map. Common kernel sizes are 1x1, 3x3, or 5x5. In the YOLOv3
case, the kernel sizes are 3x3 and 1x1. During training, the weights of the kernels are adjusted to improve
the network's ability to extract relevant features from the input data.

In the architecture of Fig. 3.2, the first convolution block consists of 32 filters, each with a size of 3x3 and
a stride value of 1. This block is repeated once, and the output size remains the same as the input size (e.g.
416 pixels x 416 pixels). This operation is repeated for all 32 kernels, generating a total of 32 feature maps
(Tepteris et al., 2023).

Batch normalization

Batch normalization (BN) is a technique used in deep learning to make training more efficient and stable.
It works by normalizing the inputs to each layer, making sure that the activations (the outputs of a layer)
have a consistent distribution across the mini-batches used during training. This helps to address a
problem called “internal covariate shift”, which occurs when the distribution of inputs to a layer changes
during training, making it harder for the model to adapt on the new changes. This process always runs

(28]

University of the Aegean Department of Financial and Management Engineering

between a convolution operation and an activation function and allows successive layers of the network
to learn more independently (loffe and Szegedy, 2015a).

More specifically, for each mini-batch, batch normalization calculates the mean and variance of the
activation values (the outputs of the previous layer). It then normalizes the activations so that they have
a mean of 0 and a variance of 1. This ensures that the input distribution remains consistent across layers
during training. After normalization, two parameters, y (gamma) and 8 (betta), are introduced. The y
parameter controls the scaling (how stretched or compressed the values are), and the § parameter
controls the shifting (moving the values up or down). These parameters allow the model to "un-normalize"
the data if needed, so that the network can adapt to a wider range of patterns. These two parameters are
adjusted during training to optimize the network’s performance. By keeping the input to each layer
normalized, batch normalization makes the training process more stable and faster, reducing overfitting
as it adapts more accurately to the new input layers.(Tepteris et al., 2023).

LeakyRelu
After each batch normalization process, the Leaky Rectified Linear Unit (LeakyRelU) is activated. This is an

improved version of the RelLU activation function. LeakyRelLU addresses the issue of negative values
turning into zeros. By introducing a small slope for negative values, the LeakyRelLU prevents this problem
and ensures that the weights of neurons are still affected during training. This activation function is
commonly used due to its simplicity and low computational requirements (Dubey and Jain, 2019).

The residual block

The residual block combines the output of the previous layer, denoted as x, with the output of the current
layer, denoted as f(x) (see Figure 3.4). Specifically, it adds the feature maps generated by the previous
convolution block to the feature maps produced by the convolution layers in the residual block. To ensure
that the dimensions of x match those of f(x), a 1x1 convolutional layer is applied to x before it is added
to the output of the residual block. This 1x1 convolution adjusts the number of channels and the spatial
dimensions of x, making it compatible with f(x). Within the residual block, the convolution layers typically
include a 3x3 convolutional layer with stride 2, followed by Batch Normalization and a Leaky RelU
activation. A stride of 2 is used to downsample the feature maps, reducing their spatial dimensions by half.
This choice of stride 2 is important for capturing higher-level, more abstract features, increasing the area
that each neuron can “see” effectively and improve computational efficiency. The addition of x and f(x)
helps deeper networks to learn more efficiently (He, Zhang, Ren, & Sun, 2016).

[29]

University of the Aegean Department of Financial and Management Engineering

X . f(X) f(x) + x

—_— add —_—

Figure 3.4 YOLOv3 Residual block structure (Xu & Wu, 2020)

3.2.2 Feature Pyramid Network (FPN)

The neck of YOLOv3 acts as an intermediary between the backbone and the YOLO heads. It improves the
features extracted by the backbone, enhancing the capability of detecting objects at different scales. This
component often applies additional convolutional layers and feature based techniques to integrate multi-
scale information effectively.

The Feature Pyramid Network (FPN) is a widely used architecture for the neck in YOLOv3. Its architecture
is presented in Fig. 3.5. It creates a multi-scale feature pyramid by combining features from different levels
of abstraction within a convolutional neural network (CNN). In YOLOV3'’s architecture (Figure 3.1), steps
12,13, 14, 17 and 18 are the ones that comprise the FPN architecture.

[30]

University of the Aegean Department of Financial and Management Engineering

Bottom-up Top-down
5
cs Joonvil X 1 X286 P :

Upsampling

.l)onnumpllug

-4 sconv:l X | X256 | concatenation
C
Downsampling [-m
,
o J
- Upsampling
wconv:| X | X256 | concatenation
p3
. Downsampling ; ‘
Co
ampling
sconv:| X | X256 | concatenation
P2

Figure 3.5 Network architecture of feature pyramid network (FPN) (Zhang et al., 2021).

As shown in Fig. 3.5, FPN has two main components: the bottom-up pathway, downsampling and the top-
down pathway, upsampling. Downsampling reduces the spatial resolution of feature maps while
increasing their depth, enabling the network to capture higher-level features. On the other hand,
upsampling increases the spatial resolution of feature maps, allowing the network to reconstruct higher-
resolution features from lower-resolution inputs.

Before we describe Fig. 3.5 in detail, please note that:

o The downsampling operation reduces the spatial dimensions (height and width) of the feature
maps, allowing the network to capture more complicated and abstract features at higher layers.
This is achieved through operations like convolution with stride > 1. Convolution with a stride
greater than 1 reduces the number of positions where the filter is applied across the input feature
map. As a result, the output feature map has fewer spatial dimensions (height and width). Pooling
layers are another method used to downsample feature maps in CNNs. Downsampling occurs in
Step 1, Step 3, Step 5, Step 8, and Step 11 in the context of YOLOv3 (Figure 3.1) . These steps
involve convolutional layers with a stride of 2 (s2) , which reduces the spatial resolution of the
feature maps progressively through the network (Xu et al., 2019).

e The upsampling operation increases the spatial resolution of feature maps, allowing lower-
resolution feature maps to be scaled up and aligned with higher-resolution feature maps from
earlier layers. The nearest neighbor method is used during upsampling. Specifically, an empty

[31]

University of the Aegean Department of Financial and Management Engineering

initial upsample grid is generated. Subsequently, every pixel in the upsample grid is filled with the
nearest pixel in the original image patch. This process is repeated until all pixels in the unsampled
grid are filled with the image patch values (Figure 3.6) (Tepteris et al., 2023). In the context of
YOLOv3, this can be seen in Step 13 (Conv 256x1x1 + UpSample) and Step 17 (Conv 128x1x1 +
UpSample) (Figure 3.1).

Upsample mesh multiplied by two

2x2 Image Patch

Figure 3.6 Upsampling layer (Tepteris et al., 2023)

The concatenation operation combines these “upsampled” feature maps with feature maps from
earlier layers, merging high-resolution with lower resolution. This operation combines the depth
of two feature maps to capture low-level features and detect small objects (Tepteris et al., 2023).
For instance, in the YOLOv3 model, the output of step 18 (Figure 3.1) receives the outputs of steps
6 (52x52x256) (Figure 3.1) and 17 (52x52x128) (Figure 3.1), which have the same width and height
but different depth dimensions (Figure 3.7). So, the outcome of the concatenation operations is
sized at 52x52x384. In the context of YOLOv3, this can be seen in Step 14 (Concatenate with batch
size: 26, 26, 768) and Step 18 (Concatenate with batch size: 52, 52, 384) (Figure 3.1).

Pl

.ev

v

Figure 3.7 Concatenation of two inputs (Tepteris et al., 2023).

Now let’s turn to Fig. 3.5. In the Figure, the bottom-up pathway, feature maps labeled c2, ¢3, c4, and ¢5

are extracted from different layers of a convolutional neural network (CNN). As we progress from c2 to c5,

the spatial resolution of the feature maps decreases due to downsampling, while the quality of

information contained within a feature map increase. In a CNN, earlier layers (like the ones producing c2)

typically learn to detect basic features such as edges, textures, or simple shapes. These features are

fundamental and low-level. As we move deeper into the network, the layers (producing feature maps such

as c3, c4, and c¢5) start combining these basic features to recognize more complex patterns, objects, or

high-level concepts. By this process the network learns to increasingly detect more information about the

input image. Specifically, c2 represents a feature map from an earlier layer of the CNN (high resolution,

[32]

University of the Aegean Department of Financial and Management Engineering

low semantic information), c3 from a deeper layer (lower resolution, higher semantic information), c4
from an even deeper layer, and c5 from the deepest layer (lowest resolution, highest semantic
information).

In the top-down pathway, feature maps labeled p5, p4, p3, and p2, where p is the prediction, are
progressively upsampled and combined with corresponding bottom-up feature maps. Specifically, p5 is
obtained from c5 using a 1x1 convolution to adjust the channel dimension, p4 is obtained by upsampling
p5 and combining it with c4, p3 by upsampling p4 and combining it with c3, and p2 by upsampling p3 and
combining it with c2. Each “upsampled” feature map is combined with a corresponding “downsampled”
feature map, leveraging both high-level information from deeper layers and more detailed one from earlier
layers giving the ability to the network to detect objects at various scales (Alexey, 2024).

By integrating upsampling, downsampling and concatenation operations, YOLOv3 creates a more detailed
feature representation that improves the network's ability to detect objects of different sizes (Alexey,
2024).

3.2.3 Detection heads

The primary function of the YOLO heads is to predict bounding boxes for objects detected within the input
image. YOLOv3 employs three separate detection heads, each responsible for detecting objects at different
scales. These heads are associated with feature maps of different sizes. More specifically:

e The large-scale detection head is designed to capture large objects and operates on the output
feature map from the final layer of the network

e The medium-scale detection head captures medium-sized objects

o The small-scale detection head is responsible for detecting small objects

Each detection head is associated with three anchor boxes. These anchor boxes are predefined and
help in predicting the bounding box dimensions. Each anchor box has a fixed width and height, and
these values are adjusted during training to better fit the objects in the dataset. (Redmon and Farhadi,
2018).

[33]

University of the Aegean Department of Financial and Management Engineering

Figure 3.8 YOLOv3 Output vector per anchor in each cell (Tepteris et al., 2023)

Regarding the architectural perspective, each detection head is placed before a convolutional layer with a
1x1 kernel size which is responsible for the attributes of the anchor boxes (see Fig. 3.8). Therefore, the
number of filters in this layer is determined by the number of anchor boxes and classes (see Eq. 3.1).

More specifically it is determined by the formula:

filters = numgycnors X (4 + 1+ numggees) (3.1)

where,
NUMgnchors = the number of anchor boxes,
NUM 45505 = the number of classes

Value 4 indicates the four anchor box coordinates which define the location (ty, t,) and the size (t,,, t3)
of the bounding box that contains the detected object (Figure 3.8).

Value 1 indicates the objectness score (p,), that is the probability that an object is present in the bounding
box and its value ranges between 0 to 1 (Figure 3.8). See also the black box in Figure 3.8.

For example, if there are 3 anchor boxes and 80 classes the number of filters in the convolutional layer of
each detection head would be 3 X (4 + 1 + 80) = 255 filters. This equation is applied in each filter of
convolution layer before the detection heads.

[34]

University of the Aegean Department of Financial and Management Engineering

The output of each detection head has a dimension:
(gridsize, gridsige, filters)
In this case, different grid sizes are used to detect objects at various scales:
e Large grid (52x52): Downsampled by a factor of 8 (416 / 8 = 52), detecting small objects

e Medium grid (26x26): Downsampled by a factor of 16 (416 / 16 = 26), detecting medium-sized
objects

e Small grid (13x13): Downsampled by a factor of 32 (416 / 32 = 13), detecting large objects.

In Figure 3.1, that describes the YOLOv3 architecture, the detection head for large objects is illustrated in
steps 12 and 13. In step 12, a convolutional block with a 1x1 kernel size is applied directly to the feature
map from the backbone network, preparing the feature map for detecting large objects. In step 13, a
Conv 255 x 1 x 1 layer is applied with a 1x1 kernel size to reduce the number of channels in the feature
map to the size required for the final detection. This step produces the final detection output for large
objects which has a dimension of (batchg;,., 13,13, 255).

The detection head for medium objects is illustrated in steps 15 and 16. In step 15, a convolutional block
is applied to the feature map resulting from the previous upsampling and concatenation operation (step
14). In step 16, a Conv 255 x 1 x 1 layer with a 1x1 kernel size is used to reduce the number of channels
to 255, similar to the detection head for large objects. This layer outputs a feature map of dimensions
(batchgi,,, 26,26,255), designed for detecting medium-sized objects.

The detection head for small objects is illustrated in steps 19 and 20. In step 19, a convolutional block is
applied to the feature map from the upsampling and concatenation operation (step 18). In step 20, again
a Conv 255 x 1 x 1 layer is applied with a 1x1 kernel size to produce the feature map for detecting small
objects. This feature map, designed for detecting small objects, has dimensions of (batchy;,., 52,52, 255)
(Alexey, 2024).

3.3 Training, validation and testing

In this Section, we overview training, validation and testing processes of YOLOv3 algorithm.

Training is the process by which the YOLOv3 algorithm learns to detect and classify objects in images.
During training, the model is fed with a large set of annotated images, where each image is paired with its
corresponding ground truth labels (the coordinates of bounding boxes and the class of the objects). The
algorithm adjusts its parameters repeatedly to minimize the difference between its anchor boxes and the
ground truth bounding boxes. Also, each anchor box is assigned to the ground truth bounding box that
has the highest loU with it. The corresponding class label of the ground truth box is then used to train the
network to predict the correct class. Therefore, training is used to enable the models to learn and
understand the patterns in the data (Redmon and Farhadi, 2018).

Validation is the process used to evaluate the performance of the YOLOv3 model during training. For this
process, a separate subset of the dataset, called the validation set, is used. After each round of training
(an epoch), the model’s performance is tested on this validation set, to detect any overfitting or

[35]

University of the Aegean Department of Financial and Management Engineering

underfitting that might occur. Overfitting happens when a model learns too much detail from the training
data, including irrelevant patterns. As a result, the model becomes very good at predicting the training
data but fails to perform well on new data because it has "memorized" the training data instead of learning
general patterns. Underfitting occurs when a model does not learn enough from the training data. It fails
to capture more complex patterns in the data and therefore performs poorly both on the training and the
new data. Thus, the validation process is used to tune the models hyperparameters and prevent
overfitting, ensuring that the model generalizes well to new data (Redmon and Farhadi, 2018).

Testing is the process of evaluating the final performance of the trained YOLOv3 model on a separate set
of images that were not used during training or validation. This dataset is called the test set. The model’s
evaluation metrics are calculated on the test set to measure how effectively it can detect and classify
objects. Therefore, testing is used to evaluate the final model’s performance and confirm its accuracy
(Tepteris et al., 2023).

For all three processes, training, validation and testing, an annotated dataset of images is used. This
dataset consists of images that are labeled with the ground truth boxes and class of objects. Note that the
training set used for model learning comprises typically 80% of the dataset), the validation set 10%, and
the testing set comprises also 10% of the dataset.

3.3.1 Training process of YOLOv3

No

L 4

Faatura o Multiscale o Bounding box o Calculate |oss Complete

Yeg
-]
extraction output prediction value training

Input image L

Figure 3.9 Training process of YOLOv3 (Tepteris et al., 2023)

Figure 3.9 overviews the step-by-step actions that take place in the training process. Initially, the training
dataset's images are divided into smaller batches. This division helps speed up the training process by
allowing the neural network's weights to be updated more frequently. Each batch contains images, such
as color images with dimensions 416x416 pixels, represented as arrays of size (416, 416, 3). The batch size
is set prior to training. For instance, if the batch size is 32, it means that 32 images are fed to the model
in each iteration to update the weights of YOLOv3 model. On the other hand, when the entire dataset of
images is passed through the YOLOv3 network once, this is one epoch. For example, consider a 4000
images dataset, divided in batches of 32 images. It will take 125 iterations to complete one epoch. More
specifically, an iteration is when the model processes a small batch of images, and in this case, the batch
size is 32. Since the dataset has 4000 images, it takes 125 (4000/32) iterations to go through all images
once, which is one epoch.

In the second step of Fig. 3.9 the image batches are passed through a classification neural network, which
extracts features from the images, such as object outlines. In the third step, the model predicts classes for

[36]

University of the Aegean Department of Financial and Management Engineering

objects at three different scales, enabling the detection of small, medium, and large objects. Step four
involves detecting objects within each of the three scales and enclosing them within bounding boxes. In
step five, a loss value is calculated using the loss function. This value is a combination of how accurate the
class predictions are and how well the bounding boxes fit the predicted objects.

In YOLOv3, the loss value is computed for batches of images rather than individual images. This means
that the loss function is applied to a group of images, and the resulting outputs are combined to calculate
a single loss value for that batch. The optimizer then uses this loss value to adjust the model's weights.
This process is repeated for multiple batches until the model converges or a predetermined number of
iterations is reached (Tepteris et al., 2023).

Key technical tools used in training
Intersection over Union (loU)

Intersection over Union (loU) is the region where the ground truth bounding box and predicted bounding
box intersect over the region where they are united (Figure 3.10). According to the definition of loU, an
loU can have a value of 0 or 1, and the objective of training is to choose the predicted box that most closely
resembles the ground truth box in order to obtain an loU as close to 1 as possible. An loU threshold value
is used during training to keep only the "good" predicted box and throw out the ones below the threshold.

A typical threshold value is 0.5 (Kamal, 2021).

area of over l.‘lp

10U =

area of umon

Figure 3.10 Computing Intersection over Union (loU) (Padilla, Netto, & Silva, 2020)

The ground truth box and the predicted box are represented by the red and yellow boxes in Figure 3.11,
respectively. Because of the tiny area of intersection in the left image, the loU is low. In contrast, the right
image's area of intersection between the two boxes is nearly equal to their union, meaning the loU is near
to 1 (Kamal, 2021).

Figure 3.11 loU of bounding boxes (Kamal, 2019)

[37]

University of the Aegean Department of Financial and Management Engineering

Objectness and Class Scores
The objectness score in YOLOv3 explains us how confident the model is that a bounding box contains an

object, regardless of its class (e.g., car, person, bike) and how well that bounding box aligns with the actual
object.
This score is a combination of two factors:
1. Probability of Object Presence (Pc(object)): This is the probability that the predicted bounding
box contains any object, as predicted by the model.
2. Intersection Over Union (loU): This measures how much the predicted bounding box overlaps with
the actual object’s ground truth bounding box.

Objectness score is calculated by multiplying these 2 values (Huang et al., 2022):

P, = Pc(object) * loU (3.2)

If Pc(object) is high, close to 1, it means the model is highly confident that an object exists. If IoU has a
value close to 1, it means that there is a significant overlap between ground truth box and the predicted
box, suggesting a more accurate prediction. Therefore, for an accurate prediction, P, should ideally be
greater than 0.5 and as close to 1 as possible. A high P, indicates both confidence in object presence and
accurate localization of the object's bounding box, which is important for accurate object detection
(Tepteris et al., 2023).

The class score indicates the probability that the detected object belongs to a certain class (e.g., car,
person, bike), with the highest score indicating the predicted class. More specifically, for each anchor box,
the model computes a probability over all predefined classes included in the dataset. For instance, if there
are 80 classes, the model outputs 80 probabilities corresponding to these classes (Redmon et al., 2016).

For example, if the class scores are:
e 0.7 for "car"
e 0.2 for "person”
e 0.1 for "bike"
e O forall other classes.
Then, the model predicts that the object is a car (since 0.7 is the highest score).

As illustrated in Figure 3.12, the output of the YOLOv3 model consists of bounding boxes that enclose each
detected object, along with a label displaying the objectness score and the name of the class to which the
object belongs.

(38]

University of the Aegean Department of Financial and Management Engineering

Figure 3.12 YOLOv3 detection with class score (Shivaprasad, 2019).

Non-Maximum Suppression (NMS)

In Figure 3.13, the class probabilities are shown in the left corner of each bounding box next to the class
name of the detected object. As it can be seen in this Figure two bounding boxes are drawn around the
same object (dog and person). To ensure accurate object detection, the bounding box that best encloses
the object, with the highest confidence score (1.00 for the class = “dog”) should be retained, while the
other inaccurate and redundant bounding boxes (0.31 for the class = “person”) should be ignored. This
process is known as Non-Maximum Suppression (NMS) and is purpose is to reduce duplicate detections
and keep only the most accurate prediction for each object. It basically works by comparing the confidence

scores of all bounding boxes and keeping the ones with the highest scores while removing those with a
high overlap with the chosen bounding box (Hosang et al., 2017).

Figure 3.13 YOLOv3 prediction example (Gilbert, 2020).

The NMS algorithm's threshold is a hyperparameter that can be adjusted to balance accuracy and recall
(Tepteris et al., 2023).

[39]

University of the Aegean Department of Financial and Management Engineering

Loss Function

The loss function is utilized to optimize the model's parameters throughout the training procedure.
Training continues until the loss function reaches its minimum value, signifying that the model has
successfully learned to detect objects in an image. YOLOv3’s loss function is computed at the last output
layer of YOLOv3.

The loss function in YOLOv3 consists of three parts (Huang, Lin, & Liu, 2022):
1. Errovrgyorq: refers to the coordinate prediction error
2. ETToTypjectness: refers to an Intersection Over Union (loU) error
3. Error.,ss: refers to the classification error

Loss = ETroreoorq + ETT0Topjectness T ETT0Tciqss (3.3)

For further information on YOLOv3 loss function see (Tepteris et al., 2023).

3.3.2 Validation process of YOLOv3

The validation process evaluates the performance of the YOLOv3 model during training using a separate
subset of the dataset known as the validation set. After each round of training (an epoch or in our study
several iterations), the model’s performance is tested on this validation set to detect any overfitting or
underfitting occurs during the training process. Overfitting occurs when the model learns too much detail
from the training data, including irrelevant patterns, resulting in high accuracy on the training data but
poor performance on new data. Underfitting happens when the model does not learn enough from the
training data, failing to capture complex patterns and thus performing poorly on both training and new
data. During this process, the network uses a separate dataset, called the validation set, which is different
from the training dataset. The validation process is crucial for tuning hyperparameters and preventing
overfitting, ensuring that the model generalizes well to new data (Redmon and Farhadi, 2018).

h J

I Calculate
Input image |- Feature L Multiscale Evaluation » Calculate Loss
Extracticn Output Value

Complete
Validation

ermination
Condition

Metrics

Figure 3.14 Validation process of YOLOv3

As illustrated in Fig., 3.14, in step 2 of the validation process the model continues with the feature
extraction from the input image without updating the weights, as it does during training. In step 3, the
model generates predicted outputs, including class labels and bounding boxes. In step 4, the model's
performance is evaluated by comparing the predicted outputs with the actual labels using various
evaluation metrics, such as precision, recall, Average Precision (AP) and mean Average Precision (mAP). In
step 5, the validation loss is calculated to assess how well the model is performing on the new input image
data. Then, in step 6, a decision is made, if the model's performance is acceptable, meaning the validation

[40]

University of the Aegean Department of Financial and Management Engineering

loss is low and the evaluation metrics are satisfying, the process moves to Step 7, completing the
validation. When the model's performance is not acceptable during validation, adjustments are made to
improve it, typically by tuning hyperparameters. This process can happen by stopping training and starting
over with new hyperparameters. After evaluating the model during validation, hyperparameters like
learning rate, batch size, can be adjusted and the training process starts over again.

