

University of the Aegean

School of Engineering

Department of Financial Management and Engineering

FINE TUNING OF YOLOv3 TRAINING FOR OBJECT DETECTION IN IMAGES

RECORDED BY A UAV

Tsiflitzi Anna

 Supervisor: Prof. Georgios Dounias

Committee Members: Associate Prof. Vasileios Zeimpekis

 Associate Prof. Vasileios Koutras

Chios, January 2025

University of the Aegean Department of Financial and Management Engineering

[ii]

To my family…

University of the Aegean Department of Financial and Management Engineering

[iii]

Acknowledgements

First and foremost, I would like to express my sincere gratitude to Professor Ioannis Minis and my

supervisor, Professor Georgios Dounias, for their invaluable guidance, inspiration, and support throughout

this academic endeavor. Their insights and expertise have been a source of inspiration throughout this

journey. Their continuous and constructive feedback on my analysis enabled me to optimize my thesis,

while their insightful advice helped me grow personally and pushed me towards my academic excellence.

I am deeply thankful to George Tepteris for his invaluable support through every step of my analysis,

experiments, and knowledge sharing on the field. His dedication, technical expertise and willingness to

assist have been important in overcoming challenges and achieving meaningful results.

Another special thank you is extended to my colleague, Panos Lapsanis, for his exceptional teamwork,

productive collaboration, and fruitful academic discussions. The knowledge exchange and cooperative

spirit we shared have not only enriched the outcomes of my thesis but also made this knowledge journey

more fulfilling.

Finally, I am deeply grateful to my family and friends for their unwavering support, encouragement, and

belief in me throughout this journey of learning and growth. To my parents, who have always been by my

side in every step in my life, being my constant source of strength and showing me the value of hard work

and patience. Their love and sacrifices have been the foundation of all my achievements. To my sibling,

whose cheerfulness and continuous support helped me overcome any challenges, your constant

encouragement has meant more than I can express. To my friends, whose encouragement, understanding

and patience in my progress kept me motivated. Thank you for being by my side.

University of the Aegean Department of Financial and Management Engineering

[iv]

Abstract

This thesis focuses on optimizing training of the YOLOv3 (You Only Look Once) model for object detection

using UAV (Unmanned Aerial Vehicle)-captured imagery. It showcases the importance of hyperparameter

selection in training effectiveness. Specifically, through extensive analysis, we identified important

hyperparameters that influence the trained model’s performance. By adjusting these hyperparameters we

fine-tuned training of the model to achieve higher precision in detecting objects.

The study utilized annotated UAV datasets that were preprocessed to align with YOLOv3’s requirements.

These datasets were publicly available and comprised of the UA Vehicle Detection Dataset, Stanford

Dataset and VisDrone2019DET dataset.

Training optimization was approached by classifying hyperparameters into two categories. The first

included hyperparameters that were set according to the characteristics of the training dataset and were

kept invariant throughout the analysis. These included max batches, number of classes, filters, and steps.

The second category contained the hyperparameters we selected to adjust; i.e., image resolution,

backbone network, anchor box dimensions, dilated convolution, box loss and data augmentation

techniques.

A Full-Factorial experimental design was employed to generate 96 (25 𝑥 3) distinct combinations of these

key hyperparameters. The training process was executed twice for each combination of the selected

hyperparameters, resulting in a total of 192 trained models. During training, validation was performed

every 100 iterations. Finally, after training, we conducted the testing process to evaluate model

performance.

Each of the 192 experiments produced outputs consisting of the highest mAP achieved during validation

and testing. The results of these experiments were analyzed using ANOVA, which revealed that all

hyperparameters significantly influence model performance. Among them, the most impactful

hyperparameters on are the backbone network, data augmentation and image resolution. Additionally,

two significant two-way interactions were observed: a) between the backbone network and data

augmentation, and b) between the backbone network and dilated convolution.

The best-performing model achieved mAP values of 60.99% during training/validation and 52.51% during

testing. The model that achieved this performance corresponds to the following hyperparameter

combination:

o Image Resolution: 832x832

o Dilated Convolution: No

o Box Loss: DIoU

o Anchor Dimensions: Default

o Backbone: Darknet-53

o Data Augmentation: Mosaic

University of the Aegean Department of Financial and Management Engineering

[v]

On the other hand, the performance of the worst performing models was very low, indicating that

hyperparameter selection and tuning plays an important role and could lead to significant improvements

in YOLOv3’s detection performance.

The study demonstrates the important role of tailored training processes, dataset preparation,

hyperparameter selection and tuning in enhancing YOLOv3’s effectiveness for object detection.

University of the Aegean Department of Financial and Management Engineering

[vi]

Περίληψη

Η παρούσα διπλωματική εργασία επικεντρώνεται στη βελτιστοποίηση της διαδικασίας εκπαίδευσης του

Once) για την ανίχνευση και ταξινόμηση αντικειμένων από εικόνες που καταγράφονται από UAV (Μη

Επανδρωμένα Εναέρια Οχήματα) και συγκεκριμένα ανθρώπων, αυτοκινήτων, ποδηλάτων και μεγάλων

οχημάτων. Η επίτευξη της βελτιστοποίησης πραγματοποιήθηκε μέσω της ρύθμισης κατάλληλων

υπερπαραμέτρων του YOLOv3 μοντέλου, με στόχο τη μεγιστοποίηση της μέσης τιμής της μέσης ακρίβειας

ή mAP). Συγκεκριμένα, μέσα από εκτενή ανάλυση, εντοπίστηκαν οι υπερπαράμετροι που επηρεάζουν

την απόδοση του YOLOv3 μοντέλου και μας ενδιαφέρουν για την δική μας έρευνα. Με την κατάλληλη

προσαρμογή αυτών των υπερπαραμέτρων, έγινε η σωστή ρύθμιση της εκπαίδευσης του μοντέλου, και

αποδείχθηκε ότι ορισμένοι υπερπαράμετροι επέφεραν υψηλότερα αποτελέσματα mAP συγκριτικά με τις

προεπιλεγμένες ρυθμίσεις του YOLOv3.

Στην έρευνα μας χρησιμοποιήσαμε δημόσια διαθέσιμα σύνολα δεδομένων εικόνων από UAV, όπως τα

Dataset, το Stanford Dataset και το VisDrone2019DET dataset. Τα συγκεκριμένα αυτά σύνολα δεδομένων

εικόνων τροποποιήθηκαν προκειμένου να περιλαμβάνουν μόνο τις κατηγορίες αντικειμένων που μας

ενδιέφεραν για την έρευνά μας.

Η βελτιστοποίηση της εκπαίδευσης του YOLOv3 πραγματοποιήθηκε με την ταξινόμηση των

υπερπαραμέτρων σε δύο κατηγορίες. Η πρώτη περιλάμβανε υπερπαραμέτρους που καθορίστηκαν

σύμφωνα με τα χαρακτηριστικά του συνόλου δεδομένων εκπαίδευσης και παρέμειναν αμετάβλητες καθ'

όλη τη διάρκεια της ανάλυσης. Η δεύτερη κατηγορία περιλάμβανε τις υπερπαραμέτρους που

ρυθμίστηκαν για τη βελτιστοποίηση της απόδοσης εκπαίδευσης του YOLOv3.

Για τον σχεδιασμό πειραμάτων χρησιμοποιήθηκε η μέθοδος πλήρους παραγοντικού σχεδιασμού (Full-

design), δημιουργώντας 96 (2⁵ x 3) διακριτούς συνδυασμούς των επιλεγμένων για την έρευνα

υπερπαραμέτρων. Η διαδικασία εκπαίδευσης εκτελέστηκε δύο φορές για κάθε συνδυασμό των

επιλεγμένων υπερπαραμέτρων, με αποτέλεσμα να δημιουργηθούν συνολικά 192 εκπαιδευμένα

μοντέλα. Έπειτα, μετά την εκπαίδευση των μοντέλων, πραγματοποιήθηκε η διαδικασία δοκιμής

απόδοσης του μοντέλου (testing) για την αξιολόγηση της απόδοσης του μοντέλου. Σκοπός της

εκπαίδευσης και της διαδικασίας δοκιμής απόδοσης είναι να πραγματοποιηθεί η ανάλυση των

αποτελεσμάτων μέσω της Ανάλυσης Διακύμανσης (ANOVA).

Η ανάλυση των τιμών του mAP που προέκυψαν από την διαδικασία εκπαίδευσης και δοκιμών μέσω

ANOVA αποκάλυψε ότι όλες οι υπερπαράμετροι επηρεάζουν σημαντικά την απόδοση του μοντέλου.

Ωστόσο, οι υπερπαράμετροι με τη μεγαλύτερη επίδραση ήταν ο κορμός δικτύου (backbone network), η

αύξηση δεδομένων (data augmentation) και η ανάλυση εικόνας (image resolution). Επιπλέον,

παρατηρήθηκαν δύο σημαντικές αλληλεπιδράσεις μεταξύ παραγόντων: α) μεταξύ του κορμού δικτύου

network) και της αύξησης δεδομένων (data augmentation), και β) μεταξύ του κορμού δικτύου (backbone

network) και της διατεταμένης συνελικτικής (dilated convolution).

Το καλύτερο εκπαιδευμένο μοντέλο πέτυχε τιμές mAP 60,99% κατά την εκπαίδευση/επικύρωση και

52,51% κατά τη δοκιμή απόδοσης. Το μοντέλο που πέτυχε αυτήν την απόδοση αντιστοιχεί στον ακόλουθο

συνδυασμό υπερπαραμέτρων:

University of the Aegean Department of Financial and Management Engineering

[vii]

 Ανάλυση εικόνας (Image Resolution): 832x832

 Διατεταμένη Συνελικτική (Dilated Convolution): Όχι

 Απώλεια Κουτιού (Box Loss): DIoU

 Διαστάσεις των περιγραμμάτων (Anchor Dimensions): Default

 Κορμός Δικτύου (Backbone Network): Darknet-53

 Αύξηση Δεδομένων (Data Augmentation): Mosaic

Από την άλλη πλευρά, η σημαντικά χαμηλή απόδοση ορισμένων μοντέλων, υποδεικνύει ότι η επιλογή

και ρύθμιση των υπερπαραμέτρων παίζει σημαντικό ρόλο και μπορεί να οδηγήσει σε σημαντικές

βελτιώσεις στην αποτελεσματικότητα του YOLOv3 για την ανίχνευση και ταξινόμηση αντικειμένων.

University of the Aegean Department of Financial and Management Engineering

[viii]

Table of Contents

Chapter 1 Introduction ... 13

Chapter 2 Understanding object detection and YOLO .. 15

2.1 Fundamentals of object detection ... 15

2.1.1 Overview of computer vision .. 15

2.1.2 Definition and purpose of object detection ... 15

2.1.3 Key components of object detection systems .. 16

2.1.4 Object detection approaches (R-CNN, SSD, YOLO) ... 18

2.2 Evolution of YOLO algorithms and key features .. 21

2.2.1 Introduction to YOLO (You Only Look Once) algorithms .. 21

2.2.2 Overview of YOLOv1 and YOLOv2 ... 22

2.2.3 Innovations in YOLOv3 and its significance .. 23

2.2.4 Concluding remarks ... 24

Chapter 3 Deep Dive into YOLOv3 ... 25

3.1 YOLOv3 architecture overview... 25

3.2 The YOLOV3 architecture ... 27

3.2.1 Darknet-53 backbone and feature extraction .. 27

3.2.2 Feature Pyramid Network (FPN) ... 30

3.2.3 Detection heads... 33

3.3 Training, validation and testing.. 35

3.3.1 Training process of YOLOv3 ... 36

3.3.2 Validation process of YOLOv3 ... 40

3.3.3 Testing process of YOLOv3 .. 41

3.4: Operation of YOLOv3 ... 45

Chapter 4 Data preparation and parameter selection for training the YOLOv3 algorithm 47

4.1 Data collection and annotation ... 47

4.1.1 Data collection ... 47

4.1.2 Annotation and consolidation .. 49

4.2 Experimental set up ... 50

4.3 YOLOv3 hyperparameters .. 51

4.3.1 Hyperparameters determined by the characteristics of the dataset 52

4.3.2 Hyperparameters associated with the YOLOv3 architecture and functionality 56

4.3.3 Hyperparameters selection for our research ... 60

University of the Aegean Department of Financial and Management Engineering

[ix]

Chapter 5 Experimental Analysis ... 73

5.1 Full Factorial Design ... 73

5.2 Experimental set-up and execution ... 76

5.3 Experimental results and analysis ... 81

5.4 Hyperparameter effects on mean Average Precision (mAP)... 88

5.4.1 ANOVA analysis on best mAP results from the training/validation process 89

5.4.2 ANOVA analysis for the testing process .. 106

5.4.3 Similarities and differences in the analysis results of validation vs. testing 114

5.4.4 Evaluation Metrics for YOLOv3: Performance .. 115

Chapter 6 Conclusions .. 118

University of the Aegean Department of Financial and Management Engineering

[x]

Table of Figures

Figure 2.1 Object detection in visual recognition (Pathak et al., 2018) .. 16
Figure 2.2 Use of Convolutional Neural Network for object detection (Pathak et al., 2018) 17
Figure 2.3 Architecture of SSD algorithm (Rohan et al., 2019) ... 19
Figure 2.4 Two-stage object detectors R-CNN (Diwan et al., 2023) .. 20
Figure 2.5 Two-stage object detectors Faster R-CNN (Diwan et al., 2023) ... 20
Figure 2.6 Architecture of YOLOv1 algorithm (Redmon et al., 2016).. 21
Figure 3.1 YOLOv3 network architecture (Palma, 2020) ... 26
Figure 3.2 Darknet-53 architecture (Ma et al., 2020) ... 27
Figure 3.3 A 3×3 kernel (per channel) slides over the input to generate the output(Tepteris et al., 2023) 28
Figure 3.4 YOLOv3 Residual block structure (Xu & Wu, 2020) .. 30
Figure 3.5 Network architecture of feature pyramid network (FPN) (Zhang et al., 2021). 31
Figure 3.6 Upsampling layer (Tepteris et al., 2023) ... 32
Figure 3.7 Concatenation of two inputs (Tepteris et al., 2023). .. 32
Figure 3.8 YOLOv3 Output vector per anchor in each cell (Tepteris et al., 2023) 34
Figure 3.9 Training process of YOLOv3 (Tepteris et al., 2023) .. 36
Figure 3.10 Computing Intersection over Union (IoU) (Padilla, Netto, & Silva, 2020) 37
Figure 3.11 IoU of bounding boxes (Kamal, 2019) .. 37
Figure 3.12 YOLOv3 detection with class score (Shivaprasad, 2019). .. 39
Figure 3.13 YOLOv3 prediction example (Gilbert, 2020). .. 39
Figure 3.14 Validation process of YOLOv3... 40
Figure 3.15 Testing process of YOLOv3 (Tepteris et al., 2023) .. 41
Figure 3.16 Operation process of YOLOv3 (Tepteris et al., 2023) ... 46
Figure 3.17 Image after the applying of YOLOv3 object detection algorithm (Cruz Martinez, 2021) 46
Figure 4.1 The number of training, validation and testing images included in the consolidated dataset. . 50
Figure 4.2 Hardware Configuration of the system .. 50
Figure 4.3 Software components of the system ... 51
Figure 4.4 Illustration of "classes" adjustment in the configuration file ... 53
Figure 4.5 Illustration of "max_batches" in the configuration file .. 54
Figure 4.6 Illustration of “filters” in the configuration file .. 55
Figure 4.7 Illustration of “steps” in the configuration file ... 56
Figure 4.8 Illustration of the three different image resolution options in the configuration file................ 61
Figure 4.9 Illustration of the default anchor dimensions for the YOLO head responsible for detecting

small objects ... 61
Figure 4.10 Illustration of the default anchor dimensions for the YOLO head responsible for detecting

medium objects .. 62
Figure 4.11 Illustration of the default anchor dimensions for the YOLO head responsible for detecting

large objects .. 62
Figure 4.12 Illustration of the updated anchor dimensions in the configuration file 63
Figure 4.13 Illustration of mosaic augmentation (Alexey, 2020) ... 65
Figure 4.14 Illustration of “mosaic” in the configuration file .. 66
Figure 4.15 Dilated convolution filters with dilation rates D = 1, D = 2, D = 3 respectively (Heffels and

Vanschoren, 2020) .. 67

University of the Aegean Department of Financial and Management Engineering

[xi]

Figure 4.16 Illustration of the DIoU in the configuration file .. 70
Figure 5.1 Configuration files (.cfg) along with the corresponding data files (.data) 76
Figure 5.2 Variables from the first .data file corresponding to the first .cfg file in our experiments 76
Figure 5.3 Txt file including the object classes .. 76
Figure 5.4 Execution command for conducting the experiments ... 77
Figure 5.5 Information included in all .data files used for testing .. 79
Figure 5.6 Execution command for the testing process of our experiments .. 79
Figure 5.7 Training progress chart of the 90th experiment .. 87
Figure 5.8 Training progress chart of the 74th experiment .. 87
Figure 5.9 Pareto chart of the standardized effects during training process .. 96
Figure 5.10 Main effects plot for mAP during training process .. 98
Figure 5.11 Interaction plot for mAP during training process ... 98
Figure 5.12 Pareto chart of the standardized effects during testing process ... 112
Figure 5.13 Main Effects Plot for mAP during testing process .. 114

University of the Aegean Department of Financial and Management Engineering

[xii]

List of Tables

Table 2.1 Pooling layers used for object detection (Pathak et al., 2018) .. 17
Table 2.2 Evolution of YOLO Algorithms (Alexey, 2024) .. 24
Table 4.1 The number of training, validation and testing objects in the consolidated dataset 49

H

Y

P

E

R

L

I

N

K

\

l

"

_

T

o

c

1

9

0

4

2

2

3

1

3

"

T

a

b

l

e

 Hyperparameters. .. 52

Table 4.3 Hyperparameters in the backbone network related to architecture .. 56
Table 4.4 Hyperparameters in the backbone network related to training ... 57
Table 4.5 Hyperparameters in the YOLO heads related to architecture ... 57
Table 4.6 Hyperparameters in the YOLO heads related to architecture related to training 58
Table 4.7 Default and updated values of hyperparameters selected for our research 60
Table 4.8 Representation of the use of the k-means algorithm .. 62
Table 4.9 Anchor boxes for Darknet-53 ... 63
Table 4.10 Anchor boxes for Resnet-152 ... 64
Table 4.11 Illustration of ‘dilation’ in the configuration file .. 68
Table 4.12 Hyperparameter values for Darknet-53 ... 71
Table 4.13 Hyperparameter values for Resnet-152 ... 71
Table 5.1 Multilevel factorial design of our study ... 73
Table 5.2 Key class metrics during validation .. 80
Table 5.3 Best mAP and the average best mAP in the 1st and 2nd run of the training and testing processes

 .. 82
Table 5.4 Number of objects in the training, validation and testing datasets .. 84

H

Y

P

E

R

L

I

N

K

\

l

"

_

T

o

c

1

9

0

4

2

2

3

2

9

Table 5.6 Analysis of Variance during training process ... 91
Table 5.7 The best and worst hyperparameters’ interactions on the mAP ... 99
Table 5.8 Analysis of Variance during testing process... 107
Table 5.9 Comparison of the effects of the main factors on mAP between validation and testing. The

values indicate the difference between High and Low ... 114
Table 5.10 Evaluation metrics of YOLOv3 90th experiment ... 115

Chapter 1 Introduction

In the broad domain of computer vision, object recognition and object detection are two significant and

distinct areas. Object recognition is the process of identifying and categorizing predefined objects, in the

classes of interest, within an image based on their visual features. It determines the classes of objects

present in an image without providing detailed information about their location. On the other hand, object

detection recognizes the objects in the image (or video stream) and encloses each within an appropriate

bounding box. Thus, in addition to classifying the objects in the image, it also determines the position and

size of each object (Voulodimos et al., 2018).

In this thesis, we analyze the YOLOv3 algorithm within the specific context of UAV-captured images, aiming

to better understand the related training process and improve it through available training parameters

that may be tuned. YOLOv3 (You Only Look Once) is a single-pass object detection algorithm recognized

for its real-time processing capabilities and high accuracy (Kamal, 2021). The scope of this research

involves a detailed exploration of the YOLOv3 architecture, and its distinguishing features compared to its

predecessors, and an examination of how various training hyper-parameters influence its performance in

the recognition and localization of objects in UAV imagery.

To achieve these objectives, we begin by explaining how YOLOv3 differentiates itself from earlier one-stage

and two-stage object detectors. We then present an in-depth analysis of YOLOv3's architecture, focusing

on its convolutional layers, anchor boxes, and detection techniques. The study preparation phase involved

selecting appropriate UAV datasets and setting up the necessary hardware and software for our

experiments. We introduced appropriate classes in the selected datasets, modified and organized the raw

and unprocessed data appropriately to support our research needs.

For the hyperparameter study, we performed necessary modifications of the YOLOv3 configuration files to

be able to adjust systematically the hyperparameters during training. The first step of this study included

training and validation experiments using UAV datasets that were purposely selected. Subsequent, we

systematically varied key training hyperparameters such as image resolution, activation functions, anchor

dimensions, backbone architecture, data augmentation strategies, and the incorporation of dilated

convolutions. These parameters were selected from a larger set based on a thorough examination of

YOLOv3 characteristics, architecture and training possibilities. After the execution of 96 training tests, the

best value of mean Average Precision (mAP) achieved was 60.89%. By using a new UAV dataset (deopsys

dataset), that was created by our lab, we tested the best weights of the trained YOLOv3 model. The highest

tests results provided a mean Average Precision (mAP) of 84.59%. This specific mAP percentage was noted

for a height of 15m, and various lighting conditions.

The results of this thesis highlight the impact of key training hyperparameters on the YOLOv3 algorithm's

performance. Through detailed analysis, we identified how adjustments to image resolution, activation

functions, anchor dimensions, and other factors affect the algorithm's accuracy and speed in detecting

objects in UAV-captured images. These findings offer guidelines for enhancing the YOLOv3 training

process, ultimately advancing its effectiveness in UAV image recognition and localization tasks.

University of the Aegean Department of Financial and Management Engineering

[14]

The structure of the remainder of this thesis is as follows: In Chapter 2, we will delve into how YOLOv3

distinguishes itself from its predecessors by comparing one-stage and two-stage detectors. In Chapter 3,

we provide an in-depth analysis of the YOLOv3 architecture, examining its key components and

mechanisms. In Chapter 4, we detail the preparation of UAV datasets and the experimental set up,

including the dataset selection process, hardware, and software setup, as well as the procedures we

followed for data preparation. This chapter also covers a detailed analysis of the parameters that were

selected for our research. Chapter 5 focuses on analyzing the impact of key hyperparameter on YOLOv3’s

training and performance in recognizing and localizing objects in UAV imagery. Finally, Chapter 6 presents

the conclusions of this work and provides insights into possible future research directions.

University of the Aegean Department of Financial and Management Engineering

[15]

Chapter 2 Understanding object detection and YOLO

In this chapter , we will go through the fundamental elements of object detection as well as the evolution

of YOLO algorithms over time. Beginning with an overview over computer vision and an analysis of the

purpose and the key components of object detection. Following up, we will explore the object detection

approaches, including R-CNN (Region-based Convolutional Neural Network), SSD (Single Shot Detection),

and YOLO (You Only Look Once). In the next subsection, we will focus on the evolution of YOLO algorithms

and their key features. We will go through a detailed overview of the initial versions, YOLOv1 and YOLOv2,

highlighting their key features, innovations, and the improvements that each version brought to address

existing limitations, concluding to YOLOv3 and its significance overs its predecessors.

2.1 Fundamentals of object detection

In this Section, we aim to gain insights into the evolution and current state-of-the-art techniques in the

field of object detection. We will define the concept of object detection, highlighting its purpose and its

importance. Additionally, we will explore the key components of object detection systems, clarifying the

processes involved in identifying and localizing objects within images. Moreover, we will discuss object

detection approaches, including R-CNN (Region-based Convolutional Neural Network), SSD (Single Shot

Detection), and YOLO (You Only Look Once), focusing on the respective methodologies and contributions

to advancing object detection technology.

2.1.1 Overview of computer vision

Computer Vision (CV) is a cross-disciplinary field that combines computer science and image processing.

More particularly computer vision provides computing systems with the ability to extract high level

understanding from digital images and video streams. It tries to give machines the ability to understand

visual data in a way similar to humans. Over the decades, CV has undergone a revolutionary transition

from early image processing algorithms and manually constructed features to the current deep learning

approaches, particularly Convolutional Neural Networks (CNNs). This radical change enables computers to

autonomously learn hierarchical representations directly from annotated raw data, leading to significant

breakthroughs in tasks such as object detection, image classification, and semantic segmentation. Despite

considerable progress, there are still many challenges including maintaining model robustness, resolving

ethical concerns, and improving clarity. Current research aims to make deep learning models more

adaptable to real-world circumstances, and able to address more complex problems (Bi et al., 2023;

Voulodimos et al., 2018).

2.1.2 Definition and purpose of object detection

Object detection is a key computer vision task that detects and marks semantic objects of defined classes

(such as humans, cars, or birds) in digital images and videos. It is different from image classification, which

only assigns labels to the image. Object detection also defines the exact boundaries of each object, using

bounding boxes. So, it not only identifies the class instance of any object within an image, but also encloses

it in a bounding box, thus determining the object’s location within the image and its size. When the object

detection task searches for a single class instance in an image, it is called single class object detection.

University of the Aegean Department of Financial and Management Engineering

[16]

When it searches for all defined class instances of the objects in an image, it is called multi class object

detection.

The primary purpose of object detection is to provide machines with the capability of understanding visual

scenes mirroring human cognitive processes. For example, object detection enables the identification of

pedestrians, vehicles, and other objects, thereby facilitating real-time decision-making to complex

problems, such as real life-like safe navigation. Object detection is essential in applications that need

accurate object recognition and localization, such as autonomous cars, surveillance systems, medical

imaging, and augmented reality. The overarching goal is to improve the capabilities of intelligent systems

in interpreting and understanding the visual world (Pathak et al., 2018).

2.1.3 Key components of object detection systems

Object detection systems use various techniques and components to achieve accurate and efficient

detection. However, there are basic key components which are similar in every object detection system,

and they are important parts of its framework.

The procedure begins with obtaining input data, typically comprising images or video frames.

Preprocessing methods such as resizing, normalization, and data augmentation are employed to optimize

quality and facilitate subsequent analysis. Deep neural networks, particularly Convolutional Neural

Networks (CNNs), are utilized for feature extraction. More specifically CNN extracts the features of the

image into a “feature map”, which is the outcome of applying a filter in the output of the previous layer.

After passing from a number of layers, the result of the process is to obtain several sets of extracted

“feature maps” of different sizes. The framework also involves object classification and bounding box

regression. Object classification requires assigning a class label to each object. Simultaneously, bounding

box regression fine-tunes the spatial coordinates of proposed bounding boxes, improving the accuracy of

object localization. To reduce redundancy and eliminate overlapping predictions, a non-maximum

suppression (NMS) step is introduced, which makes it easier to maintain the most confident and non-

overlapping object detections.

The comprehensive training of the framework requires labeled datasets, where each object is annotated

with a class label and a bounding box. The training process involves adjusting the model’s parameters to

optimize them with the use of a loss function that measures the difference between predicted outputs

and ground truth labels (Papageorgiou et al., 1998). A step-by-step procedure of the object detection

process is overviewed in Figure 2.1.

Figure 2.1 Object detection in visual recognition (Pathak et al., 2018)

University of the Aegean Department of Financial and Management Engineering

[17]

As already mentioned, CNNs play an important role in all CV systems: they are responsible for extracting

the features of an image into a “feature map”. A “feature map” is basically the outcome of applying a filter

in the output of the previous layer. After repeating this process multiple times, the result is several sets of

extracted “feature maps” in different sizes. As illustrated in Figure 2.2, the layered architecture of CNNs

for object detection involves input images with activation functions to generate feature maps.

Subsequently, pooling layers are applied to abstract these feature maps and reduce spatial complexity.

This process is iterated across multiple filters to create diverse feature maps. Finally, fully connected layers

process these feature maps to produce output images with confidence scores for predicted class labels

(Pathak et al., 2018).

Figure 2.2 Use of Convolutional Neural Network for object detection (Pathak et al., 2018)

To mitigate network complexity and reduce the number of parameters, CNN employs various types of

pooling layers, as descripted in the table (Table 2.1) below.

