

University of the Aegean

School of Engineering

Department of Financial and Management Engineering

Using Twitter to identify consumer sentiment about products and

services through AI

Tsolakidou N. Kleiomeni

 Supervisor: Prof. Ioannis Minis

 Committee Members: Associate Prof. Nikolaos Ampazis

 Assistant Prof. Vasileios Koutras

Chios, September 2022

University of Aegean Department of Financial and Management Engineering

To my family

Acknowledgments

First and furthermost, I would like to express my deepest gratitude to my supervisor

Professor Ioannis Minis for giving me the opportunity to work with him and guide

me though this journey. I am extremely thankful for all the time he had spent to

advise me, for his patience and for all the new knowledge that had come up while

we were working this Thesis. He encourages me so many times to keep on working,

and he always inspired me with his incredible interest in the computer science field

and the strong willing for research and knowledge.

Besides my advisor, I am extremely grateful to Dr. Konstantinos Mamasis for his

support to performing the experiments for the research, his patience, and his major

help while writing this Thesis. Also, I could not have undertaken this journey without

George Tepteris that he was always besides me. I am so thankful for all the advice

and the knowledge he had shared with me.

Additionally, I would like to thank all the members of DeOPSys Lab of Department

of Financial and Management Engineering and my colleague Pepi for the strong

relationship we have developed as we worked through this project.

My appreciation also goes out to my family and friends, especially my dad that he

always being there for me, they have constantly supported and encouraged me to

go on throughout my studies

University of Aegean Department of Financial and Management Engineering

[1]

Abstract

Social media have been established as platforms from which one may extract public

opinion about events, products, and services. Twitter is a principal generator for a

huge amount of unstructured information, and corporations are beginning to

comprehend the power of Twitter and understand the views of their customers by

analyzing the related posted data. Examples of potential applications of such

analysis include improving the accuracy of sales forecasting, supporting significant

marketing decisions, improving existing products etc.

The focus of this Thesis is to investigate appropriate neural network architectures

and refine their parameters to maximize the effectiveness of sentiment

identification in sentences posted online on the Twitter social network. For this, we

have developed and tested various neural network models and used them to extract

sentiment from a set of 8,600 tweets that have been posted online between June

01st and Sept 30th, 2021. This dataset contains tweets -identified and collected using

the Apple hashtag: #apple- posted by consumers expressing opinions or experiences

regarding the company’s products or services. These tweets have been processed

into a form that is appropriate for text analysis and have been manually labelled to

either contain “positive” or “negative” sentiment. The labeled dataset was used as

the input to the neural network for the training process.

Having selected an appropriate, simple, NN architecture, we refined the parameters

of the training process and of the model itself to maximize the effectiveness of the

network and correctly predict positive or negative sentiment. Our method includes

systematic training of model variations under different training conditions. The

training and model structure effectiveness was analyzed statistically to arrive at an

optimized model.

The proposed experimentation and analysis method may be applied to fine tune the

training of networks used in similar applications, such as movie reviews, product

assessments etc.

University of Aegean Department of Financial and Management Engineering

[2]

Περίληψη

Τα μέσα κοινωνικής δικτύωσης (social media) έχουν εδραιωθεί ως πλατφόρμες από

τις οποίες δίνεται η δυνατότητα να αναζητηθούν και να εξαχθούν πληροφορίες

σχετικά με την επικρατούσα γνώμη του καταναλωτικού κοινού για υπάρχοντα

προϊόντα και υπηρεσίες.

Το Twitter αποτελεί την κύρια πηγή άντλησης παρόμοιων μη-δομημένων

πληροφοριών, στρέφοντας το ενδιαφέρον των εταιριών στην έρευνα για την

κατανόηση των απόψεων του καταναλωτικού κοινού μέσω της άντλησης των

πληροφοριών που αναρτώνται στην πλατφόρμα. Παραδείγματα στα οποία θα

μπορούσαν να εφαρμοστούν και να αξιοποιηθούν μέθοδοι ανάλυσης των

δεδομένων αυτών αφορούν την ακριβέστερη πρόβλεψη μελλοντικών πωλήσεων,

την υποστήριξη στην λήψη σημαντικών αποφάσεων που αφορούν το marketing,

βελτιστοποίηση των υπαρχόντων προϊόντων κλπ.