Satisfactory validation result

A good validation result occurs when the validation loss is low and close to the training loss, indicating that
the model generalizes well to new data. Additionally, high values for evaluation metrics, such as precision,
recall, Average Precision (AP), or mean Average Precision (mAP) reflect that the model is accurately making
predictions across the predetermined classes and identifies true positives. Additionally, when the training
and validation losses are similar and stable after multiple iterations (epochs), it means that the model is
well-trained with no overfitting or underfitting issues.

Unsatisfactory validation result

On the other hand, an inferior validation result is characterized by a high validation loss compared to
training loss. This indicates overfitting issues when the model performs well on training data and
underfitting issues when the model fails to learn from new data. Low precision or recall values are also a
sign that the model is missing information or is making incorrect predictions.

Nevertheless, if the validation results are not the desirable ones, there are several strategies we can follow
to improve the model’s performance. One of them is the hyperparameter tuning, where parameters, such
as learning rate, batch size, or the number of epochs is adjusted. If the model is overfitting, techniques,
such as reducing model’s complexity (fewer layers) can help. In cases of underfitting, increasing model
complexity or training for more epochs may be necessary. Data augmentation can be also used to expand
the training data and prevent overfitting by generating new examples from existing data (e.g., rotating or
flipping images). A technique which was used in our research too.

Allin all, the validation process is important for making sure a machine learning model is reliable, accurate,
and works well with new data. It helps us check how well the model performs and shows where
adjustments are needed to avoid issues like overfitting or underfitting. By analyzing the performance
metrics and making small changes to improve the model’s performance, we can get the best possible
results (Redmon et al., 2016).

3.3.3 Testing process of YOLOv3

T

Camplete
testing

Terminatian
condition

Feature o Ilultizcale o Boauwnding box Caleulate
extractian autput prediction evaluation metrics

¥

Imput image

Figure 3.15 Testing process of YOLOv3 (Tepteris et al., 2023)

[41]

University of the Aegean Department of Financial and Management Engineering

The testing process is essential because it evaluates how well the trained model adapts to new data. The
performance metrics obtained during testing indicate how accurately the model detects objects and
handles different conditions on which it was not trained on. Figure 3.15 overviews of the testing process.
During this process each annotated image from the testing subset is fed into the trained network for object
detection. The first four steps of the testing process are similar to those in the training process except that
the weights are not updated during testing. The model uses the weights that were learned during training
to make predictions on the test data, but it does not modify them. Testing is a separate process where the
model's performance is evaluated on the data of the testing subset, with no further learning or weight
updates. In step five, after obtaining the detection results, evaluation metrics (such as Precision, Recall,
F1-Score, Mean Average Precision (mAP), etc.) are calculated to analyze the performance of the model on
the testing subset (see below).

Step six involves checking if the termination conditions have been met. These conditions could be related
to processing a certain number of images or completing all images in the test set. If the conditions are
met, the testing process is completed. Otherwise, the next image is processed, and the steps are repeated
(Tepteris et al., 2023).

Successful testing process

Successful testing means that the model has reached the expected thresholds for evaluation metrics, such
as precision, recall, F1 score, average precision (AP) or mean average precision (mAP). For example, if the
goal was to achieve 70% precision and recall on a specific dataset, the test is successful if these targets are
met. It also shows us that the model performs with consistency across the different testing subsets; i.e.
data subsets that might have different lighting conditions, object sizes and orientations than the training
dataset. Testing can also indicate a low number of false positives (detecting an object that isn’t there) and
false negatives (missing an object that is present), which means the model reliably detects objects without
significant errors.

Unsuccessful testing process

A non-successful test occurs when the model fails to meet the performance goals. This means that model's
performance metrics fall below the acceptable thresholds. For instance, if the target precision is 70% and
the model only achieves 50%, this would be considered unsuccessful. Also, when testing fails the model
generates too many false positives or false negatives, concluding to an unreliable object detection process.
If the model performs well on the training dataset but its performance is low on the testing dataset, it
indicates overfitting. This means that the model is memorizing training data rather than learning general
patterns. Finally, if the model performs poorly on both training and testing datasets, it means that it was
not trained well, indicating underfitting. If a test is unsuccessful, the next steps typically involve making
adjustments and analyzing the errors. For example, if the dataset faces specific difficulties, such as small
objects or crowded scenes, we analyze what changes can be made to the algorithm to help the model
improve detection under these conditions. If the weaknesses are identified, e.g. for the detection of small
objects, we could proceed with modifying the model's architecture to help improve its performance. After
making appropriate changes, the model should be trained, validated, and tested again to check if the
issues are solved. This cycle continues until the desired performance is achieved (Zhang and Wallace,
2015).

[42]

University of the Aegean Department of Financial and Management Engineering

Evaluation metrics

As discussed above, evaluation metrics are utilized to evaluate the performance of a model and they are
calculated during the algorithm’s validation and testing process (Fig. 3.14 and Fig. 3.15). Key evaluation
metrics include recall, precision, F1-score, Average Precision (AP), and mean Average Precision (mAP).
These metrics are derived from the model's classification and detection outcomes, which are identified as
False Positives (FP), False Negatives (FN), True Positives (TP) and True Negatives (TN)

True positives (TP), False positives (FP), False Negatives (FN), True Negatives (TN)

True positives (TP) can occur, when the both conditions below are met :
1) IoU = IoUipresnoia, indicating that the predicted bounding box overlaps or matches the ground
truth bounding box.
2) The class of the object within the ground truth bounding box is predicted correctly.

False positives (FP) can occur in four distinct cases when:

1) IoU < IoUipresnoia, indicating that the predicted bounding box locates the object incorrectly

2) IoU = IoUpyesnoa, but the object is assigned to the wrong class

3) A predicted bounding box has appeared without a corresponding ground truth bounding box with
the respective class.

4) The model generates multiple bounding boxes with with IoU = [oU;presnoia- In this case, only
the bounding box with the highest loU will be considered a true positive. The remaining bounding
boxes are classified as false positive.

False negatives (FN) can occur in three distinct cases:

1) IoU < 1oUipreshora- FP and FN outcomes occur when the object is mislocated due to insufficient
overlap between the predicted and ground truth boxes, leading to an unsuccessful detection. In
FP case, the predicted bounding box locates the object incorrectly, thus in FN case the ground
truth box fails to detect the object

2) IoU = IoUpresnora, but the model is not able to predict the class of the object correctly within
the ground truth bounding box. This can result in both FP and FN outcomes. Nevertheless, the FP
occurs because the predicted bounding box misclassifies the object, while the FN represents the
model's failure to correctly identify the object in the ground truth bounding box

3) The model fails to detect an object although it is present in an image, because although a ground
truth box exists, the model does not predict a bounding box for the corresponding object.

Finally, True Negatives (TN) are the scenarios when the model successfully identifies the non-existence of
an object in the image (Xiong et al., 2024).

Precision

[43]

University of the Aegean Department of Financial and Management Engineering

The precision metric is used to assess the accuracy of a model in identifying objects. It is calculated by
(Vakili et al., 2020):
TP

Precision = ——— 3.4
recision TP + FP (3.4)

An increased precision can be observed, either when the model generates a larger number of accurate
positive classifications, thereby maximizing the number of true positives, or when the model minimizes
the occurrence of incorrect positive classifications, thereby reducing the number of false positives (Gad,
2020)

Recall

The recall metric measures the ability of a model to accurately locate objects within an image. It is
calculated by dividing the number of correctly identified objects (true positives) by the total number of
objects (true positives and false negatives) (Vakili et al., 2020).

Therefore, recall can be calculated using the formula:

TP (3.5)

Recall = TP-{-—FN

A high recall value suggests that the model is able to find most of the objects in the image, reducing the
risk of missing any. On the other hand, a lower recall value indicates that the model is missing a significant

number of objects, which can result in inaccurate object detection and lower performance (iguazio, 2022).

F1-score
Precision and recall evaluate different aspects of a model's performance. The Fl-score is proportional to
the harmonic mean of precision and recall. It is calculated by the formula:

Precision * Recall
F1 — score = 2 * — (3.6)
Precision + Recall

The value of Fl-score ranges from 0 to 1 (0%-100%) and represents the balance between precision and
recall, reflecting the model’s overall performance (Vakili et al., 2020).

Average Precision (AP)

Average Precision (AP) is a metric that calculates the mean precision across the range of recall values
generated by the model when applied to multiple images. In other words, AP measures the overall
precision performance of the model across different levels of recall. It provides a single value that
summarizes the model's ability to accurately identify true positives while minimizing the number of false
positives across the range of recall values observed in the dataset.

[44]

University of the Aegean Department of Financial and Management Engineering

Average Precision (AP) is calculated as the mean precision value across the entire range of recall values
generated by the model. (Anwar, 2022).

Mathematically, it is evaluated by the formula:

1
AP; = fr=0p(r)dr (3.7)

where,

e AP;: represents the Average Precision calculated for each class i
o p(r): represents the precision-recall curve across multiple images
e r:represents the recall values ranging from 0 to 1.

Mean Average Precision (mAP)

The mean Average Precision (mAP) metric is a measure that summarizes the Average Precision (AP) of
each individual class and calculates the average across all classes. Mathematically, mAP is represented as

(Henderson and Ferrari, 2017):
N

1
mAP = Nz AP, (3.8)
i=1
where,
e AP;:represents the Average Precision calculated for each class
e N:represents the total number of classes

3.4: Operation of YOLOv3

Post successful training, validation and testing, the model may be used for object detection, using the
weights computed during the training phase. During operation, a raw input image (non-annotated) is fed
to the trained model for object detection.

The model outputs:

o The spatial information of a bounding box that encapsulated each detected object in the image
represented as (by, by, by, by,), @ where by, and b,, are the center coordinates of the bounding
box, and by, and b,, are its height and width, respectively.

o The objectness score, which represents the model’s confidence that a bounding box contains an
object. This score ranges from 0 to 1, where a higher value indicates a greater possibility that the
bounding box contains an actual object

e The class confidence probabilities p(c) for each object in the image, where ¢ = 1,2,3, ...c and
represents the object classes. These probabilities indicate how likely it is that the detected object
belongs to each class (Tepteris et al., 2023).

[45]

University of the Aegean Department of Financial and Management Engineering

Load the) Feature Multiscale Bounding box Complete
)) # Input image | . ¥ [! E I+ P .
trained weights extraction output prediction operation

Figure 3.16 Operation process of YOLOv3 (Tepteris et al., 2023)

Figure 3.16 overviews model operation. In step one, the trained weights are loaded into the YOLOv3
network. These weights are the result of training the network and are responsible for detecting objects in
real-time. In step two a raw input image, which can be a live video stream or a single image, is fed into
the YOLOv3 network. Following, in step three, the input image is processed by the backbone of the YOLOv3
network to extract relevant features, which are essential for identifying objects in the image. In step four,
during multiscale detection, the model identifies objects of different sizes by predicting bounding boxes
at three different scales within the feature pyramid. Following in step five, the model refines these
predictions, placing bounding boxes around the detected objects. Finally, in step six, the operation process
is completed, providing the final outputs (bounding boxes, objectness score and class probabilities).

Figure 3.17 illustrates the output after the YOLOv3 algorithm has run. The output image showcases the
detected objects with their corresponding bounding boxes, allowing for visual identification and
localization of the objects within the image.

Figure 3.17 Image after the applying of YOLOv3 object detection algorithm (Cruz Martinez, 2021)

[46]

University of the Aegean Department of Financial and Management Engineering

Chapter 4 Data preparation and parameter selection for training the
YOLOv3 algorithm

In this chapter, we will focus on the process followed for preparing the dataset and selecting the right
hyperparameters for training the YOLOv3 algorithm.

First, we focus on the training data. We describe how we collected the images from existing UAV datasets,
which parameters we considered for the dataset selection and which datasets are finally chosen. The steps
required to adjust the annotations to suit the characteristics of our UAV datasets, including adjustments
such as aligning label names and numbering to ensure consistency across datasets, are presented.
Subsequently, we describe the experimental setup, covering both the hardware and software used.

Secondly, we present the pre-determined hyperparameters of YOLOv3, as well as the hyperparameters
that are associated with YOLOv3’s architecture and functionality. After analyzing these hyperparameters,
we describe the ones selected for our research and what modifications we made to the initial algorithm
to include the new values of these hyperparameters.

4.1 Data collection and annotation

In this Section, we describe the process followed to identify the appropriate data for our research. We
discuss the characteristics of each chosen dataset and analyze the modifications made to the final
consolidated dataset to meet the requirements of our study. Additionally, we describe the training,
validation, and testing subsets, as well as the presence of objects within each predefined class for our
research.

4.1.1 Data collection

The success of training object detection and recognition models relies on the quantity and quality of data
utilized in the process. Utilizing extensive and diverse datasets is essential to reduce errors, overfitting,
and limit bias. Various resources, including cloud repositories, web platforms, resources from universities
and research institutions provide annotated image collections for computer vision tasks. While some
datasets are freely available, others may require payment or subscription for access.

For this thesis, the predetermined classes for training the object detection model are four. More
specifically, the classes are:

e Person

e (Car

e Long vehicle that refers to vehicles such as buses, trucks
e Bike

In this thesis, the selection of datasets that already contain the predetermined classes was a prerequisite
as the image annotation is a time-consuming process that needs specific tools. The image datasets were
sourced from open-source datasets containing images captured by drones. In the selection of the datasets,
two parameters were kept in mind, the quantity and the quality of captured images. It is essential to have

[47]

University of the Aegean Department of Financial and Management Engineering

a large dataset, capturing images from various perspectives. The qualitative characteristics are also
important. The dataset should consist of multicolored images, with numerous objects. with variations in
lighting conditions. Furthermore, images should be free from distortions such blurs, ensuring clear object
detection.

There are many publicly available open labelled datasets, including ImageNet (Yang et al., 2022), Common
Objects in Context (COCO) (Lin et al., 2014) etc. Each one of them is a set of digital pictures that developers
use to train and validate the performance of their algorithms.

Considering the above requirements and characteristics, the datasets selected for YOLOv3 algorithm
training, in our research, are analyzed in detail below:

e The “UA Vehicle Detection Dataset” is downloaded from GitHub and is a dataset specifically
selected for UAV (Unmanned Aerial Vehicle) vehicle detection tasks. It contains a collection of
images captured by UAVs, focusing on scenes where vehicles are present. The dataset is annotated
to include bounding boxes around vehicles, enabling the training and evaluation of vehicle
detection algorithms. Additionally, it includes various environmental conditions, lighting
scenarios, and vehicle types to ensure robustness of the trained models. Specifically, it includes
1,470 images that contain vehicles such as cars, long vehicles, and bikes, but any of the dataset
images contain the object person (which is one of the classes of our study). The size of each image
in this dataset is 224x224 pixels (Wang, 2024).

e The "Stanford Drone Dataset" is an extensive collection of aerial videos captured by a UAV
platform. Hosted on the Stanford Computer Vision and Geometry Lab (CVGL) website, this dataset
offers a diverse range of scenes and scenarios, including urban environments, campus settings,
and outdoor landscapes. Furthermore, the dataset provides high-resolution images captured from
different viewpoints, enabling the exploration of scale and perspective variations. The Stanford
drone dataset contains images categorized into six different classes: pedestrians, bikers, skaters,
carts, cars, and buses. It includes 6.748 annotated images, displaying diverse image resolutions
ranging from 1322x1079 to 1640x1948 pixels. Within these UAV-captured images, all four classes,
people, cars, long vehicles, and bikes, are represented. The numerous other labeled objects are
excluded intentionally for the purposes of our study (Robicquet et al., 2016).

e "VisDrone2019DET" dataset contains a variety of high-resolution images captured by unmanned
aerial vehicles (UAVs). It consists of images from various urban and natural environments,
including the objects of interest that serve our study. Due to the great number of images that
contain, across different classes and environmental conditions, this dataset provides a solid basis
for training, validation, and testing purposes. It contains a total of 10,209 annotated images, which
are obtained from urban and countryside landscapes, showcasing diverse resolutions ranging from
480x360 to 2,000x1,500 pixels. Additionally, the images within the training and validation sets
contain ten distinct classes: pedestrian, person, bicycle, car, van, truck, tricycle, bus, and
motorcycle. For the purpose of this thesis only the four predetermined classes are used and,
therefore, the rest of them are excluded. More specifically, the class person which integrates both
pedestrian and people, the class bike which contains the bicycle and tricycle categories, the class

[48]

University of the Aegean Department of Financial and Management Engineering

long-vehicle which contains the categories van, truck and bus and the class car which remains the
same (Zhu et al., 2021).

4.1.2 Annotation and consolidation

Before combining the three datasets, we standardized their annotations to be compatible with the YOLO
model. This involves aligning label names and numbering to establish similarity across datasets.
Specifically, the objective is to categorize annotations into four distinct classes: "person", "car", "long
vehicle", and "bike", corresponding to classes zero to three in YOLO format. More information on image

annotation in deep learning may be found in (Khan, 2023).

Table 4.1 The number of training, validation and testing objects in the consolidated dataset

Number of Objects ‘

UA Vehicle Stanford VisDrone2019DET TOTAL NUMBER OF
Detection Dataset OBJECTS IN EACH
Dataset
CLASS
Number 26,218 203,722 372,300
of total
objects
Number 0 92,880 120,365)
of persons
Number 20,647 26,332 158,914)
of Cars
Number 5,330 910 46,721)
of Long
Vehicles
Number 241 83,600 46,300)
of Bikes

Total number of objects in all the selected datasets

Once datasets are standardized, the datasets are merged to a single set that is split into training, validation
and testing subsets. The training one comprises 80% of the initial dataset, the validation one 10%, used to
evaluate model performance during training, and the testing one also 10%. Each set includes annotations
for the specified classes.

The numbers of objects and images in each dataset and their distribution into training, validation and
testing are presented in Table 4.1 and illustrated in Figure 4.1, respectively.

[49]

University of the Aegean Department of Financial and Management Engineering

(Consolidated Dataset \

splits into:
Training Dataset Validation Dataset Testing Dataset
contains B0% of the images: contains 10% of the images: contains 10% of the images:

1,631 images

13,041 images j [1,631 images j
f 16,303 images w

are contained in the
—L consclidated dataset

Figure 4.1 The number of training, validation and testing images included in the consolidated dataset.

4.2 Experimental set up

Training and evaluating the YOLOv3 model require significant computational resources and a high-
performance system. The hardware configuration (Figure 4.2) and software environment (Figure 4.3) are
discussed below.

Central Processing Unit (CPU):
AMD Ryzen 9 3900X 12-core Processor

Nvidia GeForce RTX 3090/PCle/

Graphical Processing Unit (GPU):
SSE2

Hard Disk Drive (HDD):
ATA TOSHIBA HDWD240 4TB

Random Access Memory (RAM): " Graphic Card Memory (GCM):
32GB 24GB

Solid State Drive (SSD):
ADATA SX8200PNP 512 GB

Figure 4.2 Hardware Configuration of the system

[50]

University of the Aegean Department of Financial and Management Engineering

The CPU that is used for our study has 12 cores. The GPU is RTX 3090 and is able to handle deep learning
and object detection tasks. In terms of Graphics Card Memory (GCM), we used 24GB that may handle
images and complex textures (Mu et al., 2011). The RAM of the computing system is 32GB, and the system
is equipped with 512 GB SSD and 4TB HDD.

Operating System:

Ubuntu 20.04 LTS

OpenCV:

System Type:

X64 based 4.,5.4 Version

Cuda Drivers:

CuDNN:

11.4 Version 8.3 Version

Figure 4.3 Software components of the system

The OpenCV toolkit is an open-source computer vision library known for its extensive range of features,
appropriate for image and video processing. This toolkit plays a crucial role in object detection applications
and is also integrated into the YOLOv3 model (Culjak et al., 2012).

The CUDA (Compute Unified Device Architecture) and cuDNN drivers were installed in order to optimize
the utilization of the RTX 3090 graphics card. CUDA is a platform with computing capabilities and API
developed by NVIDIA. This platform allows developers to utilize GPUs for general-purpose computing
tasks, accelerating computation-heavy processes, such as deep learning, leading to faster execution and
performance (Kirk, 2007) . CuDNN (CUDA Deep Neural Network) is a GPU library developed by NVIDIA as
well that offers highly optimized implementations of deep learning operations, such as convolutions,
pooling, normalization, and activation functions. It is designed to work along with CUDA, enabling faster
training by leveraging the processing power of NVIDIA GPUs (Chetlur et al., 2014).

4.3 YOLOv3 hyperparameters

Hyperparameters play a critical role in training any neural network model, since they can significantly
affect the performance and accuracy of the model. YOLOv3 provides its users the capability of adjusting
various model parameters to improve training and, ultimately, model performance. Generally, the choice
of hyperparameters should be based on the available computational resources, the requirements of the
specific study/task, and the performance of the model on the validation data.

[51]

University of the Aegean Department of Financial and Management Engineering

4.3.1 Hyperparameters determined by the characteristics of the dataset

In YOLOvV3, pre-trained convolutional weights are used from the model initially trained on the ImageNet
dataset. This method, known as transfer learning, accelerates the training process by leveraging general
features like edges and textures learned during ImageNet training. During fine-tuning on a new dataset,
the Darknet backbone's pre-trained weights are adjusted, while the YOLO detection layers are fine-tuned
to adapt to the specific task. The detection layers are not trained from scratch, but they are updated based
on the pre-trained weights.

During fine-tuning on a new dataset, the Darknet backbone's pre-trained weights are typically adjusted or
optionally frozen, while the YOLO detection layers are fine-tuned to adapt to the specific task. The
detection layers are not trained from scratch but are updated based on the pre-trained weights.