Table 2.1 Pooling layers used for object detection (Pathak et al., 2018)

Pooling layer Description

Max pooling It is a widely used pooling mechanism in CNNs. Max pooling
selects the maximum value from the result of the convolution
operation which is applied to the input feature map. After a
convolutional layer processes an image and produces a feature
map, the max pooling layer scans over small regions within this
feature map and keeps only the highest value from each region,
resulting in detecting the most important feature in the area.

Average pooling Average pooling calculates the average value within each region, as
it considers all values in the region rather than focusing on the
most important one. This results in a more generalized feature
representation of the input features.

Spatial pyramid pooling (He et
al., 2015)

This pooling mechanism performs down-sampling of the image
and produces a feature vector with a fixed length.
This feature vector can be used for object detection without
making any deformations on the original
image.

Scale dependent pooling (Yang
et al., 2016)

This pooling mechanism handles scale variation in object detection
and helps to improve the accuracy of detection.

University of the Aegean Department of Financial and Management Engineering

[18]

2.1.4 Object detection approaches (R-CNN, SSD, YOLO)

The development of object detection algorithms has attracted intense interest during recent years. The

most known algorithms include Single Shot Detection (SSD), Regional CNN (R-CNN), Faster R-CNN and the

You Only Look Once (YOLO) algorithms. These algorithms specify the coordinates of bounding boxes

around the objects and provide at the same time the exact location of the object regarding the bounds of

the image, with the intention of classifying the objects inside the image. The YOLO family and SSD are

representative of one-stage detectors, while the R-CNN family is an example of two-stage detectors.

Starting with the analysis of the one-stage detectors, Single Shot Detection (SSD) is an object detection

technique developed by Google and introduced by Wei Liu in 2016 (Liu et al., 2016). The SSD model is a

single-stage object detection network, as it executes object detection in a single “pass” through the

network, that enhances both detection speed and accuracy. It uses a Convolutional Neural Network (CNN)

to process images and produce a feature map, which is a simplified version of an image that highlights

important details. The SSD model consists of three main components:

1) the backbone network, which extracts key features from the image

2) the bounding box creation, which generates potential boxes around objects

3) the convolutional prediction, in which the model generates potential boxes around objects based

on the extracted features. (Shuai and Wu, 2020).

A distinctive characteristic of SSD is its capability to predict bounding boxes at multiple stages within the

network. To achieve this, a series of convolutional layers with a small kernel size 3x3 are applied. These

convolutional layers are designed to focus on objects of various sizes, including small, medium, and large

ones. As the network progresses through these convolutional layers, it gradually reduces the image's

resolution, effectively enabling the extraction of all the image details (Liu et al., 2016). This multi-scale

feature extraction is crucial for identifying objects of different sizes.

In the later stages of convolutional operations, SSD accomplishes two critical tasks simultaneously. First, it

generates classification probabilities for each detected object, determining the type of object present in

the image. Second, it computes the coordinates of bounding boxes, localizing the detected objects within

the image.

To optimize object detection results, SSD incorporates a non-maximum suppression step. This step ensures

that only the most suitable bounding boxes are retained for each detected object, reducing redundancy

and overlapping bounding boxes. In summary, SSD integrates feature extraction, object classification, and

bounding box prediction within a single detection through a CNN. It is applied in different scales to adapt

on objects of varying sizes and employs non-maximum suppression to produce precise and reliable object

detection outcomes (Shuai and Wu, 2020).

 In Figure 2.3 is illustrated the SSD architecture. Starting at the left side with the input image, this image is

processed by the base network, which is shown as a large block next to it, which is a pre-trained CNN

named VGG-16. This network extracts feature maps from the image, capturing different levels of

complexity in an image, from basic to more complex objects. Next to the base network, we see

several additional feature layers, each represented by blocks at various resolutions. These layers process

the feature maps further to detect objects at different scales. Each feature layer is connected to detection

University of the Aegean Department of Financial and Management Engineering

[19]

heads, which are convolutional layers responsible for predicting bounding boxes and class scores for

objects. In the right side of the image, the last step labeled as Non-Maximum Suppression (NMS) is

responsible for filtering the overlapping boxes to output the most accurate detections.

Figure 2.3 Architecture of SSD algorithm (Rohan et al., 2019)

YOLO, which stands for "You Only Look Once," is a technology used for detecting objects in images. Unlike

older methods that involve multiple steps (first finding possible object areas and then classifying them),

YOLO processes the entire image in one single step. This approach allows YOLO to quickly identify and

locate objects like people, cars, animals etc. with great speed and accuracy. The key to YOLO’s performance

lies in its architecture. YOLO uses a single convolutional neural network (CNN) to divide the image into a

grid and simultaneously predict bounding boxes and class probabilities for each grid cell. This means that

YOLO doesn’t need separate stages for object detection and classification, which speeds up the whole

process. The network is designed to predict multiple bounding boxes and object classes in one forward

pass, making it ideal for real-time applications. Additionally, YOLO excels in detecting small objects, which

can be challenging for other models. It achieves this through its detailed grid-based approach, which helps

it focus on smaller details within each part of the image. YOLO’s design also includes features like anchor

boxes and advanced techniques for managing overlapping objects, enhancing its accuracy and efficiency.

managing overlapping objects effectively.((Jiang et al., 2022). A more detailed understanding of the YOLO

algorithm will be given in the next chapter.

R-CNN is an object recognition model that follows a multi-step process (Girshick et al., 2014) and it is an

example of a two-staged detector (see Figure 2.4.) Initially, it estimates potential object positions within

an image, and then, it performs object classification. The estimation of object positions relies on a

selective search algorithm which generates approximately 2000 region proposals, each representing a

potential object location within the image (Uijlings et al., 2013). These region proposals are then inserted

into a Convolutional Neural Network (CNN) to extract image features, resulting in 4,096-dimensional

feature vectors for each proposal. A feature vector, whose dimensions came up after experiments and

tuning during the development of the model, because it provides greater accuracy in object detection

tasks. The extracted features from the CNN are further processed by a Support Vector Machine (SVM)

algorithm, primarily used for classification tasks. The SVM's goal is to distinguish different object

categories (Tepteris et al., 2023).

University of the Aegean Department of Financial and Management Engineering

[20]

R-CNN has some limitations, including being slow and computational heavy. It processes each region

proposal separately, which takes a lot of time and resources. Additionally, R-CNN faces difficulties in

adapting to different image patterns effectively due to the fact that inherits patterns slower. This slowness

comes from the need to process the 2,000 region proposals, since the feature extractor must repeatedly

perform the same task for each of these regions. Another issue is the dependency on a fixed algorithm

during the selective search, preventing the network from learning patterns within the image. This

limitation stems from the fact that the algorithm combines similar regions into large ones, potentially

resulting in the creation of inferior region proposals. To cope with these inefficiencies, an improved model

was developed, known as Faster R-CNN (Ren et al., 2015). Unlike its predecessor, Faster R-CNN no longer

employs the Selective Search method for generating region proposals. Instead, the model is trained to

predict region proposals using a Convolutional Neural Network (CNN), as illustrated in Figure 2.5. These

predicted region proposals are then fed into separate CNNs to determine the presence of objects of

interest within these regions. Faster R-CNN outputs both the object class and its position within the image,

marking a significant improvement in efficiency and accuracy compared to the original R-CNN model(Ren

et al., 2015).

Figure 2.4 Two-stage object detectors R-CNN (Diwan et al., 2023)

Figure 2.5 Two-stage object detectors Faster R-CNN (Diwan et al., 2023)

University of the Aegean Department of Financial and Management Engineering

[21]

2.2 Evolution of YOLO algorithms and key features

The "You Only Look Once" (YOLO) algorithm has significantly impacted the field of object detection, setting

new standards for speed and accuracy. This chapter is divided into two sections and attempts to provide

an understanding of this technology. The first section introduces the foundational concepts behind the

YOLO algorithm, explaining briefly how it transforms object detection into a single regression problem.

The second section offers a detailed overview of the initial versions, YOLOv1 and YOLOv2, highlighting their

key features, innovations, and the improvements that each version brought to address the limitations of

its predecessor.

2.2.1 Introduction to YOLO (You Only Look Once) algorithms

The YOLO algorithm is an open-source object detection technique that employs convolutional neural

networks (Redmon et al., 2016). Its core strength lies in its small model size, enabling fast calculations.

YOLO directly outputs bounding box positions and categories through a single neural network, facilitating

real-time detection, including video processing. This single-stage detection architecture (Figure 2.3) treats

object detection as a regression problem applied on the whole image.

Firstly, the YOLO algorithm imposes to the input picture a grid of 𝑆𝑥𝑆 cells. The size of this grid may differ.

For example, grids of sizes 3x3, 5x5, 19x19 may be used. Each cell within a grid assesses independently the

presence of an object, its size and class. The aim of these operations is the creation of bounding boxes.

The generation of bounding boxes is followed by the creation of an estimation vector for each grid, which

encapsulates significant metrics. These metrics are the confidence score, 𝐵𝑥 (x coordinate of the object's

midpoint), 𝐵𝑦 (y coordinate of the midpoint of the object), 𝐵𝑤 (w the width of the object), 𝐵ℎ (h the height

of the object) and the dependent class probability (Ati̇k et al., 2022). However, YOLO has some limitations.

The first YOLO version can only detect 49 objects and if objects are small there are many possibilities of

not been detected. Another issue is the inaccurate localization, in many cases the model faces difficulties

in localizing precisely an object. To address these issues, newer versions improve the YOLO algorithm, both

in quality and speed (Jiang et al., 2022).

Figure 2.6 Architecture of YOLOv1 algorithm (Redmon et al., 2016)

Performance metrics are used to evaluate the detection performance of a model. Important metrics

include precision, recall, F1-score, Average Precision (AP) and mean Average Precision (mAP). All are based

University of the Aegean Department of Financial and Management Engineering

[22]

on the model’s classification and detection results, that are identified as True Positives (TP), False Positives

(FP), True Negatives (TN), False Negatives (FN). The focus of this Section is to provide an overview of these

metrics, which are significant for all object detection models.

2.2.2 Overview of YOLOv1 and YOLOv2

Below is provided a brief description of the two YOLO versions. Readers that are interested to further

details may refer to (Redmon et al., 2016; Redmon and Farhadi, 2017).

The first version of YOLO uses a 7x7 grid, with the restriction of any grid cell to be able to detect only one

object. This is the reason why YOLOv1 can detect maximum 49 objects. At the same time, YOLOv1 was

trained to detect only 20 different classes, so for any grid cell it will output 20 class probabilities, one for

each class. Although each grid offers the option of two bounding boxes, the process continues only with

the boxes that have higher confidence score. This architecture yields an output of S × S × (B × 5 + C), where

B represents the number of bounding boxes that each grid cell predicts, and C represents the number of

object classes the network can detect. Therefore, for S=7, B=2 and C=20, the final output of the network

will be 7x7x30 tensor of predictions (Figure 2.6).

The model comprises 24 convolutional layers followed by 2 fully connected layers, employing ReLU

activation function except for the final layer, which utilizes linear activation. Pre-training on the ImageNet

dataset and fine-tuning on PASCAL VOC datasets enhanced the performance of YOLOv1, reducing

localization errors compared to other methods. Nonetheless, YOLOv1 faces some limitations based on the

number of detected objects, high localization error and inability of detecting smaller objects. That were

some of the reasons for releasing the next version (Atik̇ et al., 2022).

YOLOv2, an advanced version of YOLO, introduces improvements in localization and recall ability while

preserving classification accuracy. YOLOv2 simplifies the architecture and employs non-max suppression

to select bounding boxes with the highest Intersection Over Union (IOU) (Jiang et al., 2022). The algorithm

focuses on better and faster detection, emphasizing the handling of large and small objects through the

design of an effective loss function. YOLOv2 maintains its performance while improving the mean Average

Precision (mAP). Through the introduction of new features, the YOLOv2 model adapts to different image

sizes, offering a balance between speed and accuracy.

Significant enhancements include the integration of batch normalization for input data preprocessing,

which is used in neural networks to standardize the inputs to each layer. The addition of batch

normalization leads to an improvement in mAP by 2%. Another improvement refers to the adoption of a

high-resolution classifier from 224x224 to 448x448 for detection, yielding a 4% rise in mAP. YOLOv2

introduces for the first time anchor boxes. Instead of predicting the coordinates of bounding boxes directly

using fully connected layers on top of convolutional feature extractor, YOLOv2 uses Faster R-CNN, which

predicts bounding boxes using hand-picked priors ((Ren et al., 2015). YOLOv2’s architecture is based on

the usage of a new network which works in a "network in network" concept, that has a new classification

model as a backbone network, Darknet-19, and 5 max-pooling layers. It also utilizes fewer filters. YOLOv2

has 25 convolutional layers instead of 24 of the first YOLO version (Redmon and Farhadi, 2017).

University of the Aegean Department of Financial and Management Engineering

[23]

The utilization of convolutional layers with anchor boxes contributes to a higher performance. Additionally,

the introduction of multi-scale output offers to the network the ability to detect objects at different scales

or resolutions. This means that YOLOv2 can detect small objects as well as larger ones in the same image

(Jiang et al., 2022). All these advances make YOLOv2 a more accurate model for object detection in

comparison with its predecessor.

2.2.3 Innovations in YOLOv3 and its significance

YOLOv3, the third version of the You Only Look Once (YOLO) algorithm, represents a notable evolution

from its predecessor, YOLOv2, and introduces several key differences. A considerable improvement lies in

the refined network architecture, using three distinct detection heads. The latter are added to YOLOv3’s

architecture offering the algorithm the ability to classify small, medium, and large objects respectively,

improving accuracy for objects of varying sizes.

Furthermore, YOLOv3 uses a new backbone network with 53 convolutional layers, called Darknet-53,

which is a hybrid approach between Darknet-19 (YOLOv2’s network) and the residual network, providing

more speed to the algorithm. Another significant improvement includes the adoption of a feature pyramid

network (FPN), enabling the algorithm to capture object details at multiple resolutions.

YOLOv3 also integrates skip connections to access features from earlier layers, enhancing its contextual

understanding (Jiang et al., 2022). By using independent classifiers, YOLOv3 adds the ability to classify the

detected object in a bounding box to more than once classes . More specifically, during training, a binary

cross-entropy loss function is used for class prediction.

Additionally, YOLOv3 embraces the use of multiple anchor boxes per grid cell, facilitating more precise

object localization. Another important enhancement is the addition of a confidence score, determined

through logistic regression, for each bounding box prediction. This score is expected to be 1 if the bounding

box effectively covers a ground truth box than any other bounding box prior, based on the highest

Intersection over Union (IOU). The system ensures that only one bounding box prior is assigned to each

ground truth box. If the box does not have the highest IOU but does overlap a ground truth box by more

than a threshold (0.5), the prediction is disregarded (Kamal, 2021). These innovations contribute to

YOLOv3's better performance in real-time object detection tasks.

Table 2.2 below illustrates the differences between the three YOLO versions: The parameters that were

changed or added in the algorithm’s architecture, as well as those related to the training procedure.

University of the Aegean Department of Financial and Management Engineering

[24]

Table 2.2 Evolution of YOLO Algorithms (Alexey, 2024)

2.2.4 Concluding remarks

When considering YOLOv3 over its predecessors, YOLOv1 and YOLOv2, several key advancements

distinguish it as a superior choice in various object detection applications. YOLOv3 introduces significant

improvements in detection accuracy, speed, and versatility compared to its predecessors. Through the

adoption of a deeper network architecture, YOLOv3 achieves enhanced detection performance,

particularly in detecting small objects and handling object occlusion. Additionally, YOLOv3 incorporates a

feature pyramid network (FPN) and utilizes multiple scale detections, enabling the model to effectively

capture objects at different scales and resolutions. Furthermore, YOLOv3 introduces the use of anchor

boxes to improve bounding box predictions, offering greater flexibility and accuracy in object localization.

Notably, YOLOv3 maintains a remarkable balance between detection accuracy and speed, making it well-

suited form object detection. Based on all these advantages we proceed in the selection of the YOLOv3

algorithm for our experimental research (Redmon and Farhadi, 2018).

 Evolution of YOLO Algorithms and Key Features

Parameters for Backbone Network
YOLOv1 YOLOv2 YOLOv3

Architecture

Backbone Depth 24 19 (Darknet-19) 53 (Darknet-53)

Training

Input Size 224x224 224x224 variable sizes

Input Normalization No Yes Yes

Data Augmentation No Yes Yes

Multi-scale Training No Yes Yes

Parameters for YOLO Network

Architecture

Number of layers 24 25 53

Spatial Pyramid Pooling (SPP) No No Yes

Multi-scale Output No Yes Yes

Training

Anchor Boxes per cell of the grid 0 5 9

Batch Normalization No Yes Yes

University of the Aegean Department of Financial and Management Engineering

[25]

Chapter 3 Deep Dive into YOLOv3

In this Chapter, we overview the YOLOv3 algorithm. We analyze some of its components, explore the

network layers and explain their functionalities and roles in the YOLOv3 architecture. Key areas of focus of

this overview include a) Darknet-53, which is the backbone of YOLOv3 and is responsible for feature

extraction; b) the feature pyramid network (FPN), the main component of the algorithm’s neck, which

employes additional convolutional layers with the purpose of enabling the network to detect objects at

multiple scales; c) the YOLO heads, the final stage of the object detection process. In the last Section of

this Chapter, we describe the process of training, testing and validation.

3.1 YOLOv3 architecture overview

The inputs of the YOLOv3 model are images or video streams. The default image resolutions that YOLOv3

typically accepts are 416x416 and 608x608 pixels. These input sizes are the most commonly used because

they offer a good balance between detection accuracy and computational efficiency. However, YOLOv3 is

a fully convolutional network, which means that it does not use any fully connected layers that require a

fixed-size input. Thus, the network may process images of various sizes. It can technically accept images

of any resolution, as long as the dimensions are divisible by 32.

The network architecture of YOLOv3 includes a series of convolutional layers, some of which have strides

greater than 1. Note that a stride of 1 means that the filter of the convolution process moves one pixel at

a time, resulting in a high-resolution output. On the other hand, a stride of 2 means that the filter moves

two pixels at a time, resulting in a downsampled output with reduced spatial dimensions.

University of the Aegean Department of Financial and Management Engineering

[26]

Figure 3.1 YOLOv3 network architecture (Palma, 2020)

The YOLOv3 network has three main parts, each highlighted in different colors and steps (Figure 3.1). First

is the backbone which is responsible for feature extraction. The backbone is illustrated by the grey section

and its functionality is to process the input image to extract features. It includes steps 1 to 11, where

several layers reduce the image size while increasing the detail in the features detected.

The second major part of the architecture is the Feature Pyramid Network (FPN) or else the neck, which

is highlighted by orange, purple, and blue in Figure 3.1. FPN is responsible for combining features from

different stages of the backbone to help detect objects of various sizes. This involves upsampling and

concatenation in steps 13 to 20 (will be analyzed in detail in Section 3.2.2), allowing the network to detect

both medium and small objects. Step 12 is also part of FPN, but it is used for processing large objects

without the need of going through upsampling and concatenation techniques.

Finally, the YOLO heads are where the actual object detection occurs. YOLO heads are the latter parts of

the orange, purple, and blue colored sections of Figure 3.1. They use the combined features from the neck

to identify objects at three different scales, small (steps 17-20, orange section), medium (steps 13-16,

purple section), and large (steps 12, blue section). In the YOLO heads the network predicts the class

probabilities for each detected object. This allows YOLOv3 to classify objects within the detected bounding

boxes based on the features extracted and processed by the backbone and the neck of the network.

In the following Sections we focus on each of the key components of YOLOv3’s architecture and present

its functionalities.

FPN

University of the Aegean Department of Financial and Management Engineering

[27]

3.2 The YOLOV3 architecture

In this Section we describe the three main components of YOLOv3 architecture, the Darknet-53 backbone,

the Feature Pyramid Network (FPN), which comprises the network’s neck, and the detection heads.

3.2.1 Darknet-53 backbone and feature extraction

The backbone of YOLOv3 serves as the feature extractor responsible for capturing semantic information

from input images. Typically, this part consists of a deep convolutional neural network (CNN) pretrained

on large-scale image classification datasets such as ImageNet. There are many choices for backbones in

YOLOv3, including Darknet-53 and ResNet-152. Darknet-53 comprises 53 convolutional layers organized

into convolution and residual blocks, providing robust feature extraction capabilities (see Fig. 3.2). It is

characterized by its simplicity and effectiveness, making it a suitable backbone for YOLOv3 (Tepteris et al.,

2023). On the other hand, Resnet-152 consists of 151 convolutional layers and 1 fully connected layer at

the end of its network. It is a deep convolutional network which offers high accuracy in more complex

patterns. It has increased computational requirements that make it slower to train, but it provides higher

accuracy (Xu et al., 2019).

Figure 3.2 Darknet-53 architecture (Ma et al., 2020)

The Darknet-53 architecture (see Fig. 3.2) comprises convolutional blocks and residual blocks. Each

convolutional block includes a 2d convolutional layer, a batch normalization layer and a LeakyReLU layer.

These layers perform basic feature extraction and dimensionality reduction, enabling the network to

capture low-level visual patterns. On the other hand, residual blocks contain a series of convolutional

layers followed by a shortcut connection that skips these layers and adds the original input to the output.

This shortcut is important because it helps the network learn more effectively and capture more complex

patterns, enhancing network’s overall performances (He et al., 2016).

University of the Aegean Department of Financial and Management Engineering

[28]

Figure 3.3 A 3×3 kernel (per channel) slides over the input to generate the output(Tepteris et al., 2023)

The convolution block

Convolution operation

The convolution operation in deep learning involves using convolutional filters, also known as kernels to

extract features from input data. These filters are small numeric matrices with fixed dimensions. More

precisely, a kernel (filter) is a small matrix of weights and is used to perform convolution operations on the

input image and on the outputs of previous convolution blocks. The output of each convolution step is

obtained by element-wise multiplication between the kernel matrix and a corresponding region of the

color channel, concluding by summing the results. This process is repeated for all three-color channels,

and the resulting numbers are summed together to form the elements of the output matrix (see also Fig.

3.3). The convolution operation progresses the kernel across the input image (at a specific stride)

producing a new matrix called a feature map. Common kernel sizes are 1x1, 3x3, or 5x5. In the YOLOv3

case, the kernel sizes are 3x3 and 1x1. During training, the weights of the kernels are adjusted to improve

the network's ability to extract relevant features from the input data.

In the architecture of Fig. 3.2, the first convolution block consists of 32 filters, each with a size of 3x3 and

a stride value of 1. This block is repeated once, and the output size remains the same as the input size (e.g.

416 pixels x 416 pixels). This operation is repeated for all 32 kernels, generating a total of 32 feature maps

(Tepteris et al., 2023).

Batch normalization

 Batch normalization (BN) is a technique used in deep learning to make training more efficient and stable.

It works by normalizing the inputs to each layer, making sure that the activations (the outputs of a layer)

have a consistent distribution across the mini-batches used during training. This helps to address a

problem called “internal covariate shift”, which occurs when the distribution of inputs to a layer changes

during training, making it harder for the model to adapt on the new changes. This process always runs

University of the Aegean Department of Financial and Management Engineering

[29]

between a convolution operation and an activation function and allows successive layers of the network

to learn more independently (Ioffe and Szegedy, 2015a).

More specifically, for each mini-batch, batch normalization calculates the mean and variance of the

activation values (the outputs of the previous layer). It then normalizes the activations so that they have

a mean of 0 and a variance of 1. This ensures that the input distribution remains consistent across layers

during training. After normalization, two parameters, 𝛾 (𝑔𝑎𝑚𝑚𝑎) and 𝛽 (𝑏𝑒𝑡𝑡𝑎), are introduced. The 𝛾

parameter controls the scaling (how stretched or compressed the values are), and the 𝛽 parameter

controls the shifting (moving the values up or down). These parameters allow the model to "un-normalize"

the data if needed, so that the network can adapt to a wider range of patterns. These two parameters are

adjusted during training to optimize the network’s performance. By keeping the input to each layer

normalized, batch normalization makes the training process more stable and faster, reducing overfitting

as it adapts more accurately to the new input layers.(Tepteris et al., 2023).

LeakyReLu

After each batch normalization process, the Leaky Rectified Linear Unit (LeakyReLU) is activated. This is an

improved version of the ReLU activation function. LeakyReLU addresses the issue of negative values

turning into zeros. By introducing a small slope for negative values, the LeakyReLU prevents this problem

and ensures that the weights of neurons are still affected during training. This activation function is

commonly used due to its simplicity and low computational requirements (Dubey and Jain, 2019).

The residual block

The residual block combines the output of the previous layer, denoted as x, with the output of the current

layer, denoted as f(x) (see Figure 3.4). Specifically, it adds the feature maps generated by the previous

convolution block to the feature maps produced by the convolution layers in the residual block. To ensure

that the dimensions of 𝑥 match those of 𝑓(𝑥), a 1x1 convolutional layer is applied to x before it is added

to the output of the residual block. This 1x1 convolution adjusts the number of channels and the spatial

dimensions of x, making it compatible with 𝑓(𝑥). Within the residual block, the convolution layers typically

include a 3x3 convolutional layer with stride 2, followed by Batch Normalization and a Leaky ReLU

activation. A stride of 2 is used to downsample the feature maps, reducing their spatial dimensions by half.

This choice of stride 2 is important for capturing higher-level, more abstract features, increasing the area

that each neuron can “see” effectively and improve computational efficiency. The addition of 𝑥 and 𝑓(𝑥)

helps deeper networks to learn more efficiently (He, Zhang, Ren, & Sun, 2016).

University of the Aegean Department of Financial and Management Engineering

[30]

Figure 3.4 YOLOv3 Residual block structure (Xu & Wu, 2020)

3.2.2 Feature Pyramid Network (FPN)

The neck of YOLOv3 acts as an intermediary between the backbone and the YOLO heads. It improves the

features extracted by the backbone, enhancing the capability of detecting objects at different scales. This

component often applies additional convolutional layers and feature based techniques to integrate multi-

scale information effectively.

The Feature Pyramid Network (FPN) is a widely used architecture for the neck in YOLOv3. Its architecture

is presented in Fig. 3.5. It creates a multi-scale feature pyramid by combining features from different levels

of abstraction within a convolutional neural network (CNN). In YOLOV3’s architecture (Figure 3.1), steps

12, 13, 14, 17 and 18 are the ones that comprise the FPN architecture.

University of the Aegean Department of Financial and Management Engineering

[31]

Figure 3.5 Network architecture of feature pyramid network (FPN) (Zhang et al., 2021).

As shown in Fig. 3.5, FPN has two main components: the bottom-up pathway, downsampling and the top-

down pathway, upsampling. Downsampling reduces the spatial resolution of feature maps while

increasing their depth, enabling the network to capture higher-level features. On the other hand,

upsampling increases the spatial resolution of feature maps, allowing the network to reconstruct higher-

resolution features from lower-resolution inputs.

Before we describe Fig. 3.5 in detail, please note that:

 The downsampling operation reduces the spatial dimensions (height and width) of the feature

maps, allowing the network to capture more complicated and abstract features at higher layers.

This is achieved through operations like convolution with stride > 1. Convolution with a stride

greater than 1 reduces the number of positions where the filter is applied across the input feature

map. As a result, the output feature map has fewer spatial dimensions (height and width). Pooling

layers are another method used to downsample feature maps in CNNs. Downsampling occurs in

Step 1, Step 3, Step 5, Step 8, and Step 11 in the context of YOLOv3 (Figure 3.1) . These steps

involve convolutional layers with a stride of 2 (s2) , which reduces the spatial resolution of the

feature maps progressively through the network (Xu et al., 2019).

 The upsampling operation increases the spatial resolution of feature maps, allowing lower-

resolution feature maps to be scaled up and aligned with higher-resolution feature maps from

earlier layers. The nearest neighbor method is used during upsampling. Specifically, an empty

University of the Aegean Department of Financial and Management Engineering

[32]

initial upsample grid is generated. Subsequently, every pixel in the upsample grid is filled with the

nearest pixel in the original image patch. This process is repeated until all pixels in the unsampled

grid are filled with the image patch values (Figure 3.6) (Tepteris et al., 2023). In the context of

YOLOv3, this can be seen in Step 13 (Conv 256x1x1 + UpSample) and Step 17 (Conv 128x1x1 +

UpSample) (Figure 3.1).