Η παρούσα διπλωματική εργασία εστιάζει στη διερεύνηση διαφόρων

αρχιτεκτονικών νευρωνικών δικτύων και στη βελτιστοποίηση των παραμέτρων

εκπαίδευσής τους με σκοπό τη μεγιστοποίηση της αποτελεσματικότητας τους στην

αναγνώριση του συναισθήματος κειμένου, συγκεκριμένα υπό την μορφή των

tweets που αναρτώνται από τους χρήστες στην πλατφόρμα του Twitter.

Για αυτό τον σκοπό, διερευνήθηκαν διαφορετικοί τύποι νευρωνικών μοντέλων για

την αναγνώριση συναισθήματος από ένα σύνολο 8.600 tweets, τα οποία έχουν

αναρτηθεί στην πλατφόρμα από 1ης Ιουνίου έως 30ης Σεπτεμβρίου 2021. Το

συγκεκριμένο σύνολο δεδομένων δημιουργήθηκε αποκλειστικά για τις ανάγκες της

έρευνας και εμπεριέχει tweets τα οποία έχουν συλλεχτεί από την πλατφόρμα,

αναζητώντας την λέξη-κλειδί #apple προκειμένου να αφορούν αναρτήσεις

καταναλωτών οι οποίοι εκφράζουν τις απόψεις και τις εμπειρίες τους από τη χρήση

προϊόντων και υπηρεσιών της εταιρείας Apple Inc. Στα συλλεχθέντα tweets έγινε

επεξεργασία ώστε να μετασχηματιστούν σε κατάλληλη μορφή για την επεξεργασία

κειμένου από νευρωνικό δίκτυο.

University of Aegean Department of Financial and Management Engineering

[3]

Έχοντας επιλέξει κατάλληλη αλλά και απλή αρχιτεκτονική νευρωνικού δικτύου,

διερευνήσαμε διεξοδικά τις παραμέτρους της διαδικασίας εκπαίδευσης (αλλά και

παραμέτρων του ίδιου του μοντέλου) και επιλέξαμε τις τιμές εκείνες για τις οποίες

βελτιστοποιείται η αποτελεσματικότητα του δικτύου και επιτυγχάνεται ο

αντικειμενικός στόχος της εκπαίδευσης, η αναγνώριση του θετικού και αρνητικού

συναισθήματος με όσο το δυνατόν μικρότερο σφάλμα.

Η προτεινόμενη μέθοδος πειραματικής διαδικασίας και ανάλυσης μπορεί να

εφαρμοστεί στη βελτιστοποίηση της διαδικασίας εκπαίδευσης δικτύων με

παρόμοιο αντικειμενικό στόχο, όπως είναι π.χ. η αξιολόγηση προϊόντων, αλλά και

άλλων δικτύων.

University of Aegean Department of Financial and Management Engineering

[4]

Content

Abstract .. 1

Περίληψη ... 2

1 Introduction .. 9

2 Background: Big Data and Machine Learning for sentiment analysis 12

2.1 Introduction to Natural Language Processing (NLP) .. 13

2.1.1 What is NLP ... 14

2.1.2 Use Cases of NLP ... 14

2.2 Natural language processing using Machine Learning... 15

2.3 Recurrent neural network (RNN) ... 18

2.3.1 Background for the RNN ... 18

2.3.2 Unrolling a Recurrent Neural Network ... 22

2.4 Long Short-Term Memory (LSTM).. 27

2.4.1 Introduction to the LSTM architecture ... 27

2.4.2 Example to understand the mechanics of LSTM ... 30

3 Dataset Preprocessing for the NLP System ... 37

3.1 Data Cleaning ... 37

3.2 Tokenization process .. 40

3.3 Word Embedding Technique ... 41

3.3.1 Overview of the word embedding concept .. 41

3.3.2 Application of the concept in our case ... 42

4 Data preparation, structure and performance metrics for a Twitter sentiment

analysis system ... 44

4.1 Dataset Generation .. 45

4.2 Dataset Labelling .. 47

4.3 Pre-processing input dataset ... 48

4.4 Splitting the dataset ... 49

4.5 NN architecture .. 49

4.6 Training the model ... 52

4.7 Model evaluation: Performance metrics ... 54

5 Experiments .. 58

5.1 Optimization of the network and training parameters.. 58

5.1.1 Experiment 1 – Training and testing 64 different combinations 64

University of Aegean Department of Financial and Management Engineering

[5]