To adjust the model to the new data, certain configuration options are set in the YOLOv3 ".cfg" file. The
".cfg” file is used to define the the architecture and hyperparameters of the neural network. The
adjustments in the “cfg” file for our study, are shown in the following table and analyzed below (Redmon
and Farhadi, 2018).

a

Hyperparameter Default Value Updated Value
Backbone Network Darknet-53 Resnet-152 Darknet-53 Resnet-152
Classes 80 1 4 4
Max Batches 500,200 10,000 8,000 8,000
Filters 255 24 27 36
Steps 400000, 450000 | 4000, 6000, 8000, 6400, 7200 3200, 4800,
9000 6400,7200

In this research, specific changes were made to four of the hyperparameters:

e The maximum number of classes

e The maximum number of batches

e The filters that are before the convolutional level of each detection head
e The number of steps

Classes

The number of classes has been reduced from 80 to 4 for the YOLOv3 with Darknet-53 backbone network
(Table 4.2) and increased from 1 to 4 for the YOLOv3 with Resnet-152 backbone network (Table 4.2 — see
also class adjustment in Figure 4.4. The class numbering is as follows:

[52]

University of the Aegean Department of Financial and Management Engineering

e Person indicated as class 0

e Carindicated as class 1

e lLong vehicle indicated as class 3
e Bike indicated as class 4

Figure 4.4 lllustration of "classes" adjustment in the configuration file

Max Batches

The number of batches has been changed from 500,200 to 8,000 for the Darknet-53 network and from
10,000 to 8,000 for the Resnet-152 backbone network (Figure 4.5) The total number of iterations
represents the number of times the model processes a batch of data during training. The maximum
number of batches refers to the number of batches per epoch. The number of maximum batches is
provided by (Sujee et al., 2020):

Max_batches = 2000 X n (4.1)
where,

e nisthe number of classes
e 2000 is a proposed value from YOLOv3 (Alexey, 2024)

Given that in this case we have four classes, the number of max batches was set to 8,000 in the
configuration file. Note that in the original YOLOv3 model 500,200 max batches is used, although the
COCO dataset, which was originally used for training, includes 80 classes. Based on Equation 4.1, max
batches should be 160,000 (2000 x 80) instead of 500,200. This happens because our UAV dataset has
fewer classes and images in the training set rather than COCO dataset which has approximately 118,000
training images. If we had followed the COCO dataset approach, an increase in the number of iterations
would have possibly led to overfitting due to the corresponding increase in the number of epochs (Ghosh
et al., 2021). This approach would have slowed down the training process of our study.

Therefore, to achieve a better performance we followed Equation 4.1, which might not be the ideal for
large datasets like COCO. The same approach was followed for Resnet-152.

An epoch represents one complete pass through the entire training dataset by the model. After each
epoch, the model updates its weights based on the errors it made during that pass. Since a single pass

(53]

University of the Aegean Department of Financial and Management Engineering

through the data is usually not enough for the model to learn effectively, multiple epochs are typically

required to achieve optimal performance.

For estimating the number of epochs, we need to firstly calculate the number of iterations per epoch from

the formula below:

number of images of the training set

number of iterations per epoch =
_ 13,041
~ 64

batch size

= 203,77

number of max batches 8,000

number of epochs = = 39,3 = 40

number of iterations per epoch - 203,77

where,

(4.2)

(4.3)

batch size refers to the number of training examples processed by the model in one iteration before

updating its internal parameters (weights).

Figure 4.5 lllustration of "max_batches" in the configuration file

Filters

The filters are placed in front of the convolutional layer, in each detection head, and are used for feature

extraction/detection to produce the characteristics of the anchor boxes. They are numeric matrices the

[54]

University of the Aegean Department of Financial and Management Engineering

dimensions of which are set during initialization and cannot be modified afterwards. Every filter consists
of weights/numeric values that are adapted during training.

In Darknet-53, we reduced this number from 255 to 27 (Figure 4.6). At the same time the number of filters
in Resnet-152 was increased from 24 to 36 (Table 4.2) The number of filters is computed by the equation
below (Tepteris et al., 2023):

Number Of filters = (nclasses + 5) X Nanchor boxes (4-4)
where,

® TN usses iS the number of classes
® TNunchor boxes Fepresents the number of anchor boxes in YOLOv3
e 5 represents the 4 characteristics of the bounding box plus an objectness score

Darknet-53 utilizes 3 anchor boxes in each head, therefore the number of filters was set to 27 (Figure 4.6).
In the configuration files that Resnet-152 was selected as a backbone network, the number of filters takes
the value of 36 because it utilizes 4 anchor boxes in each head.

Figure 4.6 lllustration of “filters” in the configuration file
Steps

The number of steps specifies for how many steps the learning rate will remain constant. This parameter
is suggested to be 80% and 90% of the maximum value of the batch. In our case the maximum number of
batches is 8000. Therefore, this means that the steps will take the values of (Sujee et al., 2020) = see Figure
4.7.

0.8 X max batches = 0.8 x 8000 = 6400 (4.5)

0.9 X max batches = 0.9 x 8000 = 7200 (4.6)

[55]

University of the Aegean

Department of Financial and Management Engineering

The same process is also followed in order to calculate the accurate number of steps for the Resnet-152
backbone. In summary, these parameter adjustments were made to improve the performance and

#batchal
#subdivistonss1
Training
batch«64
subdivisy
width-352
hetight=352

channels=3

Ons=16

porentum=2.9
decay=0,0005
angle=0
saturation = 1.5
exposure = 1.5

hue=.1

learning_rate=0.001

Figure 4.7 lllustration of “steps” in the configuration file

efficiency of the YOLOv3 model for the specific object detection task.

4.3.2 Hyperparameters associated with the YOLOv3 architecture and functionality

Hyperparameters are known for their significant role in shaping the model's performance. In this Section,

we overview of YOLOv3 hyperparameters related to both the backbone network and the YOLO heads.

Table 4.3 and Table 4.4 illustrate the hyperparameters of the backbone network. They briefly describe

their functionality and explain the impact on the YOLOv3 algorithm when their values are altered.

Table 4.3 Hyperparameters in the backbone network related to architecture

Hyperparameter

Backbone Depth

Functionality

Number of layers in the
backbone network for
feature extraction (Redmon
and Farhadi, 2018).

Impact

Increasing depth improves feature
extraction but raises computational cost
and risk of overfitting. Decreasing depth
reduces feature complexity and detection
capability

Convolution Kernel
Size

Size of the filter applied to
the input data (Oztiirk et
al., 2018).

Changing size affects receptive field and
feature extraction but may not yield
significant improvements and could
increase computational demands

Convolutional Stride

Defines how much the filter
moves across the input
image (Riad et al., 2022).

Default strides balance resolution and
efficiency. Changing strides affects feature
map resolution which can impact both the
model's accuracy and processing speed.
Larger strides reduce the resolution but
increase efficiency, while smaller strides are

[56]

University of the Aegean

Department of Financial and Management Engineering

able to capture more details but require
more computational resources.

Dilated Convolution

Introduces gaps in kernels
to cover larger receptive

fields (Zhang et al., 2017).

YOLOv3 uses standard convolutions. Adding
dilated convolutions might capture more
context and improve performance

Hyperparameter

Table 4.4 Hyperparameters in the backbone network related to training

Impact of Changing Values

Input Size

Functionality

Dimensions of the input
images fed into the
network (Kamal, 2021).

Affects detection accuracy and
computational cost. Larger sizes improve
detail but increase processing time; smaller
sizes reduce detail but speed up processing

Input Normalization

Scaling of pixel values to a
specific range (e.g., [0,1])
(Aksu et al., 2019).

Ensures consistency and stability during
training. Improper normalization can affect
model’s performance

Data Augmentation

Techniques to artificially
increase training data (e.g.,
flips, rotations) (van Dyk
and Meng, 2001).

Enhances model robustness and
generalization

Image Distortion

Altering image properties
(e.g., blurring) (Buczkowski
and Stasinski, 2019).

Can improve model robustness by
simulating real-world variations. Excessive
distortion can affect the quality of training
data

Table 4.5 and Table 4.6 overview the hyperparameters of the YOLO heads. They briefly describe their

functionality and explains the impact on the YOLOv3 algorithm when their values are altered.

Hyperparameter

Number of Layers

Dropout

Table 4.5 Hyperparameters in the YOLO heads related to architecture

Functionality

Impact

Number of layers in the YOLO
detection heads responsible
for predicting bounding boxes
and class probabilities
(Redmon and Farhadi, 2018).

Regularization technique
where a subset of layers is
randomly dropped (or
disabled) during training to
prevent overfitting (Alexey,
2024).

[57]

Increasing the number of
layers can improve feature
representation but may add
complexity and risk of
overfitting. YOLOv3 uses a fixed
number of layers for a
balanced approach

Adding dropout can help
prevent overfitting but may
reduce model capacity if set
too high.

University of the Aegean

Department of Financial and Management Engineering

Spatial Pyramid Pooling (SPP)

Path Aggregation Network
(PAN)

Technique used to handle
varying object scales and
improve feature extraction by
pooling over different spatial
resolutions (He et al., 2015).
Enhances feature
representation by combining
features from different layers
(Liu et al., 2018).

Can enhance the model’s
ability to detect objects at
multiple scales, but YOLOv3
does not use SPP in its default
architecture.

Improves feature combination
and detection performance,
but YOLOv3 does not include
PAN by default.

Multi-scale Output

Predicts bounding boxes at
multiple scales to detect
objects of various sizes (Cai et
al., 2016)

Helps in detecting objects at
different scales but increases
computational complexity.
YOLOv3 uses multi-scale
outputs by default for better
detection

Table 4.6 Hyperparameters in the YOLO heads related to architecture related to training

Hyperparameter

Batch Size

Learning Rate

Subdivision

Anchor Boxes

loU Threshold

Functionality

Number of images processed
in one training iteration
(Redmon et al., 2016).

Learning rate controls the step
size during optimization (lgiri et
al., 2021).

The process of dividing a
batch of training data into
smaller subsets to manage
memory during training. The
model's weights are updated
after all subsets of the batch
have been processed (Liu et al.,
2020).

Predefined bounding box sizes
used to predict object locations
(Kamal, 2021)

Intersection over Union
threshold for considering a

(58]

Impact of Changing Values

Larger batch sizes improve
training stability and use GPU
resources more effectively but
require more memory. Smaller
batch sizes may reduce
memory usage but could
increase training time.

Higher learning rates can speed
up training but may lead to
instability. Lower rates can
offer more stability but may
lead to local minimums
Subdividing the batch allows
training on larger effective
batch sizes with less GPU
memory. Higher subdivisions
reduce memory usage but may
slow down training.

Properly tuned anchor boxes
improve detection
performance. Not well defined
anchors can reduce detection
accuracy

Higher thresholds increase
precision but might miss some

University of the Aegean

Department of Financial and Management Engineering

Confidence Threshold

NMS Threshold

Activation Function

Loss Function

Freeze Layers

Focal Loss

Input Color Space

Transfer Learning

Batch Normalization

predicted box as a positive
detection (Kamal, 2021)

Minimum confidence score
required for a prediction to be
considered (Wenkel et al.,
2021)

Threshold for Non-Maximum
Suppression to filter out
overlapping bounding boxes
(Bodla et al., 2017).

Function applied to the output
of neurons (e.g., ReLU, Leaky
ReLU) (Sharma et al., 2020).

Function used to measure the
difference between predicted
and ground truth values
(Kamal, 2021)

Layers that are not updated
during training (frozen layers)
(Brock et al., 2017).

Loss function that reduces the
relative loss for well-classified
examples and puts more focus
on hard, misclassified examples
(Mukhoti et al., 2020).

Color space of the input
images (e.g., RGB, BGR) (Diaz-
Cel et al., 2019).

Using pre-trained weights to
initialize the model (Ribani and
Marengoni, 2019).

Normalization technique to
stabilize and accelerate training
(loffe and Szegedy, 2015b).

[59]

detections. Lower thresholds
increase recall but may include
false positives

Higher thresholds reduce false
positives but might miss some
true positives. Lower
thresholds may increase false
positives

A higher NMS threshold results
in fewer boxes being
suppressed, which might
increase overlap. A lower
threshold suppresses more
boxes, reducing overlap
Different activation functions
can impact the training
dynamics and final
performance

YOLOv3 uses a combination of
localization, confidence, and
classification losses. Adjusting
this can affect how well the
model learns

Freezing layers can help in
transfer learning or stabilize
training. Unfreezing layers
allows the model to adapt
more fully to new data
Improves detection of small or
difficult objects by addressing
class imbalance.

Consistent color space helps in
accurate feature extraction

Can speed up feature merging
and improve performance.
Without transfer learning,
training from scratch may be
required

Helps in faster feature
inheritance and improves
model stability. YOLOv3
includes batch normalization in
its default architecture

University of the Aegean Department of Financial and Management Engineering

Group Normalization Normalization technique Alternative to batch
applied across groups of normalization, useful for small
channels (Wu and He, 2018) batch sizes. YOLOv3 uses batch
normalization instead of group
normalization

4.3.3 Hyperparameters selection for our research

After investigation on the YOLOv3 hyperparameters, we ended up on selecting the six hyperparameters
presented in Table 4.7: image resolution, anchor dimensions, backbone network, data augmentation,
dilated convolution, and box loss. The Table also indicates the hyperparameter levels to be used on the
experiments.

Table 4.7 Default and updated values of hyperparameters selected for our research

Hyperparameter Name Default Value Updated Value 1 Updated Value 2

416 x 416 352 x 352 832 x 832
Default New

Darknet-53 ResNet-152

Default Mosaic

Yes No

loU DioU

More specifically:

Image Resolution

Image resolution refers to the dimensions (width x height) of the input images provided to the YOLOv3
algorithm during training. It affects the level of detail available for object detection and influences
computational requirements. YOLOv3 is trained with an image resolution of 416x416. As shown in Table
4.7 we reduced the image resolution to 352x352 pixels in order to decrease the training time needed. We
also used the default image input size as well as an increased level to 832x832 pixels (see also Fig. 4.8).
This higher resolution helps the model to collect more information as the input progresses through the
network, but it also increases training time.

[60]

University of the Aegean

Department of Financial and Management Engineering

Image Resolution 352x352

[net)

[net]

Image Resolution 416x416

ne

Image Resolution 832x832

t]

Testing r Testing F Testing
#batchs1 ghatch=1 gbhatch=1
#subdivisions=1 gsubdivisionss«1 gsubdivisions«1
Training g Training g Training
batch«64 batch-64 batch«64
subdivisions~16 subdivislions-64 subdivislions~-64
width=352 width-416 width=832
helight=35] helght-416 helght-832
channels channels=3 channels=3
norentum=90.9 momentlum=0.9 momentum=0.9
decay=0.000 eca). Dol cCay=0.0005
angle=8 ang 0 angle=9
saturotion = 1.5 saturation = 1.5 saturation = 1.5

expoasure =

nue=

exposure = 1

hue=,1

5 oxp
hue

osure = 1.5

=,1

Figure 4.8 lllustration of the three different image resolution options in the configuration file

Backbone Network

Backbone Network, as mentioned in chapter 3, serves as the feature extraction component of the
algorithm, responsible for processing input images and extracting hierarchical features that facilitate
object detection. The backbone network architecture used in YOLOv3 is Darknet-53, which is also used in
experiments. We also experimented with ResNet-152. Resnet-152 consists of 152 layers instead of the 53
layers of Darknet-53.

Anchor Dimensions

Anchor dimensions define the default bounding boxes that are used to predict object locations and sizes.
Once the anchor dimensions are determined, they are used during training to predict bounding boxes for
detected objects. YOLOv3 predicts bounding box coordinates relative to these anchor boxes, along with
confidence scores for object presence and class probabilities, as it mentioned in Chapter 3. The default
anchor dimensions that are used in the yolov3.cfg file with Darknet-53 as a backbone layer are:

[10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326] as illustrated in Figure 4.9.

Figure 4.9 lllustration of the default anchor dimensions for the YOLO head responsible for detecting small objects

Each detection head uses a different set of boxes to predict objects, selected by the "masks" parameter in
each head. The "masks" parameter is an index containing three values that specify the anchor boxes used
in each grid cell. The green box in Figure 4.9 illustrates a small detection head configured with the "masks"
index [0, 1, 2]. Specifically, index 0 corresponds to anchor box dimensions of 10x13, index 1 to 16x30, and
index 2 to 33x23. The medium detection head is configured with the “mask” index [4, 5, 6] (Figure 4.10)
corresponding to anchor box dimensions 30x61, 62x45, 59x119 respectively. Finally, a large detection head

[61]

University of the Aegean Department of Financial and Management Engineering

is configured with the “mask” index [6, 7, 8] (Figure 4.11) corresponding to anchor dimensions 116x90,
156x198, 373x326 respectively.

anchars 16,13, 16,38, 33,23, 138,61, 62,45, 59,113, 116,99, 156,198, 373,326]

5,13, 16,38, 33,23, 38,61, 62,45, 59,119, 116,90, 156,198, 373,320

Figure 4.11 Illustration of the default anchor dimensions for the YOLO head responsible for detecting large objects

Even though anchor boxes are fine-tuned during training to fit objects better, it is important to start with
good initial anchor boxes. This helps them get refined more effectively and quickly during training. In
YOLOv3, the original anchor boxes were created using the k-means algorithm on the COCO dataset. This
algorithm groups objects by their size and shape, and finds the best anchor box sizes (Oti et al., 2021). We
used the same algorithm for our UAV dataset and applied by using the command in Table 4.8. The function
calc_anchors (Table 4.8) analyzes the dataset's bounding boxes and clusters them to generate optimized
anchor boxes by specifying the four parameters below:

calc_anchors cfg/"NAME_OF _THE_DATA_ FILE".data, which specifies the configuration file that contains
information about the dataset (e.g., the path to the images and labels).

num_of clusters "NUMBER_OF CLUSTERS", which defines the number of clusters (anchor boxes) to
calculate. These clusters are determined using a k-means clustering to optimize the anchor boxes for the
dataset.

-width "NUMBER_OF_IMAGE_WIDTH" and -height "NUMBER_OF_IMAGE_HEIGHT" specify the width and
height of the images for which the anchor boxes will be optimized. This helps improve the detection
accuracy of the YOLO model by better matching the size and shape of the objects in the dataset.

Table 4.8 Representation of the use of the k-means algorithm

[62]

University of the Aegean Department of Financial and Management Engineering

Command | ./darknet detector calc_anchors cfg/"NAME_OF_THE_DATA_FILE".data -num_of clusters
"NUMBER_OF_CLUSTERS" -width "NUMBER_OF_IMAGE_WIDTH" -height "NUMBER_OF_IMAGE_HEIGHT"

Example ./darknet detector calc_anchors cfg/UAV_65.data -num_of_clusters 9 -width 832 -height 832

We applied k-means clustering to calculate nine new optimal anchor box sizes (three aspect ratios for each
head) based on our UAV dataset. This algorithm was used to find the best-fitting anchor box sizes for
objects in our images at specific resolutions. As shown in Tables 4.9 and 4.10, we adjusted the “anchors”
hyper-parameter across all the detection heads in our study to match the image resolution derived.
Different anchor box sizes were applied for images with resolutions of 352x352, 416x416 and 832x832
pixels, respectively on both backbone networks, Darknet-53 (Table 4.9) and Resnet-152 (Table 4.10).
Therefore, we conducted the k-means clustering algorithm three times to identify the 9 optimal anchor
boxes in the Darknet-53 backbone case and the 12 optimal anchor boxes in the ResNet-152 backbone case
(Wu et al., 2019). Note that Resnet-152 has 12 anchor boxes in total, as it is a deeper network utilizing
more layers (Alexey, 2024)

[yolo)

nask 5.7.8

lanchars 2, S, i TR 5, 13, 16, 12, 9, 21, 17, 16, 17, 31, 30, 38, 44, 61|

classes«4

nun-9

iltrer 1

tgnore thresh
truth threst

andom=1

Figure 4.12 lllustration of the updated anchor dimensions in the configuration file

The updated values for anchor boxes in Darknet-53 backbone network, based on the three different image
resolutions, are illustrated in the table below. In Table 4.9, the first three pairs ([10,13, 16,30, 33,23, ...])
correspond to the three anchor boxes of the YOLO head that detects small objects. The next three pairs
([..., 30,61, 62,45, 59,119, ...]) are referring to the three anchor boxes of the YOLO heads responsible for
detecting medium objects and the last three pairs ([..., 116,90, 156,198, 373,326, ...]) for the YOLO heads
detecting large objects. The same approach is followed for the rest of the image resolutions selected for
our study.

Table 4.9 Anchor boxes for Darknet-53

Image Resolution Anchor Boxes |
YOLOv3 with Daknet-53 as backbone (trained on COCO dataset)

[10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90,

156,198, 373,326]

YOLOv3 with Daknet-53 as backbone (trained on UAV datasets)

416x416

352X352 [2,5 7,7, 5,13, 10,12, 9,21, 17,16, 17,31, 30,30, 44,61]
[7,10, 11,11, 8,618, 12,17, 18,15, 15, 24, 25,21, 23,
416X416 34, 40, 59]

[13, 22, 21,25, 17,39, 33,24, 27,36, 32,52, 45, 39, 48,

832X832 69, 82,121]

[63]

University of the Aegean Department of Financial and Management Engineering

The updated values for anchor boxes in Resnet-152 backbone network, based on the three different
image resolutions, are illustrated in the table below. In Resnet-152 backbone network we have four
anchor boxes. Therefore, in Table 4.10, the first four pairs ([8,8, 10,13, 16,30, 33,23, ...]) are
responsible for the four anchor boxes of the yolo head that detects small objects. The next four pairs ([...,
32,32, 30,61, 62,45, 59,119, ..]) are referring to the four anchor boxes of the yolo heads responsible
for detecting medium objects and the last four pairs ([..., 80,80, 116,90, 156,198, 373,326, ...]) for the
yolo heads detecting large objects. The same approach is followed for the rest of the image resolutions
selected for our study.

Table 4.10 Anchor boxes for Resnet-152

Image Resolution Anchor Boxes \
YOLOv3 with ResNet-152 as backbone (trained on COCO dataset)
[8,8, 10,13, 16,30, 33,23, 32,32, 30,61, 62,45, 59,119,
80,80, 116,90, 156,198, 373,326]
YOLOv3 with ResNet-152 as backbone (trained on UAV datasets)
(2,4, 3,9, 7,7, 6,13, 10,12, 8,22, 16,12, 14,19, 25,20,

416x416

2X352
352X35 18,33, 34,39, 50,71]
[7,10, 11,11, 8,18, 12,17, 18,15, 15, 24, 25, 21, 23,
16X41
416X416 35, 42,59]
[13, 22, 20, 24, 17,39, 32,23, 26,33, 31,49, 44,38, 47,
832X832 68, 80,118]

Data Augmentation

Data Augmentation artificially increases the diversity of training data by applying various transformations
to the original images. Techniques such as random cropping, flipping, and rotation are incorporated in the
data augmentation hyperparameter. YOLOv3 does not explicitly specify a standard set of data
augmentation techniques.