Figure 3.6 Upsampling layer (Tepteris et al., 2023)

 The concatenation operation combines these “upsampled” feature maps with feature maps from

earlier layers, merging high-resolution with lower resolution. This operation combines the depth

of two feature maps to capture low-level features and detect small objects (Tepteris et al., 2023).

For instance, in the YOLOv3 model, the output of step 18 (Figure 3.1) receives the outputs of steps

6 (52x52x256) (Figure 3.1) and 17 (52x52x128) (Figure 3.1), which have the same width and height

but different depth dimensions (Figure 3.7). So, the outcome of the concatenation operations is

sized at 52x52x384. In the context of YOLOv3, this can be seen in Step 14 (Concatenate with batch

size: 26, 26, 768) and Step 18 (Concatenate with batch size: 52, 52, 384) (Figure 3.1).

Figure 3.7 Concatenation of two inputs (Tepteris et al., 2023).

Now let’s turn to Fig. 3.5. In the Figure, the bottom-up pathway, feature maps labeled c2, c3, c4, and c5

are extracted from different layers of a convolutional neural network (CNN). As we progress from c2 to c5,

the spatial resolution of the feature maps decreases due to downsampling, while the quality of

information contained within a feature map increase. In a CNN, earlier layers (like the ones producing c2)

typically learn to detect basic features such as edges, textures, or simple shapes. These features are

fundamental and low-level. As we move deeper into the network, the layers (producing feature maps such

as c3, c4, and c5) start combining these basic features to recognize more complex patterns, objects, or

high-level concepts. By this process the network learns to increasingly detect more information about the

input image. Specifically, c2 represents a feature map from an earlier layer of the CNN (high resolution,

University of the Aegean Department of Financial and Management Engineering

[33]

low semantic information), c3 from a deeper layer (lower resolution, higher semantic information), c4

from an even deeper layer, and c5 from the deepest layer (lowest resolution, highest semantic

information).

In the top-down pathway, feature maps labeled p5, p4, p3, and p2, where p is the prediction, are

progressively upsampled and combined with corresponding bottom-up feature maps. Specifically, p5 is

obtained from c5 using a 1×1 convolution to adjust the channel dimension, p4 is obtained by upsampling

p5 and combining it with c4, p3 by upsampling p4 and combining it with c3, and p2 by upsampling p3 and

combining it with c2. Each “upsampled” feature map is combined with a corresponding “downsampled”

feature map, leveraging both high-level information from deeper layers and more detailed one from earlier

layers giving the ability to the network to detect objects at various scales (Alexey, 2024).

By integrating upsampling, downsampling and concatenation operations, YOLOv3 creates a more detailed

feature representation that improves the network's ability to detect objects of different sizes (Alexey,

2024).

3.2.3 Detection heads

The primary function of the YOLO heads is to predict bounding boxes for objects detected within the input

image. YOLOv3 employs three separate detection heads, each responsible for detecting objects at different

scales. These heads are associated with feature maps of different sizes. More specifically:

 The large-scale detection head is designed to capture large objects and operates on the output

feature map from the final layer of the network

 The medium-scale detection head captures medium-sized objects

 The small-scale detection head is responsible for detecting small objects

Each detection head is associated with three anchor boxes. These anchor boxes are predefined and

help in predicting the bounding box dimensions. Each anchor box has a fixed width and height, and

these values are adjusted during training to better fit the objects in the dataset. (Redmon and Farhadi,

2018).

University of the Aegean Department of Financial and Management Engineering

[34]

Figure 3.8 YOLOv3 Output vector per anchor in each cell (Tepteris et al., 2023)

Regarding the architectural perspective, each detection head is placed before a convolutional layer with a

1x1 kernel size which is responsible for the attributes of the anchor boxes (see Fig. 3.8). Therefore, the

number of filters in this layer is determined by the number of anchor boxes and classes (see Eq. 3.1).

More specifically it is determined by the formula:

𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 𝑛𝑢𝑚𝑎𝑛𝑐ℎ𝑜𝑟𝑠 × (4 + 1 + 𝑛𝑢𝑚𝑐𝑙𝑎𝑠𝑠𝑒𝑠)

(3.1)

where,

𝑛𝑢𝑚𝑎𝑛𝑐ℎ𝑜𝑟𝑠 = the number of anchor boxes,

𝑛𝑢𝑚𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = the number of classes

Value 4 indicates the four anchor box coordinates which define the location (𝑡𝑥, 𝑡𝑦) and the size (𝑡𝑤, 𝑡ℎ)

of the bounding box that contains the detected object (Figure 3.8).

Value 1 indicates the objectness score (𝑝𝑜), that is the probability that an object is present in the bounding

box and its value ranges between 0 to 1 (Figure 3.8). See also the black box in Figure 3.8.

For example, if there are 3 anchor boxes and 80 classes the number of filters in the convolutional layer of

each detection head would be 3 × (4 + 1 + 80) = 255 filters. This equation is applied in each filter of

convolution layer before the detection heads.

University of the Aegean Department of Financial and Management Engineering

[35]

The output of each detection head has a dimension:

(𝑔𝑟𝑖𝑑𝑠𝑖𝑧𝑒 , 𝑔𝑟𝑖𝑑𝑠𝑖𝑧𝑒 , 𝑓𝑖𝑙𝑡𝑒𝑟𝑠)

In this case, different grid sizes are used to detect objects at various scales:

 Large grid (52x52): Downsampled by a factor of 8 (416 / 8 = 52), detecting small objects

 Medium grid (26x26): Downsampled by a factor of 16 (416 / 16 = 26), detecting medium-sized

objects

 Small grid (13x13): Downsampled by a factor of 32 (416 / 32 = 13), detecting large objects.

In Figure 3.1, that describes the YOLOv3 architecture, the detection head for large objects is illustrated in

steps 12 and 13. In step 12, a convolutional block with a 1x1 kernel size is applied directly to the feature

map from the backbone network, preparing the feature map for detecting large objects. In step 13, a

𝐶𝑜𝑛𝑣 255 × 1 × 1 layer is applied with a 1x1 kernel size to reduce the number of channels in the feature

map to the size required for the final detection. This step produces the final detection output for large

objects which has a dimension of (𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 , 13, 13, 255).

The detection head for medium objects is illustrated in steps 15 and 16. In step 15, a convolutional block

is applied to the feature map resulting from the previous upsampling and concatenation operation (step

14). In step 16, a 𝐶𝑜𝑛𝑣 255 × 1 × 1 layer with a 1x1 kernel size is used to reduce the number of channels

to 255, similar to the detection head for large objects. This layer outputs a feature map of dimensions

(𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 , 26, 26, 255), designed for detecting medium-sized objects.

The detection head for small objects is illustrated in steps 19 and 20. In step 19, a convolutional block is

applied to the feature map from the upsampling and concatenation operation (step 18). In step 20, again

a 𝐶𝑜𝑛𝑣 255 × 1 × 1 layer is applied with a 1x1 kernel size to produce the feature map for detecting small

objects. This feature map, designed for detecting small objects, has dimensions of (𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 , 52, 52, 255)

(Alexey, 2024).

3.3 Training, validation and testing

In this Section, we overview training, validation and testing processes of YOLOv3 algorithm.

Training is the process by which the YOLOv3 algorithm learns to detect and classify objects in images.

During training, the model is fed with a large set of annotated images, where each image is paired with its

corresponding ground truth labels (the coordinates of bounding boxes and the class of the objects). The

algorithm adjusts its parameters repeatedly to minimize the difference between its anchor boxes and the

ground truth bounding boxes. Also, each anchor box is assigned to the ground truth bounding box that

has the highest IoU with it. The corresponding class label of the ground truth box is then used to train the

network to predict the correct class. Therefore, training is used to enable the models to learn and

understand the patterns in the data (Redmon and Farhadi, 2018).

Validation is the process used to evaluate the performance of the YOLOv3 model during training. For this

process, a separate subset of the dataset, called the validation set, is used. After each round of training

(an epoch), the model’s performance is tested on this validation set, to detect any overfitting or

University of the Aegean Department of Financial and Management Engineering

[36]

underfitting that might occur. Overfitting happens when a model learns too much detail from the training

data, including irrelevant patterns. As a result, the model becomes very good at predicting the training

data but fails to perform well on new data because it has "memorized" the training data instead of learning

general patterns. Underfitting occurs when a model does not learn enough from the training data. It fails

to capture more complex patterns in the data and therefore performs poorly both on the training and the

new data. Thus, the validation process is used to tune the models hyperparameters and prevent

overfitting, ensuring that the model generalizes well to new data (Redmon and Farhadi, 2018).

Testing is the process of evaluating the final performance of the trained YOLOv3 model on a separate set

of images that were not used during training or validation. This dataset is called the test set. The model’s

evaluation metrics are calculated on the test set to measure how effectively it can detect and classify

objects. Therefore, testing is used to evaluate the final model’s performance and confirm its accuracy

(Tepteris et al., 2023).

For all three processes, training, validation and testing, an annotated dataset of images is used. This

dataset consists of images that are labeled with the ground truth boxes and class of objects. Note that the

training set used for model learning comprises typically 80% of the dataset), the validation set 10%, and

the testing set comprises also 10% of the dataset.

3.3.1 Training process of YOLOv3

Figure 3.9 Training process of YOLOv3 (Tepteris et al., 2023)

Figure 3.9 overviews the step-by-step actions that take place in the training process. Initially, the training

dataset's images are divided into smaller batches. This division helps speed up the training process by

allowing the neural network's weights to be updated more frequently. Each batch contains images, such

as color images with dimensions 416x416 pixels, represented as arrays of size (416, 416, 3). The batch size

is set prior to training. For instance, if the batch size is 32, it means that 32 images are fed to the model

in each iteration to update the weights of YOLOv3 model. On the other hand, when the entire dataset of

images is passed through the YOLOv3 network once, this is one epoch. For example, consider a 4000

images dataset, divided in batches of 32 images. It will take 125 iterations to complete one epoch. More

specifically, an iteration is when the model processes a small batch of images, and in this case, the batch

size is 32. Since the dataset has 4000 images, it takes 125 (4000 32⁄) iterations to go through all images

once, which is one epoch.

In the second step of Fig. 3.9 the image batches are passed through a classification neural network, which

extracts features from the images, such as object outlines. In the third step, the model predicts classes for

University of the Aegean Department of Financial and Management Engineering

[37]

objects at three different scales, enabling the detection of small, medium, and large objects. Step four

involves detecting objects within each of the three scales and enclosing them within bounding boxes. In

step five, a loss value is calculated using the loss function. This value is a combination of how accurate the

class predictions are and how well the bounding boxes fit the predicted objects.

In YOLOv3, the loss value is computed for batches of images rather than individual images. This means

that the loss function is applied to a group of images, and the resulting outputs are combined to calculate

a single loss value for that batch. The optimizer then uses this loss value to adjust the model's weights.

This process is repeated for multiple batches until the model converges or a predetermined number of

iterations is reached (Tepteris et al., 2023).

Key technical tools used in training

Intersection over Union (IoU)

Intersection over Union (IoU) is the region where the ground truth bounding box and predicted bounding

box intersect over the region where they are united (Figure 3.10). According to the definition of IoU, an

IoU can have a value of 0 or 1, and the objective of training is to choose the predicted box that most closely

resembles the ground truth box in order to obtain an IoU as close to 1 as possible. An IoU threshold value

is used during training to keep only the "good" predicted box and throw out the ones below the threshold.

A typical threshold value is 0.5 (Kamal, 2021).

Figure 3.10 Computing Intersection over Union (IoU) (Padilla, Netto, & Silva, 2020)

The ground truth box and the predicted box are represented by the red and yellow boxes in Figure 3.11,

respectively. Because of the tiny area of intersection in the left image, the IoU is low. In contrast, the right

image's area of intersection between the two boxes is nearly equal to their union, meaning the IoU is near

to 1 (Kamal, 2021).

Figure 3.11 IoU of bounding boxes (Kamal, 2019)

University of the Aegean Department of Financial and Management Engineering

[38]

Objectness and Class Scores

The objectness score in YOLOv3 explains us how confident the model is that a bounding box contains an

object, regardless of its class (e.g., car, person, bike) and how well that bounding box aligns with the actual

object.

This score is a combination of two factors:

1. Probability of Object Presence (Pc(𝑜𝑏𝑗𝑒𝑐𝑡)): This is the probability that the predicted bounding

box contains any object, as predicted by the model.

2. Intersection Over Union (IoU): This measures how much the predicted bounding box overlaps with

the actual object’s ground truth bounding box.

Objectness score is calculated by multiplying these 2 values (Huang et al., 2022):

𝑃0 = Pc(𝑜𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑜𝑈 (3.2)

If Pc(𝑜𝑏𝑗𝑒𝑐𝑡) is high, close to 1, it means the model is highly confident that an object exists. If 𝐼𝑜𝑈 has a

value close to 1, it means that there is a significant overlap between ground truth box and the predicted

box, suggesting a more accurate prediction. Therefore, for an accurate prediction, 𝑃0 should ideally be

greater than 0.5 and as close to 1 as possible. A high 𝑃0 indicates both confidence in object presence and

accurate localization of the object's bounding box, which is important for accurate object detection

(Tepteris et al., 2023).

 The class score indicates the probability that the detected object belongs to a certain class (e.g., car,

person, bike), with the highest score indicating the predicted class. More specifically, for each anchor box,

the model computes a probability over all predefined classes included in the dataset. For instance, if there

are 80 classes, the model outputs 80 probabilities corresponding to these classes (Redmon et al., 2016).

For example, if the class scores are:

 0.7 for "car"

 0.2 for "person"

 0.1 for "bike"

 0 for all other classes.

Then, the model predicts that the object is a car (since 0.7 is the highest score).

As illustrated in Figure 3.12, the output of the YOLOv3 model consists of bounding boxes that enclose each

detected object, along with a label displaying the objectness score and the name of the class to which the

object belongs.

University of the Aegean Department of Financial and Management Engineering

[39]

Figure 3.12 YOLOv3 detection with class score (Shivaprasad, 2019).

Non-Maximum Suppression (NMS)

In Figure 3.13, the class probabilities are shown in the left corner of each bounding box next to the class

name of the detected object. As it can be seen in this Figure two bounding boxes are drawn around the

same object (dog and person). To ensure accurate object detection, the bounding box that best encloses

the object, with the highest confidence score (1.00 for the class = “dog”) should be retained, while the

other inaccurate and redundant bounding boxes (0.31 for the class = “person”) should be ignored. This

process is known as Non-Maximum Suppression (NMS) and is purpose is to reduce duplicate detections

and keep only the most accurate prediction for each object. It basically works by comparing the confidence

scores of all bounding boxes and keeping the ones with the highest scores while removing those with a

high overlap with the chosen bounding box (Hosang et al., 2017).

Figure 3.13 YOLOv3 prediction example (Gilbert, 2020).

The NMS algorithm's threshold is a hyperparameter that can be adjusted to balance accuracy and recall

(Tepteris et al., 2023).

University of the Aegean Department of Financial and Management Engineering

[40]

Loss Function

The loss function is utilized to optimize the model's parameters throughout the training procedure.

Training continues until the loss function reaches its minimum value, signifying that the model has

successfully learned to detect objects in an image. YOLOv3’s loss function is computed at the last output

layer of YOLOv3.

The loss function in YOLOv3 consists of three parts (Huang, Lin, & Liu, 2022):

1. 𝐸𝑟𝑟𝑜𝑟𝑐𝑜𝑜𝑟𝑑: refers to the coordinate prediction error

2. 𝐸𝑟𝑟𝑜𝑟𝑜𝑏𝑗𝑒𝑐𝑡𝑛𝑒𝑠𝑠: refers to an Intersection Over Union (IoU) error

3. 𝐸𝑟𝑟𝑜𝑟𝑐𝑙𝑎𝑠𝑠: refers to the classification error

𝐿𝑜𝑠𝑠 = 𝐸𝑟𝑟𝑜𝑟𝑐𝑜𝑜𝑟𝑑 + 𝐸𝑟𝑟𝑜𝑟𝑜𝑏𝑗𝑒𝑐𝑡𝑛𝑒𝑠𝑠 + 𝐸𝑟𝑟𝑜𝑟𝑐𝑙𝑎𝑠𝑠 (3.3)

For further information on YOLOv3 loss function see (Tepteris et al., 2023).

3.3.2 Validation process of YOLOv3

The validation process evaluates the performance of the YOLOv3 model during training using a separate

subset of the dataset known as the validation set. After each round of training (an epoch or in our study

several iterations), the model’s performance is tested on this validation set to detect any overfitting or

underfitting occurs during the training process. Overfitting occurs when the model learns too much detail

from the training data, including irrelevant patterns, resulting in high accuracy on the training data but

poor performance on new data. Underfitting happens when the model does not learn enough from the

training data, failing to capture complex patterns and thus performing poorly on both training and new

data. During this process, the network uses a separate dataset, called the validation set, which is different

from the training dataset. The validation process is crucial for tuning hyperparameters and preventing

overfitting, ensuring that the model generalizes well to new data (Redmon and Farhadi, 2018).

Figure 3.14 Validation process of YOLOv3

As illustrated in Fig., 3.14, in step 2 of the validation process the model continues with the feature

extraction from the input image without updating the weights, as it does during training. In step 3, the

model generates predicted outputs, including class labels and bounding boxes. In step 4, the model's

performance is evaluated by comparing the predicted outputs with the actual labels using various

evaluation metrics, such as precision, recall, Average Precision (AP) and mean Average Precision (mAP). In

step 5, the validation loss is calculated to assess how well the model is performing on the new input image

data. Then, in step 6, a decision is made, if the model's performance is acceptable, meaning the validation

University of the Aegean Department of Financial and Management Engineering

[41]

loss is low and the evaluation metrics are satisfying, the process moves to Step 7, completing the

validation. When the model's performance is not acceptable during validation, adjustments are made to

improve it, typically by tuning hyperparameters. This process can happen by stopping training and starting

over with new hyperparameters. After evaluating the model during validation, hyperparameters like

learning rate, batch size, can be adjusted and the training process starts over again.

Satisfactory validation result

A good validation result occurs when the validation loss is low and close to the training loss, indicating that

the model generalizes well to new data. Additionally, high values for evaluation metrics, such as precision,

recall, Average Precision (AP), or mean Average Precision (mAP) reflect that the model is accurately making

predictions across the predetermined classes and identifies true positives. Additionally, when the training

and validation losses are similar and stable after multiple iterations (epochs), it means that the model is

well-trained with no overfitting or underfitting issues.

Unsatisfactory validation result

On the other hand, an inferior validation result is characterized by a high validation loss compared to

training loss. This indicates overfitting issues when the model performs well on training data and

underfitting issues when the model fails to learn from new data. Low precision or recall values are also a

sign that the model is missing information or is making incorrect predictions.

Nevertheless, if the validation results are not the desirable ones, there are several strategies we can follow

to improve the model’s performance. One of them is the hyperparameter tuning, where parameters, such

as learning rate, batch size, or the number of epochs is adjusted. If the model is overfitting, techniques,

such as reducing model’s complexity (fewer layers) can help. In cases of underfitting, increasing model

complexity or training for more epochs may be necessary. Data augmentation can be also used to expand

the training data and prevent overfitting by generating new examples from existing data (e.g., rotating or

flipping images). A technique which was used in our research too.

All in all, the validation process is important for making sure a machine learning model is reliable, accurate,

and works well with new data. It helps us check how well the model performs and shows where

adjustments are needed to avoid issues like overfitting or underfitting. By analyzing the performance

metrics and making small changes to improve the model’s performance, we can get the best possible

results (Redmon et al., 2016).

3.3.3 Testing process of YOLOv3

Figure 3.15 Testing process of YOLOv3 (Tepteris et al., 2023)

University of the Aegean Department of Financial and Management Engineering

[42]

The testing process is essential because it evaluates how well the trained model adapts to new data. The

performance metrics obtained during testing indicate how accurately the model detects objects and

handles different conditions on which it was not trained on. Figure 3.15 overviews of the testing process.

During this process each annotated image from the testing subset is fed into the trained network for object

detection. The first four steps of the testing process are similar to those in the training process except that

the weights are not updated during testing. The model uses the weights that were learned during training

to make predictions on the test data, but it does not modify them. Testing is a separate process where the

model's performance is evaluated on the data of the testing subset, with no further learning or weight

updates. In step five, after obtaining the detection results, evaluation metrics (such as Precision, Recall,

F1-Score, Mean Average Precision (mAP), etc.) are calculated to analyze the performance of the model on

the testing subset (see below).

Step six involves checking if the termination conditions have been met. These conditions could be related

to processing a certain number of images or completing all images in the test set. If the conditions are

met, the testing process is completed. Otherwise, the next image is processed, and the steps are repeated

(Tepteris et al., 2023).

Successful testing process

Successful testing means that the model has reached the expected thresholds for evaluation metrics, such

as precision, recall, F1 score, average precision (AP) or mean average precision (mAP). For example, if the

goal was to achieve 70% precision and recall on a specific dataset, the test is successful if these targets are

met. It also shows us that the model performs with consistency across the different testing subsets; i.e.

data subsets that might have different lighting conditions, object sizes and orientations than the training

dataset. Testing can also indicate a low number of false positives (detecting an object that isn’t there) and

false negatives (missing an object that is present), which means the model reliably detects objects without

significant errors.

Unsuccessful testing process

A non-successful test occurs when the model fails to meet the performance goals. This means that model's

performance metrics fall below the acceptable thresholds. For instance, if the target precision is 70% and

the model only achieves 50%, this would be considered unsuccessful. Also, when testing fails the model

generates too many false positives or false negatives, concluding to an unreliable object detection process.

If the model performs well on the training dataset but its performance is low on the testing dataset, it

indicates overfitting. This means that the model is memorizing training data rather than learning general

patterns. Finally, if the model performs poorly on both training and testing datasets, it means that it was

not trained well, indicating underfitting. If a test is unsuccessful, the next steps typically involve making

adjustments and analyzing the errors. For example, if the dataset faces specific difficulties, such as small

objects or crowded scenes, we analyze what changes can be made to the algorithm to help the model

improve detection under these conditions. If the weaknesses are identified, e.g. for the detection of small

objects, we could proceed with modifying the model's architecture to help improve its performance. After

making appropriate changes, the model should be trained, validated, and tested again to check if the

issues are solved. This cycle continues until the desired performance is achieved (Zhang and Wallace,

2015).

University of the Aegean Department of Financial and Management Engineering

[43]

Evaluation metrics

As discussed above, evaluation metrics are utilized to evaluate the performance of a model and they are

calculated during the algorithm’s validation and testing process (Fig. 3.14 and Fig. 3.15). Key evaluation

metrics include recall, precision, F1-score, Average Precision (AP), and mean Average Precision (mAP).

These metrics are derived from the model's classification and detection outcomes, which are identified as

False Positives (FP), False Negatives (FN), True Positives (TP) and True Negatives (TN)

True positives (TP), False positives (FP), False Negatives (FN), True Negatives (TN)

True positives (TP) can occur, when the both conditions below are met :

1) 𝐼𝑜𝑈 ≥ 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, indicating that the predicted bounding box overlaps or matches the ground

truth bounding box.

2) The class of the object within the ground truth bounding box is predicted correctly.

False positives (FP) can occur in four distinct cases when:

1) 𝐼𝑜𝑈 < 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, indicating that the predicted bounding box locates the object incorrectly

2) 𝐼𝑜𝑈 ≥ 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, but the object is assigned to the wrong class

3) A predicted bounding box has appeared without a corresponding ground truth bounding box with

the respective class.

4) The model generates multiple bounding boxes with with 𝐼𝑜𝑈 ≥ 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. In this case, only

the bounding box with the highest IoU will be considered a true positive. The remaining bounding

boxes are classified as false positive.

False negatives (FN) can occur in three distinct cases:

1) 𝐼𝑜𝑈 ≤ 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. FP and FN outcomes occur when the object is mislocated due to insufficient

overlap between the predicted and ground truth boxes, leading to an unsuccessful detection. In

FP case, the predicted bounding box locates the object incorrectly, thus in FN case the ground

truth box fails to detect the object

2) 𝐼𝑜𝑈 ≥ 𝐼𝑜𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, but the model is not able to predict the class of the object correctly within

the ground truth bounding box. This can result in both FP and FN outcomes. Nevertheless, the FP

occurs because the predicted bounding box misclassifies the object, while the FN represents the

model's failure to correctly identify the object in the ground truth bounding box

3) The model fails to detect an object although it is present in an image, because although a ground

truth box exists, the model does not predict a bounding box for the corresponding object.

Finally, True Negatives (TN) are the scenarios when the model successfully identifies the non-existence of

an object in the image (Xiong et al., 2024).

Precision

University of the Aegean Department of Financial and Management Engineering

[44]

The precision metric is used to assess the accuracy of a model in identifying objects. It is calculated by

(Vakili et al., 2020):

Precision =
TP

TP + FP
 (3.4)

An increased precision can be observed, either when the model generates a larger number of accurate

positive classifications, thereby maximizing the number of true positives, or when the model minimizes

the occurrence of incorrect positive classifications, thereby reducing the number of false positives (Gad,

2020)

Recall

The recall metric measures the ability of a model to accurately locate objects within an image. It is

calculated by dividing the number of correctly identified objects (true positives) by the total number of

objects (true positives and false negatives) (Vakili et al., 2020).

Therefore, recall can be calculated using the formula:

Recall =
TP

TP + FN

(3.5)

A high recall value suggests that the model is able to find most of the objects in the image, reducing the

risk of missing any. On the other hand, a lower recall value indicates that the model is missing a significant

number of objects, which can result in inaccurate object detection and lower performance (iguazio, 2022).

F1-score

Precision and recall evaluate different aspects of a model's performance. The F1-score is proportional to

the harmonic mean of precision and recall. It is calculated by the formula:

F1 − score = 2 ∗
Precision ∗ Recall

Precision + Recall
 (3.6)

The value of F1-score ranges from 0 to 1 (0%-100%) and represents the balance between precision and

recall, reflecting the model’s overall performance (Vakili et al., 2020).

Average Precision (AP)

Average Precision (AP) is a metric that calculates the mean precision across the range of recall values

generated by the model when applied to multiple images. In other words, AP measures the overall

precision performance of the model across different levels of recall. It provides a single value that

summarizes the model's ability to accurately identify true positives while minimizing the number of false

positives across the range of recall values observed in the dataset.

University of the Aegean Department of Financial and Management Engineering

[45]

Average Precision (AP) is calculated as the mean precision value across the entire range of recall values

generated by the model. (Anwar, 2022).

Mathematically, it is evaluated by the formula:

𝐴𝑃𝑖 = ∫ 𝑝(𝑟)𝑑𝑟
1

𝑟=0

(3.7)

where,

 𝐴𝑃𝑖: represents the Average Precision calculated for each class 𝑖

 𝑝(𝑟): represents the precision-recall curve across multiple images

 𝑟: represents the recall values ranging from 0 to 1.

Mean Average Precision (mAP)

The mean Average Precision (mAP) metric is a measure that summarizes the Average Precision (AP) of

each individual class and calculates the average across all classes. Mathematically, mAP is represented as

(Henderson and Ferrari, 2017):

𝑚𝐴𝑃 =
1

𝑁
∑𝐴𝑃𝑖

𝑁

𝑖=1

 (3.8)

where,

 𝐴𝑃𝑖: represents the Average Precision calculated for each class

 𝑁: represents the total number of classes

3.4: Operation of YOLOv3

Post successful training, validation and testing, the model may be used for object detection, using the

weights computed during the training phase. During operation, a raw input image (non-annotated) is fed

to the trained model for object detection.

The model outputs:

 The spatial information of a bounding box that encapsulated each detected object in the image

represented as (𝑏𝑥, 𝑏𝑦, 𝑏ℎ, 𝑏𝑤), where 𝑏𝑥, and 𝑏𝑦 are the center coordinates of the bounding

box, and 𝑏ℎ and 𝑏𝑤 are its height and width, respectively.

 The objectness score, which represents the model’s confidence that a bounding box contains an

object. This score ranges from 0 to 1, where a higher value indicates a greater possibility that the

bounding box contains an actual object

 The class confidence probabilities 𝑝(𝑐) for each object in the image, where 𝑐 = 1,2,3,… 𝑐 and

represents the object classes. These probabilities indicate how likely it is that the detected object

belongs to each class (Tepteris et al., 2023).