5.1.2 Experiment 2 – Increasing the difference between the levels of the non-

significant factors of Experiment 1 ... 69

5.2 The effects of balancing the positive and negative sentiment content in the

training dataset .. 72

6 Conclusions and Future Research ... 75

References .. 76

Appendix A. Learning in Multilayer Perception (MLP) networks 80

A.1 The MLP architecture ... 80

A.1.1 Calculating the 𝐚(𝟑) 𝒐𝒖𝒕𝒑𝒖𝒕 unit .. 81

A.1.2 The cost function of NN training .. 82

A.1.3 Gradient of the cost function (without regularization) 85

A.1.4 Backpropagation .. 92

A.1.5 Theoretical validation example.. 95

A.1.6 The training algorithm ... 95

A.2 Feedforward and backpropagation equations .. 97

A.2.1 Forward propagation ... 98

A.2.2 The cost function ... 99

A.2.3 Partial derivatives of 𝐉(𝛉) with respect to the weights 𝛉𝟏𝟏(𝟐), . . . , 𝛉𝟐𝟑(𝟐) (6

parameters) ... 100

A.2.4 Partial derivatives of previous layers ... 102

Appendix B. Raw Data preprocessing with Python ... 109

Appendix C. The tokenization process in Python .. 112

Appendix D. Analysis of the word embedding technique in Python 115

Appendix E. Dataset creation utilizing the Twitter API in Python 121

Appendix F. Data Labelling algorithm .. 123

Appendix G. Implement a simple neural network training with one hidden layer

architecture .. 124

University of Aegean Department of Financial and Management Engineering

[6]

List of Figures

Figure 1. 1 Artificial intelligence Timeline (IBM Cloud Education, 2020) 10

Figure 1. 2 Deep neural network graph (IBM Cloud Education, 2020) 11

Figure 2. 1 Feed Forward Neural Network architecture (Dua, et al., 2019) 18

Figure 2. 2 Illustration of how the information flows through an RNN vs. an FFNN (De

Mulder, et al., 2015) ... 19

Figure 2. 3 An unrolled recurrent neural network (Data Science Team, 2020) 19

Figure 2. 4 Different RNN architectures (Karpathy, 2015) ... 21

Figure 2. 5 Basic RNN structure.. 22

Figure 2. 6 Tanh function graphic with values range between [-1,1] 25

Figure 2. 7 LSTM cell computations (Yan, 2016) .. 28

Figure 3. 1 Format of the dataset after the data cleaning ... 40

Figure 3. 2 The embedding vector representation of words included in the vocabulary ... 43

Figure 4. 1 Neural Network Flow diagram for the sentiment detection task 44

Figure 4. 2 Word Cloud graphic including the most common words from the collected

tweets... 47

Figure 4. 3 Dataset distribution between negative (0) and positive (1) sentiments 48

Figure 4. 4 Load the input dataset ... 48

Figure 4. 5 Model layers usen in the training process ... 50

Figure 4. 6 Illustration of an LSTM layer with 8 cells ... 51

Figure 4. 7 The learning rate parameter effectiveness to the model training. (Jordan, 2018)

 .. 54

Figure 5. 1 Model architecture for the 64 experiments... 60

Figure 5. 2 Pareto chart for the 64 experimental designs ... 67

Figure 5. 3 Main effects plot for the experimental design .. 67

Figure 5. 4 Interactions plot for the 64 models design. .. 68

Figure 5. 5 Pareto chart for 8 models design ... 71

Figure 5. 6 Simple one LSTM layer model architecture ... 73

Figure 5. 7 Dataset effectiveness over the simple LSTM model .. 73

Figure A. 1 Neural network model of the example .. 80

Figure A. 2 Cost function .. 83

Figure A. 3 The convex shape of a simple instance of the cost function 84

Figure A. 4 Convex between ℎ𝜃(𝑥) and Cost(J) if y=1.. 84

Figure B. 1 Lambda function to remove @user. .. 109

Figure B. 2 Lambda function to remove #hastags. .. 109

Figure B. 3 Lambda function to convert text into lowercase. .. 109

Figure B. 4 Lambda function to remove special characters. .. 109

Figure B. 5 Lambda function to remove stopwords. .. 110

Figure B. 6 Lambda function for converting the abbreviations. .. 110

Figure B. 7 Lambda function for replacing shortcuts. .. 110

Figure B. 8 Lambda function for replacing the emoticons. .. 110

University of Aegean Department of Financial and Management Engineering

[7]