To differentiate our experiments and investigate how efficiently the YOLOv3 algorithm will work after the
introduction of data augmentation, we added the mosaic augmentation. Mosaic augmentation is a
method that combines multiple images to form a single mosaic image (Figure 4.13). This mosaic image is
then exposed to random transformations like flipping, scaling, and translation. This creates a synthetic
training sample that contains information from multiple original images, effectively increasing the
variability and complexity of the training data (Li et al., 2023).

[64]

University of the Aegean Department of Financial and Management Engineering

ORSLOON UL g COCUMIAL kg COOOILENN 4 [y 0000) 0RA1 iy

OOCCOIIMNTT jwy V000 M I8 g 000900 1N RN OO0 S by

Figure 4.13 Illustration of mosaic augmentation (Alexey, 2020)
The mosaic augmentation process in YOLOv3 typically follows these steps (Bochkovskiy et al., 2020):

Source Image Selection: Four images are randomly chosen from the training dataset
Mosaic Image Creation: The selected images are organized into a mosaic layout, with each image
filling one quadrant

3. Random Transformations: Various transformations, including flipping and scaling are applied
randomly to the entire mosaic image

4. Bounding Box Adjustments: Bounding box coordinates and object labels within the mosaic image
are modified to align with their new positions and orientations

5. Training Phase: The augmented mosaic image is utilized as input during training to refine the
parameters of the YOLOv3 model.

The modification applied to the configuration (cfg) files includes the introduction of a parameter denoted
as "mosaic," set to a value of 1 (mosaic=1) (Figure 4.14). This parameter is added within the section that

specifies how the training data is augmented during each epoch of training (Shorten and Khoshgoftaar,
2019).

[65]

University of the Aegean Department of Financial and Management Engineering

[n=t]

¥ Testing
ghatch=1
gsubdivisions

¥ Training
batch-64
subdivisions«64
width-83;
helght=832
hannels-3

momentlum=0.9

Figure 4.14 Illustration of “mosaic” in the configuration file

Dilated Convolution

Dilated convolution is a technique that involves modifying the convolutional kernel by inserting zeros
between its weights. Normally, a convolutional kernel is a small grid of numbers (weights) that processes
over the image to detect features, such as patterns, edges, textures etc. In dilated convolutions, zeros are
inserted between these weights, increasing the distance between the points the kernel captures from the
image (see Figure 4.15). This increases the receptive field of each neuron, meaning each neuron can "see"
a larger area of the input image. As a result, the neuron can gather more information without increasing
the number of parameters or computational resources. YOLOv3 does not use dilated convolutions by
default. However, applying different dilation rates in various layers can help the network capture features
at multiple scales (Gashi et al., 2017).

The default setting in YOLOv3 configuration file is dilation=1, even though it’s not written in the
configuration file. A dilation rate of 1 means that the convolutional kernel operates normally without any
added zeros, functioning just like a standard convolution (Zhang et al., 2017).

[66]

University of the Aegean Department of Financial and Management Engineering

EEE B B BENE

|
|
i

NN

|_ BN _BE B

SN BN BE BR

Bl EE BE BB

i
|

Figure 4.15 Dilated convolution filters with dilation rates D = 1, D = 2, D = 3 respectively (Heffels and Vanschoren, 2020)

l
1

For our research, we modified the convolutional layers in the YOLOv3 configuration file to include dilation,
by setting two different values 2 and 3 in two of the heads, respectively. More specifically:

e Dilation=2: The model inserts one zero between each weight in the convolutional kernel. This
doubles the receptive field, meaning the network can "see" more of the image around each point
it processes. This can be useful for detecting larger objects (Figure 4.15).

e Dilation=3: The model adds two zeros between each weight, tripling the receptive field. This
allows the network to capture even more context, which can help in detecting even larger objects
or understanding more complex scenes (Figure 4.15).

[67]

University of the Aegean

Department of Financial and Management Engineering

Dilation =3
canvalutionagl
atch normalize=1

size=3

stride=1

pad=1

filters=1024

activation=leaky

[convolutional]
batch_normalize=1
filters=512
size=1

stride=1

pad=1
activation=leaky

Zony al]
batch_normalize=1
size=3
stride=1
pads=1
fllters<1024
activationsleaky

|convolutlonal
batch normalize~1
Filters-512
slzenl

ride=1
pad=1
activation=1leaky

wl]

batch_normalize=1

size=3

stride=1

pad=1
filters=1024
activation=leaky

Table 4.11 Illustration of ‘dilation’ in the configuration file

Dilation = 2

batch normalize=1
size=3

stride=1

pad=1

filters=512
activation=1leaky

[convolutional]
batch_normalize=1
fil
size
stride=1

pad=1
activation=leaky

=256

1
=1

ch_normalizesl
slze=3
stride=1
pad=1
fllters<512
activations~leaky
|convolutional
batch normalizes1
filters=256
sizex]
stride=1
pad=1

activation=leoky

filters=512
activation=leaky

Dilation=3

ganvol al

AL
dilation=1
atch normalize«d
size«]

stride~1

poad-1
filters=256
aclivation=leoky

[convolutional]
batch_normalize=1
filters=128
size=1

pad=1
activation=leaky

convolutional]

pad=1
filters=256
activation=leaky

[convolutional]
batch_normalize=1
filters=128
size=1

stride«1

pad«1
activationsleaky

Canya nal
yatch normallize=1
slze=3
siride=1
pad=1
filters=256
activetion=Lleaky

Specifically, for the first YOLO head, we set dilation=3 andfor the second YOLO head we used dilation=2.
For the last YOLO head, we kept the default dilation=1. We did this in the hope that the model detect
objects of different sizes more effectively. The first YOLO head, with dilation=3, looks at a larger area of
the image, which is useful for spotting bigger objects or understanding the overall scene. The second YOLO
head, with dilation=2, focuses on medium-sized features, balancing between the big picture and smaller
details. Finally, the third YOLO head, with dilation=1, focuses on the smallest details, helping to accurately
detect small objects. This approach allows the network to first gather broad information and then
gradually zoom in, making it better at detecting objects of all sizes.

Box Loss

In YOLOv3, the box loss is the part of the loss function that is responsible for measuring how well the
predicted bounding boxes match the ground truth bounding boxes. By minimizing box loss during training,
YOLOv3 predicts bounding boxes that accurately contain objects and assign high confidence scores to grid
cells that contain objects. In the original YOLOv3 configuration file, the default loss function is not

[68]

University of the Aegean Department of Financial and Management Engineering

described as a single function but is defined by the structure of the network. For further information on
YOLOv3 loss function see (Tepteris et al., 2023).

Intersection over Union (loU) and Distance Intersection over Union (DloU) are metrics used to evaluate
and improve the accuracy of these bounding box predictions, with DloU providing additional geometric
context to enhance performance.

More specifically:

1. Intersection over Union (loU): loU measures the overlap between a predicted bounding box and
the ground truth bounding box. loU-based loss functions focus on the area of overlap between
the two boxes, providing a more direct measure of how well the predicted box matches the ground
truth in terms of spatial dimensions. More specifically loU loss is defined by the formula:

Area of Intersection (4.7)

IoU Loss=1—1oU =1—
oY LosS 0 Area of Union

where loU ranges from 0 to 1 (area of Intersection: The overlapping area between the predicted
and ground truth bounding boxes. Area of Union: The total area covered by both the predicted
and ground truth bounding boxes). An loU value of 1 means a perfect overlap, while a value closer
to 0 indicates minimal overlap. By minimizing this loU loss, we encourage the model to maximize
the overlap between the predicted and ground truth boxes. Nevertheless, loU faces some
limitations. Although it provides a measure of overlap, it doesn't consider the distance between
the centers of the predicted and ground truth boxes, which can be an issue when boxes have
similar loU values but different placements.

2. Distance loU (DloU): Extends loU by taking into account the distance between the center points
of the predicted and ground truth bounding boxes. DloU considers not only the overlap but also
the distance between the centers of the boxes, addressing situations where two boxes may have
similar loU values but different placements. More specifically DloU loss is calculated by the
formula:

d? (cp, cq) (4.8)

DIoU Loss =1 —IoU + 2

where,

- d? (cp, cg) is the Euclidean distance between the center points of the predicted box ¢, and
the ground truth box c;.

- cisthe diagonal length of the smallest enclosing box that contains both the predicted and the
ground truth boxes.

[69]

University of the Aegean Department of Financial and Management Engineering

DloU encourages the model to predict boxes that are not only overlapping but also more accurately
located (Zheng et al., 2020).

The loss function, including box loss, is usually defined within the training script. By adjusting certain

parameters and settings in the YOLOv3 cfg files, box loss can be influenced.

Figure 4.16 Illustration of the DloU in the configuration file

Specifically, while we are setting iou_loss = diou in the configuration file (Figure 4.16, red box), additional

parameters such as iou_thresh and iou_normalizer are specified to control aspects of the loss function and

how it is applied during training (Figure 4.16, blue box). These parameters (iou_loss=diou, iou_thresh=0.5,

iou_normalizer=0.07) would be added to all three YOLO layers. This happens because each layer requires

settings that determine how the model calculates and optimizes the bounding box predictions for different

scales.

In detail:

The iou_loss = diou parameter specifies that the loss function for bounding box prediction
should use Distance loU (DloU) instead of the default loss function

The iou_thresh=0.5 (proposed by literature: (Alexey, 2024)) parameter sets the threshold for
determining whether a predicted bounding box is considered as correct (true positive (TP)) or
not (false positive(FP)). During training, if the loU between the predicted box and any ground
truth box is greater than or equal to 0.5, the prediction is considered as correct. Otherwise, if
the loU is less than 0.5, the prediction is considered as incorrect. This parameter is added to
help us filter out low-quality bounding boxes during training and validation processes. Setting
the loU threshold to 0.5 helps us in identifying objects accurately without being too tolerant
or too strict. Itis a standard, widely accepted value that has been empirically tested to perform
well in most object detection scenarios.

The iou_normalizer=0.07 (proposed by literature: (Alexey, 2024)) used to control how much
the loU loss (related to the accuracy of the bounding boxes) affects the overall training of the
model. This parameter is added to keep a balance between different types of errors the model
needs to minimize. The 0.07 value was chosen based on experiments to balance training. It is
low enough to ensure that while loU contributes to defining the box locations, it doesn't skip
other important tasks, like finding objects or recognizing them in an image (Alexey, 2024).

[70]

University of the Aegean Department of Financial and Management Engineering

Synopsis

Summarizing all the details analyzed in this last Section, the hyperparameter values for Darknet-53 and
Resnet-152 are illustrated in Table 4.12 and Table 4.13 respectively. The final configuration files for our
study are conducted based on the combination of these values.

Table 4.12 Hyperparameter values for Darknet-53

Hyperparameter Name Darkent-53 as Backbone Network

352 x 352 416 x 416 832 x 832

Image Resolution

Anchor Dimensions

Data Augmentation

Dilated Convolution

Box Loss

Hyperparameter Name

Image Resolution

Anchor Dimensions

Data Augmentation

Dilated Convolution

[2,5, 7,7, 5,13,
10,12, 9,21, 17,16,
17,31, 30,30, 44, 61]

[7,10, 11,11, 8,
18, 12,17, 18,15,
15, 24, 25, 21, 23,
34, 40, 59]

[13, 22, 21,25, 17,
39, 33, 24, 27, 36,
32,52, 45,39, 48,
69, 82,121]

None / Mosaic

None / Mosaic

None / Mosaic

None/1,2,3

None/1,2,3

None/1,2,3

loU / DioU

loU / DioU

loU / DioU

Table 4.13 Hyperparameter values for Resnet-152

Resnet-152 as Backbone Network

352 x 352

416 x 416

832 x 832

[2,4, 3,9, 7,7,
6,13, 10,12, 8,22,
16,12, 14,19, 25,20,
18,33, 34,39, 50,71]

[7,10, 11,11, 8,
18, 12,17, 18,15,
15, 24, 25, 21, 23,
35, 42,59]

[13, 22, 20, 24, 17,
39, 32,23, 26, 33,
31,49, 44,38, 47,
68, 80,118]

None / Mosaic

None / Mosaic

None / Mosaic

None/1,2,3

None/1,2,3

None /1,2,3

[71]

University of the Aegean Department of Financial and Management Engineering

Hyperparameter Name Resnet-152 as Backbone Network

Box Loss loU / DioU loU / DioU loU / DioU

[72]

University of the Aegean Department of Financial and Management Engineering

Chapter 5 Experimental Analysis

In Chapter 5 we study how to optimize the training process of YOLOv3 by tuning selected training
hyperparameters of the algorithm. We also analyze the effect of these hyperparameters and their
interactions on model performance. For tuning the training hyperparameters, we conducted full factorial
experiments by varying their levels and measuring their impact. For quantifying the effects of the
hyperparameters on mean Average Precision (mAP), we use Analysis of Variance (ANOVA). We have also
identified the best-performing combinations of hyperparameters and explained the reasons that models

trained under these combinations perform better and improve object detection accuracy.

5.1 Full Factorial Design

The hyperparameters used in the experimental investigation are those identified in Chapter 4; i.e., image
resolution, the use of dilated convolutions, box loss functions, anchor dimensions, backbone network
types, and data augmentation methods. For the experimentation, we used a fill factorial design with two
levels per hyperparameter (factor) except for image resolution that was varied in three levels. The full
factorial generates all possible combinations of the among the factor levels, aiming to identify the
significant effects of the hyperparameters and their interactions on training effectiveness, as well as the
best combination that optimizes the performance of YOLOv3 model. The full factorial design consists of
96 (2° x 3) experiments, as shown in Table 5.1. This Table provides the full experimental design, that is all
hyperparameter combinations used in our work.

Table 5.1 Multilevel factorial design of our study

AJA Image Dilated Box Loss Anchor Backbone Data
Resolution Convolution Dimensions Network Augmentation
1 352x352 Yes loU Default Darknet-53 Default
2 352x352 Yes loU Default Darknet-53 Mosaic
3 352x352 Yes loU Default ResNet-152 Default
4 352x352 Yes loU Default ResNet-152 Mosaic
5 352x352 Yes loU New Darknet-53 Default
6 352x352 Yes loU New Darknet-53 Mosaic
7 352x352 Yes loU New ResNet-152 Default
8 352x352 Yes loU New ResNet-152 Mosaic
9 352x352 Yes DloU Default Darknet-53 Default
10 352x352 Yes DloU Default Darknet-53 Mosaic
11 352x352 Yes DloU Default ResNet-152 Default
12 352x352 Yes DloU Default ResNet-152 Mosaic
13 352x352 Yes DloU New Darknet-53 Default
14 352x352 Yes DloU New Darknet-53 Mosaic
15 352x352 Yes DloU New ResNet-152 Default
16 352x352 Yes DloU New ResNet-152 Mosaic
17 352x352 No loU Default Darknet-53 Default

[73]

University of the Aegean

Department of Financial and Management Engineering

A/A

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Image
Resolution
352x352
352x352
352x352
352x352
352x352
352x352
352x352
352x352
352x352
352x352
352x352
352x352
352x352
352x352
352x352
416x416
416x416
416x416
416x416
416x416
416x416
416x416
416x416
416x416
416x416
416x416
416x416
416x416
416x416
416x416
416x416
416x416
416x416
416x416
416x416
416x416
416x416
416x416
416x416
416x416
416x416

Dilated
Convolution
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
No
No
No
No
No
No
No
No
No

Box Loss

loU
loU
loU
loU
loU
loU
loU
DloU
DloU
DloU
DloU
DloU
DloU
DloU
DloU
loU
loU
loU
loU
loU
loU
loU
loU
DloU
DloU
DloU
DloU
DloU
DloU
DloU
DloU
loU
loU
loU
loU
loU
loU
loU
loU
DloU
DloU

Anchor
Dimensions
Default
Default
Default
New
New
New
New
Default
Default
Default
Default
New
New
New
New
Default
Default
Default
Default
New
New
New
New
Default
Default
Default
Default
New
New
New
New
Default
Default
Default
Default
New
New
New
New
Default
Default

[74]

Backbone
Network
Darknet-53
ResNet-152
ResNet-152
Darknet-53
Darknet-53
ResNet-152
ResNet-152
Darknet-53
Darknet-53
ResNet-152
ResNet-152
Darknet-53
Darknet-53
ResNet-152
ResNet-152
Darknet-53
Darknet-53
ResNet-152
ResNet-152
Darknet-53
Darknet-53
ResNet-152
ResNet-152
Darknet-53
Darknet-53
ResNet-152
ResNet-152
Darknet-53
Darknet-53
ResNet-152
ResNet-152
Darknet-53
Darknet-53
ResNet-152
ResNet-152
Darknet-53
Darknet-53
ResNet-152
ResNet-152
Darknet-53
Darknet-53

Data
Augmentation
Mosaic
Default
Mosaic
Default
Mosaic
Default
Mosaic
Default
Mosaic
Default
Mosaic
Default
Mosaic
Default
Mosaic
Default
Mosaic
Default
Mosaic
Default
Mosaic
Default
Mosaic
Default
Mosaic
Default
Mosaic
Default
Mosaic
Default
Mosaic
Default
Mosaic
Default
Mosaic
Default
Mosaic
Default
Mosaic
Default
Mosaic

University of the Aegean

Department of Financial and Management Engineering

A/A

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

Image
Resolution
416x416
416x416
416x416
416x416
416x416
416x416
832x832
832x832
832x832
832x832
832x832
832x832
832x832
832x832
832x832
832x832
832x832
832x832
832x832
832x832
832x832
832x832
832x832
832x832
832x832
832x832
832x832
832x832
832x832
832x832
832x832
832x832
832x832
832x832
832x832
832x832
832x832
832x832

Dilated
Convolution
No
No
No
No
No
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No

Box Loss

DloU
DloU
DloU
DloU
DloU
DloU
loU
loU
loU
loU
loU
loU
loU
loU
DloU
DloU
DloU
DloU
DloU
DloU
DloU
DloU
loU
loU
loU
loU
loU
loU
loU
loU
DloU
DloU
DloU
DloU
DloU
DloU
DloU
DloU

Anchor
Dimensions
Default
Default
New
New
New
New
Default
Default
Default
Default
New
New
New
New
Default
Default
Default
Default
New
New
New
New
Default
Default
Default
Default
New
New
New
New
Default
Default
Default
Default
New
New
New
New

[75]

Backbone
Network
ResNet-152
ResNet-152
Darknet-53
Darknet-53
ResNet-152
ResNet-152
Darknet-53
Darknet-53
ResNet-152
ResNet-152
Darknet-53
Darknet-53
ResNet-152
ResNet-152
Darknet-53
Darknet-53
ResNet-152
ResNet-152
Darknet-53
Darknet-53
ResNet-152
ResNet-152
Darknet-53
Darknet-53
ResNet-152
ResNet-152
Darknet-53
Darknet-53
ResNet-152
ResNet-152
Darknet-53
Darknet-53
ResNet-152
ResNet-152
Darknet-53
Darknet-53
ResNet-152
ResNet-152

Data
Augmentation
Default
Mosaic
Default
Mosaic
Default
Mosaic
Default
Mosaic
Default
Mosaic
Default
Mosaic
Default
Mosaic
Default
Mosaic
Default
Mosaic
Default
Mosaic
Default
Mosaic
Default
Mosaic
Default
Mosaic
Default
Mosaic
Default
Mosaic
Default
Mosaic
Default
Mosaic
Default
Mosaic
Default
Mosaic

University of the Aegean Department of Financial and Management Engineering

5.2 Experimental set-up and execution

The first step before we start executing the experiments was to create the appropriate configuration files
(.cfg) containing all combinations of hyperparameters of Table 5.1; these files represent the models used
in our study. Thus, we created 96 configuration files along with the corresponding 96 .data file (Figure 5.1)
Each .data file has the same name with the .cfg file and it contains information which is essential for
training.

UAV 1Lcfg VAV 1data UAV 2cfg UAV 2.data UAV 3cfg UAV 3data UAV 4cfg UAV 4data

UAV 9.data UAV_10.cfg UAV_10. UAV_11.cfg UAV_11. UAV_12cfg UAV 12, UAV_13.cfg
data data data

UAV 18.cfg UAV 18, VAV 15.clg UAV 18 VAV 20.clfg uav 20 UAV 21.ctg UAV 21,
data data data data

UAV 26, UAV_27.cfg UAV_27. UAV 28cfg UAV 28. UAV 29.cfg UAV.29. UAV 30.cfg
data data data data

Figure 5.1 Configuration files (.cfg) along with the corresponding data files (.data)

More specifically, as illustrated in Figure 5.2, there are five variables included within each .data file.

1clossess

2 train = Jmedlo/deopsys/Hard Disk/Anna/Final Datasets/train. txt

3valid = [mediafdeopsys/Hard _Disk/AnnafFinal_Dotasets/valid. txt

4 names = [home/deopsys/Docunents/darknet/data/UAV. nanes

5 backup = /media/deopsys/Hard_Disk/Anna/Experiments/UAV_1_cfg/second_run

Figure 5.2 Variables from the first .data file corresponding to the first .cfg file in our experiments

More specifically:

e classes: the variable “classes” (Figure 5.2) indicates the number of classes on which the model is
being trained. In our case we have 4 classes, person, car, long vehicle and bike (Figure 5.3).

Open ~ =) 2 ' classes.t:
1 person
2 car
3 long vehicle
4 bike

Figure 5.3 Txt file including the object classes

e train: the variable "train” (Figure 5.2) refers to the path of a text file that contains a list of file
paths for all training images. This file, named Train.txt, contains paths to images from the training
subset used in our research.

[76]

University of the Aegean Department of Financial and Management Engineering

valid: the variable "valid" indicates the path to a text file that contains a list of file paths for all
validation images. This file, named Val.txt, contains paths to images from the validation subset
used in our research.

names: the variable “names” (Figure 5.2) specifies the path of a file that contains the names of
the object classes.

backup: the variable “backup” (Figure 5.2) specifies the directory where the weights of the trained
model will be stored. During training, the algorithm is configured to save these weights every 1000
iterations.

The only difference between each .data file is the "backup" path, which is modified to correspond to

each .cfg file. This prevents the generated training weights from being overwritten.