University of the Aegean Department of Financial and Management Engineering

[46]

Figure 3.16 Operation process of YOLOv3 (Tepteris et al., 2023)

Figure 3.16 overviews model operation. In step one, the trained weights are loaded into the YOLOv3

network. These weights are the result of training the network and are responsible for detecting objects in

real-time. In step two a raw input image, which can be a live video stream or a single image, is fed into

the YOLOv3 network. Following, in step three, the input image is processed by the backbone of the YOLOv3

network to extract relevant features, which are essential for identifying objects in the image. In step four,

during multiscale detection, the model identifies objects of different sizes by predicting bounding boxes

at three different scales within the feature pyramid. Following in step five, the model refines these

predictions, placing bounding boxes around the detected objects. Finally, in step six, the operation process

is completed, providing the final outputs (bounding boxes, objectness score and class probabilities).

Figure 3.17 illustrates the output after the YOLOv3 algorithm has run. The output image showcases the

detected objects with their corresponding bounding boxes, allowing for visual identification and

localization of the objects within the image.

Figure 3.17 Image after the applying of YOLOv3 object detection algorithm (Cruz Martinez, 2021)

University of the Aegean Department of Financial and Management Engineering

[47]

Chapter 4 Data preparation and parameter selection for training the

YOLOv3 algorithm

In this chapter, we will focus on the process followed for preparing the dataset and selecting the right

hyperparameters for training the YOLOv3 algorithm.

First, we focus on the training data. We describe how we collected the images from existing UAV datasets,

which parameters we considered for the dataset selection and which datasets are finally chosen. The steps

required to adjust the annotations to suit the characteristics of our UAV datasets, including adjustments

such as aligning label names and numbering to ensure consistency across datasets, are presented.

Subsequently, we describe the experimental setup, covering both the hardware and software used.

Secondly, we present the pre-determined hyperparameters of YOLOv3, as well as the hyperparameters

that are associated with YOLOv3’s architecture and functionality. After analyzing these hyperparameters,

we describe the ones selected for our research and what modifications we made to the initial algorithm

to include the new values of these hyperparameters.

4.1 Data collection and annotation

In this Section, we describe the process followed to identify the appropriate data for our research. We

discuss the characteristics of each chosen dataset and analyze the modifications made to the final

consolidated dataset to meet the requirements of our study. Additionally, we describe the training,

validation, and testing subsets, as well as the presence of objects within each predefined class for our

research.

4.1.1 Data collection

The success of training object detection and recognition models relies on the quantity and quality of data

utilized in the process. Utilizing extensive and diverse datasets is essential to reduce errors, overfitting,

and limit bias. Various resources, including cloud repositories, web platforms, resources from universities

and research institutions provide annotated image collections for computer vision tasks. While some

datasets are freely available, others may require payment or subscription for access.

For this thesis, the predetermined classes for training the object detection model are four. More

specifically, the classes are:

 Person

 Car

 Long vehicle that refers to vehicles such as buses, trucks

 Bike

In this thesis, the selection of datasets that already contain the predetermined classes was a prerequisite

as the image annotation is a time-consuming process that needs specific tools. The image datasets were

sourced from open-source datasets containing images captured by drones. In the selection of the datasets,

two parameters were kept in mind, the quantity and the quality of captured images. It is essential to have

University of the Aegean Department of Financial and Management Engineering

[48]

a large dataset, capturing images from various perspectives. The qualitative characteristics are also

important. The dataset should consist of multicolored images, with numerous objects. with variations in

lighting conditions. Furthermore, images should be free from distortions such blurs, ensuring clear object

detection.

There are many publicly available open labelled datasets, including ImageNet (Yang et al., 2022), Common

Objects in Context (COCO) (Lin et al., 2014) etc. Each one of them is a set of digital pictures that developers

use to train and validate the performance of their algorithms.

Considering the above requirements and characteristics, the datasets selected for YOLOv3 algorithm

training, in our research, are analyzed in detail below:

 The “UA Vehicle Detection Dataset” is downloaded from GitHub and is a dataset specifically

selected for UAV (Unmanned Aerial Vehicle) vehicle detection tasks. It contains a collection of

images captured by UAVs, focusing on scenes where vehicles are present. The dataset is annotated

to include bounding boxes around vehicles, enabling the training and evaluation of vehicle

detection algorithms. Additionally, it includes various environmental conditions, lighting

scenarios, and vehicle types to ensure robustness of the trained models. Specifically, it includes

1,470 images that contain vehicles such as cars, long vehicles, and bikes, but any of the dataset

images contain the object person (which is one of the classes of our study). The size of each image

in this dataset is 224×224 pixels (Wang, 2024).

 The "Stanford Drone Dataset" is an extensive collection of aerial videos captured by a UAV

platform. Hosted on the Stanford Computer Vision and Geometry Lab (CVGL) website, this dataset

offers a diverse range of scenes and scenarios, including urban environments, campus settings,

and outdoor landscapes. Furthermore, the dataset provides high-resolution images captured from

different viewpoints, enabling the exploration of scale and perspective variations. The Stanford

drone dataset contains images categorized into six different classes: pedestrians, bikers, skaters,

carts, cars, and buses. It includes 6.748 annotated images, displaying diverse image resolutions

ranging from 1322x1079 to 1640x1948 pixels. Within these UAV-captured images, all four classes,

people, cars, long vehicles, and bikes, are represented. The numerous other labeled objects are

excluded intentionally for the purposes of our study (Robicquet et al., 2016).

 "VisDrone2019DET" dataset contains a variety of high-resolution images captured by unmanned

aerial vehicles (UAVs). It consists of images from various urban and natural environments,

including the objects of interest that serve our study. Due to the great number of images that

contain, across different classes and environmental conditions, this dataset provides a solid basis

for training, validation, and testing purposes. It contains a total of 10,209 annotated images, which

are obtained from urban and countryside landscapes, showcasing diverse resolutions ranging from

480x360 to 2,000x1,500 pixels. Additionally, the images within the training and validation sets

contain ten distinct classes: pedestrian, person, bicycle, car, van, truck, tricycle, bus, and

motorcycle. For the purpose of this thesis only the four predetermined classes are used and,

therefore, the rest of them are excluded. More specifically, the class person which integrates both

pedestrian and people, the class bike which contains the bicycle and tricycle categories, the class

University of the Aegean Department of Financial and Management Engineering

[49]

long-vehicle which contains the categories van, truck and bus and the class car which remains the

same (Zhu et al., 2021).

4.1.2 Annotation and consolidation

Before combining the three datasets, we standardized their annotations to be compatible with the YOLO

model. This involves aligning label names and numbering to establish similarity across datasets.

Specifically, the objective is to categorize annotations into four distinct classes: "person", "car", "long

vehicle", and "bike", corresponding to classes zero to three in YOLO format. More information on image

annotation in deep learning may be found in (Khan, 2023).

Table 4.1 The number of training, validation and testing objects in the consolidated dataset

Once datasets are standardized, the datasets are merged to a single set that is split into training, validation

and testing subsets. The training one comprises 80% of the initial dataset, the validation one 10%, used to

evaluate model performance during training, and the testing one also 10%. Each set includes annotations

for the specified classes.

The numbers of objects and images in each dataset and their distribution into training, validation and

testing are presented in Table 4.1 and illustrated in Figure 4.1, respectively.

Number of Objects

 UA Vehicle
Detection
Dataset

Stanford
Dataset

VisDrone2019DET TOTAL NUMBER OF

OBJECTS IN EACH

CLASS

Number
of total
objects

26,218 203,722 372,300

Number
of persons

0 92,880 120,365 ,

Number
of Cars

20,647 26,332 158,914 ,

Number
of Long
Vehicles

5,330 910 46,721 ,

Number
of Bikes

241 83,600 46,300 ,

Total number of objects in all the selected datasets
,

University of the Aegean Department of Financial and Management Engineering

[50]

Figure 4.1 The number of training, validation and testing images included in the consolidated dataset.

4.2 Experimental set up

Training and evaluating the YOLOv3 model require significant computational resources and a high-

performance system. The hardware configuration (Figure 4.2) and software environment (Figure 4.3) are

discussed below.

Figure 4.2 Hardware Configuration of the system

University of the Aegean Department of Financial and Management Engineering

[51]

The CPU that is used for our study has 12 cores. The GPU is RTX 3090 and is able to handle deep learning

and object detection tasks. In terms of Graphics Card Memory (GCM), we used 24GB that may handle

images and complex textures (Mu et al., 2011). The RAM of the computing system is 32GB, and the system

is equipped with 512 GB SSD and 4TB HDD.

Figure 4.3 Software components of the system

The OpenCV toolkit is an open-source computer vision library known for its extensive range of features,

appropriate for image and video processing. This toolkit plays a crucial role in object detection applications

and is also integrated into the YOLOv3 model (Culjak et al., 2012).

The CUDA (Compute Unified Device Architecture) and cuDNN drivers were installed in order to optimize

the utilization of the RTX 3090 graphics card. CUDA is a platform with computing capabilities and API

developed by NVIDIA. This platform allows developers to utilize GPUs for general-purpose computing

tasks, accelerating computation-heavy processes, such as deep learning, leading to faster execution and

performance (Kirk, 2007) . CuDNN (CUDA Deep Neural Network) is a GPU library developed by NVIDIA as

well that offers highly optimized implementations of deep learning operations, such as convolutions,

pooling, normalization, and activation functions. It is designed to work along with CUDA, enabling faster

training by leveraging the processing power of NVIDIA GPUs (Chetlur et al., 2014).

4.3 YOLOv3 hyperparameters

Hyperparameters play a critical role in training any neural network model, since they can significantly

affect the performance and accuracy of the model. YOLOv3 provides its users the capability of adjusting

various model parameters to improve training and, ultimately, model performance. Generally, the choice

of hyperparameters should be based on the available computational resources, the requirements of the

specific study/task, and the performance of the model on the validation data.

University of the Aegean Department of Financial and Management Engineering

[52]

4.3.1 Hyperparameters determined by the characteristics of the dataset

In YOLOv3, pre-trained convolutional weights are used from the model initially trained on the ImageNet

dataset. This method, known as transfer learning, accelerates the training process by leveraging general

features like edges and textures learned during ImageNet training. During fine-tuning on a new dataset,

the Darknet backbone's pre-trained weights are adjusted, while the YOLO detection layers are fine-tuned

to adapt to the specific task. The detection layers are not trained from scratch, but they are updated based

on the pre-trained weights.

During fine-tuning on a new dataset, the Darknet backbone's pre-trained weights are typically adjusted or

optionally frozen, while the YOLO detection layers are fine-tuned to adapt to the specific task. The

detection layers are not trained from scratch but are updated based on the pre-trained weights.

To adjust the model to the new data, certain configuration options are set in the YOLOv3 ".cfg" file. The

".cfg” file is used to define the the architecture and hyperparameters of the neural network. The

adjustments in the “cfg” file for our study, are shown in the following table and analyzed below (Redmon

and Farhadi, 2018).

T
a
b
l
e

 Hyperparameters.

Hyperparameter Default Value Updated Value

Backbone Network Darknet-53 Resnet-152 Darknet-53 Resnet-152

Classes 80 1 4 4

Max Batches 500,200 10,000 8,000 8,000

Filters 255 24 27 36

Steps 400000, 450000 4000, 6000, 8000,
9000

6400, 7200

3200, 4800,
6400,7200

In this research, specific changes were made to four of the hyperparameters:

 The maximum number of classes

 The maximum number of batches

 The filters that are before the convolutional level of each detection head

 The number of steps

Classes

The number of classes has been reduced from 80 to 4 for the YOLOv3 with Darknet-53 backbone network

(Table 4.2) and increased from 1 to 4 for the YOLOv3 with Resnet-152 backbone network (Table 4.2 – see

also class adjustment in Figure 4.4. The class numbering is as follows:

University of the Aegean Department of Financial and Management Engineering

[53]

 Person indicated as class 0

 Car indicated as class 1

 Long vehicle indicated as class 3

 Bike indicated as class 4

Figure 4.4 Illustration of "classes" adjustment in the configuration file

Max Batches

The number of batches has been changed from 500,200 to 8,000 for the Darknet-53 network and from

10,000 to 8,000 for the Resnet-152 backbone network (Figure 4.5) The total number of iterations

represents the number of times the model processes a batch of data during training. The maximum

number of batches refers to the number of batches per epoch. The number of maximum batches is

provided by (Sujee et al., 2020):

𝑀𝑎𝑥_𝑏𝑎𝑡𝑐ℎ𝑒𝑠 = 2000 × 𝑛 (4.1)

where,

 n is the number of classes

 2000 is a proposed value from YOLOv3 (Alexey, 2024)

Given that in this case we have four classes, the number of max batches was set to 8,000 in the

configuration file. Note that in the original YOLOv3 model 500,200 max batches is used, although the

COCO dataset, which was originally used for training, includes 80 classes. Based on Equation 4.1, max

batches should be 160,000 (2000 × 80) instead of 500,200. This happens because our UAV dataset has

fewer classes and images in the training set rather than COCO dataset which has approximately 118,000

training images. If we had followed the COCO dataset approach, an increase in the number of iterations

would have possibly led to overfitting due to the corresponding increase in the number of epochs (Ghosh

et al., 2021). This approach would have slowed down the training process of our study.

 Therefore, to achieve a better performance we followed Equation 4.1, which might not be the ideal for

large datasets like COCO. The same approach was followed for Resnet-152.

An epoch represents one complete pass through the entire training dataset by the model. After each

epoch, the model updates its weights based on the errors it made during that pass. Since a single pass

University of the Aegean Department of Financial and Management Engineering

[54]

through the data is usually not enough for the model to learn effectively, multiple epochs are typically

required to achieve optimal performance.

For estimating the number of epochs, we need to firstly calculate the number of iterations per epoch from

the formula below:

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑒𝑝𝑜𝑐ℎ =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡

𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒

=
13,041

64
= 203,77

(4.2)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑝𝑜𝑐ℎ𝑠 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓max 𝑏𝑎𝑡𝑐ℎ𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑒𝑝𝑜𝑐ℎ
=

8,000

203,77
= 39,3 ≈ 40

(4.3)

where,

batch size refers to the number of training examples processed by the model in one iteration before

updating its internal parameters (weights).

Figure 4.5 Illustration of "max_batches" in the configuration file

Filters

The filters are placed in front of the convolutional layer, in each detection head, and are used for feature

extraction/detection to produce the characteristics of the anchor boxes. They are numeric matrices the

University of the Aegean Department of Financial and Management Engineering

[55]

dimensions of which are set during initialization and cannot be modified afterwards. Every filter consists

of weights/numeric values that are adapted during training.

In Darknet-53, we reduced this number from 255 to 27 (Figure 4.6). At the same time the number of filters

in Resnet-152 was increased from 24 to 36 (Table 4.2) The number of filters is computed by the equation

below (Tepteris et al., 2023):

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = (𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠 + 5) × 𝑛𝑎𝑛𝑐ℎ𝑜𝑟 𝑏𝑜𝑥𝑒𝑠 (4.4)

where,

 𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠 is the number of classes

 𝑛𝑎𝑛𝑐ℎ𝑜𝑟 𝑏𝑜𝑥𝑒𝑠 represents the number of anchor boxes in YOLOv3

 5 represents the 4 characteristics of the bounding box plus an objectness score

Darknet-53 utilizes 3 anchor boxes in each head, therefore the number of filters was set to 27 (Figure 4.6).

In the configuration files that Resnet-152 was selected as a backbone network, the number of filters takes

the value of 36 because it utilizes 4 anchor boxes in each head.

Figure 4.6 Illustration of “filters” in the configuration file

Steps

The number of steps specifies for how many steps the learning rate will remain constant. This parameter

is suggested to be 80% and 90% of the maximum value of the batch. In our case the maximum number of

batches is 8000. Therefore, this means that the steps will take the values of (Sujee et al., 2020) = see Figure

4.7.

0.8 × max𝑏𝑎𝑡𝑐ℎ𝑒𝑠 = 0.8 × 8000 = 6400

(4.5)

0.9 × max𝑏𝑎𝑡𝑐ℎ𝑒𝑠 = 0.9 × 8000 = 7200 (4.6)

University of the Aegean Department of Financial and Management Engineering

[56]

Figure 4.7 Illustration of “steps” in the configuration file

The same process is also followed in order to calculate the accurate number of steps for the Resnet-152

backbone. In summary, these parameter adjustments were made to improve the performance and

efficiency of the YOLOv3 model for the specific object detection task.

4.3.2 Hyperparameters associated with the YOLOv3 architecture and functionality

Hyperparameters are known for their significant role in shaping the model's performance. In this Section,

we overview of YOLOv3 hyperparameters related to both the backbone network and the YOLO heads.

Table 4.3 and Table 4.4 illustrate the hyperparameters of the backbone network. They briefly describe

their functionality and explain the impact on the YOLOv3 algorithm when their values are altered.

Table 4.3 Hyperparameters in the backbone network related to architecture

Hyperparameter Functionality Impact

Backbone Depth Number of layers in the
backbone network for
feature extraction (Redmon
and Farhadi, 2018).

Increasing depth improves feature
extraction but raises computational cost
and risk of overfitting. Decreasing depth
reduces feature complexity and detection
capability

Convolution Kernel
Size

Size of the filter applied to
the input data (Öztürk et
al., 2018).

Changing size affects receptive field and
feature extraction but may not yield
significant improvements and could
increase computational demands

Convolutional Stride Defines how much the filter
moves across the input
image (Riad et al., 2022).

Default strides balance resolution and
efficiency. Changing strides affects feature
map resolution which can impact both the
model's accuracy and processing speed.
Larger strides reduce the resolution but
increase efficiency, while smaller strides are

University of the Aegean Department of Financial and Management Engineering

[57]

Table 4.4 Hyperparameters in the backbone network related to training

Table 4.5 and Table 4.6 overview the hyperparameters of the YOLO heads. They briefly describe their

functionality and explains the impact on the YOLOv3 algorithm when their values are altered.

Table 4.5 Hyperparameters in the YOLO heads related to architecture

able to capture more details but require
more computational resources.

Dilated Convolution Introduces gaps in kernels
to cover larger receptive
fields (Zhang et al., 2017).

YOLOv3 uses standard convolutions. Adding
dilated convolutions might capture more
context and improve performance

Hyperparameter Functionality Impact of Changing Values

Input Size Dimensions of the input
images fed into the
network (Kamal, 2021).

Affects detection accuracy and
computational cost. Larger sizes improve
detail but increase processing time; smaller
sizes reduce detail but speed up processing

Input Normalization Scaling of pixel values to a
specific range (e.g., [0,1])
(Aksu et al., 2019).

Ensures consistency and stability during
training. Improper normalization can affect
model’s performance

Data Augmentation Techniques to artificially
increase training data (e.g.,
flips, rotations) (van Dyk
and Meng, 2001).

Enhances model robustness and
generalization

Image Distortion Altering image properties
(e.g., blurring) (Buczkowski
and Stasiński, 2019).

Can improve model robustness by
simulating real-world variations. Excessive
distortion can affect the quality of training
data

Hyperparameter Functionality Impact

Number of Layers Number of layers in the YOLO
detection heads responsible
for predicting bounding boxes
and class probabilities
(Redmon and Farhadi, 2018).

Increasing the number of
layers can improve feature
representation but may add
complexity and risk of
overfitting. YOLOv3 uses a fixed
number of layers for a
balanced approach

Dropout Regularization technique
where a subset of layers is
randomly dropped (or
disabled) during training to
prevent overfitting (Alexey,
2024).

Adding dropout can help
prevent overfitting but may
reduce model capacity if set
too high.

University of the Aegean Department of Financial and Management Engineering

[58]

Table 4.6 Hyperparameters in the YOLO heads related to architecture related to training

Spatial Pyramid Pooling (SPP) Technique used to handle
varying object scales and
improve feature extraction by
pooling over different spatial
resolutions (He et al., 2015).

Can enhance the model’s
ability to detect objects at
multiple scales, but YOLOv3
does not use SPP in its default
architecture.

Path Aggregation Network
(PAN)

Enhances feature
representation by combining
features from different layers
(Liu et al., 2018).

Improves feature combination
and detection performance,
but YOLOv3 does not include
PAN by default.

Multi-scale Output Predicts bounding boxes at
multiple scales to detect
objects of various sizes (Cai et
al., 2016)

Helps in detecting objects at
different scales but increases
computational complexity.
YOLOv3 uses multi-scale
outputs by default for better
detection

Hyperparameter Functionality Impact of Changing Values

Batch Size Number of images processed
in one training iteration
(Redmon et al., 2016).

Larger batch sizes improve
training stability and use GPU
resources more effectively but
require more memory. Smaller
batch sizes may reduce
memory usage but could
increase training time.

Learning Rate Learning rate controls the step
size during optimization (Igiri et
al., 2021).

Higher learning rates can speed
up training but may lead to
instability. Lower rates can
offer more stability but may
lead to local minimums

Subdivision The process of dividing a
batch of training data into
smaller subsets to manage
memory during training. The
model's weights are updated
after all subsets of the batch
have been processed (Liu et al.,
2020).

Subdividing the batch allows
training on larger effective
batch sizes with less GPU
memory. Higher subdivisions
reduce memory usage but may
slow down training.

Anchor Boxes Predefined bounding box sizes
used to predict object locations
(Kamal, 2021)

Properly tuned anchor boxes
improve detection
performance. Not well defined
anchors can reduce detection
accuracy

IoU Threshold Intersection over Union
threshold for considering a

Higher thresholds increase
precision but might miss some

University of the Aegean Department of Financial and Management Engineering

[59]

predicted box as a positive
detection (Kamal, 2021)

detections. Lower thresholds
increase recall but may include
false positives

Confidence Threshold Minimum confidence score
required for a prediction to be
considered (Wenkel et al.,
2021)

Higher thresholds reduce false
positives but might miss some
true positives. Lower
thresholds may increase false
positives

NMS Threshold Threshold for Non-Maximum
Suppression to filter out
overlapping bounding boxes
(Bodla et al., 2017).

A higher NMS threshold results
in fewer boxes being
suppressed, which might
increase overlap. A lower
threshold suppresses more
boxes, reducing overlap

Activation Function Function applied to the output
of neurons (e.g., ReLU, Leaky
ReLU) (Sharma et al., 2020).

Different activation functions
can impact the training
dynamics and final
performance

Loss Function Function used to measure the
difference between predicted
and ground truth values
(Kamal, 2021)

YOLOv3 uses a combination of
localization, confidence, and
classification losses. Adjusting
this can affect how well the
model learns

Freeze Layers Layers that are not updated
during training (frozen layers)
(Brock et al., 2017).

Freezing layers can help in
transfer learning or stabilize
training. Unfreezing layers
allows the model to adapt
more fully to new data

Focal Loss Loss function that reduces the
relative loss for well-classified
examples and puts more focus
on hard, misclassified examples
(Mukhoti et al., 2020).

Improves detection of small or
difficult objects by addressing
class imbalance.

Input Color Space Color space of the input
images (e.g., RGB, BGR) (Díaz-
Cel et al., 2019).

Consistent color space helps in
accurate feature extraction

Transfer Learning Using pre-trained weights to
initialize the model (Ribani and
Marengoni, 2019).

Can speed up feature merging
and improve performance.
Without transfer learning,
training from scratch may be
required

Batch Normalization Normalization technique to
stabilize and accelerate training
(Ioffe and Szegedy, 2015b).

Helps in faster feature
inheritance and improves
model stability. YOLOv3
includes batch normalization in
its default architecture

University of the Aegean Department of Financial and Management Engineering

[60]

4.3.3 Hyperparameters selection for our research

After investigation on the YOLOv3 hyperparameters, we ended up on selecting the six hyperparameters

presented in Table 4.7: image resolution, anchor dimensions, backbone network, data augmentation,

dilated convolution, and box loss. The Table also indicates the hyperparameter levels to be used on the

experiments.

Table 4.7 Default and updated values of hyperparameters selected for our research

Hyperparameter Name Default Value Updated Value 1 Updated Value 2

Image Resolution 416 x 416 352 x 352 832 x 832

Anchor Dimensions Default New

Backbone Network Darknet-53 ResNet-152

Data Augmentation Default Mosaic

Dilated Convolution Yes No

Box Loss IoU DioU

More specifically:

Image Resolution

Image resolution refers to the dimensions (width x height) of the input images provided to the YOLOv3

algorithm during training. It affects the level of detail available for object detection and influences

computational requirements. YOLOv3 is trained with an image resolution of 416x416. As shown in Table

4.7 we reduced the image resolution to 352x352 pixels in order to decrease the training time needed. We

also used the default image input size as well as an increased level to 832x832 pixels (see also Fig. 4.8).

This higher resolution helps the model to collect more information as the input progresses through the

network, but it also increases training time.

Group Normalization Normalization technique
applied across groups of
channels (Wu and He, 2018)

Alternative to batch
normalization, useful for small
batch sizes. YOLOv3 uses batch
normalization instead of group
normalization

University of the Aegean Department of Financial and Management Engineering

[61]

Image Resolution 352x352 Image Resolution 416x416 Image Resolution 832x832

Figure 4.8 Illustration of the three different image resolution options in the configuration file

Backbone Network

Backbone Network, as mentioned in chapter 3, serves as the feature extraction component of the

algorithm, responsible for processing input images and extracting hierarchical features that facilitate

object detection. The backbone network architecture used in YOLOv3 is Darknet-53, which is also used in

experiments. We also experimented with ResNet-152. Resnet-152 consists of 152 layers instead of the 53

layers of Darknet-53.

Anchor Dimensions

Anchor dimensions define the default bounding boxes that are used to predict object locations and sizes.

Once the anchor dimensions are determined, they are used during training to predict bounding boxes for

detected objects. YOLOv3 predicts bounding box coordinates relative to these anchor boxes, along with

confidence scores for object presence and class probabilities, as it mentioned in Chapter 3. The default

anchor dimensions that are used in the yolov3.cfg file with Darknet-53 as a backbone layer are:

[10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326] as illustrated in Figure 4.9.

Figure 4.9 Illustration of the default anchor dimensions for the YOLO head responsible for detecting small objects

Each detection head uses a different set of boxes to predict objects, selected by the "masks" parameter in

each head. The "masks" parameter is an index containing three values that specify the anchor boxes used

in each grid cell. The green box in Figure 4.9 illustrates a small detection head configured with the "masks"

index [0, 1, 2]. Specifically, index 0 corresponds to anchor box dimensions of 10x13, index 1 to 16x30, and

index 2 to 33x23. The medium detection head is configured with the “mask” index [4, 5, 6] (Figure 4.10)

corresponding to anchor box dimensions 30x61, 62x45, 59x119 respectively. Finally, a large detection head

University of the Aegean Department of Financial and Management Engineering

[62]

is configured with the “mask” index [6, 7, 8] (Figure 4.11) corresponding to anchor dimensions 116x90,

156x198, 373x326 respectively.

Figure 4.10 Illustration of the default anchor dimensions for the YOLO head responsible for detecting medium objects

Figure 4.11 Illustration of the default anchor dimensions for the YOLO head responsible for detecting large objects

Even though anchor boxes are fine-tuned during training to fit objects better, it is important to start with

good initial anchor boxes. This helps them get refined more effectively and quickly during training. In

YOLOv3, the original anchor boxes were created using the k-means algorithm on the COCO dataset. This

algorithm groups objects by their size and shape, and finds the best anchor box sizes (Oti et al., 2021). We

used the same algorithm for our UAV dataset and applied by using the command in Table 4.8. The function

calc_anchors (Table 4.8) analyzes the dataset's bounding boxes and clusters them to generate optimized

anchor boxes by specifying the four parameters below:

calc_anchors cfg/"NAME_OF_THE_DATA_FILE".data, which specifies the configuration file that contains

information about the dataset (e.g., the path to the images and labels).

num_of_clusters "NUMBER_OF_CLUSTERS", which defines the number of clusters (anchor boxes) to

calculate. These clusters are determined using a k-means clustering to optimize the anchor boxes for the

dataset.

-width "NUMBER_OF_IMAGE_WIDTH" and -height "NUMBER_OF_IMAGE_HEIGHT" specify the width and

height of the images for which the anchor boxes will be optimized. This helps improve the detection

accuracy of the YOLO model by better matching the size and shape of the objects in the dataset.