The training process is executed using the following command:

Terminal Command for training process with Darknet-53 as backbone network

foriin125691013141718212225262930333437384142454649505354575861
6265666970737477 7881 828586899093 94; do ./darknet detector train
/home/deopsys/Documents/darknet/cfg/Anna_experiments/cfg/UAV_S{i}.data
/home/deopsys/Documents/darknet/cfg/Anna_experiments/cfg/UAV_S{i}.cfg
darknet53.conv.74 -map | tee UAV_outputS{i}.txt; done

Terminal Command for training process with ResNet-152 as backbone network

foriin34781112151619202324272831323536394043444748515255565960
63646768717275767980838487889192 95 96; do ./darknet detector train
/home/deopsys/Documents/darknet/cfg/Anna_experiments/cfg/UAV_S{i}.data
/home/deopsys/Documents/darknet/cfg/Anna_experiments/cfg/UAV_S{i}.cfq resnet152.201 -
map | tee UAV_outputS{i}.txt; done

Figure 5.4 Execution command for conducting the experiments

These commands above (Figure 5.4) are used to automate the training process of YOLOv3 using the
Darknet framework, with different backbone networks (Darknet-53 and ResNet-152).

More specifically:

foriin...; do ... done: This loop iterates through a predefined sequence of numbers (e.g., 1, 2, 5,

6, etc.) that have Darknet-53 as backbone network. Each number corresponds to a specific .cgf
file
./darknet detector train: This is the Darknet command to start training a certain model

/home/deopsys/Documents/darknet/cfg/Anna_experiments/cfg/UAV_S{i}.data: This specifies

the path to the .data file for the corresponding .cfg file. The variable ${i} dynamically changes the
file based on the loop iteration

[77]

University of the Aegean Department of Financial and Management Engineering

e /home/deopsys/Documents/darknet/cfg/Anna_experiments/cfg/UAV_S{i}.cfg: This specifies the
path to the .cfg file, which contains the model architecture and hyperparameters

e darknet53.conv.74: This file contains the pre-trained weights for the Darknet-53 backbone
network, used to initialize the training process

e -map: This flag enables the calculation and display of the Mean Average Precision (mAP) during
training

o [tee UAV outputS{i}.txt: This part of the command logs the output of the training process to a
file named UAV _outputS{i}.txt, allowing for later review.

This 2" command follows the same structure as the Darknet-53 command, but it has some
differences, on loop sequence and the type of backbone network.

e foriin..; do... done: This loop iterates through a predefined sequence of numbers (e.g., 3, 4, 7,
8, etc.), that have ResNet-152 as backbone network. Each number corresponds to a specific .cgf
file. The sequence of numbers is different, indicating that different configurations or experiments
are being run

e resnetl152.201: This file contains the pre-trained weights for the ResNet-152 backbone network,
which is used to initialize the model training instead of Darknet-53.

All 96 experiments were conducted two times in order to support the analysis of the experimental results
using Analysis of Variance (ANOVA). Thus, the total number of experiments was 192. It is noted that by
conducting our experiments twice we are able to have a more robust training process using the same
hyperparameter settings. Minor differences between the mAP results from the two runs suggest that the
model is consistently trained.

As part of the overall training process, the validation process is also conducted to evaluate the weights
generated by the algorithm during training, producing a mean Average Precision (mAP) result for each
validation run (see Table 5.3). Our models were configured to perform the first validation run at the 400"
iteration, with subsequent validations occurring every 100 iterations (e.g., 400, 500, 600, ..., 7900, 8000)
up to the 8000™ iteration, which marks the completion of the training process for a single model.
Consequently, each experiment consisted of 77 validation runs, resulting in 77 distinct mAP values.
Additionally, the trained weights were saved every 1000 iterations in the backup path specified in the
.data file.

After completing the training process, we conducted the testing phase for each of our 96 experiments.
For testing our trained models, we used the testing set from the modified UAV dataset and applied the
best weights from both training runs (those achieving the highest mAP during validation). We modified
the .data files accordingly, while the .cfg files remained unchanged (Figure 5.1). Specifically, for the testing
phase, all .data files contained the information shown in Figure 5.5.

Once we set-up our experiments and created the 96 .cfg and .data files, we started the testing process by
conducting a command in the terminal (Figure 5.6).

(78]

University of the Aegean Department of Financial and Management Engineering

1 classes=

2 traln = [media/deopsys/Hard_Disk/Anna/Final_Datasets/traln.txt
Jvalld = /medila/deopsys/Hard Disk/drone filles/all experiments 1.txt
4 names = [home/deopsys/Docunents/darknet /data/UAV. nanes

Figure 5.5 Information included in all .data files used for testing

In Figure 5.5, the "classes" and "names" parameters remain unchanged from those used during training.
However, the "valid" parameter was modified to point to a text file (all_experiments_1.txt), which
contains the file paths for all the testing images. Additionally, the "train" and "backup" parameters were
excluded from the .data files used for testing, as these parameters are only relevant during the training
phase.

The following command was used to execute the testing process after completing both training runs for
each hyperparameter combination:

Terminal Command for testing process

foriin {1..96}; do ./darknet detector map
/home/deopsys/Documents/darknet/cfq/Anna/UAV.data
/home/deopsys/Documents/darknet/cfg/Anna/UAV_S{i}.cfg
/media/deopsys/Hard_Disk/Anna/Experiments/UAV_S{i} cfg/UAV_S{i} best.weights -points
101 -thresh 0.25 -iou_thresh 0.5; done
>/media/deopsys/Hard_Disk/Anna/Experiments/output_S{i}.txt

Figure 5.6 Execution command for the testing process of our experiments

The command in Figure 5.6 executes a loop that runs 96 iterations (fromi = 1toi = 96), each time
evaluating a different YOLO model. The command ./darknet detector map activates the testing process of
YOLOV3. For each iteration, it loads the configuration file (.cfg) (UAV_${i}.cfg), the corresponding .data
file (UAV.data) and the best weights file (UAV_${i}_best.weights) created from the first training run
of the corresponding .cfg files, to compute the mean average precision (mAP) for the model using the
detector map command. The evaluation is performed with a confidence threshold of 0.25 and an
Intersection over Union (loU) threshold of 0.5, which affects which detections are considered valid. The -
points 101 argument specifies that the precision-recall curve should be evaluated at 101 points. After each
evaluation, the output is saved into a separate text file (output_${i}. txt), where ${i} corresponds to the
current iteration number, allowing the results of all 96 evaluations to be stored separately.

Therefore, in this command we have the input files, the evaluation parameters and the output files:

e Input files: For each iteration the configuration file (.cfg), the data file (.data), and trained weights
(.weights) are loaded

e Evaluation parameters: The detection threshold is set to 0.25, and the loU threshold is set to 0.5

e Output files: The results of each evaluation are finally saved in a corresponding text file in the
output_${i}. txt.

[79]

University of the Aegean Department of Financial and Management Engineering

Once the testing process of the 96 models is completed, we execute the same command using the best

weights files from the second training run. As a result, from both runs of the testing process, we obtain

detailed line reports that include the mAP metric for each model in each run.

During both training and testing, the model generates multiple results for evaluation, as illustrated in

Table 5.2.
Table 5.2 Key class metrics during validation
. class_id = ®, name = person, ap = 14.58% (TP = 5294, FP = 7957)
Evaluation class_id = 1, nane = car, ap = 59.74% (TP = 16482, FP = 18251)
metricsfor class_id = 2, name = long vehicle, ap = 38.01% (TP = 4920, FP = 4275)
class_id = 3, nane = bike, ap = 15.59% (TP = 1479, FP = 2756)
each class
for conf_thresh = 8.25, precision = 8.52, recall = 8.39, Fl-score = 8.44
. r f sh = 6.25 = 27 = = 4 = .6 1
Evaluation for con _thresh 0.25, TP 275, FP 25239, FN 13331, average IoU 38.68 X
metrics for IoU threshold = 56 %, used 181 Recall-points
all classes mean average precision (mAPEO.58) = ©6.319614, or 31.96 %

The validation report provides the following information for each class:

e class_id: For example, index value 1 represents the class "car"

e name: the name of the class

o AP (Average Precision): provides the average precision result of the class

e TP (True Positive): is the number of correctly identified class objects

e FP (False Positive): is the number of incorrectly identified class objects

e Recall: is the ratio of true positives to the sum of false negatives and true positives for the class

e avg loU: represents the average Intersection over Union (loU) across all images in the validation

set for the class.

Also, the validation report provides the following information for all classes:

e Precision: is the overall prediction accuracy across all classes

e Recall: evaluates the ability of the detector to locate the annotated objects within the image for

all classes

e F1 — score: is the harmonic mean of precision and recall

o TP (True Positive): is the number of correctly detected objects across all classes

e FP (False Positive): is the number of incorrectly detected objects across all classes

e FN (False Negative): is the number of missed detections across all classes

e average loU: represents the average loU across all images in the validation set for all classes

o mAP (mean Average Precision): sums the Average Precision (AP) of each individual class and

then divides the total AP value by the number of the classes.

[80]

University of the Aegean Department of Financial and Management Engineering

Among the various metrics provided in the line reports, we utilized the mean Average Precision (mAP) to
assess the performance of the models in both the validation and testing stages. However, the mAP results
serve different purposes in each phase:

e During the training process, the model continuously adjusts its parameters to improve object
detection in the input data. These adjusted parameters are stored in the form of weights. To
ensure the model is learning effectively, these weights are periodically validated. In this
intermediate validation step, the model applies the current set of trained weights to a validation
dataset to evaluate its detection and classification performance. The mAP values calculated
during validation are displayed in the progress chart (showing only mAP results) throughout
training. These validation mAP results are crucial for verifying that the model is learning correctly.
High validation mAP values during validation indicate that the model is avoiding overfitting and
that training on the given dataset is proceeding as expected.

e During the testing process, the best-performing weights from training (those that achieved the
highest mAP during validation) are applied to the testing dataset. The testing phase evaluates the
model's detection and classification performance on independent data. If the mAP value obtained
during testing is similar to the highest mAP values from validation, it confirms that the model has
been trained effectively and performs as expected. Conversely, if the testing mAP value is
significantly lower than the best validation mAP, it suggests that the model’s performance on new
data is not as robust as indicated during validation, implying that the training may not have been
successful, perhaps due to overfitting.

5.3 Experimental results and analysis

In the validation and testing processes, as mentioned in Chapter 3, several key metrics such as recall,
precision, F1-score, average precision (AP), and mean average precision (mAP), can be used to evaluate a
model's performance. Among these metrics, we focused on mAP to analyze the outcomes of our
experiments. The Average Precision (AP) metric evaluates the accuracy of object detection models by
measuring how well individual objects are identified. Then the mAP metric is the mean of these AP values
across all classes, providing an overall evaluation of the model's ability to detect various objects in the
dataset. This makes it an effective metric for comparing overall model performance.

More specifically, we used the best mAP achieved in validation to evaluate and compare training
performance. The best mAP refers to the highest mean average precision (mAP) value achieved by the
validation process during training for each experiment. In testing, for each model, we used the weights
corresponding to the best mAP achieved in validation. To assess model performance in testing, we used
the mAP value achieved by the trained model using the independent testing dataset.

The table below presents the best mAP results from both training/validation and testing processes for the
1°t and 2" experiment runs, the average mAP across the two runs as well as the percentage difference
between their values.

(81]

University of the Aegean Department of Financial and Management Engineering

Table 5.3 Best mAP and the average best mAP in the 1t and 2" run of the training and testing processes

Training/Validation Testing
Avg mAP

Difference between
the avg mAP values
(training - testing)

Avg mAP
between 1
& 2" run

Best mAP Best mAP
(1% run) (2" run)

Best mAP Best mAP

1st
AL (1% run) (2" run)

& 2" run

(82]

University of the Aegean Department of Financial and Management Engineering

Training/Validation . - Testing . = Difference between
Model BestmAP Best mAP e . BestmAP BestmAP V8 MAY the avg mAP values
Number (1%t run) (2" run) between 1 (1%t run) (2" run) between 1 (training - testing)
& 2" run & 2" run
3 3 2 2
8 1 7 9
3 3 2 3
4 4 3 7

(83]

University of the Aegean Department of Financial and Management Engineering

Training/Validation Testing
Avg mAP

Difference between
the avg mAP values
(training - testing)

Avg mAP
between 1%
& 2" run

Model Best mAP Best mAP
Number (1% run) (2" run)

Best mAP Best mAP

st
between 1 (1% run) (2 run)

& 2" run

The first observation from the values of Table 5.3 is that the training/validation mAP values are higher
than the testing mAP values. This is expected, since the testing dataset is not part of the training dataset.
In some cases, however, the difference between the training/validation and testing average (between the
two replicates) mAP is significant (e.g. more than 10%).

Table 5.4 Number of objects in the training, validation and testing datasets

Number of Objects

Training Dataset Validation Dataset Testing Dataset
Number of people 170,744 16,544 16,730
Number of Cars 154,478 18,205 16,257
Number of Long Vehicles 42,068 5,012 4,986
Number of Bikes 102,893 9,195 8,967

The significant difference in mean Average Precision (mAP) between training/validation and testing can
be attributed to the following reasons:

e Overfitting: The model may learn specific patterns in the training data but fail to generalize to
unseen data. This results in high performance during validation but a notable drop during testing,
indicating a lack of robustness (Montesinos Lépez et al., 2022).

e Class Imbalance: The consolidated dataset contains a higher number of objects like people
(213,245 total objects) (see Table 4.1) and cars (205,893 total objects) (see Table 4.1), leading the

(84]

University of the Aegean Department of Financial and Management Engineering

model to focus more on these dominant classes. Underrepresented classes like long vehicles
(52,961 total objects) (see Table 4.1) and bikes (130,141 total objects) (see Table 4.1) cause the
model to perform worse in these classes. During testing, this imbalance in class representation
can lead to the model being biased toward classes with more samples, resulting in higher mAP
during training/validation but lower mAP during testing. (Crasto, 2024).

o Dataset Composition Differences: The testing subset, although it is part of the consolidated
dataset, may not reflect the class distributions across the individual datasets, enhancing the
impact of the class representation. For example, the UAV Vehicle Detection dataset includes
20,647 cars but only 241 bikes (see Table 4.1), while the Stanford dataset includes a larger number
of bikes (83,600) (see Table 4.1) and has no persons at all (see Table 4.1). Meanwhile, the
VisDrone2019DET dataset shows a more balanced distribution, with 158,914 persons, 46,721 long
vehicles, and 46,300 bikes (see Table 4.1). If the testing subset is split disproportionately, it could
include images from one dataset (e.g., more Stanford images with many bikes or more UAV Vehicle
Detection images with very few bikes). In this case, the representation of classes is not accurate
and it contributes to the significant difference in mAP between training and testing (Santos et al.,
2024)

o Differences in Image Complexity: UAV images often vary in resolution, lighting, and angles. These
variations can make it difficult for the model to perform consistently across all datasets, especially
when testing images differ in distribution from those in the training set (Hakala et al., 2013).

A second observation has to do with the significant differences in performance of models trained under
different combinations of the hyperparameters. For example, in training/validation the best performing
models reach a mAP over 60% (see models 74 and 90), while others have significantly lower performance
with mAP of 15% (dee models 35, 51) . This illustrates clearly the significance of selecting the appropriate
levels of the hyperparameters in model training, and the need for optimizing these hyperparameters in
order to achieve effective training of a high performing model.

As we can see in Table 5.3 the highest mAP from the validation process is achieved in the 90" experiment
for both runs. The best mAP in the 90" experiment reaches 60.99% in our first run and 60.76% This
indicates result consistency in terms of the mAP value. The model that achieves this performance
corresponds to the following hyperparameter combination (Table 5.1):

e Image Resolution: 832x832
e Dilated Convolution: No

e BoxLoss: DloU

e Anchor Dimensions: Default
e Backbone: Darknet-53

e Data Augmentation: Mosaic

At the same, we can observe from Table 5.3 that the highest mAP during the testing process is also
achieved in the 90" experiment for both runs. More specifically, the best mAP in the 90™ testing

(85]

University of the Aegean Department of Financial and Management Engineering

experiment reaches 52.37% in our first run and 52.65% (Table 5.3) in the second run. Achieving the
highest performance across validation and testing by the same model is encouraging and points to the
ability of the method to correctly tune the training hyperparameters.

The best trained model performs reliably on unseen data (testing process) with only a slight drop in
performance from the training process. Furthermore, the selected levels of hyperparameters lead to an
effective model across different image datasets.

The 74™ experiment also displays good performance, close to that of the 90" experiment. More
specifically, the best mAP in the 74t experiment reaches 60.72% in our first run and 60.50% (Table 5.3)
in the second. Similarly, in the testing process the 74" experiment achieves the second good performance,
like in the training process. The best mAP reaches 52.27% in the first run and 52.24% in the second run.
The hyperparameter combination of this model is similar to the 90™ experiment, with the only difference
in the dilated convolution. The model in the 74" experiment was trained under the following
hyperparameter parameter combination (Table 5.1):

e Image Resolution: 832x832
o Dilated Convolution: Yes

e Box Loss: DloU

e Anchor Dimensions: Default
e Backbone: Darknet-53

e Data Augmentation: Mosaic

(86]

University of the Aegean Department of Financial and Management Engineering

o
“r “e
-
-
o=
>

- EE— - - - - - - * -

o
20 '

-~
¢

-r e e e oo o e e e .-
Mo

survent sy ees - LM e atea - O0O Sppren. thme Wit - A
Merstian mumder

Frows ¥ ta seve | chartgmg - Seeed m g Tmaa_ betsSewe 8000

Figure 5.7 Training progress chart of the 90th experiment

e

L]
- $o : 4 . - +

“r - A A —— - A -

’ Ll rem tom Tene e 4o e “‘ ™. -
SRt aeg s LW aratinn « o0 sppens Mems aft © 08 Seurs
Prees W W S0 | tRarLang - Bard 1teratian mumber R T I e

Figure 5.8 Training progress chart of the 74th experiment

(87]

University of the Aegean Department of Financial and Management Engineering

Figure 5.7 illustrates the chart for the 90th experiment (the best-performing model). The x-axis represents
the number of iterations as the training process progresses, while the y-axis. The blue curve of the chart
represents the training loss, and the red curve shows the mAP results throughout training. The training
loss curve indicates how effectively the model adapts to the dataset, with lower values reflecting better
performance. This curve decreases steadily during training and stabilizes between values of 9 and 13
(Figure 5.7). The red curve represents the model's ability to detect specific objects in the validation data.
In the chart is illustrated a significant improvement in mAP, increasing from 8% to 61% (Figure 5.7), which
demonstrates good performance.

A similar performance is observed in the 74th experiment. The training loss curve (blue) decreases and
stabilizes between values of 9 and 13 (Figure 5.8), as seen in the 90th experiment. The red curve is also
quite similar to the 90" experiment, with the mAP increasing from 5% to 60% (Figure 5.8).

In both experiments, there are no indications of overfitting or underfitting, as the mAP values remain
stable without significant drops or rises during training. Therefore, the model, in both cases, demonstrates
strong object detection and classification abilities on the modified UAV dataset, achieving a high mAP of
61% and 60%.

5.4 Hyperparameter effects on mean Average Precision (mAP)

In our study, we used Analysis of Variance (ANOVA) in order to evaluate the impact of each selected
hyperparameter and their interactions on the mAP metric. This analysis enables us to identify which
hyperparameters, and interactions of them, significantly influence the training performance of the YOLOv3
model as measured by mAP.

ANOVA tests the following hypotheses:

e Null hypothesis (Ho): A factor or factor interaction has no significant effect on mAP.
e Alternative hypothesis (H.): A factor or interaction has a significant effect on mAP.

We conducted ANOVA using the MiniTab software, analyzing the experiments listed in Table 5.1 and the
best mAP results from both training runs, as shown in Table 5.5. Following this approach, it enables us to
identify the key factors influencing model performance and optimizes hyperparameter tuning for mAP
improvement.

The table below illustrates the design summary for our analysis.

T
a

Multilevel Factorial Design

Design Summary
Factors 6 Replicates 2

.—.
mome~-Eyon
o]

University of the Aegean Department of Financial and Management Engineering

Multilevel Factorial Design

Base Runs 96 Total Runs 192
Base Blocks 1 Total Blocks 1
Number of levels: 3, 2, 2, 2, 2, 2

Table 5.5 provides a design summary of an Analysis of Variance (ANOVA) study conducted in MiniTab. This
summary indicates that a multilevel factorial design was used to study how different values of the six
selected hyperparameters, as well as their interactions, affect the mAP. The ANOVA will help us to
determine which hyperparameters and their interactions have a statistically significant impact on the
YOLOv3 model's performance.

More specifically, the table illustrates:

e Factors: 6 — This means that six different hyperparameters (factors) were selected for our
experiments, which are image resolution, dilated convolution, box loss, anchor dimensions,
backbone network and data augmentation (Table 5.1)

e Replicates: 2 — The experiments were repeated twice

e Base runs: 96 — The experiment initially consists of 96 base runs, indicating the number of unique
combinations of hyperparameter levels being tested in one iteration

e Total runs: 192 — This reflects the total number of runs for the experiment, which is obtained by
multiplying the number of base runs (96) by the number of replicates (2). So, 192 total runs were
performed to evaluate the model's performance with different hyperparameter combinations

e Base blocks: 1 & Total blocks: 1 — No blocking was used in our experiments. This means that there
were no additional sources of variation (such as time, location, or different batches) that needed
to be controlled by creating blocks. The entire experiment was treated as one block, meaning the
focus was on the six selected hyperparameters and their interactions.

e Number of levels: 3, 2, 2, 2, 2, 2 — This shows the number of levels for each factor
(hyperparameter). One hyperparameter, image resolution, has 3 different levels (values), while
the remaining five have 2 levels each.

5.4.1 ANOVA analysis on best mAP results from the training/validation process

The training (validation) results of the ANOVA analysis, in our study, are illustrated in Table 5.6, including
sources of variation with their Degrees of Freedom (DF), Adjusted Sum of Squares (Adj SS), Adjusted Mean
Squares (Adj MS), F-values, and p-values.

o Degrees of Freedom (DF) is a statistical term that indicates the number of independent values we

can use in our calculations. The degrees of freedom depend on the number of levels being
compared. Generally, for each parameter, the DF is calculated as the number of levels minus one.
For example, in the image resolution factor, where we selected 3 levels (values) (352x352,
416x416, 832x832), the degrees of freedom would be 3-1=2. This means that we can freely vary
2 of the values while the last one is determined by the others.

(89]

University of the Aegean Department of Financial and Management Engineering

o Adjusted Sum of Squares (Adj SS) measures how much the variance in mAP (mean Average

Precision) is explained by each hyperparameter or interaction of hyperparameters after removing
the effects of other factors and their interactions in the model. For example, the Adjusted Sum of
Squares for image resolution is 0.90764, meaning this amount of variance in mAP is due to changes
in image resolution (Kutner, 2005).

o Adjusted Mean Squares (Adj MS) is the average variance related to each hyperparameter or
interaction of hyperparameters, adjusted for the degrees of freedom in the model. The value of
Adj MS is calculated by dividing the Adjusted Sum of Squares for image resolution by its degrees
of freedom, which in our case is 2 (Kutner, 2005).

More specifically, it is calculated by the formula:

SSadj (5.1)
DF
For instance, the Adjusted Mean Square for image resolution is 0.45382. (

MSadj =

0.90764
2

).

e F-value measures how much a hyperparameter or interaction of hyperparameters affects
the results compared to the error.
It is calculated by dividing the Adjusted Mean Square of the factor by the Adjusted Mean
Square of the error, as shown in equation 5.2 below:

MSaq; (5.2)

F —Value =
Msadj/error

A high F-value suggests that the factor significantly impacts mAP (mean Average
Precision). For example, in our study, the “Backbone Network” factor has the highest F-
value, 1407.32 (Table 5.6), meaning it has the greatest impact on mAP. As it is illustrated
in Table 5.6, the second higher F-value is 263.36 (Table 5.6) for the “Image Resolution”
factor.

e P-value indicates the likelihood of making an error when selecting the alternative
hypothesis. A small p-value (less than 0.05) means the results are important for our
study, so we reject the null hypothesis (Ho). On the other hand, a high p-value suggests
that the results might have happened by chance, which means we don't reject the null
hypothesis. In our case, all six factors have a p-value equal to 0 (Table 5.6), meaning that
all of them significantly impact mAP (mean Average Precision). Although, factors like
“Dilated Convolution” and “Anchor Dimensions” have smaller F-values than the other
factors, it seems that they also affect mAP (Archdeacon, 1994).

Table 5.6 below illustrates the importance of each factor selected for our study as well as their
interactions on the mAP.

[90]

University of the Aegean Department of Financial and Management Engineering

Table 5.6 Analysis of Variance during training process

Source DF AdjSS AdjMS F-Value P-Value
‘Mode! 95 470604 0.04954 2875 = 0
Linear 7 3.9989 | 0.57127 | 331.52 0
Image Resolution 2 0.90764 0.45382 263.36 0
Dilated Convolution 1 0.04359 | 0.04359 25.3 0
Box Loss 1 0.16424 0.16424 95.31 0
Anchor Dimensions 1 0.11865 ' 0.11865 68.85 0
Backbone Network 1 2.42507 @ 2.42507 1407.32 0
Data Augmentation 1 0.33971 0.33971 @ 197.14 0
2-Way Interactions 20 0.48613 0.02431 14.11 0
Image Resolution*Dilated Convolution 2 0.0029 0.00145 0.84 0.434
Image Resolution*Box Loss 2 0.01322 0.00661 3.84 0.025
Image Resolution*Anchor Dimensions 2 0.02111 0.01056 6.13 0.003
Image Resolution*Backbone Network 2 0.00899 0.0045 2.61 0.079
Image Resolution*Data Augmentation 2 0.02654 0.01327 7.7 0.001
Dilated Convolution*Box Loss 1 0.00014 0.00014 0.08 0.777
Dilated Convolution*Anchor Dimensions 1 0.00075 ' 0.00075 0.44 0.51
Dilated Convolution*Backbone Network 1 0.07844 0.07844 45.52 0
Dilated Convolution*Data Augmentation 1 0.00673 0.00673 3.91 0.051
Box Loss*Anchor Dimensions 1 0.02888 0.02888 16.76 0
Box Loss*Backbone Network 1 0.00018 | 0.00018 0.1 0.749
Box Loss*Data Augmentation 1 0.02104 0.02104 12.21 0.001
Anchor Dimensions*Backbone Network 1 0.00002 = 0.00002 0.01 0.91
Anchor Dimensions*Data Augmentation 1 0.00335 0.00335 1.94 0.167
Backbone Network*Data Augmentation 1 0.27382 | 0.27382 158.9 0
3-Way Interactions 30 0.1262 0.00421 2.44 0.001
Image Resolution*Dilated Convolution*Box Loss 2 0.00713 ' 0.00356 2.07 0.132
Image Resolution*Dilated Convolution*Anchor 2 0.00193 0.00097 0.56 0.572
Dimensions
Image Resolution*Dilated Convolution*Backbone 2 001254 0.00627 3.64 0.03

Network

[91]

University of the Aegean Department of Financial and Management Engineering

Source DF AdjSS AdjMS F-Value P-Value ‘
Image Resolution*Dilated Convolution*Data 2 0.00259 0.00129 0.75 0.474
Augmentation
Image Resolution*Box Loss*Anchor Dimensions 2 0.00026 = 0.00013 0.08 0.927
Image Resolution*Box Loss*Backbone Network 2 0.00108 0.00054 0.31 0.732
Image Resolution*Box Loss*Data Augmentation 2 0.00076 = 0.00038 0.22 0.803
Image Resolution*Anchor Dimensions*Backbone 2 0.00728 0.00364 211 0.127
Network
Image Resolution*Anchor Dimensions*Data 2 0.00794 0.00397 23 0.105
Augmentation
H * *
Image Resolution*Backbone Network*Data 2 0.0177 0.00885 513 0.008
Augmentation
Dilated Convolution*Box Loss*Anchor Dimensions 1 0.00083 | 0.00083 0.48 0.489
Dilated Convolution*Box Loss*Backbone Network 1 0.00878 0.00878 5.1 0.026
Dilated Convolution*Box Loss*Data Augmentation 1 0.00006 = 0.00006 0.03 0.855
: -
Dilated Convolution*Anchor 1 0.01184 0.01184 6.87 0.01
Dimensions*Backbone Network
Dilated Convolution*Anchor Dimensions*Data 1 0 0 0 0.962
Augmentation
P ion* *
Dilated Convolution*Backbone Network*Data 1 0.00537 0.00537 312 0.081
Augmentation
Box Loss*Anchor Dimensions*Backbone Network 1 0.00828 ' 0.00828 4.8 0.031
Box Loss*Anchor Dimensions*Data Augmentation 1 0.01123 0.01123 6.52 0.012
Box Loss*Backbone Network*Data Augmentation 1 0.01721 0.01721 9.99 0.002
1 H * *
Anchor Dimensions*Backbone Network*Data 1 0.00339 0.00339 1.97 0.164
Augmentation
4_Way |nteractions 25 0.06498 0.0026 1.51 0.081
Image Resolution*Dilated Convolution*Box 2 0.00085 0.00042 0.25 0.782
Loss*Anchor Dimensions
Image Resolution*Dilated Convolution*Box 2 0.00604 0.00302 1.75 0.179
Loss*Backbone Network
Image Resolution*Dilated Convolution*Box 2 0.00019 0.0001 0.06 0.946
Loss*Data Augmentation
Image Resolution*Dilated Convolution*Anchor 2 0.00957 0.00478 2,78 0.067
Dimensions*Backbone Network
Image Resolution*Dilated Convolution*Anchor 2 0.00034 0.00017 0.1 0.906

Dimensions*Data Augmentation

[92]

University of the Aegean Department of Financial and Management Engineering

Source DF AdjSS AdjMS F-Value P-Value‘

Image Resolution*Dilated Convolution*Backbone)
Network*Data Augmentation

0.0043 | 0.00215 1.25 0.292

Image Resolution*Box Loss*Anchor)

0.0098 0.0049 2.84 0.063
Dimensions*Backbone Network
H * *
Image Resolution*Box Loss*Anchor 2 0.00036 0.00018 0.1 0.901
Dimensions*Data Augmentation
H * *
Image Resolution*Box Loss*Backbone 2 0.0005 0.00025 0.15 0.864

Network*Data Augmentation
Image Resolution*Anchor Dimensions*Backbone 2
Network*Data Augmentation

0.00683 | 0.00342 1.98 0.143

Dilated Convolution*Box Loss*Anchor 1

0.01215 0.01215 7.05 0.009
Dimensions*Backbone Network
H H * *
Dilated Convolution*Box Loss*Anchor 1 0.00196 0.00196 114 0.289
Dimensions*Data Augmentation
. P2 *
Dilated Convolution*Box Loss*Backbone 1 0 0 0 0.966

Network*Data Augmentation
Dilated Convolution*Anchor
Dimensions*Backbone Network*Data 1 0 0 0 0.993
Augmentation

Box Loss*Anchor Dimensions*Backbone 1

0.01208 0.01208 7.01 0.009
Network*Data Augmentation
5_Way |nteracti°ns 11 0.02273 0.00207 1.2 0.298
Image Resolution*Dilated Convolution*Box 2 0.01317 0.00658 382 0.025
Loss*Anchor Dimensions*Backbone Network
Image Resolution*Dilated Convolution*Box 2 0.00647 0.00324 1.88 0.159
Loss*Anchor Dimensions*Data Augmentation
Image Resolution*Dilated Convolution*Box 2 0.00008 0.00004 0.02 0.977

Loss*Backbone Network*Data Augmentation

Image Resolution*Dilated Convolution*Anchor

Dimensions*Backbone Network*Data 2 0.00032 ' 0.00016 0.09 0.911
Augmentation

Image Resolution*Box Loss*Anchor

Dimensions*Backbone Network*Data 2 0.00055 0.00027 0.16 0.854
Augmentation

Dilated Convolution*Box Loss*Anchor

Dimensions*Backbone Network*Data 1 0.00214 | 0.00214 1.24 0.268
Augmentation
6-Way Interactions 2 0.0071 @ 0.00355 2.06 0.133

[93]

University of the Aegean Department of Financial and Management Engineering

Source DF AdjSS AdjMS F-Value P-Value ‘
Image Resolution*Dilated Convolution*Box

Loss*Anchor Dimensions*Backbone 2 0.0071 | 0.00355 2.06 0.133
Network*Data Augmentation

Error 96 0.16543 0.00172

Total 191 4.87146

At the end of Table 5.6 two additional values are presented: Error and total:

e Error represents the unexplained variation in the model. It shows the difference between
the actual results we observed and the results the model predicted. In our model,
SSerror = 0.16543 (Adj SS) indicates the variance in mAP (mean Average Precision) that
the model is not able explain.

This value is calculated by finding the sum of the squared differences between each
observed result and its corresponding predicted result, as shown by the equation 5.3
below (Kutner, 2005):

z" ~\2 5.3
SSerror =] 1(3’1’ - yi) (5:3)
1=

where,
e y; isthe observed result for the i*" observation
e y;is the predicted result for the i*" observation
e nisthe number of observations.

e Total represents the overall variance and is made up of the explained variance from the
model and the unexplained variance (error). This value is aiming to be a reference point
on evaluating the model's performance. In our model, SS;,tq; = 4.87146 indicates the
total variance in mAP (mean Average Precision). This value is calculated by finding the sum
of the squared differences between each observed result and the overall average of the
dependent variable, as shown in the equation 5.4 below (Kutner, 2005):

SStotar = Z i — 37)2 (5-4)

i=1

where,

e y; isthe observed result for the i*" observation
e Y isthe mean of the observed results
e nisthe number of observations.

[94]

University of the Aegean Department of Financial and Management Engineering

Apart from the ANOVA analysis, we also used MiniTab to generate graphic representations of our results

to understand and analyze further the interaction effects between our selected hyperparameters. In our

study we focused on:

Pareto Chart of standardized effects
Main effects plot for mAP
Interaction plot for mAP

Pareto Chart of standardized effects

As illustrated in Figure 5.9, the Pareto chart of standardized effects demonstrates the influence and
interactions of the different factors on the mAP. The factors labeled from A to F, are the hyperparameters
we selected for our study. More specifically:

A: Image Resolution
B: Dilated Convolution
C: Box Loss

D: Anchor Dimensions
E: Backbone Network
F: Data Augmentation

The red-dashed line indicates the standardized effect value of 1.98 when the significance threshold is a =
0.05. Hyperparameters or interactions of hyperparameters that have blue-bars extended beyond the

standardized effect value (red-dashed line) have a significant impact on mAP. Longer bars illustrate a more

important impact on mAP. Nevertheless, we should also mention that there is a 5% risk (a = 0.05) of falsely

identifying a factor or an interaction of factors as significant when they are not.

Based on the Pareto Chart in Figure 5.9, the significant hyperparameters and interactions of

hyperparameters in the training process of our study are the following ones (starting from the most
significant to the least significant:

Backbone Network (E)

Data Augmentation (F)

The interaction Backbone Network (E) and Data Augmentation (F)
Box Loss (C)

Anchor Dimensions (D)

Image Resolution (A)

The interaction of Dilated Convolution (B) and Backbone Network (E)
Dilated Convolution (B)

The interaction of Box Loss (C) and Anchor Dimensions (D)

The interaction of Box Loss (C) and Data Augmentation (F)

The interaction of Image Resolution (A) and Data Augmentation (F)
The interaction of Box Loss (C), Backbone Network (E) and Data Augmentation (F)

[95]

University of the Aegean Department of Financial and Management Engineering

e The interaction of Image Resolution (A) and Anchor Dimensions (D)

e The interaction of Image Resolution (A), Backbone Network (E) and Data Augmentation
(F)

e The interaction of Dilated Convolution (B), Box Loss (C), Anchor Dimensions (D) and
Backbone Network (E)

e The interaction of Box Loss (C), Anchor Dimensions (D), Backbone Network (E) and Data
Augmentation (F)

e Theinteraction of Dilated Convolution (B), Anchor Dimensions (D) and Backbone Network
(E)

e The interaction of Box Loss (C), Anchor Dimensions (D) and Data Augmentation (F)

e The interaction of Image Resolution (A) and Box Loss (C)

e The interaction of Image Resolution (A), Dilated Convolution (B), Box Loss (C), Anchor
Dimensions (D) and Backbone Network (E)

e The interaction of Dilated Convolution (B), Box Loss (C) and Backbone Network (E)

e The interaction of Image Resolution (A), Dilated Convolution (B) and Backbone Network
(E)

e The interaction of Box Loss (C), Anchor Dimensions (D) and Backbone Network (E)

e The interaction of Dilated Convolution (B) and Data Augmentation (F)

Pareto Chart of the Standardized Effects
(response is mAP, a = 0.05, only 30 effects shown)

Term 198
E Factor Name
FF | | A Image Hesclution
4 =] 8 Dilsted Convolution
2 . C Sox Loss
BE TN D Archor Dimsensions
(g —_— 1 £ Backbone Network
or | F Dt Augmentation
AF
CEF
AD |
AEF 7
BCDE
CDEF
& 5=
ABCOE
BCE §
48
acot
ABDE :
AE S
BEF
ADF 11
ADE T

20 30 40
Standardized Effect

=]
—
o

Figure 5.9 Pareto chart of the standardized effects during training process

The six remaining hyperparameter interactions do not have a significant effect on mAP, since their values
are less than 1.98 (Navarro Tuch et al., 2019).

Consequently, we conclude that the most significant hyperparameter is the backbone network (E), which
has the highest standardized effect, indicating that affects mAP the most. It is followed by data
augmentation (F), box loss (C), anchor dimensions (D) and image resolution (A), all of which also exceed

[96]

University of the Aegean Department of Financial and Management Engineering

the critical value threshold of 1.98, marked by the red vertical line. Additionally, interactions between
these factors can significantly impact performance, suggesting a need for careful tuning and optimization
of these hyperparameters in the training process.

Main effects plot for mAP

Figure 5.10 shows the main effects plot for the training process in our study (Kim et al., 2007), which
measures the impact on mAP of the main factors A, B, C, D, E and F. By analyzing these six factors in the
main effect plot in Minitab, we can conclude to the following observations below:

e Increasing image resolution from 352x352 to 416x416 improves mAP by 31% - 27% = 4% and
increasing the image resolution further from 416x416 to 832x832 improves mAP by 43.2% - 31%
=12.2%

e Adding dilated convolution in our model reduces mAP by 35.2% - 32.2% = 3%
e Changing the box loss function from loU to DloU improves mAP by 36.7% - 30.8% = 5.9%

e Changing anchor box dimensions from the default model values to a new set of values reduces
mMAP by 36.2% - 31.2% = 5%.

e Changing the backbone network from Darknet-53 (default) to ResNet-152 (new) reduces mAP by
45% - 22.5% = 22.5%.

e Adding data augmentation in our model improves mAP by 37.9% - 29.5% = 8.4%

From the result above, we conclude that the addition of dilated convolution in our model, the selection of
new anchor dimensions and the alternation of the backbone network from Darkenet-53 to ResNet-152
have negative effect on mAP as they reduce its value. As we can see from the plot below (Figure 5.10) the
choice of ResNet-152 over Darknet-53 has the most negative impact on mAP, reducing its value by half (
45% to 22.5%).

On the other hand, the increase on image resolution, the alternation of box loss function from loU to DloU
and the addition of data augmentation improve the value of mAP, with the image resolution having the
greatest impact.

Therefore, the best options for the factors/hyperparameters we selected, which positively affect the mAP
value, are:

e 832x832 for image resolution

e Absence of dilated convolution

e DloU for box loss function

e Default values for the anchor dimensions

e Darknet-53 as the backbone network

e Addition of the mosaic data augmentation technique

[97]

University of the Aegean Department of Financial and Management Engineering

Main Effects Plot for mAP

Fitted Means
Mage Resoution Dilatea Corvolstion Bou Lows Anovar Dimensiond Haowone Network Data Asgmentation
oun .
.
baz
a®
g L
o -
S as ®
§ . d
- . .
i b .
o
028
.
X
IR20350 4SR5 B3eRG L o wu (<00 Dwtaun Thea Dot 53 Reset 150 Dttt LR

Figure 5.10 Main effects plot for mAP during training process

Interaction plot

The interaction plot illustrates the effects of factor interactions on the Mean Average Precision (mAP)
(Figure 5.11). Each graph compares how two factors (like image resolution or data augmentation) interact
and influence the model's accuracy. More precisely, the horizontal axis of each sub-plot represents the
selected values of one hyperparameter (e.g., Image Resolution, Box Loss), illustrated with the blue and red
lines. The vertical axis shows the mean of mAP for each interaction of hyperparameters. The goal is to
observe how the hyperparameters interact with each other and their influence on mAP.

Interaction Plot for mAP

Fitted Means
g e Pt Dt Lo iy
Conw
%] -— You
M K . W
LPJ
P g Senmdy " Bon Lowe et Cowy ' Bow Lo Box oo
ST
P : 4 . » Diod
- 3 > -
Q n: ®
E e Tt o Do |l Gt et B o o - e P — Aschos
7’ » Ovren
B os - 3 . o Detym
2 d 4 ey - . New
= S ¥ . .-
0z
06 - T Par * Berwes Byt | Diatet Torw * Bethorg Mee [N Lk] P e Batkbone Net
o p= o Donet-53
- . . . ¥ - . Arcet 152
4 o
-
- - -
N . K - . ®
g T Ak * Data b | et Ca * s Agvers Bow Loms ~ Dutas Augranse Aachor D * Dats Augrees Kachaces 1et * Sura Augmens Dot
. Asgment
a4 2 - ™ - - . - Dutust
= » - - MOSIK
s - - - H - . * . - >
L
0
.
RIS P EEITRETR S S N e LT . Dass Detasr hem L I e
Image Resclu Diated Conv Box Loss Anchor Dumen Backbone Net

Figure 5.11 Interaction plot for mAP during training process

Table 5.7 illustrates the most optimal (best) and lest optimal (worst) hyperparameter interaction
depending on their influence on the mAP.

[98]

University of the Aegean Department of Financial and Management Engineering

Table 5.7 The best and worst hyperparameters’ interactions on the mAP

Factor 2 Best Interaction

Convolution 832x832 with Dilated Conv (Yes)

Box Loss w

[99]

University of the Aegean Department of Financial and Management Engineering

Factor 2 Best Interaction

832x832 with New Anchor Dimensions

>+ — =

[100]

University of the Aegean Department of Financial and Management Engineering

Factor 2 Best Interaction

Data Augmentation

Box Loss Dilated Conv. (Yes) with DloU

[101]

University of the Aegean Department of Financial and Management Engineering

Factor 2 Best Interaction

Dilated Conv (Yes) with New Anchor Dimensions

Dilated Conv (Yes) with ResNet-152

[102]

University of the Aegean Department of Financial and Management Engineering

Factor 2 Best Interaction

Data Augmentation Dilated Conv (Yes) with Mosaic Augmentation

DloU with New Anchor Dimensions

[103]

University of the Aegean Department of Financial and Management Engineering

Factor 2 Best Interaction

with

Data Augmentation

>+ — S

[104]

University of the Aegean Department of Financial and Management Engineering

Factor 2 Best Interaction

New Anchor Dimensions with ResNet-152

Data Augmentation New Anchor Dimensions with Mosaic Augmentation

[105]

University of the Aegean Department of Financial and Management Engineering

Factor 2 Best Interaction

Data Augmentation

> + — S

5.4.2 ANOVA analysis for the testing process

We followed a similar ANOVA process for the testing process. Table 5.8 below illustrates the ANOVA results
of the testing runs.