Table 4.8 Representation of the use of the k-means algorithm

University of the Aegean Department of Financial and Management Engineering

[63]

Command ./darknet detector calc_anchors cfg/"NAME_OF_THE_DATA_FILE".data -num_of_clusters
"NUMBER_OF_CLUSTERS" -width "NUMBER_OF_IMAGE_WIDTH" -height "NUMBER_OF_IMAGE_HEIGHT"

Example ./darknet detector calc_anchors cfg/UAV_65.data -num_of_clusters 9 -width 832 -height 832

We applied k-means clustering to calculate nine new optimal anchor box sizes (three aspect ratios for each

head) based on our UAV dataset. This algorithm was used to find the best-fitting anchor box sizes for

objects in our images at specific resolutions. As shown in Tables 4.9 and 4.10, we adjusted the “anchors”

hyper-parameter across all the detection heads in our study to match the image resolution derived.

Different anchor box sizes were applied for images with resolutions of 352x352, 416x416 and 832x832

pixels, respectively on both backbone networks, Darknet-53 (Table 4.9) and Resnet-152 (Table 4.10).

Therefore, we conducted the k-means clustering algorithm three times to identify the 9 optimal anchor

boxes in the Darknet-53 backbone case and the 12 optimal anchor boxes in the ResNet-152 backbone case

(Wu et al., 2019). Note that Resnet-152 has 12 anchor boxes in total, as it is a deeper network utilizing

more layers (Alexey, 2024)

Figure 4.12 Illustration of the updated anchor dimensions in the configuration file

The updated values for anchor boxes in Darknet-53 backbone network, based on the three different image

resolutions, are illustrated in the table below. In Table 4.9, the first three pairs ([10,13, 16,30, 33,23, …])

correspond to the three anchor boxes of the YOLO head that detects small objects. The next three pairs

([…, 30,61, 62,45, 59,119, …]) are referring to the three anchor boxes of the YOLO heads responsible for

detecting medium objects and the last three pairs ([…, 116,90, 156,198, 373,326, …]) for the YOLO heads

detecting large objects. The same approach is followed for the rest of the image resolutions selected for

our study.

Table 4.9 Anchor boxes for Darknet-53

Image Resolution Anchor Boxes

YOLOv3 with Daknet-53 as backbone (trained on COCO dataset)

416x416
[10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90,
156,198, 373,326]

YOLOv3 with Daknet-53 as backbone (trained on UAV datasets)

352X352 [2,5, 7,7, 5,13, 10,12, 9,21, 17,16, 17,31, 30,30, 44,61]

416X416
[7, 10, 11, 11, 8, 18, 12, 17, 18, 15, 15, 24, 25, 21, 23,
34, 40, 59]

832X832
[13, 22, 21, 25, 17, 39, 33, 24, 27, 36, 32, 52, 45, 39, 48,
69, 82,121]

University of the Aegean Department of Financial and Management Engineering

[64]

The updated values for anchor boxes in Resnet-152 backbone network, based on the three different

image resolutions, are illustrated in the table below. In Resnet-152 backbone network we have four

anchor boxes. Therefore, in Table 4.10, the first four pairs ([8,8, 10,13, 16,30, 33,23, …]) are

responsible for the four anchor boxes of the yolo head that detects small objects. The next four pairs ([…,

32,32, 30,61, 62,45, 59,119, …]) are referring to the four anchor boxes of the yolo heads responsible

for detecting medium objects and the last four pairs ([…, 80,80, 116,90, 156,198, 373,326, …]) for the

yolo heads detecting large objects. The same approach is followed for the rest of the image resolutions

selected for our study.

Table 4.10 Anchor boxes for Resnet-152

Image Resolution Anchor Boxes

YOLOv3 with ResNet-152 as backbone (trained on COCO dataset)

416x416
[8,8, 10,13, 16,30, 33,23, 32,32, 30,61, 62,45, 59,119,
80,80, 116,90, 156,198, 373,326]

YOLOv3 with ResNet-152 as backbone (trained on UAV datasets)

352X352
[2,4, 3,9, 7,7, 6,13, 10,12, 8,22, 16,12, 14,19, 25,20,
18,33, 34,39, 50,71]

416X416
[7, 10, 11, 11, 8, 18, 12, 17, 18, 15, 15, 24, 25, 21, 23,
35, 42, 59]

832X832
[13, 22, 20, 24, 17, 39, 32, 23, 26, 33, 31, 49, 44, 38, 47,
68, 80,118]

Data Augmentation

Data Augmentation artificially increases the diversity of training data by applying various transformations

to the original images. Techniques such as random cropping, flipping, and rotation are incorporated in the

data augmentation hyperparameter. YOLOv3 does not explicitly specify a standard set of data

augmentation techniques.

To differentiate our experiments and investigate how efficiently the YOLOv3 algorithm will work after the

introduction of data augmentation, we added the mosaic augmentation. Mosaic augmentation is a

method that combines multiple images to form a single mosaic image (Figure 4.13). This mosaic image is

then exposed to random transformations like flipping, scaling, and translation. This creates a synthetic

training sample that contains information from multiple original images, effectively increasing the

variability and complexity of the training data (Li et al., 2023).

University of the Aegean Department of Financial and Management Engineering

[65]

Figure 4.13 Illustration of mosaic augmentation (Alexey, 2020)

The mosaic augmentation process in YOLOv3 typically follows these steps (Bochkovskiy et al., 2020):

1. Source Image Selection: Four images are randomly chosen from the training dataset

2. Mosaic Image Creation: The selected images are organized into a mosaic layout, with each image

filling one quadrant

3. Random Transformations: Various transformations, including flipping and scaling are applied

randomly to the entire mosaic image

4. Bounding Box Adjustments: Bounding box coordinates and object labels within the mosaic image

are modified to align with their new positions and orientations

5. Training Phase: The augmented mosaic image is utilized as input during training to refine the

parameters of the YOLOv3 model.

The modification applied to the configuration (cfg) files includes the introduction of a parameter denoted

as "mosaic," set to a value of 1 (mosaic=1) (Figure 4.14). This parameter is added within the section that

specifies how the training data is augmented during each epoch of training (Shorten and Khoshgoftaar,

2019).

University of the Aegean Department of Financial and Management Engineering

[66]

Figure 4.14 Illustration of “mosaic” in the configuration file

Dilated Convolution

Dilated convolution is a technique that involves modifying the convolutional kernel by inserting zeros

between its weights. Normally, a convolutional kernel is a small grid of numbers (weights) that processes

over the image to detect features, such as patterns, edges, textures etc. In dilated convolutions, zeros are

inserted between these weights, increasing the distance between the points the kernel captures from the

image (see Figure 4.15). This increases the receptive field of each neuron, meaning each neuron can "see"

a larger area of the input image. As a result, the neuron can gather more information without increasing

the number of parameters or computational resources. YOLOv3 does not use dilated convolutions by

default. However, applying different dilation rates in various layers can help the network capture features

at multiple scales (Gashi et al., 2017).

The default setting in YOLOv3 configuration file is dilation=1, even though it’s not written in the

configuration file. A dilation rate of 1 means that the convolutional kernel operates normally without any

added zeros, functioning just like a standard convolution (Zhang et al., 2017).

University of the Aegean Department of Financial and Management Engineering

[67]

Figure 4.15 Dilated convolution filters with dilation rates D = 1, D = 2, D = 3 respectively (Heffels and Vanschoren, 2020)

For our research, we modified the convolutional layers in the YOLOv3 configuration file to include dilation,

by setting two different values 2 and 3 in two of the heads, respectively. More specifically:

 Dilation=2: The model inserts one zero between each weight in the convolutional kernel. This

doubles the receptive field, meaning the network can "see" more of the image around each point

it processes. This can be useful for detecting larger objects (Figure 4.15).

 Dilation=3: The model adds two zeros between each weight, tripling the receptive field. This

allows the network to capture even more context, which can help in detecting even larger objects

or understanding more complex scenes (Figure 4.15).

University of the Aegean Department of Financial and Management Engineering

[68]

Table 4.11 Illustration of ‘dilation’ in the configuration file

Dilation = 3 Dilation = 2 Dilation = 3

Specifically, for the first YOLO head, we set dilation=3 andfor the second YOLO head we used dilation=2.

For the last YOLO head, we kept the default dilation=1. We did this in the hope that the model detect

objects of different sizes more effectively. The first YOLO head, with dilation=3, looks at a larger area of

the image, which is useful for spotting bigger objects or understanding the overall scene. The second YOLO

head, with dilation=2, focuses on medium-sized features, balancing between the big picture and smaller

details. Finally, the third YOLO head, with dilation=1, focuses on the smallest details, helping to accurately

detect small objects. This approach allows the network to first gather broad information and then

gradually zoom in, making it better at detecting objects of all sizes.

Box Loss

In YOLOv3, the box loss is the part of the loss function that is responsible for measuring how well the

predicted bounding boxes match the ground truth bounding boxes. By minimizing box loss during training,

YOLOv3 predicts bounding boxes that accurately contain objects and assign high confidence scores to grid

cells that contain objects. In the original YOLOv3 configuration file, the default loss function is not

University of the Aegean Department of Financial and Management Engineering

[69]

described as a single function but is defined by the structure of the network. For further information on

YOLOv3 loss function see (Tepteris et al., 2023).

Intersection over Union (IoU) and Distance Intersection over Union (DIoU) are metrics used to evaluate

and improve the accuracy of these bounding box predictions, with DIoU providing additional geometric

context to enhance performance.

More specifically:

1. Intersection over Union (IoU): IoU measures the overlap between a predicted bounding box and

the ground truth bounding box. IoU-based loss functions focus on the area of overlap between

the two boxes, providing a more direct measure of how well the predicted box matches the ground

truth in terms of spatial dimensions. More specifically IoU loss is defined by the formula:

𝐼𝑜𝑈 𝐿𝑜𝑠𝑠 = 1 − 𝐼𝑜𝑈 = 1 −
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛

(4.7)

where IoU ranges from 0 to 1 (area of Intersection: The overlapping area between the predicted

and ground truth bounding boxes. Area of Union: The total area covered by both the predicted

and ground truth bounding boxes). An IoU value of 1 means a perfect overlap, while a value closer

to 0 indicates minimal overlap. By minimizing this IoU loss, we encourage the model to maximize

the overlap between the predicted and ground truth boxes. Nevertheless, IoU faces some

limitations. Although it provides a measure of overlap, it doesn't consider the distance between

the centers of the predicted and ground truth boxes, which can be an issue when boxes have

similar IoU values but different placements.

2. Distance IoU (DIoU): Extends IoU by taking into account the distance between the center points

of the predicted and ground truth bounding boxes. DIoU considers not only the overlap but also

the distance between the centers of the boxes, addressing situations where two boxes may have

similar IoU values but different placements. More specifically DIoU loss is calculated by the

formula:

𝐷𝐼𝑜𝑈 𝐿𝑜𝑠𝑠 = 1 − 𝐼𝑜𝑈 +
𝑑2 (𝑐𝑝, 𝑐𝑔)

𝑐2

(4.8)

where,

- 𝑑2 (𝑐𝑝, 𝑐𝑔) is the Euclidean distance between the center points of the predicted box 𝑐𝑝 and

the ground truth box 𝑐𝑔.

- 𝑐 is the diagonal length of the smallest enclosing box that contains both the predicted and the

ground truth boxes.

University of the Aegean Department of Financial and Management Engineering

[70]

DIoU encourages the model to predict boxes that are not only overlapping but also more accurately

located (Zheng et al., 2020).

The loss function, including box loss, is usually defined within the training script. By adjusting certain

parameters and settings in the YOLOv3 cfg files, box loss can be influenced.

Figure 4.16 Illustration of the DIoU in the configuration file

Specifically, while we are setting iou_loss = diou in the configuration file (Figure 4.16, red box), additional

parameters such as iou_thresh and iou_normalizer are specified to control aspects of the loss function and

how it is applied during training (Figure 4.16, blue box). These parameters (iou_loss=diou, iou_thresh=0.5,

iou_normalizer=0.07) would be added to all three YOLO layers. This happens because each layer requires

settings that determine how the model calculates and optimizes the bounding box predictions for different

scales.

In detail:

- The iou_loss = diou parameter specifies that the loss function for bounding box prediction

should use Distance IoU (DIoU) instead of the default loss function

- The iou_thresh=0.5 (proposed by literature: (Alexey, 2024)) parameter sets the threshold for

determining whether a predicted bounding box is considered as correct (true positive (TP)) or

not (false positive(FP)). During training, if the IoU between the predicted box and any ground

truth box is greater than or equal to 0.5, the prediction is considered as correct. Otherwise, if

the IoU is less than 0.5, the prediction is considered as incorrect. This parameter is added to

help us filter out low-quality bounding boxes during training and validation processes. Setting

the IoU threshold to 0.5 helps us in identifying objects accurately without being too tolerant

or too strict. It is a standard, widely accepted value that has been empirically tested to perform

well in most object detection scenarios.

- The iou_normalizer=0.07 (proposed by literature: (Alexey, 2024)) used to control how much

the IoU loss (related to the accuracy of the bounding boxes) affects the overall training of the

model. This parameter is added to keep a balance between different types of errors the model

needs to minimize. The 0.07 value was chosen based on experiments to balance training. It is

low enough to ensure that while IoU contributes to defining the box locations, it doesn't skip

other important tasks, like finding objects or recognizing them in an image (Alexey, 2024).

University of the Aegean Department of Financial and Management Engineering

[71]

Synopsis

Summarizing all the details analyzed in this last Section, the hyperparameter values for Darknet-53 and

Resnet-152 are illustrated in Table 4.12 and Table 4.13 respectively. The final configuration files for our

study are conducted based on the combination of these values.

Table 4.12 Hyperparameter values for Darknet-53

Hyperparameter Name Darkent-53 as Backbone Network

Image Resolution 352 x 352 416 x 416 832 x 832

Anchor Dimensions [2,5, 7,7, 5,13,

10,12, 9,21, 17,16,

17,31, 30,30, 44, 61]

[7, 10, 11, 11, 8,

18, 12, 17, 18, 15,

15, 24, 25, 21, 23,

34, 40, 59]

[13, 22, 21, 25, 17,

39, 33, 24, 27, 36,

32, 52, 45, 39, 48,

69, 82, 121]

Data Augmentation None / Mosaic None / Mosaic None / Mosaic

Dilated Convolution None / 1,2,3 None / 1,2,3 None / 1,2,3

Box Loss IoU / DioU IoU / DioU IoU / DioU

Table 4.13 Hyperparameter values for Resnet-152

Hyperparameter Name Resnet-152 as Backbone Network

Image Resolution 352 x 352 416 x 416 832 x 832

Anchor Dimensions [2,4, 3,9, 7,7,

6,13, 10,12, 8,22,

16,12, 14,19, 25,20,

18,33, 34,39, 50,71]

[7, 10, 11, 11, 8,

18, 12, 17, 18, 15,

15, 24, 25, 21, 23,

35, 42, 59]

[13, 22, 20, 24, 17,

39, 32, 23, 26, 33,

31, 49, 44, 38, 47,

68, 80,118]

Data Augmentation None / Mosaic None / Mosaic None / Mosaic

Dilated Convolution None / 1,2,3 None / 1,2,3 None / 1,2,3

University of the Aegean Department of Financial and Management Engineering

[72]

Hyperparameter Name Resnet-152 as Backbone Network

Box Loss IoU / DioU IoU / DioU IoU / DioU

University of the Aegean Department of Financial and Management Engineering

[73]

Chapter 5 Experimental Analysis

In Chapter 5 we study how to optimize the training process of YOLOv3 by tuning selected training

hyperparameters of the algorithm. We also analyze the effect of these hyperparameters and their

interactions on model performance. For tuning the training hyperparameters, we conducted full factorial

experiments by varying their levels and measuring their impact. For quantifying the effects of the

hyperparameters on mean Average Precision (mAP), we use Analysis of Variance (ANOVA). We have also

identified the best-performing combinations of hyperparameters and explained the reasons that models

trained under these combinations perform better and improve object detection accuracy.

5.1 Full Factorial Design

The hyperparameters used in the experimental investigation are those identified in Chapter 4; i.e., image

resolution, the use of dilated convolutions, box loss functions, anchor dimensions, backbone network

types, and data augmentation methods. For the experimentation, we used a fill factorial design with two

levels per hyperparameter (factor) except for image resolution that was varied in three levels. The full

factorial generates all possible combinations of the among the factor levels, aiming to identify the

significant effects of the hyperparameters and their interactions on training effectiveness, as well as the

best combination that optimizes the performance of YOLOv3 model. The full factorial design consists of

96 (25 × 3) experiments, as shown in Table 5.1. This Table provides the full experimental design, that is all

hyperparameter combinations used in our work.

Table 5.1 Multilevel factorial design of our study

A/A
Image

Resolution
Dilated

Convolution
Box Loss

Anchor
Dimensions

Backbone
Network

Data
Augmentation

1 352x352 Yes IoU Default Darknet-53 Default

2 352x352 Yes IoU Default Darknet-53 Mosaic

3 352x352 Yes IoU Default ResNet-152 Default

4 352x352 Yes IoU Default ResNet-152 Mosaic

5 352x352 Yes IoU New Darknet-53 Default

6 352x352 Yes IoU New Darknet-53 Mosaic

7 352x352 Yes IoU New ResNet-152 Default

8 352x352 Yes IoU New ResNet-152 Mosaic

9 352x352 Yes DIoU Default Darknet-53 Default

10 352x352 Yes DIoU Default Darknet-53 Mosaic

11 352x352 Yes DIoU Default ResNet-152 Default

12 352x352 Yes DIoU Default ResNet-152 Mosaic

13 352x352 Yes DIoU New Darknet-53 Default

14 352x352 Yes DIoU New Darknet-53 Mosaic

15 352x352 Yes DIoU New ResNet-152 Default

16 352x352 Yes DIoU New ResNet-152 Mosaic

17 352x352 No IoU Default Darknet-53 Default

University of the Aegean Department of Financial and Management Engineering

[74]

A/A
Image

Resolution
Dilated

Convolution
Box Loss

Anchor
Dimensions

Backbone
Network

Data
Augmentation

18 352x352 No IoU Default Darknet-53 Mosaic

19 352x352 No IoU Default ResNet-152 Default

20 352x352 No IoU Default ResNet-152 Mosaic

21 352x352 No IoU New Darknet-53 Default

22 352x352 No IoU New Darknet-53 Mosaic

23 352x352 No IoU New ResNet-152 Default

24 352x352 No IoU New ResNet-152 Mosaic

25 352x352 No DIoU Default Darknet-53 Default

26 352x352 No DIoU Default Darknet-53 Mosaic

27 352x352 No DIoU Default ResNet-152 Default

28 352x352 No DIoU Default ResNet-152 Mosaic

29 352x352 No DIoU New Darknet-53 Default

30 352x352 No DIoU New Darknet-53 Mosaic

31 352x352 No DIoU New ResNet-152 Default

32 352x352 No DIoU New ResNet-152 Mosaic

33 416x416 Yes IoU Default Darknet-53 Default

34 416x416 Yes IoU Default Darknet-53 Mosaic

35 416x416 Yes IoU Default ResNet-152 Default

36 416x416 Yes IoU Default ResNet-152 Mosaic

37 416x416 Yes IoU New Darknet-53 Default

38 416x416 Yes IoU New Darknet-53 Mosaic

39 416x416 Yes IoU New ResNet-152 Default

40 416x416 Yes IoU New ResNet-152 Mosaic

41 416x416 Yes DIoU Default Darknet-53 Default

42 416x416 Yes DIoU Default Darknet-53 Mosaic

43 416x416 Yes DIoU Default ResNet-152 Default

44 416x416 Yes DIoU Default ResNet-152 Mosaic

45 416x416 Yes DIoU New Darknet-53 Default

46 416x416 Yes DIoU New Darknet-53 Mosaic

47 416x416 Yes DIoU New ResNet-152 Default

48 416x416 Yes DIoU New ResNet-152 Mosaic

49 416x416 No IoU Default Darknet-53 Default

50 416x416 No IoU Default Darknet-53 Mosaic

51 416x416 No IoU Default ResNet-152 Default

52 416x416 No IoU Default ResNet-152 Mosaic

53 416x416 No IoU New Darknet-53 Default

54 416x416 No IoU New Darknet-53 Mosaic

55 416x416 No IoU New ResNet-152 Default

56 416x416 No IoU New ResNet-152 Mosaic

57 416x416 No DIoU Default Darknet-53 Default

58 416x416 No DIoU Default Darknet-53 Mosaic

University of the Aegean Department of Financial and Management Engineering

[75]

A/A
Image

Resolution
Dilated

Convolution
Box Loss

Anchor
Dimensions

Backbone
Network

Data
Augmentation

59 416x416 No DIoU Default ResNet-152 Default

60 416x416 No DIoU Default ResNet-152 Mosaic

61 416x416 No DIoU New Darknet-53 Default

62 416x416 No DIoU New Darknet-53 Mosaic

63 416x416 No DIoU New ResNet-152 Default

64 416x416 No DIoU New ResNet-152 Mosaic

65 832x832 Yes IoU Default Darknet-53 Default

66 832x832 Yes IoU Default Darknet-53 Mosaic

67 832x832 Yes IoU Default ResNet-152 Default

68 832x832 Yes IoU Default ResNet-152 Mosaic

69 832x832 Yes IoU New Darknet-53 Default

70 832x832 Yes IoU New Darknet-53 Mosaic

71 832x832 Yes IoU New ResNet-152 Default

72 832x832 Yes IoU New ResNet-152 Mosaic

73 832x832 Yes DIoU Default Darknet-53 Default

74 832x832 Yes DIoU Default Darknet-53 Mosaic

75 832x832 Yes DIoU Default ResNet-152 Default

76 832x832 Yes DIoU Default ResNet-152 Mosaic

77 832x832 Yes DIoU New Darknet-53 Default

78 832x832 Yes DIoU New Darknet-53 Mosaic

79 832x832 Yes DIoU New ResNet-152 Default

80 832x832 Yes DIoU New ResNet-152 Mosaic

81 832x832 No IoU Default Darknet-53 Default

82 832x832 No IoU Default Darknet-53 Mosaic

83 832x832 No IoU Default ResNet-152 Default

84 832x832 No IoU Default ResNet-152 Mosaic

85 832x832 No IoU New Darknet-53 Default

86 832x832 No IoU New Darknet-53 Mosaic

87 832x832 No IoU New ResNet-152 Default

88 832x832 No IoU New ResNet-152 Mosaic

89 832x832 No DIoU Default Darknet-53 Default

90 832x832 No DIoU Default Darknet-53 Mosaic

91 832x832 No DIoU Default ResNet-152 Default

92 832x832 No DIoU Default ResNet-152 Mosaic

93 832x832 No DIoU New Darknet-53 Default

94 832x832 No DIoU New Darknet-53 Mosaic

95 832x832 No DIoU New ResNet-152 Default

96 832x832 No DIoU New ResNet-152 Mosaic

University of the Aegean Department of Financial and Management Engineering

[76]

5.2 Experimental set-up and execution

The first step before we start executing the experiments was to create the appropriate configuration files

(.cfg) containing all combinations of hyperparameters of Table 5.1; these files represent the models used

in our study. Thus, we created 96 configuration files along with the corresponding 96 .data file (Figure 5.1)

Each .data file has the same name with the .cfg file and it contains information which is essential for

training.

Figure 5.1 Configuration files (.cfg) along with the corresponding data files (.data)

More specifically, as illustrated in Figure 5.2, there are five variables included within each .data file.

Figure 5.2 Variables from the first .data file corresponding to the first .cfg file in our experiments

More specifically:

 classes: the variable “classes” (Figure 5.2) indicates the number of classes on which the model is

being trained. In our case we have 4 classes, person, car, long vehicle and bike (Figure 5.3).

Figure 5.3 Txt file including the object classes

 train: the variable ”train” (Figure 5.2) refers to the path of a text file that contains a list of file

paths for all training images. This file, named Train.txt, contains paths to images from the training

subset used in our research.

University of the Aegean Department of Financial and Management Engineering

[77]

 valid: the variable "valid" indicates the path to a text file that contains a list of file paths for all

validation images. This file, named Val.txt, contains paths to images from the validation subset

used in our research.

 names: the variable “names” (Figure 5.2) specifies the path of a file that contains the names of

the object classes.

 backup: the variable “backup” (Figure 5.2) specifies the directory where the weights of the trained

model will be stored. During training, the algorithm is configured to save these weights every 1000

iterations.

The only difference between each .data file is the "backup" path, which is modified to correspond to

each .cfg file. This prevents the generated training weights from being overwritten.

The training process is executed using the following command:

Terminal Command for training process with Darknet-53 as backbone network

for i in 1 2 5 6 9 10 13 14 17 18 21 22 25 26 29 30 33 34 37 38 41 42 45 46 49 50 53 54 57 58 61

62 65 66 69 70 73 74 77 78 81 82 85 86 89 90 93 94; do ./darknet detector train

/home/deopsys/Documents/darknet/cfg/Anna_experiments/cfg/UAV_${i}.data

/home/deopsys/Documents/darknet/cfg/Anna_experiments/cfg/UAV_${i}.cfg

darknet53.conv.74 -map | tee UAV_output${i}.txt; done

Terminal Command for training process with ResNet-152 as backbone network

for i in 3 4 7 8 11 12 15 16 19 20 23 24 27 28 31 32 35 36 39 40 43 44 47 48 51 52 55 56 59 60

63 64 67 68 71 72 75 76 79 80 83 84 87 88 91 92 95 96; do ./darknet detector train

/home/deopsys/Documents/darknet/cfg/Anna_experiments/cfg/UAV_${i}.data

/home/deopsys/Documents/darknet/cfg/Anna_experiments/cfg/UAV_${i}.cfg resnet152.201 -

map | tee UAV_output${i}.txt; done

Figure 5.4 Execution command for conducting the experiments

These commands above (Figure 5.4) are used to automate the training process of YOLOv3 using the

Darknet framework, with different backbone networks (Darknet-53 and ResNet-152).

More specifically:

 for i in ...; do ... done: This loop iterates through a predefined sequence of numbers (e.g., 1, 2, 5,

6, etc.) that have Darknet-53 as backbone network. Each number corresponds to a specific .cgf

file

 ./darknet detector train: This is the Darknet command to start training a certain model

 /home/deopsys/Documents/darknet/cfg/Anna_experiments/cfg/UAV_${i}.data: This specifies

the path to the .data file for the corresponding .cfg file. The variable ${i} dynamically changes the

file based on the loop iteration

University of the Aegean Department of Financial and Management Engineering

[78]

 /home/deopsys/Documents/darknet/cfg/Anna_experiments/cfg/UAV_${i}.cfg: This specifies the

path to the .cfg file, which contains the model architecture and hyperparameters

 darknet53.conv.74: This file contains the pre-trained weights for the Darknet-53 backbone

network, used to initialize the training process

 -map: This flag enables the calculation and display of the Mean Average Precision (mAP) during

training

 | tee UAV_output${i}.txt: This part of the command logs the output of the training process to a

file named UAV_output${i}.txt, allowing for later review.

This 2nd command follows the same structure as the Darknet-53 command, but it has some

differences, on loop sequence and the type of backbone network.

 for i in ...; do ... done: This loop iterates through a predefined sequence of numbers (e.g., 3, 4, 7,

8, etc.), that have ResNet-152 as backbone network. Each number corresponds to a specific .cgf

file. The sequence of numbers is different, indicating that different configurations or experiments

are being run

 resnet152.201: This file contains the pre-trained weights for the ResNet-152 backbone network,

which is used to initialize the model training instead of Darknet-53.

All 96 experiments were conducted two times in order to support the analysis of the experimental results

using Analysis of Variance (ANOVA). Thus, the total number of experiments was 192. It is noted that by

conducting our experiments twice we are able to have a more robust training process using the same

hyperparameter settings. Minor differences between the mAP results from the two runs suggest that the

model is consistently trained.

As part of the overall training process, the validation process is also conducted to evaluate the weights

generated by the algorithm during training, producing a mean Average Precision (mAP) result for each

validation run (see Table 5.3). Our models were configured to perform the first validation run at the 400th

iteration, with subsequent validations occurring every 100 iterations (e.g., 400, 500, 600, …, 7900, 8000)

up to the 8000th iteration, which marks the completion of the training process for a single model.