[106]

University of the Aegean

Department of Financial and Management Engineering

Table 5.8 Analysis of Variance during testing process

Convolution*Anchor Dimensions

[107]

Source DF Adj ss
Model 96 3.50041
Blocks 1 0.00004
Linear 7 2.98687
Image Resolution 2 0.91496
Dilated Convolution 1 0.03135
Box Loss 1 0.07768
Anchor Dimensions 1 0.04532
Backbone Network 1 1.69804
Data Augmentation 1 0.21952
2-Way Interactions 20 0.33099
Image Resolution*Dilated Convolution 2 0.00193
Image Resolution*Box Loss 2 0.00691
Image Resolution*Anchor Dimensions 2 0.03032
Image Resolution*Backbone Network 2 0.02093
Image Resolution*Data Augmentation 2 0.03326
Dilated Convolution*Box Loss 1 0.00003
Dilated Convolution*Anchor Dimensions 1 0.00168
Dilated Convolution*Backbone Network 1 0.05094
Dilated Convolution*Data Augmentation 1 0.00618
Box Loss*Anchor Dimensions 1 0.01187
Box Loss*Backbone Network 1 0.00001
Box Loss*Data Augmentation 1 0.00902
Anchor Dimensions*Backbone Network 1 0.00074
Anchor Dimensions*Data Augmentation 1 0.00105
Backbone Network*Data Augmentation 1 0.15612
3-Way Interactions 30 0.10889
Image Resolution*Dilated Convolution*Box 2 0.00388
Loss
Image Resolution*Dilated 2 0.00121

Adj MS
0.03646
0.00004
0.42670
0.45748
0.03135
0.07768
0.04532
1.69804
0.21952
0.01655
0.00096
0.00346
0.01516
0.01047
0.01663
0.00003
0.00168
0.05094
0.00618
0.01187
0.00001
0.00902
0.00074
0.00105
0.15612
0.00363
0.00194

0.00060

F-Value
26.42
0.03
309.16
331.46
22.71
56.28
32.84
1230.30
159.05
11.99
0.70
2.50
10.98
7.58
12.05
0.02
1.22
36.91
448
8.60
0.01
6.54
0.54
0.76
113.12
2.63
1.40

0.44

P-Value
0.000
0.857
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.500
0.087
0.000
0.001
0.000
0.876
0.273
0.000
0.037
0.004
0.942
0.012
0.466
0.384
0.000
0.000
0.251

0.647

University of the Aegean Department of Financial and Management Engineering

Source DF AdjSS AdjMS F-Value P-Value

Image Resolution*Dilated 2 0.01060 | 0.00530 3.84 0.025
Convolution*Backbone Network

Image Resolution*Dilated Convolution*Data 2 0.00264 | 0.00132 0.96 0.388
Augmentation

Image Resolution*Box Loss*Anchor 2 0.00202 | 0.00101 0.73 0.484
Dimensions

Image Resolution*Box Loss*Backbone 2 0.00112 | 0.00056 0.40 0.668
Network

Image Resolution*Box Loss*Data 2 0.00117 | 0.00059 0.42 0.655
Augmentation

Image Resolution*Anchor 2 0.00439 | 0.00220 1.59 0.209
Dimensions*Backbone Network

Image Resolution*Anchor Dimensions*Data 2 0.00274 0.00137 0.99 0.374
Augmentation

Image Resolution*Backbone Network*Data 2 0.02277 | 0.01139 8.25 0.000
Augmentation

Dilated Convolution*Box Loss*Anchor 1 0.00046 0.00046 0.33 0.567
Dimensions

Dilated Convolution*Box Loss*Backbone 1 0.00823 | 0.00823 5.96 0.016
Network

Dilated Convolution*Box Loss*Data 1 0.00059 0.00059 0.43 0.515
Augmentation

Dilated Convolution*Anchor 1 0.01571 | 0.01571 11.38 0.001
Dimensions*Backbone Network

Dilated Convolution*Anchor Dimensions*Data 1 0.00023 | 0.00023 0.16 0.686
Augmentation

Dilated Convolution*Backbone Network*Data 1 0.00554 | 0.00554 4.02 0.048
Augmentation

Box Loss*Anchor Dimensions*Backbone 1 0.00815 | 0.00815 5.90 0.017
Network

Box Loss*Anchor Dimensions*Data 1 0.00777 | 0.00777 5.63 0.020
Augmentation

Box Loss*Backbone Network*Data 1 0.00826 0.00826 5.99 0.016
Augmentation

Anchor Dimensions*Backbone Network*Data 1 0.00142 | 0.00142 1.03 0.313
Augmentation

4-Way Interactions 25 0.05280 0.00211 1.53 0.074
Image Resolution*Dilated Convolution*Box 2 0.00127 | 0.00063 0.46 0.634

Loss*Anchor Dimensions

[108]

University of the Aegean Department of Financial and Management Engineering

Source DF AdjSS AdjMS F-Value P-Value

Image Resolution*Dilated Convolution*Box 2 0.00663 | 0.00331 2.40 0.096
Loss*Backbone Network

Image Resolution*Dilated Convolution*Box 2 0.00039 | 0.00020 0.14 0.867
Loss*Data Augmentation

Image Resolution*Dilated 2 0.01226 | 0.00613 444 0.014
Convolution*Anchor Dimensions*Backbone
Network

Image Resolution*Dilated 2 0.00090 | 0.00045 0.33 0.723

Convolution*Anchor Dimensions*Data
Augmentation
Image Resolution*Dilated 2 0.00357 0.00178 1.29 0.279
Convolution*Backbone Network*Data
Augmentation

Image Resolution*Box Loss*Anchor 2 0.00510 | 0.00255 1.85 0.163
Dimensions*Backbone Network

Image Resolution*Box Loss*Anchor 2 0.00059 0.00029 0.21 0.808
Dimensions*Data Augmentation

Image Resolution*Box Loss*Backbone 2 0.00078 | 0.00039 0.28 0.756
Network*Data Augmentation

Image Resolution*Anchor 2 0.00260 0.00130 0.94 0.393

Dimensions*Backbone Network*Data
Augmentation

Dilated Convolution*Box Loss*Anchor 1 0.00951 | 0.00951 6.89 0.010
Dimensions*Backbone Network

Dilated Convolution*Box Loss*Anchor 1 0.00083 | 0.00083 0.60 0.440
Dimensions*Data Augmentation

Dilated Convolution*Box Loss*Backbone 1 0.00044 | 0.00044 0.32 0.575
Network*Data Augmentation

Dilated Convolution*Anchor 1 0.00002 | 0.00002 0.01 0.909

Dimensions*Backbone Network*Data
Augmentation

Box Loss*Anchor Dimensions*Backbone 1 0.00793 | 0.00793 5.74 0.019
Network*Data Augmentation
5-Way Interactions 11 0.01671 | 0.00152 1.10 0.370
Image Resolution*Dilated Convolution*Box 2 0.01044 | 0.00522 3.78 0.026
Loss*Anchor Dimensions*Backbone Network
Image Resolution*Dilated Convolution*Box 2 0.00361 | 0.00181 1.31 0.275
Loss*Anchor Dimensions*Data Augmentation
Image Resolution*Dilated Convolution*Box 2 0.00012 | 0.00006 0.04 0.958

Loss*Backbone Network*Data Augmentation

[109]

University of the Aegean Department of Financial and Management Engineering

Source DF Adj SS Adj MS F-Value P-Value

Image Resolution*Dilated 2 0.00073 0.00037 0.27 0.767
Convolution*Anchor Dimensions*Backbone
Network*Data Augmentation

Image Resolution*Box Loss*Anchor 2 0.00074 | 0.00037 0.27 0.765
Dimensions*Backbone Network*Data
Augmentation

Dilated Convolution*Box Loss*Anchor 1 0.00106 0.00106 0.77 0.383
Dimensions*Backbone Network*Data
Augmentation

6-Way Interactions 2 0.00411 | 0.00205 1.49 0.231

Image Resolution*Dilated Convolution*Box 2 0.00411 = 0.00205 1.49 0.231
Loss*Anchor Dimensions*Backbone
Network*Data Augmentation
Error 95 0.13112 | 0.00138

Total 191 3.63153

Pareto Chart

Figure 5.12 illustrates the Pareto chart of standardized effects for the testing process of our study. It
demonstrates the influence and interactions of the different selected factors, on the mAP like Figure 5.9.
The factors labeled from A to F, are the hyperparameters we selected for our study. More specifically:

e A:lmage Resolution

e B: Dilated Convolution
e C:Box Loss

e D: Anchor Dimensions
e E: Backbone Network
o F: Data Augmentation

In Figure 5.12, the red-dashed line indicates the standardized effect value of 1.99 when the significance
threshold is o = 0.05.

Based on the Pareto Chart in Figure 5.12, the factors and the interaction of factors in the testing process
of our study are the following ones (starting from the most significant to the least significant):

e Backbone Network (E)

e Data Augmentation (F)

e The interaction Backbone Network (E) and Data Augmentation (F)
e Image Resolution (A)

e Box Loss (C)

[110]

University of the Aegean Department of Financial and Management Engineering

e The interaction of Dilated Convolution (B) and Backbone Network (E)

e Anchor Dimensions (D)

o Dilated Convolution (B)

e The interaction of Image Resolution (A) and Data Augmentation (F)

e The interaction of Image Resolution (A) and Anchor Dimensions (D)

e The interaction of Image Resolution (A), Backbone Network (E) and Data Augmentation
(F)

e The interaction of Image Resolution (A) and Backbone Network (E)

e Theinteraction of Dilated Convolution (B), Anchor Dimensions (D) and Backbone Network
(E)

e The interaction of Box Loss (C) and Anchor Dimensions (D)

e The interaction of Dilated Convolution (B), Box Loss (C), Anchor Dimensions (D) and
Backbone Network (E)

e The interaction of Box Loss (C) and Data Augmentation (F)

e The interaction of Image Resolution (A), Dilated Convolution (B), Anchor Dimensions (D)
and Backbone Network (E)

e The interaction of Box Loss (C), Backbone Network (E) and Data Augmentation (F)

e The interaction of Dilated Convolution (B), Box Loss (C) and Backbone Network (E)

e The interaction of Box Loss (C), Anchor Dimensions (D) and Backbone Network (E)

e The interaction of Box Loss (C), Anchor Dimensions (D), Backbone Network (E) and Data
Augmentation (F)

e The interaction of Box Loss (C), Anchor Dimensions (D) and Data Augmentation (F)

e The interaction of Image Resolution (A), Dilated Convolution (B) and Backbone Network
(E)

e The interaction of Image Resolution (A), Dilated Convolution (B), Box Loss (C), Anchor
Dimensions (D) and Backbone Network (E)

e The interaction of Dilated Convolution (B) and Data Augmentation (F)

e The interaction of Dilated Convolution (B), Backbone Network (E) and Data Augmentation

(F)

The remaining hyperparameters or their interactions do not have a significant effect on mAP, since their
values are less than 1.99.

In the testing process the most significant hyperparameter is the backbone network (E), followed by data
augmentation (F) and image resolution (A). Of course, all factors and factor interactions exceeding the red
line (threshold 1.99) are also noted as statistically significant. Interactions such as AE, AF, BE, and AB have
significant effects on mAP.

[111]

University of the Aegean Department of Financial and Management Engineering

Pareto Chart of the Standardized Effects
(response is mAP, a = 0.05, only 30 effects shown)

Term 199

£ 1 Factor Name
‘:] = A Image Resolution

A E] Dilated Convolution
BE | C Box Loss

D | o 0 Anchor Dsmensions
Alé So—1 £ Backbone Network
AD '—1 F Data Augmentation

i

Erng
R
" ST

10 20 £ 40
Standardized Effect

Figure 5.12 Pareto chart of the standardized effects during testing process

Based on Pareto Chart of the training process (Figure 5.9) and the Pareto Chart of the testing process
(Figure 5.12), we can conclude that:

1

Important hyperparameters:

Training: The Backbone Network (E) has the largest standardized effect, followed by Data
Augmentation (F) and Anchor Dimensions (D). These three hyperparameters are the dominant
ones in the training process.

Testing: Similarly, Backbone Network (E) remains the most important hyperparameter during
testing, followed by Data Augmentation (F) and Image Resolution (A).

Important interactions of hyperparameters:

Training: Significant interactions include EF, CD, AF, and CF. These interactions suggest that
interactions of backbone network with data augmentation and anchor dimensions are important
during training.

Testing: Interactions such as AE, AF, BE, and AB seem to be more important during testing,
indicating that factors like image resolution, when combined with data augmentation or the
backbone network, have a greater influence on mAP.

Therefore, we can conclude that backbone network (E) and data augmentation (F) consistently remain
the most significant hyperparameters for improving mAP in both training and testing processes,
indicating their importance in model performance across both phases.

Main effects plot for mAP

[112]

University of the Aegean Department of Financial and Management Engineering

Figure 5.13 shows the main effects plot for the testing process in our study (Kim et al., 2007), which
measures the impact on mAP for the factors A, B, C, D, E and F. By analyzing these six factors in the main
effect plot in Minitab, we can conclude to the following observations below:

e Increasing image resolution from 352x352 to 413x416 improves mAP by 24.6% - 20.4% = 4.2%. By
further increasing the image resolution from 416x416 to 832x832 improves mAP by 36.7% - 24.6%
=12.1%

e Adding dilated convolution in our model reduces mAP by 28.5% - 25.9% = 2.6%
e Changing the box loss function from loU to DloU improves mAP by 29.2% - 25.2% = 4%

e Changing anchor box dimensions from the default model values to a new set of values reduces
mMAP by 28.8% - 25.7% = 3.1%.

e Changing the backbone network from Darknet-53 (default) to ResNet-152 (new) reduces mAP by
36.6% -17.8% = 18.8%.

e Adding data augmentation in our model improves mAP by 30.6% - 23.8% = 6.8%

The addition of dilated convolution in our model, the selection of new anchor dimensions and the
alternation of the backbone network from Darkenet-53 to ResNet-152 have negative effect on mAP as they
reduce its value. As we can see from the plot below (Figure 5.13) the choice of ResNet-152 over Darknet-
53 has the most negative impact on mAP, reducing its value approximately by half (36.6% to 17.8%).

On the other hand, the increase on image resolution, the alternation of box loss function from loU to DloU
and the addition of data augmentation improve the value of mAP, with the image resolution having the
greatest impact, similar to the training process.

Therefore, we conclude that the best options for the factors/hyperparameters we selected, which
positively affect the mAP value, are the same with the training process:

e 832x832 for image resolution

e Absence of dilated convolution

e DloU for box loss function

o Default values for the anchor dimensions

e Darknet-53 as the backbone network

e Addition of the mosaic data augmentation technique

[113]

University of the Aegean Department of Financial and Management Engineering

Main Effects Plot for mAP

'
Fitted Means
Irage R 0hrion Diytest Comwaimon Bos 0w Archor DRmersiony Backhone Network Dty Agmersation
» *
oss
2 030 .
» -
- B
B
L
£ on ‘ . v
] v
=
oxa: ¢
-
an
IEEAED Atmdis AIE32 o ™ =y L Cutaett Voo Darkrwt. 53 Soflen 152 Dttt [YE

Figure 5.13 Main Effects Plot for mAP during testing process

Therefore, from the above results, we can conclude that Darknet-53 as a backbone offers a better
performance when we have a higher image resolution (832x832), the default anchor dimension, the
YOLOv3 model suggests, and the dilated convolution before the YOLO heads, is not added. Nevertheless,
it seems that the addition of data augmentation is important, as the default YOLOv3 model does not use
data augmentation techniques. Additionally, our performance is better when the box loss function is DloU
instead of the loU that is the default box loss function of YOLOv3.

5.4.3 Similarities and differences in the analysis results of validation vs. testing

Table 5.9 compares the effects of the main factors on mAP resulting from the ANOVA of validation vs.
testing.

Table 5.9 Comparison of the effects of the main factors on mAP between validation and testing. The values indicate the
difference between High and Low

Factor/Interaction Validation effect on mAP in % (Testing effect on mAP in %
High — Low) (High — Low)

Image resolution (A) 4.0+12.2=16.2 4.2+12.1=16.3

Dilated Convolution (B) 3 2.6

Box Loss Function (C) 5.9 4

Anchor Box Dimensions (D) 5 3.1

Backbone Network (E) 22.5 18.8

Data Augmentation (F) 8.4 6.8

More specifically, we can conclude that the effect of Image Resolution (A) on mAP resulting from either
the validation or testing ANOVA is consistent. Similar conclusions hold for almost all other Factors. In
general, though the effects resulting from the ANOVA of the testing results have slightly lower values as
those resulting from the ANOVA of the Testing results. This may be attributed to the lower mAP values
obtained during testing.

[114]

University of the Aegean Department of Financial and Management Engineering

Overall, the analysis highlights that hyperparameters, such as image resolution and the backbone
network, have consistently very significant effects on mAP across both validation and testing phases. The
effects of the rest of the factors are still statistically significant but lower in value.

5.4.4 Evaluation Metrics for YOLOv3: Performance

As discussed in Chapter 3, key evaluation metrics such as Precision, Recall, F1-Score, Average Precision
(AP), and mean Average Precision (mAP) are used to assess model performance. As a reminder, Precision
measures how accurately the model identifies objects, while Recall indicates its ability to detect all
relevant objects. Thus, Precision is the ratio of True Positives to True Positives + False Positives, while Recall
is the ratio of True Positives to total objects in the image (True Positives + False Negatives). A True Positive
occurs when the model correctly detects an object with appropriate Intersection over Union (loU) and the
right classification, while a False Positive occurs when the model misclassifies, that is, it detects a non-
existent object or predicts multiple boxes for the same object. A False Negative occurs when the model
may not detect an object that is present in the image. The F1-score provides a balance between Precision
and Recall, and AP evaluates the Precision across different Recall values for a single class, whereas mAP
calculates the average AP across all object classes. A higher mAP suggests improved detection
performance across multiple categories. Consequently, these metrics are important in evaluating the
model’s performance.

The 90th experiment results (see Table 5.10) give a detailed evaluation of the model’s performance using
the above metrics. Based on these results, it is observed that while the model detects cars accurately, it
has difficulty identifying bikes and people, which leads to a higher number of false positives.

Table 5.10 Evaluation metrics of YOLOv3 90 experiment

Overall model
performance

Specifically,

Person - Class ID: O

e TP (True Positives): 19,033 correctly detected people with sufficient loU and correct classification

e FP (False Positives): 9,750 incorrect detections due to misclassification, ghost detections, or
overlapping bounding boxes

e FN (False Negatives): 23,263 undetected objects, although they existed in the image

Car-ClassID: 1

e TP: 33,299 cars correctly detected with proper loU and classification
e FP: 8,054 incorrect detections, likely including misclassified objects or duplicate boxes

[115]

University of the Aegean Department of Financial and Management Engineering

e FN (False Negatives): 6,820 actual cars were not identified by the model despite being in the image

Long Vehicle - Class ID: 2

e TP:6,702 long vehicles correctly identified

e FP: 3,180 false detections, likely due to incorrect object classification or improper bounding box
placement.

e FN (False Negatives): 3,936 long vehicles were present in the image but remained undetected by
the model

Bike - Class ID: 3

e TP:9,823 bikes correctly detected.

e FP:5,757 incorrect detections, possibly caused by confusion with other objects or duplicate
detections.

e FN (False Negatives): 17,463 bicycles were missing by the model, leading to missing detections.

Total Performance

e TP: 68,857 objects correctly detected.

e FP:26,741 incorrect detections due to misclassification, poor bounding box placement, or
multiple detections of the same object.

e FN (False Negatives): 51,482 objects were not detected, reducing the model’s recall performance

Therefore, the model demonstrates strong performance in car detection, achieving the highest AP
(85.16%), with high precision (0.81) and recall (0.83), making it the most reliable class. However, bike
detection is the weakest, with low AP (41.88%) and recall (0.36), indicating that the model struggles to
correctly identify bikes, often missing actual bikes and producing many false positives. Person detection is
also challenging, having a moderate AP (49.11%), low recall (0.45), high false positives (9,750), and high
false negatives (23,263) indicating frequent misclassification of objects as people. The high false positive
rate (FP = 26,741) indicates that the model frequently detects objects incorrectly.

Based on our experimental results, we can conclude from the last row of Table 5.10:

1. Precision (0.72) showcases a good accuracy, but false positives exist. The model correctly
classifies 72% of detected objects, meaning that 28% of detections are false positives.

2. Recall (0.57) indicates many missed detections. A recall score of 0.57 suggests that while the
model detects many objects, a large portion remains undetected, missing 43% of actual objects.
This imbalance between precision and recall indicates that the model avoids making too many
incorrect detections but still fails to detect many actual objects.

[116]

University of the Aegean Department of Financial and Management Engineering

3. F1-Score (0.64) indicates a moderate balance between precision and recall. A higher Fl-score
would indicate a more effective relationship between detecting all objects and reducing
misclassifications.

4. mean Average Precision (60.99%) could indicate good but not optimal performance. This score
of 60.99% suggests that across all object classes, the model is reliable but not highly accurate,
especially at detecting objects across different recall levels. The mAP is largely influenced by strong
performance in car detection (AP = 85.16%) and weaker performance in person and bike
detection.

Previous studies report YOLOv3 mAP values ranging from 39.7% to 40.3% on similar UAV datasets
(Pebrianto et al., 2023). Another study based on UAV imagery, achieved a test mAP of 31.4% on the
VisDrone dataset using YOLOv3 (Zhang et al., 2023). Our model achieved a mAP of 60.99% in the validation
process and a mAP of 52.37% (see Table 5.3) in the test process. Consequently, our model outperforms
these benchmarks, demonstrating improved robustness in detecting various object classes. However, it is
important to note that different UAV datasets were used in our research and in the studies mentioned.

It should be mentioned that mAP is the most significant evaluation metric. The mAP value is computed at
a specific Intersection over Union (loU) threshold, commonly set at 0.5 (mAP@0.5). A higher loU threshold
(e.g., 0.75) requires stricter overlap between predicted and ground-truth bounding boxes, often reducing
mAP, while a lower threshold (e.g., 0.25) allows less strict detections, potentially increasing mAP. This
means a model with high mAP (0.75) is more precise in localization. A helpful way to understand mAP is
to imagine it as a measure of confidence in both detecting and correctly classifying objects. For instance,
if the model detects a person but mistakenly classifies it as a bicycle, this impacts AP and ultimately
reduces mAP. A model with a high mAP not only finds most objects but also classifies them correctly with
high confidence.

In simply terms, mAP does not indicate the percentage of objects detected in an image. A common mistake
is that if mAP = 60%, the model detects 60% of the objects in an image. However, mAP is a measure of
both detection accuracy and classification correctness across multiple recall thresholds. For example, if a
model predicts 80 bounding boxes but 40 of them have poor localization (loU < 0.5) or incorrect class
labels (Class threshold < 0.25), the precision and recall values will be affected, leading to a lower mAP
score. Thus, a model with mAP = 60% does not mean it identifies 60% of objects, but rather that it achieves
an average precision of 60% over different recall values across multiple object categories. In practice, mAP
serves as a holistic performance metric that evaluates both how many objects are detected and how
correctly they are localized and classified rather than just the proportion of objects found in an image.

[117]

mailto:mAP@0.5

University of the Aegean Department of Financial and Management Engineering

Chapter 6 Conclusions

This thesis focuses on optimizing training of the YOLOv3 model for object detection using UAV-captured
imagery. It showcases the importance of hyperparameter selection in training effectiveness. Specifically,
through extensive analysis, we identified important hyperparameters that influence the trained model’s
performance. By adjusting these hyperparameters we fine-tuned training of the model to achieve higher
precision in detecting objects.

The study utilized annotated UAV datasets that were preprocessed to align with YOLOv3’s requirements.
The selected datasets were the UA Vehicle Detection Dataset, Stanford Dataset and VisDrone2019DET
dataset. The consolidated dataset consists of 16,303 images with 602,240 annotations and it was split into
training (80%), validation (10%), and testing (10%) subsets.

Training optimization was approached by dividing hyperparameters into two categories. The first one
included hyperparameters that were set according to the characteristics of the training subset and were
kept invariant throughout the analysis. These included max batches, number of classes, filters, and steps.
The second category contained the hyperparameters we selected to adjust; i.e., image resolution,
backbone network, anchor box dimensions, dilated convolution, box loss and data augmentation
techniques.