Consequently, each experiment consisted of 77 validation runs, resulting in 77 distinct mAP values.

Additionally, the trained weights were saved every 1000 iterations in the backup path specified in the

.data file.

After completing the training process, we conducted the testing phase for each of our 96 experiments.

For testing our trained models, we used the testing set from the modified UAV dataset and applied the

best weights from both training runs (those achieving the highest mAP during validation). We modified

the .data files accordingly, while the .cfg files remained unchanged (Figure 5.1). Specifically, for the testing

phase, all .data files contained the information shown in Figure 5.5.

Once we set-up our experiments and created the 96 .cfg and .data files, we started the testing process by

conducting a command in the terminal (Figure 5.6).

University of the Aegean Department of Financial and Management Engineering

[79]

Figure 5.5 Information included in all .data files used for testing

In Figure 5.5, the "classes" and "names" parameters remain unchanged from those used during training.

However, the "valid" parameter was modified to point to a text file (all_experiments_1.txt), which

contains the file paths for all the testing images. Additionally, the "train" and "backup" parameters were

excluded from the .data files used for testing, as these parameters are only relevant during the training

phase.

The following command was used to execute the testing process after completing both training runs for

each hyperparameter combination:

Terminal Command for testing process

for i in {1..96}; do ./darknet detector map

/home/deopsys/Documents/darknet/cfg/Anna/UAV.data

/home/deopsys/Documents/darknet/cfg/Anna/UAV_${i}.cfg

/media/deopsys/Hard_Disk/Anna/Experiments/UAV_${i}_cfg/UAV_${i}_best.weights -points

101 -thresh 0.25 -iou_thresh 0.5; done

>/media/deopsys/Hard_Disk/Anna/Experiments/output_${i}.txt

Figure 5.6 Execution command for the testing process of our experiments

The command in Figure 5.6 executes a loop that runs 96 iterations (𝑓𝑟𝑜𝑚 𝑖 = 1 𝑡𝑜 𝑖 = 96), each time

evaluating a different YOLO model. The command ./darknet detector map activates the testing process of

YOLOv3. For each iteration, it loads the configuration file (.cfg) (𝑈𝐴𝑉_${𝑖}. 𝑐𝑓𝑔), the corresponding .data

file (𝑈𝐴𝑉. 𝑑𝑎𝑡𝑎) and the best weights file (𝑈𝐴𝑉_${𝑖}_𝑏𝑒𝑠𝑡. 𝑤𝑒𝑖𝑔ℎ𝑡𝑠) created from the first training run

of the corresponding .cfg files, to compute the mean average precision (mAP) for the model using the

detector map command. The evaluation is performed with a confidence threshold of 0.25 and an

Intersection over Union (IoU) threshold of 0.5, which affects which detections are considered valid. The -

points 101 argument specifies that the precision-recall curve should be evaluated at 101 points. After each

evaluation, the output is saved into a separate text file (𝑜𝑢𝑡𝑝𝑢𝑡_${𝑖}. 𝑡𝑥𝑡), where ${𝑖} corresponds to the

current iteration number, allowing the results of all 96 evaluations to be stored separately.

Therefore, in this command we have the input files, the evaluation parameters and the output files:

 Input files: For each iteration the configuration file (.cfg), the data file (.data), and trained weights

(.weights) are loaded

 Evaluation parameters: The detection threshold is set to 0.25, and the IoU threshold is set to 0.5

 Output files: The results of each evaluation are finally saved in a corresponding text file in the

𝑜𝑢𝑡𝑝𝑢𝑡_${𝑖}. 𝑡𝑥𝑡.

University of the Aegean Department of Financial and Management Engineering

[80]

Once the testing process of the 96 models is completed, we execute the same command using the best

weights files from the second training run. As a result, from both runs of the testing process, we obtain

detailed line reports that include the mAP metric for each model in each run.

During both training and testing, the model generates multiple results for evaluation, as illustrated in

Table 5.2.

Table 5.2 Key class metrics during validation

Evaluation
metrics for
each class

Evaluation
metrics for
all classes

The validation report provides the following information for each class:

 𝑐𝑙𝑎𝑠𝑠_𝑖𝑑: For example, index value 1 represents the class "car"

 𝑛𝑎𝑚𝑒: the name of the class

 𝐴𝑃 (𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛): provides the average precision result of the class

 𝑇𝑃 (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒): is the number of correctly identified class objects

 𝐹𝑃 (𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒): is the number of incorrectly identified class objects

 𝑅𝑒𝑐𝑎𝑙𝑙: is the ratio of true positives to the sum of false negatives and true positives for the class

 𝑎𝑣𝑔 𝐼𝑜𝑈: represents the average Intersection over Union (IoU) across all images in the validation

set for the class.

Also, the validation report provides the following information for all classes:

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛: is the overall prediction accuracy across all classes

 𝑅𝑒𝑐𝑎𝑙𝑙: evaluates the ability of the detector to locate the annotated objects within the image for

all classes

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒: is the harmonic mean of precision and recall

 𝑇𝑃 (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒): is the number of correctly detected objects across all classes

 𝐹𝑃 (𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒): is the number of incorrectly detected objects across all classes

 𝐹𝑁 (𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒): is the number of missed detections across all classes

 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝐼𝑜𝑈: represents the average IoU across all images in the validation set for all classes

 𝑚𝐴𝑃 (𝑚𝑒𝑎𝑛 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛): sums the Average Precision (AP) of each individual class and

then divides the total AP value by the number of the classes.

University of the Aegean Department of Financial and Management Engineering

[81]

Among the various metrics provided in the line reports, we utilized the mean Average Precision (mAP) to

assess the performance of the models in both the validation and testing stages. However, the mAP results

serve different purposes in each phase:

 During the training process, the model continuously adjusts its parameters to improve object

detection in the input data. These adjusted parameters are stored in the form of weights. To

ensure the model is learning effectively, these weights are periodically validated. In this

intermediate validation step, the model applies the current set of trained weights to a validation

dataset to evaluate its detection and classification performance. The mAP values calculated

during validation are displayed in the progress chart (showing only mAP results) throughout

training. These validation mAP results are crucial for verifying that the model is learning correctly.

High validation mAP values during validation indicate that the model is avoiding overfitting and

that training on the given dataset is proceeding as expected.

 During the testing process, the best-performing weights from training (those that achieved the

highest mAP during validation) are applied to the testing dataset. The testing phase evaluates the

model's detection and classification performance on independent data. If the mAP value obtained

during testing is similar to the highest mAP values from validation, it confirms that the model has

been trained effectively and performs as expected. Conversely, if the testing mAP value is

significantly lower than the best validation mAP, it suggests that the model’s performance on new

data is not as robust as indicated during validation, implying that the training may not have been

successful, perhaps due to overfitting.

5.3 Experimental results and analysis

In the validation and testing processes, as mentioned in Chapter 3, several key metrics such as recall,

precision, F1-score, average precision (AP), and mean average precision (mAP), can be used to evaluate a

model's performance. Among these metrics, we focused on mAP to analyze the outcomes of our

experiments. The Average Precision (AP) metric evaluates the accuracy of object detection models by

measuring how well individual objects are identified. Then the mAP metric is the mean of these AP values

across all classes, providing an overall evaluation of the model's ability to detect various objects in the

dataset. This makes it an effective metric for comparing overall model performance.

More specifically, we used the best mAP achieved in validation to evaluate and compare training

performance. The best mAP refers to the highest mean average precision (mAP) value achieved by the

validation process during training for each experiment. In testing, for each model, we used the weights

corresponding to the best mAP achieved in validation. To assess model performance in testing, we used

the mAP value achieved by the trained model using the independent testing dataset.

The table below presents the best mAP results from both training/validation and testing processes for the

1st and 2nd experiment runs, the average mAP across the two runs as well as the percentage difference

between their values.

University of the Aegean Department of Financial and Management Engineering

[82]

Table 5.3 Best mAP and the average best mAP in the 1st and 2nd run of the training and testing processes

 Training/Validation Testing Difference between
the avg mAP values
(training - testing)

Model
Number

Best mAP
(1st run)

Best mAP
(2nd run)

Avg mAP
between 1st

& 2nd run

Best mAP
(1st run)

Best mAP
(2nd run)

Avg mAP
between 1st

& 2nd run

 1

 2
0

1
2

 4

 2
2

 4

1
1

 4
2

University of the Aegean Department of Financial and Management Engineering

[83]

 Training/Validation Testing Difference between
the avg mAP values
(training - testing)

Model
Number

Best mAP
(1st run)

Best mAP
(2nd run)

Avg mAP
between 1st

& 2nd run

Best mAP
(1st run)

Best mAP
(2nd run)

Avg mAP
between 1st

& 2nd run

 3
1

3
2

 2
2

2
4
3

 8

1
0
.
7
3

 7

9
.
2
7

 3

 3
6
.
4
8

2
8

 3
1
.
3
2

 4
5

 4
7

3
5

 7
.
9
0

University of the Aegean Department of Financial and Management Engineering

[84]

 Training/Validation Testing Difference between
the avg mAP values
(training - testing)

Model
Number

Best mAP
(1st run)

Best mAP
(2nd run)

Avg mAP
between 1st

& 2nd run

Best mAP
(1st run)

Best mAP
(2nd run)

Avg mAP
between 1st

& 2nd run

 4
1

4
3
.
6
7

 3
6

3
8
.
2
8

The first observation from the values of Table 5.3 is that the training/validation mAP values are higher

than the testing mAP values. This is expected, since the testing dataset is not part of the training dataset.

In some cases, however, the difference between the training/validation and testing average (between the

two replicates) mAP is significant (e.g. more than 10%).

Table 5.4 Number of objects in the training, validation and testing datasets

The significant difference in mean Average Precision (mAP) between training/validation and testing can

be attributed to the following reasons:

 Overfitting: The model may learn specific patterns in the training data but fail to generalize to

unseen data. This results in high performance during validation but a notable drop during testing,

indicating a lack of robustness (Montesinos López et al., 2022).

 Class Imbalance: The consolidated dataset contains a higher number of objects like people

(213,245 total objects) (see Table 4.1) and cars (205,893 total objects) (see Table 4.1), leading the

Number of Objects

 Training Dataset Validation Dataset Testing Dataset

Number of people 170,744 16,544 16,730

Number of Cars 154,478 18,205 16,257

Number of Long Vehicles 42,068 5,012 4,986

Number of Bikes 102,893 9,195 8,967

University of the Aegean Department of Financial and Management Engineering

[85]

model to focus more on these dominant classes. Underrepresented classes like long vehicles

(52,961 total objects) (see Table 4.1) and bikes (130,141 total objects) (see Table 4.1) cause the

model to perform worse in these classes. During testing, this imbalance in class representation

can lead to the model being biased toward classes with more samples, resulting in higher mAP

during training/validation but lower mAP during testing. (Crasto, 2024).

 Dataset Composition Differences: The testing subset, although it is part of the consolidated

dataset, may not reflect the class distributions across the individual datasets, enhancing the

impact of the class representation. For example, the UAV Vehicle Detection dataset includes

20,647 cars but only 241 bikes (see Table 4.1), while the Stanford dataset includes a larger number

of bikes (83,600) (see Table 4.1) and has no persons at all (see Table 4.1). Meanwhile, the

VisDrone2019DET dataset shows a more balanced distribution, with 158,914 persons, 46,721 long

vehicles, and 46,300 bikes (see Table 4.1). If the testing subset is split disproportionately, it could

include images from one dataset (e.g., more Stanford images with many bikes or more UAV Vehicle

Detection images with very few bikes). In this case, the representation of classes is not accurate

and it contributes to the significant difference in mAP between training and testing (Santos et al.,

2024)

 Differences in Image Complexity: UAV images often vary in resolution, lighting, and angles. These

variations can make it difficult for the model to perform consistently across all datasets, especially

when testing images differ in distribution from those in the training set (Hakala et al., 2013).

A second observation has to do with the significant differences in performance of models trained under

different combinations of the hyperparameters. For example, in training/validation the best performing

models reach a mAP over 60% (see models 74 and 90), while others have significantly lower performance

with mAP of 15% (dee models 35, 51) . This illustrates clearly the significance of selecting the appropriate

levels of the hyperparameters in model training, and the need for optimizing these hyperparameters in

order to achieve effective training of a high performing model.

As we can see in Table 5.3 the highest mAP from the validation process is achieved in the 90th experiment

for both runs. The best mAP in the 90th experiment reaches 60.99% in our first run and 60.76% This

indicates result consistency in terms of the mAP value. The model that achieves this performance

corresponds to the following hyperparameter combination (Table 5.1):

 Image Resolution: 832x832

 Dilated Convolution: No

 Box Loss: DIoU

 Anchor Dimensions: Default

 Backbone: Darknet-53

 Data Augmentation: Mosaic

At the same, we can observe from Table 5.3 that the highest mAP during the testing process is also

achieved in the 90th experiment for both runs. More specifically, the best mAP in the 90th testing

University of the Aegean Department of Financial and Management Engineering

[86]

experiment reaches 52.37% in our first run and 52.65% (Table 5.3) in the second run. Achieving the

highest performance across validation and testing by the same model is encouraging and points to the

ability of the method to correctly tune the training hyperparameters.

The best trained model performs reliably on unseen data (testing process) with only a slight drop in

performance from the training process. Furthermore, the selected levels of hyperparameters lead to an

effective model across different image datasets.

The 74th experiment also displays good performance, close to that of the 90th experiment. More

specifically, the best mAP in the 74th experiment reaches 60.72% in our first run and 60.50% (Table 5.3)

in the second. Similarly, in the testing process the 74th experiment achieves the second good performance,

like in the training process. The best mAP reaches 52.27% in the first run and 52.24% in the second run.

The hyperparameter combination of this model is similar to the 90th experiment, with the only difference

in the dilated convolution. The model in the 74th experiment was trained under the following

hyperparameter parameter combination (Table 5.1):

 Image Resolution: 832x832

 Dilated Convolution: Yes

 Box Loss: DIoU

 Anchor Dimensions: Default

 Backbone: Darknet-53

 Data Augmentation: Mosaic

University of the Aegean Department of Financial and Management Engineering

[87]

Figure 5.7 Training progress chart of the 90th experiment

Figure 5.8 Training progress chart of the 74th experiment

University of the Aegean Department of Financial and Management Engineering

[88]

Figure 5.7 illustrates the chart for the 90th experiment (the best-performing model). The x-axis represents

the number of iterations as the training process progresses, while the y-axis. The blue curve of the chart

represents the training loss, and the red curve shows the mAP results throughout training. The training

loss curve indicates how effectively the model adapts to the dataset, with lower values reflecting better

performance. This curve decreases steadily during training and stabilizes between values of 9 and 13

(Figure 5.7). The red curve represents the model's ability to detect specific objects in the validation data.

In the chart is illustrated a significant improvement in mAP, increasing from 8% to 61% (Figure 5.7), which

demonstrates good performance.

A similar performance is observed in the 74th experiment. The training loss curve (blue) decreases and

stabilizes between values of 9 and 13 (Figure 5.8), as seen in the 90th experiment. The red curve is also

quite similar to the 90th experiment, with the mAP increasing from 5% to 60% (Figure 5.8).

In both experiments, there are no indications of overfitting or underfitting, as the mAP values remain

stable without significant drops or rises during training. Therefore, the model, in both cases, demonstrates

strong object detection and classification abilities on the modified UAV dataset, achieving a high mAP of

61% and 60%.

5.4 Hyperparameter effects on mean Average Precision (mAP)

In our study, we used Analysis of Variance (ANOVA) in order to evaluate the impact of each selected

hyperparameter and their interactions on the mAP metric. This analysis enables us to identify which

hyperparameters, and interactions of them, significantly influence the training performance of the YOLOv3

model as measured by mAP.

ANOVA tests the following hypotheses:

 Null hypothesis (H₀): A factor or factor interaction has no significant effect on mAP.

 Alternative hypothesis (Hₐ): A factor or interaction has a significant effect on mAP.

We conducted ANOVA using the MiniTab software, analyzing the experiments listed in Table 5.1 and the

best mAP results from both training runs, as shown in Table 5.5. Following this approach, it enables us to

identify the key factors influencing model performance and optimizes hyperparameter tuning for mAP

improvement.

The table below illustrates the design summary for our analysis.

T
a
b
l
e

S
T
Y
L
E
R
E
F

Multilevel Factorial Design

Design Summary

Factors 6 Replicates 2

University of the Aegean Department of Financial and Management Engineering

[89]

Multilevel Factorial Design

Base Runs 96 Total Runs 192

Base Blocks 1 Total Blocks 1

Number of levels: 3, 2, 2, 2, 2, 2

Table 5.5 provides a design summary of an Analysis of Variance (ANOVA) study conducted in MiniTab. This

summary indicates that a multilevel factorial design was used to study how different values of the six

selected hyperparameters, as well as their interactions, affect the mAP. The ANOVA will help us to

determine which hyperparameters and their interactions have a statistically significant impact on the

YOLOv3 model's performance.

More specifically, the table illustrates:

 Factors: 6 – This means that six different hyperparameters (factors) were selected for our

experiments, which are image resolution, dilated convolution, box loss, anchor dimensions,

backbone network and data augmentation (Table 5.1)

 Replicates: 2 – The experiments were repeated twice

 Base runs: 96 – The experiment initially consists of 96 base runs, indicating the number of unique

combinations of hyperparameter levels being tested in one iteration

 Total runs: 192 – This reflects the total number of runs for the experiment, which is obtained by

multiplying the number of base runs (96) by the number of replicates (2). So, 192 total runs were

performed to evaluate the model's performance with different hyperparameter combinations

 Base blocks: 1 & Total blocks: 1 – No blocking was used in our experiments. This means that there

were no additional sources of variation (such as time, location, or different batches) that needed

to be controlled by creating blocks. The entire experiment was treated as one block, meaning the

focus was on the six selected hyperparameters and their interactions.

 Number of levels: 3, 2, 2, 2, 2, 2 – This shows the number of levels for each factor

(hyperparameter). One hyperparameter, image resolution, has 3 different levels (values), while

the remaining five have 2 levels each.

5.4.1 ANOVA analysis on best mAP results from the training/validation process

The training (validation) results of the ANOVA analysis, in our study, are illustrated in Table 5.6, including

sources of variation with their Degrees of Freedom (DF), Adjusted Sum of Squares (Adj SS), Adjusted Mean

Squares (Adj MS), F-values, and p-values.

 Degrees of Freedom (DF) is a statistical term that indicates the number of independent values we

can use in our calculations. The degrees of freedom depend on the number of levels being

compared. Generally, for each parameter, the DF is calculated as the number of levels minus one.

For example, in the image resolution factor, where we selected 3 levels (values) (352x352,

416x416, 832x832), the degrees of freedom would be 3−1=2. This means that we can freely vary

2 of the values while the last one is determined by the others.

University of the Aegean Department of Financial and Management Engineering

[90]

 Adjusted Sum of Squares (Adj SS) measures how much the variance in mAP (mean Average

Precision) is explained by each hyperparameter or interaction of hyperparameters after removing

the effects of other factors and their interactions in the model. For example, the Adjusted Sum of

Squares for image resolution is 0.90764, meaning this amount of variance in mAP is due to changes

in image resolution (Kutner, 2005).

 Adjusted Mean Squares (Adj MS) is the average variance related to each hyperparameter or

interaction of hyperparameters, adjusted for the degrees of freedom in the model. The value of

Adj MS is calculated by dividing the Adjusted Sum of Squares for image resolution by its degrees

of freedom, which in our case is 2 (Kutner, 2005).

More specifically, it is calculated by the formula:

𝑀𝑆𝑎𝑑𝑗 =
𝑆𝑆𝑎𝑑𝑗

𝐷𝐹

(5.1)

For instance, the Adjusted Mean Square for image resolution is 0.45382. (
0.90764

2
).

 F-value measures how much a hyperparameter or interaction of hyperparameters affects

the results compared to the error.

It is calculated by dividing the Adjusted Mean Square of the factor by the Adjusted Mean

Square of the error, as shown in equation 5.2 below:

 𝐹 − 𝑉𝑎𝑙𝑢𝑒 =
𝑀𝑆𝑎𝑑𝑗

𝑀𝑆𝑎𝑑𝑗/𝑒𝑟𝑟𝑜𝑟

(5.2)

A high F-value suggests that the factor significantly impacts mAP (mean Average

Precision). For example, in our study, the “Backbone Network” factor has the highest F-

value, 1407.32 (Table 5.6), meaning it has the greatest impact on mAP. As it is illustrated

in Table 5.6, the second higher F-value is 263.36 (Table 5.6) for the “Image Resolution”

factor.

 P-value indicates the likelihood of making an error when selecting the alternative

hypothesis. A small p-value (less than 0.05) means the results are important for our

study, so we reject the null hypothesis (H₀). On the other hand, a high p-value suggests

that the results might have happened by chance, which means we don't reject the null

hypothesis. In our case, all six factors have a p-value equal to 0 (Table 5.6), meaning that

all of them significantly impact mAP (mean Average Precision). Although, factors like

“Dilated Convolution” and “Anchor Dimensions” have smaller F-values than the other

factors, it seems that they also affect mAP (Archdeacon, 1994).

Table 5.6 below illustrates the importance of each factor selected for our study as well as their

interactions on the mAP.

University of the Aegean Department of Financial and Management Engineering

[91]

Table 5.6 Analysis of Variance during training process

Source DF Adj SS Adj MS F-Value P-Value

Model 95 4.70604 0.04954 28.75 0

Linear 7 3.9989 0.57127 331.52 0

Image Resolution 2 0.90764 0.45382 263.36 0

Dilated Convolution 1 0.04359 0.04359 25.3 0

Box Loss 1 0.16424 0.16424 95.31 0

Anchor Dimensions 1 0.11865 0.11865 68.85 0

Backbone Network 1 2.42507 2.42507 1407.32 0

Data Augmentation 1 0.33971 0.33971 197.14 0

2-Way Interactions 20 0.48613 0.02431 14.11 0

Image Resolution*Dilated Convolution 2 0.0029 0.00145 0.84 0.434

Image Resolution*Box Loss 2 0.01322 0.00661 3.84 0.025

Image Resolution*Anchor Dimensions 2 0.02111 0.01056 6.13 0.003

Image Resolution*Backbone Network 2 0.00899 0.0045 2.61 0.079

Image Resolution*Data Augmentation 2 0.02654 0.01327 7.7 0.001

Dilated Convolution*Box Loss 1 0.00014 0.00014 0.08 0.777

Dilated Convolution*Anchor Dimensions 1 0.00075 0.00075 0.44 0.51

Dilated Convolution*Backbone Network 1 0.07844 0.07844 45.52 0

Dilated Convolution*Data Augmentation 1 0.00673 0.00673 3.91 0.051

Box Loss*Anchor Dimensions 1 0.02888 0.02888 16.76 0

Box Loss*Backbone Network 1 0.00018 0.00018 0.1 0.749

Box Loss*Data Augmentation 1 0.02104 0.02104 12.21 0.001

Anchor Dimensions*Backbone Network 1 0.00002 0.00002 0.01 0.91

Anchor Dimensions*Data Augmentation 1 0.00335 0.00335 1.94 0.167

Backbone Network*Data Augmentation 1 0.27382 0.27382 158.9 0

3-Way Interactions 30 0.1262 0.00421 2.44 0.001

Image Resolution*Dilated Convolution*Box Loss 2 0.00713 0.00356 2.07 0.132

Image Resolution*Dilated Convolution*Anchor

Dimensions
2 0.00193 0.00097 0.56 0.572

Image Resolution*Dilated Convolution*Backbone

Network
2 0.01254 0.00627 3.64 0.03

University of the Aegean Department of Financial and Management Engineering

[92]

Source DF Adj SS Adj MS F-Value P-Value

Image Resolution*Dilated Convolution*Data

Augmentation
2 0.00259 0.00129 0.75 0.474

Image Resolution*Box Loss*Anchor Dimensions 2 0.00026 0.00013 0.08 0.927

Image Resolution*Box Loss*Backbone Network 2 0.00108 0.00054 0.31 0.732

Image Resolution*Box Loss*Data Augmentation 2 0.00076 0.00038 0.22 0.803

Image Resolution*Anchor Dimensions*Backbone

Network
2 0.00728 0.00364 2.11 0.127

Image Resolution*Anchor Dimensions*Data

Augmentation
2 0.00794 0.00397 2.3 0.105

Image Resolution*Backbone Network*Data

Augmentation
2 0.0177 0.00885 5.13 0.008

Dilated Convolution*Box Loss*Anchor Dimensions 1 0.00083 0.00083 0.48 0.489

Dilated Convolution*Box Loss*Backbone Network 1 0.00878 0.00878 5.1 0.026

Dilated Convolution*Box Loss*Data Augmentation 1 0.00006 0.00006 0.03 0.855

Dilated Convolution*Anchor

Dimensions*Backbone Network
1 0.01184 0.01184 6.87 0.01

Dilated Convolution*Anchor Dimensions*Data

Augmentation
1 0 0 0 0.962

Dilated Convolution*Backbone Network*Data

Augmentation
1 0.00537 0.00537 3.12 0.081

Box Loss*Anchor Dimensions*Backbone Network 1 0.00828 0.00828 4.8 0.031

Box Loss*Anchor Dimensions*Data Augmentation 1 0.01123 0.01123 6.52 0.012

Box Loss*Backbone Network*Data Augmentation 1 0.01721 0.01721 9.99 0.002

Anchor Dimensions*Backbone Network*Data

Augmentation
1 0.00339 0.00339 1.97 0.164

4-Way Interactions 25 0.06498 0.0026 1.51 0.081

Image Resolution*Dilated Convolution*Box

Loss*Anchor Dimensions
2 0.00085 0.00042 0.25 0.782

Image Resolution*Dilated Convolution*Box

Loss*Backbone Network
2 0.00604 0.00302 1.75 0.179

Image Resolution*Dilated Convolution*Box

Loss*Data Augmentation
2 0.00019 0.0001 0.06 0.946

Image Resolution*Dilated Convolution*Anchor

Dimensions*Backbone Network
2 0.00957 0.00478 2.78 0.067

Image Resolution*Dilated Convolution*Anchor

Dimensions*Data Augmentation
2 0.00034 0.00017 0.1 0.906

University of the Aegean Department of Financial and Management Engineering

[93]

Source DF Adj SS Adj MS F-Value P-Value

Image Resolution*Dilated Convolution*Backbone

Network*Data Augmentation
2 0.0043 0.00215 1.25 0.292

Image Resolution*Box Loss*Anchor

Dimensions*Backbone Network
2 0.0098 0.0049 2.84 0.063

Image Resolution*Box Loss*Anchor

Dimensions*Data Augmentation
2 0.00036 0.00018 0.1 0.901

Image Resolution*Box Loss*Backbone

Network*Data Augmentation
2 0.0005 0.00025 0.15 0.864

Image Resolution*Anchor Dimensions*Backbone

Network*Data Augmentation
2 0.00683 0.00342 1.98 0.143

Dilated Convolution*Box Loss*Anchor

Dimensions*Backbone Network
1 0.01215 0.01215 7.05 0.009

Dilated Convolution*Box Loss*Anchor

Dimensions*Data Augmentation
1 0.00196 0.00196 1.14 0.289

Dilated Convolution*Box Loss*Backbone

Network*Data Augmentation
1 0 0 0 0.966

Dilated Convolution*Anchor

Dimensions*Backbone Network*Data

Augmentation

1 0 0 0 0.993

Box Loss*Anchor Dimensions*Backbone

Network*Data Augmentation
1 0.01208 0.01208 7.01 0.009

5-Way Interactions 11 0.02273 0.00207 1.2 0.298

Image Resolution*Dilated Convolution*Box

Loss*Anchor Dimensions*Backbone Network
2 0.01317 0.00658 3.82 0.025

Image Resolution*Dilated Convolution*Box

Loss*Anchor Dimensions*Data Augmentation
2 0.00647 0.00324 1.88 0.159

Image Resolution*Dilated Convolution*Box

Loss*Backbone Network*Data Augmentation
2 0.00008 0.00004 0.02 0.977

Image Resolution*Dilated Convolution*Anchor

Dimensions*Backbone Network*Data

Augmentation

2 0.00032 0.00016 0.09 0.911

Image Resolution*Box Loss*Anchor

Dimensions*Backbone Network*Data

Augmentation

2 0.00055 0.00027 0.16 0.854

Dilated Convolution*Box Loss*Anchor

Dimensions*Backbone Network*Data

Augmentation

1 0.00214 0.00214 1.24 0.268

6-Way Interactions 2 0.0071 0.00355 2.06 0.133

University of the Aegean Department of Financial and Management Engineering

[94]

Source DF Adj SS Adj MS F-Value P-Value

Image Resolution*Dilated Convolution*Box

Loss*Anchor Dimensions*Backbone

Network*Data Augmentation

2 0.0071 0.00355 2.06 0.133

Error 96 0.16543 0.00172

Total 191 4.87146

At the end of Table 5.6 two additional values are presented: Error and total:

 Error represents the unexplained variation in the model. It shows the difference between

the actual results we observed and the results the model predicted. In our model,

𝑆𝑆𝑒𝑟𝑟𝑜𝑟 = 0.16543 (Adj SS) indicates the variance in mAP (mean Average Precision) that

the model is not able explain.