A Full-Factorial experimental design was employed to generate 96 (2° x 3) distinct combinations of these
key hyperparameters. The training process was executed twice for each combination of the selected
hyperparameters, resulting in a total of 192 trained models. During training, validation was performed
every 100 iterations. Finally, after training, we conducted the testing process to evaluate model
performance.

Each of the 192 experiments produced outputs consisting of the highest mAP achieved during validation
and testing. The results of these experiments were analyzed using ANOVA, which revealed that all
hyperparameters significantly influence model's performance. Among them, the most impactful
hyperparameters on performance are: the backbone network, data augmentation and image resolution.
Additionally, two significant two-way interactions were observed: a) between the backbone network and
data augmentation, and b) between the backbone network and dilated convolution.

The best-performing model achieved mAP values of 60.99% during training/validation and 52.51% during
testing process. The model that achieved this performance corresponds to the following hyperparameter
combination:

Image Resolution: 832x832
Dilated Convolution: No
Box Loss: DloU

Anchor Dimensions: Default
Backbone: Darknet-53

Data Augmentation: Mosaic

O O O O O O

[118]

University of the Aegean Department of Financial and Management Engineering

On the other hand, the performance of the lowest performing models was very low, indicating that the
hyperparameter selection and tuning plays an important role and could lead to significant improvements
in YOLOv3's detection performance.

The thesis contributed in revealing:

e The important role of hyperparameter selection and tuning in optimizing YOLOv3’s training
performance

e The significant and quantifiable impact of hyperparameters and their interactions on the precision
of object detection.

Future research investigations could include:

e Exploring hyperparameters of newer YOLO versions to analyze how they could affect YOLOv3
performance

e Integrating another backbone network to validate that the default one (Darknet-53) offers the
best performance

e Incorporating other types of data augmentation apart from “mosaic” that was selected in our
study

o Testing the performance of the model in a greater variety of datasets

e Creating balance in class representation to lower the mAP differences between training/validation
and testing.

[119]

University of the Aegean Department of Financial and Management Engineering

References

Aksu, G., Guzeller, C.0., Eser, M.T., 2019. The Effect of the Normalization Method Used in Different
Sample Sizes on the Success of Artificial Neural Network Model. Int. J. Assess. Tools Educ. 6, 170-192.
https://doi.org/10.21449/ijate.479404

Alexey, 2024. AlexeyAB/darknet.

Alexey, 2020. Mosaic Augmentation Paper? - Issue #8 - WongKinYiu/CrossStagePartialNetworks [WWW
Document]. GitHub. URL https://github.com/WongKinYiu/CrossStagePartialNetworks/issues/8 (accessed
9.1.24).

Anwar, A., 2022. What is Average Precision in Object Detection & Localization Algorithms and how to
calculate it? [WWW Document]. Medium. URL https://towardsdatascience.com/what-is-average-
precision-in-object-detection-localization-algorithms-and-how-to-calculate-it-3f330efe697b (accessed
2.26.24).

Atik, M.E., Duran, Z., Ozgiinliik, R., 2022. Comparison of YOLO Versions for Object Detection from Aerial
Images. IJEGEO 9, 87-93. https://doi.org/10.30897/ijegeo.1010741

Bi, Y., Xue, B., Mesejo, P., Cagnoni, S., Zhang, M., 2023. A Survey on Evolutionary Computation for
Computer Vision and Image Analysis: Past, Present, and Future Trends. IEEE Transactions on Evolutionary
Computation 27, 5-25. https://doi.org/10.1109/TEVC.2022.3220747

Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M., 2020. YOLOv4: Optimal Speed and Accuracy of Object
Detection. https://doi.org/10.48550/arXiv.2004.10934

Bodla, N., Singh, B., Chellappa, R., Davis, L.S., 2017. Soft-NMS -- Improving Object Detection With One
Line of Code. Presented at the Proceedings of the IEEE International Conference on Computer Vision, pp.
5561-5569.

Brock, A., Lim, T., Ritchie, J.M., Weston, N., 2017. FreezeOut: Accelerate Training by Progressively
Freezing Layers. https://doi.org/10.48550/arXiv.1706.04983

Buczkowski, M., Stasinski, R., 2019. Convolutional Neural Network-Based Image Distortion Classification,
in: 2019 International Conference on Systems, Signals and Image Processing (IWSSIP). Presented at the
2019 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 275-279.
https://doi.org/10.1109/IWSSIP.2019.8787212

Cai, Z, Fan, Q,, Feris, R.S., Vasconcelos, N., 2016. A Unified Multi-scale Deep Convolutional Neural
Network for Fast Object Detection, in: Leibe, B., Matas, J., Sebe, N., Welling, M. (Eds.), Computer Vision —
ECCV 2016. Springer International Publishing, Cham, pp. 354—370. https://doi.org/10.1007/978-3-319-
46493-0_22

Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B., Shelhamer, E., 2014. cuDNN:
Efficient Primitives for Deep Learning. https://doi.org/10.48550/arXiv.1410.0759

Crasto, N., 2024. Class Imbalance in Object Detection: An Experimental Diagnosis and Study of Mitigation
Strategies. https://doi.org/10.48550/arXiv.2403.07113

[120]

University of the Aegean Department of Financial and Management Engineering

Cruz Martinez, J., 2021. Real-time Object Detection in Video (with intro to Yolo v3) [WWW Document].
URL https://infotech.report/guest-articles/real-time-object-detection-in-video-with-intro-to-yolo-v3
(accessed 8.25.24).

Culjak, 1., Abram, D., Pribanic, T., Dzapo, H., Cifrek, M., 2012. A brief introduction to OpenCV, in: 2012
Proceedings of the 35th International Convention MIPRO. Presented at the 2012 Proceedings of the 35th
International Convention MIPRO, pp. 1725-1730.

Diaz-Cel, J., Arce-Lopera, C., Mena, J.C., Quintero, L., 2019. The Effect of Color Channel Representations
on the Transferability of Convolutional Neural Networks | SpringerLink [WWW Document]. URL
https://link.springer.com/chapter/10.1007/978-3-030-17795-9 3 (accessed 9.23.24).

Diwan, T., Anirudh, G., Tembhurne, J.V., 2023. Object detection using YOLO: challenges, architectural
successors, datasets and applications. Multimed Tools Appl 82, 9243-9275.
https://doi.org/10.1007/s11042-022-13644-y

Dubey, A.K., Jain, V., 2019. Comparative Study of Convolution Neural Network’s Relu and Leaky-Relu
Activation Functions, in: Mishra, S., Sood, Y.R., Tomar, A. (Eds.), Applications of Computing, Automation
and Wireless Systems in Electrical Engineering. Springer, Singapore, pp. 873—880.
https://doi.org/10.1007/978-981-13-6772-4_76

Gad, A.F,, 2020. Accuracy, Precision, and Recall in Deep Learning [WWW Document]. Paperspace Blog.
URL https://blog.paperspace.com/deep-learning-metrics-precision-recall-accuracy/ (accessed 2.26.24).

Gashi, D., Pereira, M., Vterkovska, V., 2017. Multi-Scale Context Aggregation by Dilated Convolutions
Machine Learning - Project.

Gilbert, T., 2020. YOLO Object Detection with OpenCV [WWW Document]. Gilbert Tanner. URL
https://gilberttanner.com/blog/yolo-object-detection-with-opencv/ (accessed 6.28.24).

Girshick, R., Donahue, J., Darrell, T., Malik, J., 2014. Rich Feature Hierarchies for Accurate Object
Detection and Semantic Segmentation. Presented at the Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 580-587.

Hakala, T., Honkavaara, E., Saari, H., Madkynen, J., Kaivosoja, J., Pesonen, L., P6l6nen, I., 2013. SPECTRAL
IMAGING FROM UAVS UNDER VARYING ILLUMINATION CONDITIONS. The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences XL-1-W2, 189-194.
https://doi.org/10.5194/isprsarchives-XL-1-W2-189-2013

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep Residual Learning for Image Recognition. Presented at the
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778.

He, K., Zhang, X., Ren, S., Sun, J., 2015. Spatial Pyramid Pooling in Deep Convolutional Networks for
Visual Recognition. https://doi.org/10.1007/978-3-319-10578-9_23

Heffels, M., Vanschoren, J., 2020. Aerial Imagery Pixel-level Segmentation.
https://doi.org/10.48550/arXiv.2012.02024

Henderson, P., Ferrari, V., 2017. End-to-end training of object class detectors for mean average precision.

[121]

University of the Aegean Department of Financial and Management Engineering

Hosang, J., Benenson, R., Schiele, B., 2017. Learning Non-Maximum Suppression. Presented at the
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4507—-4515.

Huang, C.-Y.,, Lin, |.-C., Liu, Y-L., 2022. Applying Deep Learning to Construct a Defect Detection System for
Ceramic Substrates. Applied Sciences 12, 2269. https://doi.org/10.3390/app12052269

Igiri, C., Uzoma, A, Silas, A., 2021. Effect of Learning Rate on Artificial Neural Network in Machine
Learning. International Journal of Engineering Research 4.

iguazio, 2022. What is Recall [WWW Document]. Iguazio. URL https://www.iguazio.com/glossary/recall/
(accessed 2.21.24).

loffe, S., Szegedy, C., 2015a. Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift. https://doi.org/10.48550/arXiv.1502.03167

loffe, S., Szegedy, C., 2015b. Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift, in: Proceedings of the 32nd International Conference on Machine Learning.
Presented at the International Conference on Machine Learning, PMLR, pp. 448—456.

Jiang, P., Ergu, D,, Liu, F, Cai, Y., Ma, B., 2022. A Review of Yolo Algorithm Developments. Procedia
Computer Science, The 8th International Conference on Information Technology and Quantitative
Management (ITQM 2020 & 2021): Developing Global Digital Economy after COVID-19 199, 1066—1073.
https://doi.org/10.1016/].procs.2022.01.135

Kamal, A., 2021. YOLO, YOLOv2 and YOLOv3: All You want to know. Medium. URL https://amrokamal-
47691.medium.com/yolo-yolov2-and-yolov3-all-you-want-to-know-7e3e92dc4899 (accessed 2.2.24).

Khan, S., 2023. IMAGE ANNOTATION USING DEEP LEARNING. Medium. URL
https://medium.com/@salmanskhan/image-annotation-using-deep-learning-115158fb4931 (accessed
9.15.24).

Kirk, D., 2007. NVIDIA cuda software and gpu parallel computing architecture, in: Proceedings of the 6th
International Symposium on Memory Management. Presented at the ISMMO7: International Symposium
on Memory Management, ACM, Montreal Quebec Canada, pp. 103—-104.
https://doi.org/10.1145/1296907.1296909

Li, Y., Cheng, R., Zhang, C., Chen, M., Liang, H., Wang, Z., 2023. Dynamic Mosaic algorithm for data
augmentation. MBE 20, 7193-7216. https://doi.org/10.3934/mbe.2023311

Lin, T-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,, Ramanan, D., Dollar, P., Zitnick, C.L., 2014. Microsoft
COCO: Common Objects in Context, in: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (Eds.), Computer
Vision — ECCV 2014. Springer International Publishing, Cham, pp. 740-755. https://doi.org/10.1007/978-
3-319-10602-1_48

Liu, H.-T.D., Kim, V.G., Chaudhuri, S., Aigerman, N., Jacobson, A., 2020. Neural Subdivision.
https://doi.org/10.48550/arXiv.2005.01819

Liu, S., Qi, L., Qin, H., Shi, J., Jia, J., 2018. Path Aggregation Network for Instance Segmentation. Presented
at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8759—8768.

[122]

University of the Aegean Department of Financial and Management Engineering

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y,, Berg, A.C., 2016. SSD: Single Shot MultiBox
Detector, in: Leibe, B., Matas, J., Sebe, N., Welling, M. (Eds.), Computer Vision — ECCV 2016, Lecture
Notes in Computer Science. Springer International Publishing, Cham, pp. 21-37.
https://doi.org/10.1007/978-3-319-46448-0_2

Ma, H., Liu, Y., Ren, Y., Yu, J., 2020. Detection of Collapsed Buildings in Post-Earthquake Remote Sensing
Images Based on the Improved YOLOv3. Remote Sensing 12, 44. https://doi.org/10.3390/rs12010044

Montesinos Lépez, O.A., Montesinos Lopez, A., Crossa, J., 2022. Overfitting, Model Tuning, and
Evaluation of Prediction Performance, in: Montesinos Lépez, O.A., Montesinos Lépez, A., Crossa, José
(Eds.), Multivariate Statistical Machine Learning Methods for Genomic Prediction. Springer International
Publishing, Cham, pp. 109-139. https://doi.org/10.1007/978-3-030-89010-0_4

Mu, S., Wang, C., Liu, M., Li, D., Zhu, M., Chen, X., Xie, X., Deng, Y., 2011. Evaluating the potential of
graphics processors for high performance embedded computing, in: 2011 Design, Automation & Test in
Europe. Presented at the 2011 Design, Automation & Test in Europe, pp. 1-6.
https://doi.org/10.1109/DATE.2011.5763120

Mukhoti, J., Kulharia, V., Sanyal, A., Golodetz, S., Torr, P., Dokania, P., 2020. Calibrating Deep Neural
Networks using Focal Loss, in: Advances in Neural Information Processing Systems. Curran Associates,
Inc., pp. 15288-15299.

Navarro Tuch, S., Lopez-Aguilar, A., Bustamante-Bello, R., Molina, A., Izquierdo-Reyes, J., Curiel-Ramirez,
L., 2019. Emotional domotics: a system and experimental model development for UX implementations.
International Journal on Interactive Design and Manufacturing (1JIDeM) 13.
https://doi.org/10.1007/s12008-019-00598-z

Oti, E., Olusola, M., Eze, F,, Enogwe, S., 2021. Comprehensive Review of K-Means Clustering Algorithms.
International Journal of Advances in Scientific Research and Engineering 07, 64—69.
https://doi.org/10.31695/IJASRE.2021.34050

Oztiirk, S., Ozkaya, U., Akdemir, B., Seyfi, L., 2018. Convolution Kernel Size Effect on Convolutional Neural
Network in Histopathological Image Processing Applications | IEEE Conference Publication | IEEE Xplore
[WWW Document]. URL https://ieeexplore.ieee.org/abstract/document/8742484 (accessed 9.23.24).

Papageorgiou, C.P., Oren, M., Poggio, T., 1998. A general framework for object detection, in: Sixth
International Conference on Computer Vision (IEEE Cat. N0o.98CH36271). Presented at the Sixth
International Conference on Computer Vision (IEEE Cat. No.98CH36271), pp. 555-562.
https://doi.org/10.1109/ICCV.1998.710772

Pathak, A.R., Pandey, M., Rautaray, S., 2018. Application of Deep Learning for Object Detection. Procedia
Computer Science, International Conference on Computational Intelligence and Data Science 132, 1706—
1717. https://doi.org/10.1016/j.procs.2018.05.144

Pebrianto, W., Mudjirahardjo, P., Pramono, S.H., Rahmadwati, Setyawan, R.A., 2023. YOLOv3 with Spatial
Pyramid Pooling for Object Detection with Unmanned Aerial Vehicles.
https://doi.org/10.48550/arXiv.2305.12344

[123]

University of the Aegean Department of Financial and Management Engineering

Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You Only Look Once: Unified, Real-Time Object
Detection. Presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 779-788.

Redmon, J., Farhadi, A., 2018. YOLOv3: An Incremental Improvement.
https://doi.org/10.48550/arXiv.1804.02767

Redmon, J., Farhadi, A., 2017. YOLO9000: Better, Faster, Stronger, in: 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). Presented at the 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), IEEE, Honolulu, HI, pp. 6517-6525. https://doi.org/10.1109/CVPR.2017.690

Ren, S., He, K., Girshick, R., Sun, J., 2015. Faster R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks, in: Advances in Neural Information Processing Systems. Curran Associates, Inc.

Riad, R., Teboul, O., Grangier, D., Zeghidour, N., 2022. Learning strides in convolutional neural networks.
https://doi.org/10.48550/arXiv.2202.01653

Ribani, R., Marengoni, M., 2019. A Survey of Transfer Learning for Convolutional Neural Networks, in:
2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T). Presented at
the 2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T), pp. 47-57.
https://doi.org/10.1109/SIBGRAPI-T.2019.00010

Robicquet, A., Sadeghian, A., Alahi, A., Savarese, S. (Eds.), 2016. Learning Social Etiquette: Human
Trajectory Understanding In Crowded Scenes. Computer Vision — ECCV 2016, Lecture Notes in Computer
Science. https://doi.org/10.1007/978-3-319-46484-8 33

Santos, P.P., Carvalho, D.S., Sardinha, A., Melo, F.S., 2024. The impact of data distribution on Q-learning
with function approximation. Mach Learn 113, 6141-6163. https://doi.org/10.1007/s10994-024-06564-5

Sharma, Siddharth, Sharma, Simone, Athaiya, A., 2020. ACTIVATION FUNCTIONS IN NEURAL NETWORKS.
IJEAST 04, 310-316. https://doi.org/10.33564/I1JEAST.2020.v04i12.054

Shorten, C., Khoshgoftaar, T.M., 2019. A survey on Image Data Augmentation for Deep Learning. J Big
Data 6, 60. https://doi.org/10.1186/s40537-019-0197-0

Shuai, Q., Wu, X., 2020. Object detection system based on SSD algorithm, in: 2020 International
Conference on Culture-Oriented Science & Technology (ICCST). Presented at the 2020 International
Conference on Culture-oriented Science & Technology (ICCST), IEEE, Beijing, China, pp. 141-144.
https://doi.org/10.1109/1CCST50977.2020.00033

Sujee, R., Sudharsun, L., Shanthosh, D., 2020. Fabric Defect Detection Using YOLOv2 and YOLO v3 Tiny |
SpringerLink [WWW Document]. URL https://link.springer.com/chapter/10.1007/978-3-030-63467-4_15
(accessed 9.17.24).

Tepteris, G., Mamasis, K., Minis, I., 2023. State of the art object detection and recognition methods(draft)
| DeOPSys Lab [WWW Document]. URL
https://deopsys.aegean.gr/node/280?fbclid=IwAR0OaMRFETCX8zDlicnF_ly5AzhPhvMwYZBIk14EaZIF5sNH
K_oll2R8tCpl (accessed 2.8.24).

[124]

University of the Aegean Department of Financial and Management Engineering

Uijlings, J.R.R., van de Sande, K.E.A., Gevers, T., Smeulders, AW.M., 2013. Selective Search for Object
Recognition. Int J Comput Vis 104, 154—-171. https://doi.org/10.1007/s11263-013-0620-5

Vakili, M., Ghamsari, M., Rezaei, M., 2020. Performance Analysis and Comparison of Machine and Deep
Learning Algorithms for IoT Data Classification.

van Dyk, D.A., Meng, X.-L., 2001. The Art of Data Augmentation. Journal of Computational and Graphical
Statistics 10, 1-50. https://doi.org/10.1198/10618600152418584

Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E., 2018. Deep Learning for Computer
Vision: A Brief Review. Computational Intelligence and Neuroscience 2018, e7068349.
https://doi.org/10.1155/2018/7068349

Wang, 2024. jwangjie/UAV-Vehicle-Detection-Dataset.

Wenkel, S., Alhazmi, K., Liiv, T., Alrshoud, S., Simon, M., 2021. Confidence Score: The Forgotten
Dimension of Object Detection Performance Evaluation [WWW Document]. URL
https://www.mdpi.com/1424-8220/21/13/4350 (accessed 9.23.24).

Wu, Y., He, K., 2018. Group Normalization. Presented at the Proceedings of the European Conference on
Computer Vision (ECCV), pp. 3—19.

Wu, Z., Shen, C., van den Hengel, A., 2019. Wider or Deeper: Revisiting the ResNet Model for Visual
Recognition. Pattern Recognition 90, 119-133. https://doi.org/10.1016/].patcog.2019.01.006

Xiong, C., Zayed, T., Abdelkader, E.M., 2024. A novel YOLOv8-GAM-Wise-loU model for automated
detection of bridge surface cracks. Construction and Building Materials 414, 135025.
https://doi.org/10.1016/j.conbuildmat.2024.135025

Xu, H., Yao, L., Li, Z,, Liang, X., Zhang, W., 2019. Auto-FPN: Automatic Network Architecture Adaptation
for Object Detection Beyond Classification, in: 2019 IEEE/CVF International Conference on Computer
Vision (ICCV). Presented at the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), IEEE,
Seoul, Korea (South), pp. 6648—6657. https://doi.org/10.1109/1CCV.2019.00675

Yang, F., Choi, W., Lin, Y., 2016. Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale
Dependent Pooling and Cascaded Rejection Classifiers, in: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). Presented at the 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2129-2137. https://doi.org/10.1109/CVPR.2016.234

Yang, K., Yau, J.H., Fei-Fei, L., Deng, J., Russakovsky, O., 2022. A Study of Face Obfuscation in ImageNet,
in: Proceedings of the 39th International Conference on Machine Learning. Presented at the
International Conference on Machine Learning, PMLR, pp. 25313-25330.

Zhang, L., Xiong, N., Pan, X, Yue, X., Wu, P., Guo, C., 2023. Improved Object Detection Method Utilizing
YOLOv7-Tiny for Unmanned Aerial Vehicle Photographic Imagery. Algorithms 16, 520.
https://doi.org/10.3390/a16110520

Zhang, W.,, Fu, C., Xie, H., Zhu, M., Tie, M., Chen, J., 2021. Global context aware RCNN for object
detection. Neural Computing and Applications 33, 1-13. https://doi.org/10.1007/s00521-021-05867-1

[125]

University of the Aegean Department of Financial and Management Engineering

Zhang, X., Zou, Y., Shi, W., 2017. Dilated convolution neural network with LeakyReLU for environmental
sound classification, in: 2017 22nd International Conference on Digital Signal Processing (DSP). Presented
at the 2017 22nd International Conference on Digital Signal Processing (DSP), pp. 1-5.
https://doi.org/10.1109/ICDSP.2017.8096153

Zhang, Y., Wallace, B., 2015. A Sensitivity Analysis of (and Practitioners’ Guide to) Convolutional Neural
Networks for Sentence Classification [WWW Document]. arXiv.org. URL
https://arxiv.org/abs/1510.03820v4 (accessed 9.10.24).

Zheng, Z., Wang, P,, Liu, W.,, Li, J.,, Ye, R., Ren, D., 2020. Distance-loU Loss: Faster and Better Learning for
Bounding Box Regression. Proceedings of the AAAI Conference on Artificial Intelligence 34, 12993—
13000. https://doi.org/10.1609/aaai.v34i07.6999

Zhu, P., Wen, L., Du, D., Bian, X., Fan, H., Hu, Q., Ling, H., 2021. Detection and Tracking Meet Drones
Challenge.

[126]