This value is calculated by finding the sum of the squared differences between each

observed result and its corresponding predicted result, as shown by the equation 5.3

below (Kutner, 2005):

𝑆𝑆𝑒𝑟𝑟𝑜𝑟 =∑ (𝑦𝑖 − 𝑦 𝑖)
2𝑛

𝑖=1

(5.3)

where,

 𝑦𝑖 is the observed result for the 𝑖𝑡ℎ observation

 𝑦 𝑖 is the predicted result for the 𝑖𝑡ℎ observation

 𝑛 is the number of observations.

 Total represents the overall variance and is made up of the explained variance from the

model and the unexplained variance (error). This value is aiming to be a reference point

on evaluating the model's performance. In our model, 𝑆𝑆𝑡𝑜𝑡𝑎𝑙 = 4.87146 indicates the

total variance in mAP (mean Average Precision). This value is calculated by finding the sum

of the squared differences between each observed result and the overall average of the

dependent variable, as shown in the equation 5.4 below (Kutner, 2005):

𝑆𝑆𝑡𝑜𝑡𝑎𝑙 =∑ (𝑦𝑖 − 𝑦)2
𝑛

𝑖=1

(5.4)

where,

 𝑦𝑖 is the observed result for the 𝑖𝑡ℎ observation

 𝑦 is the mean of the observed results

 𝑛 is the number of observations.

University of the Aegean Department of Financial and Management Engineering

[95]

Apart from the ANOVA analysis, we also used MiniTab to generate graphic representations of our results

to understand and analyze further the interaction effects between our selected hyperparameters. In our

study we focused on:

 Pareto Chart of standardized effects

 Main effects plot for mAP

 Interaction plot for mAP

Pareto Chart of standardized effects

As illustrated in Figure 5.9, the Pareto chart of standardized effects demonstrates the influence and

interactions of the different factors on the mAP. The factors labeled from A to F, are the hyperparameters

we selected for our study. More specifically:

 A: Image Resolution

 B: Dilated Convolution

 C: Box Loss

 D: Anchor Dimensions

 E: Backbone Network

 F: Data Augmentation

The red-dashed line indicates the standardized effect value of 1.98 when the significance threshold is α =

0.05. Hyperparameters or interactions of hyperparameters that have blue-bars extended beyond the

standardized effect value (red-dashed line) have a significant impact on mAP. Longer bars illustrate a more

important impact on mAP. Nevertheless, we should also mention that there is a 5% risk (α = 0.05) of falsely

identifying a factor or an interaction of factors as significant when they are not.

Based on the Pareto Chart in Figure 5.9, the significant hyperparameters and interactions of

hyperparameters in the training process of our study are the following ones (starting from the most

significant to the least significant:

 Backbone Network (E)

 Data Augmentation (F)

 The interaction Backbone Network (E) and Data Augmentation (F)

 Box Loss (C)

 Anchor Dimensions (D)

 Image Resolution (A)

 The interaction of Dilated Convolution (B) and Backbone Network (E)

 Dilated Convolution (B)

 The interaction of Box Loss (C) and Anchor Dimensions (D)

 The interaction of Box Loss (C) and Data Augmentation (F)

 The interaction of Image Resolution (A) and Data Augmentation (F)

 The interaction of Box Loss (C), Backbone Network (E) and Data Augmentation (F)

University of the Aegean Department of Financial and Management Engineering

[96]

 The interaction of Image Resolution (A) and Anchor Dimensions (D)

 The interaction of Image Resolution (A), Backbone Network (E) and Data Augmentation

(F)

 The interaction of Dilated Convolution (B), Box Loss (C), Anchor Dimensions (D) and

Backbone Network (E)

 The interaction of Box Loss (C), Anchor Dimensions (D), Backbone Network (E) and Data

Augmentation (F)

 The interaction of Dilated Convolution (B), Anchor Dimensions (D) and Backbone Network

(E)

 The interaction of Box Loss (C), Anchor Dimensions (D) and Data Augmentation (F)

 The interaction of Image Resolution (A) and Box Loss (C)

 The interaction of Image Resolution (A), Dilated Convolution (B), Box Loss (C), Anchor

Dimensions (D) and Backbone Network (E)

 The interaction of Dilated Convolution (B), Box Loss (C) and Backbone Network (E)

 The interaction of Image Resolution (A), Dilated Convolution (B) and Backbone Network

(E)

 The interaction of Box Loss (C), Anchor Dimensions (D) and Backbone Network (E)

 The interaction of Dilated Convolution (B) and Data Augmentation (F)

Figure 5.9 Pareto chart of the standardized effects during training process

The six remaining hyperparameter interactions do not have a significant effect on mAP, since their values

are less than 1.98 (Navarro Tuch et al., 2019).

Consequently, we conclude that the most significant hyperparameter is the backbone network (E), which

has the highest standardized effect, indicating that affects mAP the most. It is followed by data

augmentation (F), box loss (C), anchor dimensions (D) and image resolution (A), all of which also exceed

University of the Aegean Department of Financial and Management Engineering

[97]

the critical value threshold of 1.98, marked by the red vertical line. Additionally, interactions between

these factors can significantly impact performance, suggesting a need for careful tuning and optimization

of these hyperparameters in the training process.

Main effects plot for mAP

Figure 5.10 shows the main effects plot for the training process in our study (Kim et al., 2007), which

measures the impact on mAP of the main factors A, B, C, D, E and F. By analyzing these six factors in the

main effect plot in Minitab, we can conclude to the following observations below:

 Increasing image resolution from 352x352 to 416x416 improves mAP by 31% - 27% = 4% and

increasing the image resolution further from 416x416 to 832x832 improves mAP by 43.2% - 31%

= 12.2%

 Adding dilated convolution in our model reduces mAP by 35.2% - 32.2% = 3%

 Changing the box loss function from IoU to DIoU improves mAP by 36.7% - 30.8% = 5.9%

 Changing anchor box dimensions from the default model values to a new set of values reduces

mAP by 36.2% - 31.2% = 5%.

 Changing the backbone network from Darknet-53 (default) to ResNet-152 (new) reduces mAP by

45% - 22.5% = 22.5%.

 Adding data augmentation in our model improves mAP by 37.9% - 29.5% = 8.4%

From the result above, we conclude that the addition of dilated convolution in our model, the selection of

new anchor dimensions and the alternation of the backbone network from Darkenet-53 to ResNet-152

have negative effect on mAP as they reduce its value. As we can see from the plot below (Figure 5.10) the

choice of ResNet-152 over Darknet-53 has the most negative impact on mAP, reducing its value by half (

45% to 22.5%).

On the other hand, the increase on image resolution, the alternation of box loss function from IoU to DIoU

and the addition of data augmentation improve the value of mAP, with the image resolution having the

greatest impact.

Therefore, the best options for the factors/hyperparameters we selected, which positively affect the mAP

value, are:

 832x832 for image resolution

 Absence of dilated convolution

 DIoU for box loss function

 Default values for the anchor dimensions

 Darknet-53 as the backbone network

 Addition of the mosaic data augmentation technique

University of the Aegean Department of Financial and Management Engineering

[98]

Figure 5.10 Main effects plot for mAP during training process

Interaction plot

The interaction plot illustrates the effects of factor interactions on the Mean Average Precision (mAP)

(Figure 5.11). Each graph compares how two factors (like image resolution or data augmentation) interact

and influence the model's accuracy. More precisely, the horizontal axis of each sub-plot represents the

selected values of one hyperparameter (e.g., Image Resolution, Box Loss), illustrated with the blue and red

lines. The vertical axis shows the mean of mAP for each interaction of hyperparameters. The goal is to

observe how the hyperparameters interact with each other and their influence on mAP.

Figure 5.11 Interaction plot for mAP during training process

Table 5.7 illustrates the most optimal (best) and lest optimal (worst) hyperparameter interaction

depending on their influence on the mAP.

University of the Aegean Department of Financial and Management Engineering

[99]

Table 5.7 The best and worst hyperparameters’ interactions on the mAP

Factor 2 Best Interaction

Convolution 832x832 with Dilated Conv (Yes)

Box Loss w
i
t
h

University of the Aegean Department of Financial and Management Engineering

[100]

Factor 2 Best Interaction

 832x832 with New Anchor Dimensions

 w
i
t
h

University of the Aegean Department of Financial and Management Engineering

[101]

Factor 2 Best Interaction

Data Augmentation

Box Loss Dilated Conv. (Yes) with DIoU

University of the Aegean Department of Financial and Management Engineering

[102]

Factor 2 Best Interaction

 Dilated Conv (Yes) with New Anchor Dimensions

 Dilated Conv (Yes) with ResNet-152

University of the Aegean Department of Financial and Management Engineering

[103]

Factor 2 Best Interaction

Data Augmentation Dilated Conv (Yes) with Mosaic Augmentation

 DIoU with New Anchor Dimensions

University of the Aegean Department of Financial and Management Engineering

[104]

Factor 2 Best Interaction

with

Data Augmentation w
i
t
h

University of the Aegean Department of Financial and Management Engineering

[105]

Factor 2 Best Interaction

 New Anchor Dimensions with ResNet-152

Data Augmentation New Anchor Dimensions with Mosaic Augmentation

University of the Aegean Department of Financial and Management Engineering

[106]

Factor 2 Best Interaction

Data Augmentation w
i
t
h

5.4.2 ANOVA analysis for the testing process

We followed a similar ANOVA process for the testing process. Table 5.8 below illustrates the ANOVA results

of the testing runs.

University of the Aegean Department of Financial and Management Engineering

[107]

Table 5.8 Analysis of Variance during testing process

Source DF Adj SS Adj MS F-Value P-Value

Model 96 3.50041 0.03646 26.42 0.000

 Blocks 1 0.00004 0.00004 0.03 0.857

 Linear 7 2.98687 0.42670 309.16 0.000

 Image Resolution 2 0.91496 0.45748 331.46 0.000

 Dilated Convolution 1 0.03135 0.03135 22.71 0.000

 Box Loss 1 0.07768 0.07768 56.28 0.000

 Anchor Dimensions 1 0.04532 0.04532 32.84 0.000

 Backbone Network 1 1.69804 1.69804 1230.30 0.000

 Data Augmentation 1 0.21952 0.21952 159.05 0.000

 2-Way Interactions 20 0.33099 0.01655 11.99 0.000

 Image Resolution*Dilated Convolution 2 0.00193 0.00096 0.70 0.500

 Image Resolution*Box Loss 2 0.00691 0.00346 2.50 0.087

 Image Resolution*Anchor Dimensions 2 0.03032 0.01516 10.98 0.000

 Image Resolution*Backbone Network 2 0.02093 0.01047 7.58 0.001

 Image Resolution*Data Augmentation 2 0.03326 0.01663 12.05 0.000

 Dilated Convolution*Box Loss 1 0.00003 0.00003 0.02 0.876

 Dilated Convolution*Anchor Dimensions 1 0.00168 0.00168 1.22 0.273

 Dilated Convolution*Backbone Network 1 0.05094 0.05094 36.91 0.000

 Dilated Convolution*Data Augmentation 1 0.00618 0.00618 4.48 0.037

 Box Loss*Anchor Dimensions 1 0.01187 0.01187 8.60 0.004

 Box Loss*Backbone Network 1 0.00001 0.00001 0.01 0.942

 Box Loss*Data Augmentation 1 0.00902 0.00902 6.54 0.012

 Anchor Dimensions*Backbone Network 1 0.00074 0.00074 0.54 0.466

 Anchor Dimensions*Data Augmentation 1 0.00105 0.00105 0.76 0.384

 Backbone Network*Data Augmentation 1 0.15612 0.15612 113.12 0.000

 3-Way Interactions 30 0.10889 0.00363 2.63 0.000

 Image Resolution*Dilated Convolution*Box

Loss

2 0.00388 0.00194 1.40 0.251

 Image Resolution*Dilated

Convolution*Anchor Dimensions

2 0.00121 0.00060 0.44 0.647

University of the Aegean Department of Financial and Management Engineering

[108]

Source DF Adj SS Adj MS F-Value P-Value

 Image Resolution*Dilated

Convolution*Backbone Network

2 0.01060 0.00530 3.84 0.025

 Image Resolution*Dilated Convolution*Data

Augmentation

2 0.00264 0.00132 0.96 0.388

 Image Resolution*Box Loss*Anchor

Dimensions

2 0.00202 0.00101 0.73 0.484

 Image Resolution*Box Loss*Backbone

Network

2 0.00112 0.00056 0.40 0.668

 Image Resolution*Box Loss*Data

Augmentation

2 0.00117 0.00059 0.42 0.655

 Image Resolution*Anchor

Dimensions*Backbone Network

2 0.00439 0.00220 1.59 0.209

 Image Resolution*Anchor Dimensions*Data

Augmentation

2 0.00274 0.00137 0.99 0.374

 Image Resolution*Backbone Network*Data

Augmentation

2 0.02277 0.01139 8.25 0.000

 Dilated Convolution*Box Loss*Anchor

Dimensions

1 0.00046 0.00046 0.33 0.567

 Dilated Convolution*Box Loss*Backbone

Network

1 0.00823 0.00823 5.96 0.016

 Dilated Convolution*Box Loss*Data

Augmentation

1 0.00059 0.00059 0.43 0.515

 Dilated Convolution*Anchor

Dimensions*Backbone Network

1 0.01571 0.01571 11.38 0.001

 Dilated Convolution*Anchor Dimensions*Data

Augmentation

1 0.00023 0.00023 0.16 0.686

 Dilated Convolution*Backbone Network*Data

Augmentation

1 0.00554 0.00554 4.02 0.048

 Box Loss*Anchor Dimensions*Backbone

Network

1 0.00815 0.00815 5.90 0.017

 Box Loss*Anchor Dimensions*Data

Augmentation

1 0.00777 0.00777 5.63 0.020

 Box Loss*Backbone Network*Data

Augmentation

1 0.00826 0.00826 5.99 0.016

 Anchor Dimensions*Backbone Network*Data

Augmentation

1 0.00142 0.00142 1.03 0.313

 4-Way Interactions 25 0.05280 0.00211 1.53 0.074

 Image Resolution*Dilated Convolution*Box

Loss*Anchor Dimensions

2 0.00127 0.00063 0.46 0.634

University of the Aegean Department of Financial and Management Engineering

[109]

Source DF Adj SS Adj MS F-Value P-Value

 Image Resolution*Dilated Convolution*Box

Loss*Backbone Network

2 0.00663 0.00331 2.40 0.096

 Image Resolution*Dilated Convolution*Box

Loss*Data Augmentation

2 0.00039 0.00020 0.14 0.867

 Image Resolution*Dilated

Convolution*Anchor Dimensions*Backbone

Network

2 0.01226 0.00613 4.44 0.014

 Image Resolution*Dilated

Convolution*Anchor Dimensions*Data

Augmentation

2 0.00090 0.00045 0.33 0.723

 Image Resolution*Dilated

Convolution*Backbone Network*Data

Augmentation

2 0.00357 0.00178 1.29 0.279

 Image Resolution*Box Loss*Anchor

Dimensions*Backbone Network

2 0.00510 0.00255 1.85 0.163

 Image Resolution*Box Loss*Anchor

Dimensions*Data Augmentation

2 0.00059 0.00029 0.21 0.808

 Image Resolution*Box Loss*Backbone

Network*Data Augmentation

2 0.00078 0.00039 0.28 0.756

 Image Resolution*Anchor

Dimensions*Backbone Network*Data

Augmentation

2 0.00260 0.00130 0.94 0.393

 Dilated Convolution*Box Loss*Anchor

Dimensions*Backbone Network

1 0.00951 0.00951 6.89 0.010

 Dilated Convolution*Box Loss*Anchor

Dimensions*Data Augmentation

1 0.00083 0.00083 0.60 0.440

 Dilated Convolution*Box Loss*Backbone

Network*Data Augmentation

1 0.00044 0.00044 0.32 0.575

 Dilated Convolution*Anchor

Dimensions*Backbone Network*Data

Augmentation

1 0.00002 0.00002 0.01 0.909

 Box Loss*Anchor Dimensions*Backbone

Network*Data Augmentation

1 0.00793 0.00793 5.74 0.019

 5-Way Interactions 11 0.01671 0.00152 1.10 0.370

 Image Resolution*Dilated Convolution*Box

Loss*Anchor Dimensions*Backbone Network

2 0.01044 0.00522 3.78 0.026

 Image Resolution*Dilated Convolution*Box

Loss*Anchor Dimensions*Data Augmentation

2 0.00361 0.00181 1.31 0.275

 Image Resolution*Dilated Convolution*Box

Loss*Backbone Network*Data Augmentation

2 0.00012 0.00006 0.04 0.958

University of the Aegean Department of Financial and Management Engineering

[110]

Source DF Adj SS Adj MS F-Value P-Value

 Image Resolution*Dilated

Convolution*Anchor Dimensions*Backbone

Network*Data Augmentation

2 0.00073 0.00037 0.27 0.767

 Image Resolution*Box Loss*Anchor

Dimensions*Backbone Network*Data

Augmentation

2 0.00074 0.00037 0.27 0.765

 Dilated Convolution*Box Loss*Anchor

Dimensions*Backbone Network*Data

Augmentation

1 0.00106 0.00106 0.77 0.383

 6-Way Interactions 2 0.00411 0.00205 1.49 0.231

 Image Resolution*Dilated Convolution*Box

Loss*Anchor Dimensions*Backbone

Network*Data Augmentation

2 0.00411 0.00205 1.49 0.231

Error 95 0.13112 0.00138

Total 191 3.63153

Pareto Chart

Figure 5.12 illustrates the Pareto chart of standardized effects for the testing process of our study. It

demonstrates the influence and interactions of the different selected factors, on the mAP like Figure 5.9.

The factors labeled from A to F, are the hyperparameters we selected for our study. More specifically:

 A: Image Resolution

 B: Dilated Convolution

 C: Box Loss

 D: Anchor Dimensions

 E: Backbone Network

 F: Data Augmentation

In Figure 5.12, the red-dashed line indicates the standardized effect value of 1.99 when the significance

threshold is α = 0.05.

Based on the Pareto Chart in Figure 5.12, the factors and the interaction of factors in the testing process

of our study are the following ones (starting from the most significant to the least significant):

 Backbone Network (E)

 Data Augmentation (F)

 The interaction Backbone Network (E) and Data Augmentation (F)

 Image Resolution (A)

 Box Loss (C)

University of the Aegean Department of Financial and Management Engineering

[111]

 The interaction of Dilated Convolution (B) and Backbone Network (E)

 Anchor Dimensions (D)

 Dilated Convolution (B)

 The interaction of Image Resolution (A) and Data Augmentation (F)

 The interaction of Image Resolution (A) and Anchor Dimensions (D)

 The interaction of Image Resolution (A), Backbone Network (E) and Data Augmentation

(F)

 The interaction of Image Resolution (A) and Backbone Network (E)

 The interaction of Dilated Convolution (B), Anchor Dimensions (D) and Backbone Network

(E)

 The interaction of Box Loss (C) and Anchor Dimensions (D)

 The interaction of Dilated Convolution (B), Box Loss (C), Anchor Dimensions (D) and

Backbone Network (E)

 The interaction of Box Loss (C) and Data Augmentation (F)

 The interaction of Image Resolution (A), Dilated Convolution (B), Anchor Dimensions (D)

and Backbone Network (E)

 The interaction of Box Loss (C), Backbone Network (E) and Data Augmentation (F)

 The interaction of Dilated Convolution (B), Box Loss (C) and Backbone Network (E)

 The interaction of Box Loss (C), Anchor Dimensions (D) and Backbone Network (E)

 The interaction of Box Loss (C), Anchor Dimensions (D), Backbone Network (E) and Data

Augmentation (F)

 The interaction of Box Loss (C), Anchor Dimensions (D) and Data Augmentation (F)

 The interaction of Image Resolution (A), Dilated Convolution (B) and Backbone Network

(E)

 The interaction of Image Resolution (A), Dilated Convolution (B), Box Loss (C), Anchor

Dimensions (D) and Backbone Network (E)

 The interaction of Dilated Convolution (B) and Data Augmentation (F)

 The interaction of Dilated Convolution (B), Backbone Network (E) and Data Augmentation

(F)

The remaining hyperparameters or their interactions do not have a significant effect on mAP, since their

values are less than 1.99.

In the testing process the most significant hyperparameter is the backbone network (E), followed by data

augmentation (F) and image resolution (A). Of course, all factors and factor interactions exceeding the red

line (threshold 1.99) are also noted as statistically significant. Interactions such as AE, AF, BE, and AB have

significant effects on mAP.

University of the Aegean Department of Financial and Management Engineering

[112]

Figure 5.12 Pareto chart of the standardized effects during testing process

Based on Pareto Chart of the training process (Figure 5.9) and the Pareto Chart of the testing process

(Figure 5.12), we can conclude that:

1. Important hyperparameters:

 Training: The Backbone Network (E) has the largest standardized effect, followed by Data

Augmentation (F) and Anchor Dimensions (D). These three hyperparameters are the dominant

ones in the training process.

 Testing: Similarly, Backbone Network (E) remains the most important hyperparameter during

testing, followed by Data Augmentation (F) and Image Resolution (A).

2. Important interactions of hyperparameters:

 Training: Significant interactions include EF, CD, AF, and CF. These interactions suggest that

interactions of backbone network with data augmentation and anchor dimensions are important

during training.

 Testing: Interactions such as AE, AF, BE, and AB seem to be more important during testing,

indicating that factors like image resolution, when combined with data augmentation or the

backbone network, have a greater influence on mAP.

Therefore, we can conclude that backbone network (E) and data augmentation (F) consistently remain

the most significant hyperparameters for improving mAP in both training and testing processes,

indicating their importance in model performance across both phases.

Main effects plot for mAP

University of the Aegean Department of Financial and Management Engineering

[113]

Figure 5.13 shows the main effects plot for the testing process in our study (Kim et al., 2007), which

measures the impact on mAP for the factors A, B, C, D, E and F. By analyzing these six factors in the main

effect plot in Minitab, we can conclude to the following observations below:

 Increasing image resolution from 352x352 to 413x416 improves mAP by 24.6% - 20.4% = 4.2%. By

further increasing the image resolution from 416x416 to 832x832 improves mAP by 36.7% - 24.6%

= 12.1%

 Adding dilated convolution in our model reduces mAP by 28.5% - 25.9% = 2.6%

 Changing the box loss function from IoU to DIoU improves mAP by 29.2% - 25.2% = 4%

 Changing anchor box dimensions from the default model values to a new set of values reduces

mAP by 28.8% - 25.7% = 3.1%.

 Changing the backbone network from Darknet-53 (default) to ResNet-152 (new) reduces mAP by

36.6% - 17.8% = 18.8%.

 Adding data augmentation in our model improves mAP by 30.6% - 23.8% = 6.8%

The addition of dilated convolution in our model, the selection of new anchor dimensions and the

alternation of the backbone network from Darkenet-53 to ResNet-152 have negative effect on mAP as they

reduce its value. As we can see from the plot below (Figure 5.13) the choice of ResNet-152 over Darknet-

53 has the most negative impact on mAP, reducing its value approximately by half (36.6% to 17.8%).

On the other hand, the increase on image resolution, the alternation of box loss function from IoU to DIoU

and the addition of data augmentation improve the value of mAP, with the image resolution having the

greatest impact, similar to the training process.

Therefore, we conclude that the best options for the factors/hyperparameters we selected, which

positively affect the mAP value, are the same with the training process:

 832x832 for image resolution

 Absence of dilated convolution

 DIoU for box loss function

 Default values for the anchor dimensions

 Darknet-53 as the backbone network

 Addition of the mosaic data augmentation technique

University of the Aegean Department of Financial and Management Engineering

[114]

Figure 5.13 Main Effects Plot for mAP during testing process

Therefore, from the above results, we can conclude that Darknet-53 as a backbone offers a better

performance when we have a higher image resolution (832x832), the default anchor dimension, the

YOLOv3 model suggests, and the dilated convolution before the YOLO heads, is not added. Nevertheless,

it seems that the addition of data augmentation is important, as the default YOLOv3 model does not use

data augmentation techniques. Additionally, our performance is better when the box loss function is DIoU

instead of the IoU that is the default box loss function of YOLOv3.

5.4.3 Similarities and differences in the analysis results of validation vs. testing

Table 5.9 compares the effects of the main factors on mAP resulting from the ANOVA of validation vs.

testing.

Table 5.9 Comparison of the effects of the main factors on mAP between validation and testing. The values indicate the
difference between High and Low

Factor/Interaction Validation effect on mAP in % (
High – Low)

Testing effect on mAP in %
(High – Low)

Image resolution (A) 4.0 +12.2 = 16.2 4.2+12.1 = 16.3

Dilated Convolution (B) 3 2.6

Box Loss Function (C) 5.9 4

Anchor Box Dimensions (D) 5 3.1

Backbone Network (E) 22.5 18.8

Data Augmentation (F) 8.4 6.8

More specifically, we can conclude that the effect of Image Resolution (A) on mAP resulting from either

the validation or testing ANOVA is consistent. Similar conclusions hold for almost all other Factors. In

general, though the effects resulting from the ANOVA of the testing results have slightly lower values as

those resulting from the ANOVA of the Testing results. This may be attributed to the lower mAP values

obtained during testing.

University of the Aegean Department of Financial and Management Engineering

[115]

Overall, the analysis highlights that hyperparameters, such as image resolution and the backbone

network, have consistently very significant effects on mAP across both validation and testing phases. The

effects of the rest of the factors are still statistically significant but lower in value.

5.4.4 Evaluation Metrics for YOLOv3: Performance

As discussed in Chapter 3, key evaluation metrics such as Precision, Recall, F1-Score, Average Precision

(AP), and mean Average Precision (mAP) are used to assess model performance. As a reminder, Precision

measures how accurately the model identifies objects, while Recall indicates its ability to detect all

relevant objects. Thus, Precision is the ratio of True Positives to True Positives + False Positives, while Recall

is the ratio of True Positives to total objects in the image (True Positives + False Negatives). A True Positive

occurs when the model correctly detects an object with appropriate Intersection over Union (IoU) and the

right classification, while a False Positive occurs when the model misclassifies, that is, it detects a non-

existent object or predicts multiple boxes for the same object. A False Negative occurs when the model

may not detect an object that is present in the image. The F1-score provides a balance between Precision

and Recall, and AP evaluates the Precision across different Recall values for a single class, whereas mAP

calculates the average AP across all object classes. A higher mAP suggests improved detection

performance across multiple categories. Consequently, these metrics are important in evaluating the

model’s performance.

The 90th experiment results (see Table 5.10) give a detailed evaluation of the model’s performance using

the above metrics. Based on these results, it is observed that while the model detects cars accurately, it

has difficulty identifying bikes and people, which leads to a higher number of false positives.

Table 5.10 Evaluation metrics of YOLOv3 90th experiment

Specifically,

Person - Class ID: 0

 TP (True Positives): 19,033 correctly detected people with sufficient IoU and correct classification

 FP (False Positives): 9,750 incorrect detections due to misclassification, ghost detections, or

overlapping bounding boxes

 FN (False Negatives): 23,263 undetected objects, although they existed in the image

Car - Class ID: 1

 TP: 33,299 cars correctly detected with proper IoU and classification

 FP: 8,054 incorrect detections, likely including misclassified objects or duplicate boxes

Overall model
performance

University of the Aegean Department of Financial and Management Engineering

[116]

 FN (False Negatives): 6,820 actual cars were not identified by the model despite being in the image

Long Vehicle - Class ID: 2

 TP: 6,702 long vehicles correctly identified

 FP: 3,180 false detections, likely due to incorrect object classification or improper bounding box

placement.

 FN (False Negatives): 3,936 long vehicles were present in the image but remained undetected by

the model

Bike - Class ID: 3

 TP: 9,823 bikes correctly detected.

 FP: 5,757 incorrect detections, possibly caused by confusion with other objects or duplicate

detections.

 FN (False Negatives): 17,463 bicycles were missing by the model, leading to missing detections.

Total Performance

 TP: 68,857 objects correctly detected.

 FP: 26,741 incorrect detections due to misclassification, poor bounding box placement, or

multiple detections of the same object.

 FN (False Negatives): 51,482 objects were not detected, reducing the model’s recall performance

Therefore, the model demonstrates strong performance in car detection, achieving the highest AP

(85.16%), with high precision (0.81) and recall (0.83), making it the most reliable class. However, bike

detection is the weakest, with low AP (41.88%) and recall (0.36), indicating that the model struggles to

correctly identify bikes, often missing actual bikes and producing many false positives. Person detection is

also challenging, having a moderate AP (49.11%), low recall (0.45), high false positives (9,750), and high

false negatives (23,263) indicating frequent misclassification of objects as people. The high false positive

rate (FP = 26,741) indicates that the model frequently detects objects incorrectly.

Based on our experimental results, we can conclude from the last row of Table 5.10:

1. Precision (0.72) showcases a good accuracy, but false positives exist. The model correctly

classifies 72% of detected objects, meaning that 28% of detections are false positives.

2. Recall (0.57) indicates many missed detections. A recall score of 0.57 suggests that while the

model detects many objects, a large portion remains undetected, missing 43% of actual objects.

This imbalance between precision and recall indicates that the model avoids making too many

incorrect detections but still fails to detect many actual objects.

University of the Aegean Department of Financial and Management Engineering

[117]

3. F1-Score (0.64) indicates a moderate balance between precision and recall. A higher F1-score

would indicate a more effective relationship between detecting all objects and reducing

misclassifications.

4. mean Average Precision (60.99%) could indicate good but not optimal performance. This score

of 60.99% suggests that across all object classes, the model is reliable but not highly accurate,

especially at detecting objects across different recall levels. The mAP is largely influenced by strong

performance in car detection (AP = 85.16%) and weaker performance in person and bike

detection.

Previous studies report YOLOv3 mAP values ranging from 39.7% to 40.3% on similar UAV datasets

(Pebrianto et al., 2023). Another study based on UAV imagery, achieved a test mAP of 31.4% on the

VisDrone dataset using YOLOv3 (Zhang et al., 2023). Our model achieved a mAP of 60.99% in the validation

process and a mAP of 52.37% (see Table 5.3) in the test process. Consequently, our model outperforms

these benchmarks, demonstrating improved robustness in detecting various object classes. However, it is

important to note that different UAV datasets were used in our research and in the studies mentioned.

It should be mentioned that mAP is the most significant evaluation metric. The mAP value is computed at

a specific Intersection over Union (IoU) threshold, commonly set at 0.5 (mAP@0.5). A higher IoU threshold

(e.g., 0.75) requires stricter overlap between predicted and ground-truth bounding boxes, often reducing

mAP, while a lower threshold (e.g., 0.25) allows less strict detections, potentially increasing mAP. This

means a model with high mAP (0.75) is more precise in localization. A helpful way to understand mAP is

to imagine it as a measure of confidence in both detecting and correctly classifying objects. For instance,

if the model detects a person but mistakenly classifies it as a bicycle, this impacts AP and ultimately

reduces mAP. A model with a high mAP not only finds most objects but also classifies them correctly with

high confidence.

In simply terms, mAP does not indicate the percentage of objects detected in an image. A common mistake

is that if mAP = 60%, the model detects 60% of the objects in an image. However, mAP is a measure of

both detection accuracy and classification correctness across multiple recall thresholds. For example, if a

model predicts 80 bounding boxes but 40 of them have poor localization (𝐼𝑜𝑈 ≤ 0.5) or incorrect class

labels (𝐶𝑙𝑎𝑠𝑠 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≤ 0.25), the precision and recall values will be affected, leading to a lower mAP

score. Thus, a model with mAP = 60% does not mean it identifies 60% of objects, but rather that it achieves

an average precision of 60% over different recall values across multiple object categories. In practice, mAP

serves as a holistic performance metric that evaluates both how many objects are detected and how

correctly they are localized and classified rather than just the proportion of objects found in an image.

mailto:mAP@0.5

University of the Aegean Department of Financial and Management Engineering

[118]

Chapter 6 Conclusions

This thesis focuses on optimizing training of the YOLOv3 model for object detection using UAV-captured

imagery. It showcases the importance of hyperparameter selection in training effectiveness. Specifically,

through extensive analysis, we identified important hyperparameters that influence the trained model’s

performance. By adjusting these hyperparameters we fine-tuned training of the model to achieve higher

precision in detecting objects.

The study utilized annotated UAV datasets that were preprocessed to align with YOLOv3’s requirements.

The selected datasets were the UA Vehicle Detection Dataset, Stanford Dataset and VisDrone2019DET

dataset. The consolidated dataset consists of 16,303 images with 602,240 annotations and it was split into

training (80%), validation (10%), and testing (10%) subsets.

Training optimization was approached by dividing hyperparameters into two categories. The first one

included hyperparameters that were set according to the characteristics of the training subset and were

kept invariant throughout the analysis. These included max batches, number of classes, filters, and steps.

The second category contained the hyperparameters we selected to adjust; i.e., image resolution,

backbone network, anchor box dimensions, dilated convolution, box loss and data augmentation

techniques.

A Full-Factorial experimental design was employed to generate 96 (25 𝑥 3) distinct combinations of these

key hyperparameters. The training process was executed twice for each combination of the selected

hyperparameters, resulting in a total of 192 trained models. During training, validation was performed

every 100 iterations. Finally, after training, we conducted the testing process to evaluate model

performance.

Each of the 192 experiments produced outputs consisting of the highest mAP achieved during validation

and testing. The results of these experiments were analyzed using ANOVA, which revealed that all

hyperparameters significantly influence model's performance. Among them, the most impactful

hyperparameters on performance are: the backbone network, data augmentation and image resolution.

Additionally, two significant two-way interactions were observed: a) between the backbone network and

data augmentation, and b) between the backbone network and dilated convolution.

The best-performing model achieved mAP values of 60.99% during training/validation and 52.51% during

testing process. The model that achieved this performance corresponds to the following hyperparameter

combination:

o Image Resolution: 832x832

o Dilated Convolution: No

o Box Loss: DIoU

o Anchor Dimensions: Default

o Backbone: Darknet-53

o Data Augmentation: Mosaic

University of the Aegean Department of Financial and Management Engineering

[119]

On the other hand, the performance of the lowest performing models was very low, indicating that the

hyperparameter selection and tuning plays an important role and could lead to significant improvements

in YOLOv3’s detection performance.

The thesis contributed in revealing:

 The important role of hyperparameter selection and tuning in optimizing YOLOv3’s training

performance

 The significant and quantifiable impact of hyperparameters and their interactions on the precision

of object detection.

Future research investigations could include:

 Exploring hyperparameters of newer YOLO versions to analyze how they could affect YOLOv3

performance

 Integrating another backbone network to validate that the default one (Darknet-53) offers the

best performance

 Incorporating other types of data augmentation apart from “mosaic” that was selected in our

study

 Testing the performance of the model in a greater variety of datasets

 Creating balance in class representation to lower the mAP differences between training/validation

and testing.

University of the Aegean Department of Financial and Management Engineering

[120]

References

Aksu, G., Güzeller, C.O., Eser, M.T., 2019. The Effect of the Normalization Method Used in Different

Sample Sizes on the Success of Artificial Neural Network Model. Int. J. Assess. Tools Educ. 6, 170–192.

https://doi.org/10.21449/ijate.479404

Alexey, 2024. AlexeyAB/darknet.

Alexey, 2020. Mosaic Augmentation Paper? · Issue #8 · WongKinYiu/CrossStagePartialNetworks [WWW

Document]. GitHub. URL https://github.com/WongKinYiu/CrossStagePartialNetworks/issues/8 (accessed

9.1.24).

Anwar, A., 2022. What is Average Precision in Object Detection & Localization Algorithms and how to

calculate it? [WWW Document]. Medium. URL https://towardsdatascience.com/what-is-average-

precision-in-object-detection-localization-algorithms-and-how-to-calculate-it-3f330efe697b (accessed

2.26.24).

Ati̇k, M.E., Duran, Z., Özgünlük, R., 2022. Comparison of YOLO Versions for Object Detection from Aerial

Images. IJEGEO 9, 87–93. https://doi.org/10.30897/ijegeo.1010741

Bi, Y., Xue, B., Mesejo, P., Cagnoni, S., Zhang, M., 2023. A Survey on Evolutionary Computation for

Computer Vision and Image Analysis: Past, Present, and Future Trends. IEEE Transactions on Evolutionary

Computation 27, 5–25. https://doi.org/10.1109/TEVC.2022.3220747

Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M., 2020. YOLOv4: Optimal Speed and Accuracy of Object

Detection. https://doi.org/10.48550/arXiv.2004.10934

Bodla, N., Singh, B., Chellappa, R., Davis, L.S., 2017. Soft-NMS -- Improving Object Detection With One

Line of Code. Presented at the Proceedings of the IEEE International Conference on Computer Vision, pp.

5561–5569.

Brock, A., Lim, T., Ritchie, J.M., Weston, N., 2017. FreezeOut: Accelerate Training by Progressively

Freezing Layers. https://doi.org/10.48550/arXiv.1706.04983

Buczkowski, M., Stasiński, R., 2019. Convolutional Neural Network-Based Image Distortion Classification,

in: 2019 International Conference on Systems, Signals and Image Processing (IWSSIP). Presented at the

2019 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 275–279.

https://doi.org/10.1109/IWSSIP.2019.8787212

Cai, Z., Fan, Q., Feris, R.S., Vasconcelos, N., 2016. A Unified Multi-scale Deep Convolutional Neural

Network for Fast Object Detection, in: Leibe, B., Matas, J., Sebe, N., Welling, M. (Eds.), Computer Vision –

ECCV 2016. Springer International Publishing, Cham, pp. 354–370. https://doi.org/10.1007/978-3-319-

46493-0_22

Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B., Shelhamer, E., 2014. cuDNN:

Efficient Primitives for Deep Learning. https://doi.org/10.48550/arXiv.1410.0759

Crasto, N., 2024. Class Imbalance in Object Detection: An Experimental Diagnosis and Study of Mitigation

Strategies. https://doi.org/10.48550/arXiv.2403.07113

University of the Aegean Department of Financial and Management Engineering

[121]

Cruz Martinez, J., 2021. Real-time Object Detection in Video (with intro to Yolo v3) [WWW Document].

URL https://infotech.report/guest-articles/real-time-object-detection-in-video-with-intro-to-yolo-v3

(accessed 8.25.24).

Culjak, I., Abram, D., Pribanic, T., Dzapo, H., Cifrek, M., 2012. A brief introduction to OpenCV, in: 2012

Proceedings of the 35th International Convention MIPRO. Presented at the 2012 Proceedings of the 35th

International Convention MIPRO, pp. 1725–1730.

Díaz-Cel, J., Arce-Lopera, C., Mena, J.C., Quintero, L., 2019. The Effect of Color Channel Representations

on the Transferability of Convolutional Neural Networks | SpringerLink [WWW Document]. URL

https://link.springer.com/chapter/10.1007/978-3-030-17795-9_3 (accessed 9.23.24).

Diwan, T., Anirudh, G., Tembhurne, J.V., 2023. Object detection using YOLO: challenges, architectural

successors, datasets and applications. Multimed Tools Appl 82, 9243–9275.

https://doi.org/10.1007/s11042-022-13644-y

Dubey, A.K., Jain, V., 2019. Comparative Study of Convolution Neural Network’s Relu and Leaky-Relu

Activation Functions, in: Mishra, S., Sood, Y.R., Tomar, A. (Eds.), Applications of Computing, Automation

and Wireless Systems in Electrical Engineering. Springer, Singapore, pp. 873–880.

https://doi.org/10.1007/978-981-13-6772-4_76

Gad, A.F., 2020. Accuracy, Precision, and Recall in Deep Learning [WWW Document]. Paperspace Blog.

URL https://blog.paperspace.com/deep-learning-metrics-precision-recall-accuracy/ (accessed 2.26.24).

Gashi, D., Pereira, M., Vterkovska, V., 2017. Multi-Scale Context Aggregation by Dilated Convolutions

Machine Learning - Project.

Gilbert, T., 2020. YOLO Object Detection with OpenCV [WWW Document]. Gilbert Tanner. URL

https://gilberttanner.com/blog/yolo-object-detection-with-opencv/ (accessed 6.28.24).

Girshick, R., Donahue, J., Darrell, T., Malik, J., 2014. Rich Feature Hierarchies for Accurate Object

Detection and Semantic Segmentation. Presented at the Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 580–587.

Hakala, T., Honkavaara, E., Saari, H., Mäkynen, J., Kaivosoja, J., Pesonen, L., Pölönen, I., 2013. SPECTRAL

IMAGING FROM UAVS UNDER VARYING ILLUMINATION CONDITIONS. The International Archives of the

Photogrammetry, Remote Sensing and Spatial Information Sciences XL-1-W2, 189–194.

https://doi.org/10.5194/isprsarchives-XL-1-W2-189-2013

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep Residual Learning for Image Recognition. Presented at the

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778.

He, K., Zhang, X., Ren, S., Sun, J., 2015. Spatial Pyramid Pooling in Deep Convolutional Networks for

Visual Recognition. https://doi.org/10.1007/978-3-319-10578-9_23

Heffels, M., Vanschoren, J., 2020. Aerial Imagery Pixel-level Segmentation.

https://doi.org/10.48550/arXiv.2012.02024

Henderson, P., Ferrari, V., 2017. End-to-end training of object class detectors for mean average precision.

University of the Aegean Department of Financial and Management Engineering

[122]

Hosang, J., Benenson, R., Schiele, B., 2017. Learning Non-Maximum Suppression. Presented at the

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4507–4515.

Huang, C.-Y., Lin, I.-C., Liu, Y.-L., 2022. Applying Deep Learning to Construct a Defect Detection System for

Ceramic Substrates. Applied Sciences 12, 2269. https://doi.org/10.3390/app12052269

Igiri, C., Uzoma, A., Silas, A., 2021. Effect of Learning Rate on Artificial Neural Network in Machine

Learning. International Journal of Engineering Research 4.

iguazio, 2022. What is Recall [WWW Document]. Iguazio. URL https://www.iguazio.com/glossary/recall/

(accessed 2.21.24).

Ioffe, S., Szegedy, C., 2015a. Batch Normalization: Accelerating Deep Network Training by Reducing

Internal Covariate Shift. https://doi.org/10.48550/arXiv.1502.03167

Ioffe, S., Szegedy, C., 2015b. Batch Normalization: Accelerating Deep Network Training by Reducing

Internal Covariate Shift, in: Proceedings of the 32nd International Conference on Machine Learning.

Presented at the International Conference on Machine Learning, PMLR, pp. 448–456.

Jiang, P., Ergu, D., Liu, F., Cai, Y., Ma, B., 2022. A Review of Yolo Algorithm Developments. Procedia

Computer Science, The 8th International Conference on Information Technology and Quantitative

Management (ITQM 2020 & 2021): Developing Global Digital Economy after COVID-19 199, 1066–1073.

https://doi.org/10.1016/j.procs.2022.01.135

Kamal, A., 2021. YOLO, YOLOv2 and YOLOv3: All You want to know. Medium. URL https://amrokamal-

47691.medium.com/yolo-yolov2-and-yolov3-all-you-want-to-know-7e3e92dc4899 (accessed 2.2.24).

Khan, S., 2023. IMAGE ANNOTATION USING DEEP LEARNING. Medium. URL

https://medium.com/@salmanskhan/image-annotation-using-deep-learning-115158fb4931 (accessed

9.15.24).

Kirk, D., 2007. NVIDIA cuda software and gpu parallel computing architecture, in: Proceedings of the 6th

International Symposium on Memory Management. Presented at the ISMM07: International Symposium

on Memory Management, ACM, Montreal Quebec Canada, pp. 103–104.

https://doi.org/10.1145/1296907.1296909

Li, Y., Cheng, R., Zhang, C., Chen, M., Liang, H., Wang, Z., 2023. Dynamic Mosaic algorithm for data

augmentation. MBE 20, 7193–7216. https://doi.org/10.3934/mbe.2023311

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L., 2014. Microsoft

COCO: Common Objects in Context, in: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (Eds.), Computer

Vision – ECCV 2014. Springer International Publishing, Cham, pp. 740–755. https://doi.org/10.1007/978-

3-319-10602-1_48

Liu, H.-T.D., Kim, V.G., Chaudhuri, S., Aigerman, N., Jacobson, A., 2020. Neural Subdivision.

https://doi.org/10.48550/arXiv.2005.01819

Liu, S., Qi, L., Qin, H., Shi, J., Jia, J., 2018. Path Aggregation Network for Instance Segmentation. Presented

at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8759–8768.

University of the Aegean Department of Financial and Management Engineering

[123]

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C., 2016. SSD: Single Shot MultiBox

Detector, in: Leibe, B., Matas, J., Sebe, N., Welling, M. (Eds.), Computer Vision – ECCV 2016, Lecture

Notes in Computer Science. Springer International Publishing, Cham, pp. 21–37.

https://doi.org/10.1007/978-3-319-46448-0_2

Ma, H., Liu, Y., Ren, Y., Yu, J., 2020. Detection of Collapsed Buildings in Post-Earthquake Remote Sensing

Images Based on the Improved YOLOv3. Remote Sensing 12, 44. https://doi.org/10.3390/rs12010044

Montesinos López, O.A., Montesinos López, A., Crossa, J., 2022. Overfitting, Model Tuning, and

Evaluation of Prediction Performance, in: Montesinos López, O.A., Montesinos López, A., Crossa, José

(Eds.), Multivariate Statistical Machine Learning Methods for Genomic Prediction. Springer International

Publishing, Cham, pp. 109–139. https://doi.org/10.1007/978-3-030-89010-0_4

Mu, S., Wang, C., Liu, M., Li, D., Zhu, M., Chen, X., Xie, X., Deng, Y., 2011. Evaluating the potential of

graphics processors for high performance embedded computing, in: 2011 Design, Automation & Test in

Europe. Presented at the 2011 Design, Automation & Test in Europe, pp. 1–6.

https://doi.org/10.1109/DATE.2011.5763120

Mukhoti, J., Kulharia, V., Sanyal, A., Golodetz, S., Torr, P., Dokania, P., 2020. Calibrating Deep Neural

Networks using Focal Loss, in: Advances in Neural Information Processing Systems. Curran Associates,

Inc., pp. 15288–15299.

Navarro Tuch, S., López-Aguilar, A., Bustamante-Bello, R., Molina, A., Izquierdo-Reyes, J., Curiel-Ramirez,

L., 2019. Emotional domotics: a system and experimental model development for UX implementations.

International Journal on Interactive Design and Manufacturing (IJIDeM) 13.

https://doi.org/10.1007/s12008-019-00598-z

Oti, E., Olusola, M., Eze, F., Enogwe, S., 2021. Comprehensive Review of K-Means Clustering Algorithms.

International Journal of Advances in Scientific Research and Engineering 07, 64–69.

https://doi.org/10.31695/IJASRE.2021.34050

Öztürk, Ş., Özkaya, U., Akdemir, B., Seyfi, L., 2018. Convolution Kernel Size Effect on Convolutional Neural

Network in Histopathological Image Processing Applications | IEEE Conference Publication | IEEE Xplore

[WWW Document]. URL https://ieeexplore.ieee.org/abstract/document/8742484 (accessed 9.23.24).

Papageorgiou, C.P., Oren, M., Poggio, T., 1998. A general framework for object detection, in: Sixth

International Conference on Computer Vision (IEEE Cat. No.98CH36271). Presented at the Sixth

International Conference on Computer Vision (IEEE Cat. No.98CH36271), pp. 555–562.

https://doi.org/10.1109/ICCV.1998.710772

Pathak, A.R., Pandey, M., Rautaray, S., 2018. Application of Deep Learning for Object Detection. Procedia

Computer Science, International Conference on Computational Intelligence and Data Science 132, 1706–

1717. https://doi.org/10.1016/j.procs.2018.05.144

Pebrianto, W., Mudjirahardjo, P., Pramono, S.H., Rahmadwati, Setyawan, R.A., 2023. YOLOv3 with Spatial

Pyramid Pooling for Object Detection with Unmanned Aerial Vehicles.

https://doi.org/10.48550/arXiv.2305.12344

University of the Aegean Department of Financial and Management Engineering

[124]

Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You Only Look Once: Unified, Real-Time Object

Detection. Presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 779–788.

Redmon, J., Farhadi, A., 2018. YOLOv3: An Incremental Improvement.

https://doi.org/10.48550/arXiv.1804.02767

Redmon, J., Farhadi, A., 2017. YOLO9000: Better, Faster, Stronger, in: 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). Presented at the 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), IEEE, Honolulu, HI, pp. 6517–6525. https://doi.org/10.1109/CVPR.2017.690

Ren, S., He, K., Girshick, R., Sun, J., 2015. Faster R-CNN: Towards Real-Time Object Detection with Region

Proposal Networks, in: Advances in Neural Information Processing Systems. Curran Associates, Inc.

Riad, R., Teboul, O., Grangier, D., Zeghidour, N., 2022. Learning strides in convolutional neural networks.

https://doi.org/10.48550/arXiv.2202.01653

Ribani, R., Marengoni, M., 2019. A Survey of Transfer Learning for Convolutional Neural Networks, in:

2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T). Presented at

the 2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T), pp. 47–57.

https://doi.org/10.1109/SIBGRAPI-T.2019.00010

Robicquet, A., Sadeghian, A., Alahi, A., Savarese, S. (Eds.), 2016. Learning Social Etiquette: Human

Trajectory Understanding In Crowded Scenes. Computer Vision – ECCV 2016, Lecture Notes in Computer

Science. https://doi.org/10.1007/978-3-319-46484-8_33

Santos, P.P., Carvalho, D.S., Sardinha, A., Melo, F.S., 2024. The impact of data distribution on Q-learning

with function approximation. Mach Learn 113, 6141–6163. https://doi.org/10.1007/s10994-024-06564-5

Sharma, Siddharth, Sharma, Simone, Athaiya, A., 2020. ACTIVATION FUNCTIONS IN NEURAL NETWORKS.

IJEAST 04, 310–316. https://doi.org/10.33564/IJEAST.2020.v04i12.054

Shorten, C., Khoshgoftaar, T.M., 2019. A survey on Image Data Augmentation for Deep Learning. J Big

Data 6, 60. https://doi.org/10.1186/s40537-019-0197-0

Shuai, Q., Wu, X., 2020. Object detection system based on SSD algorithm, in: 2020 International

Conference on Culture-Oriented Science & Technology (ICCST). Presented at the 2020 International

Conference on Culture-oriented Science & Technology (ICCST), IEEE, Beijing, China, pp. 141–144.

https://doi.org/10.1109/ICCST50977.2020.00033

Sujee, R., Sudharsun, L., Shanthosh, D., 2020. Fabric Defect Detection Using YOLOv2 and YOLO v3 Tiny |

SpringerLink [WWW Document]. URL https://link.springer.com/chapter/10.1007/978-3-030-63467-4_15

(accessed 9.17.24).

Tepteris, G., Mamasis, K., Minis, I., 2023. State of the art object detection and recognition methods(draft)

| DeOPSys Lab [WWW Document]. URL

https://deopsys.aegean.gr/node/280?fbclid=IwAR0aMRFETCX8zDIJcnF_Iy5AzhPhvMwYZBlk14EaZlF5sNH

K_oIl2R8tCpI (accessed 2.8.24).

University of the Aegean Department of Financial and Management Engineering

[125]

Uijlings, J.R.R., van de Sande, K.E.A., Gevers, T., Smeulders, A.W.M., 2013. Selective Search for Object

Recognition. Int J Comput Vis 104, 154–171. https://doi.org/10.1007/s11263-013-0620-5

Vakili, M., Ghamsari, M., Rezaei, M., 2020. Performance Analysis and Comparison of Machine and Deep

Learning Algorithms for IoT Data Classification.

van Dyk, D.A., Meng, X.-L., 2001. The Art of Data Augmentation. Journal of Computational and Graphical

Statistics 10, 1–50. https://doi.org/10.1198/10618600152418584

Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E., 2018. Deep Learning for Computer

Vision: A Brief Review. Computational Intelligence and Neuroscience 2018, e7068349.

https://doi.org/10.1155/2018/7068349

Wang, 2024. jwangjie/UAV-Vehicle-Detection-Dataset.

Wenkel, S., Alhazmi, K., Liiv, T., Alrshoud, S., Simon, M., 2021. Confidence Score: The Forgotten

Dimension of Object Detection Performance Evaluation [WWW Document]. URL

https://www.mdpi.com/1424-8220/21/13/4350 (accessed 9.23.24).

Wu, Y., He, K., 2018. Group Normalization. Presented at the Proceedings of the European Conference on

Computer Vision (ECCV), pp. 3–19.

Wu, Z., Shen, C., van den Hengel, A., 2019. Wider or Deeper: Revisiting the ResNet Model for Visual

Recognition. Pattern Recognition 90, 119–133. https://doi.org/10.1016/j.patcog.2019.01.006

Xiong, C., Zayed, T., Abdelkader, E.M., 2024. A novel YOLOv8-GAM-Wise-IoU model for automated

detection of bridge surface cracks. Construction and Building Materials 414, 135025.

https://doi.org/10.1016/j.conbuildmat.2024.135025

Xu, H., Yao, L., Li, Z., Liang, X., Zhang, W., 2019. Auto-FPN: Automatic Network Architecture Adaptation

for Object Detection Beyond Classification, in: 2019 IEEE/CVF International Conference on Computer

Vision (ICCV). Presented at the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), IEEE,

Seoul, Korea (South), pp. 6648–6657. https://doi.org/10.1109/ICCV.2019.00675

Yang, F., Choi, W., Lin, Y., 2016. Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale

Dependent Pooling and Cascaded Rejection Classifiers, in: 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). Presented at the 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 2129–2137. https://doi.org/10.1109/CVPR.2016.234

Yang, K., Yau, J.H., Fei-Fei, L., Deng, J., Russakovsky, O., 2022. A Study of Face Obfuscation in ImageNet,

in: Proceedings of the 39th International Conference on Machine Learning. Presented at the

International Conference on Machine Learning, PMLR, pp. 25313–25330.

Zhang, L., Xiong, N., Pan, X., Yue, X., Wu, P., Guo, C., 2023. Improved Object Detection Method Utilizing

YOLOv7-Tiny for Unmanned Aerial Vehicle Photographic Imagery. Algorithms 16, 520.

https://doi.org/10.3390/a16110520

Zhang, W., Fu, C., Xie, H., Zhu, M., Tie, M., Chen, J., 2021. Global context aware RCNN for object

detection. Neural Computing and Applications 33, 1–13. https://doi.org/10.1007/s00521-021-05867-1

University of the Aegean Department of Financial and Management Engineering

[126]

Zhang, X., Zou, Y., Shi, W., 2017. Dilated convolution neural network with LeakyReLU for environmental

sound classification, in: 2017 22nd International Conference on Digital Signal Processing (DSP). Presented

at the 2017 22nd International Conference on Digital Signal Processing (DSP), pp. 1–5.

https://doi.org/10.1109/ICDSP.2017.8096153

Zhang, Y., Wallace, B., 2015. A Sensitivity Analysis of (and Practitioners’ Guide to) Convolutional Neural

Networks for Sentence Classification [WWW Document]. arXiv.org. URL

https://arxiv.org/abs/1510.03820v4 (accessed 9.10.24).

Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., Ren, D., 2020. Distance-IoU Loss: Faster and Better Learning for

Bounding Box Regression. Proceedings of the AAAI Conference on Artificial Intelligence 34, 12993–

13000. https://doi.org/10.1609/aaai.v34i07.6999

Zhu, P., Wen, L., Du, D., Bian, X., Fan, H., Hu, Q., Ling, H., 2021. Detection and Tracking Meet Drones

Challenge.