Figure B. 9 Lambda function for removing punctuation marks. .. 110

Figure B. 10 Lambda function to remove numbers or special characters. 110

Figure B. 11 Lambda function too remove word with len=1. .. 111

Figure C. 1 Python script for text tokenize. .. 112

Figure D. 1 Embedding Layer. .. 116

Figure D. 2 Load and import the IMDb reviews dataset. ... 117

Figure D. 3 Python script for tokenization. .. 118

Figure D. 4 Model architecture for IMDb training. .. 119

Figure E. 1 Import required libraries. ... 121

Figure E. 2 Import Twitter App credentials. ... 121

Figure E. 3 Import Authentication and access keys. .. 121

Figure E. 4 Python script for data extraction. .. 122

Figure F. 1 Python script of the algorithm to perform data labelling. 123

Figure G. 1 Import required libraries. ... 124

Figure G. 2 Load and import Apple Tweets dataset. ... 125

Figure G. 3 Python script to remove html/links. ... 125

Figure G. 4 Lambda function to remove @users. ... 126

Figure G. 5 Lambda function to remove #hashtag. ... 126

Figure G. 6 Lambda function to convert tweet into lowercase. 126

Figure G. 7 Lambda function to remove RT character. ... 127

Figure G. 8 Python script code to remove stopwords... 127

Figure G. 9 Python script code for replacing shortcuts. .. 127

Figure G. 10 Python script code for replacing emoji’s. ... 127

Figure G. 11 Import required libraries. ... 128

Figure G. 12 Tokenize parameters initialization.. 129

Figure G. 13 Python script for text tokenize. .. 129

Figure G. 14 Python script for splitting the input dataset. .. 129

Figure G. 15 Import required libraries for creating a NN model. 130

Figure G. 16 The NN model architecture. ... 131

Figure G. 17 Python script of the training process. ... 131

Figure G. 18 Python script for plotting the model performance. 132

Figure G. 19 Python script for the predictions function.. 132

Figure G. 20 Assign the confusion matrix variables. ... 132

Figure G. 21 Set up the confusion matrix function. .. 133

Figure G. 22 Define the axis labels of the confusion matrix. .. 133

Figure G. 23 Print the output confusion matrix and f1_score metrics. 134

List of Tables

Table 2.1 Differences between Traditional and Big Data (Furht & Villanustre, 2016) 13

Table 5.1 Model architecture of the first experiment ... 58

Table 5.2 The 64 variations related to the training experiments .. 60

University of Aegean Department of Financial and Management Engineering

[8]

Table 5.3 Models accuracy metric f1_score resulting from the 64 experiments (two runs

per experiment) ... 62

Table 5.4 ANOVA analysis table for 64 experimental runs .. 64

Table 5.5 Factors and levels for the second experiment ... 69

Table 5.6 The f1_score results after training the algorithm with the 8 models design. 70

Table 5.7 ANOVA analysis table for 8 models design .. 70

University of Aegean Department of Financial and Management Engineering

[9]

1 Introduction

In recent years, significant technological steps allowed machines to mimic the

operations of the human brain. The field of Computer Science concerned with

developing intelligent algorithms with problem-solving and decision-making

capabilities is called Artificial Intelligence or simply AI. The first reference to AI is

attributed to Alan Turing and dates back to 1950 (Shieber, 2004). A timeline of the

most notable events in AI history is shown in Figure 1.1.

Modern AI algorithms are extremely effective in today's era of social media

platforms, IoT and other data generators, in which huge amounts of raw,

unstructured, data are generated and posted online. Such data can be fed into

specially crafted AI algorithms that drive decision making models capable of

handling tasks previously attributed only to humans. Such tasks include image and

speech recognition, self-driving cars, airship piloting, taking marketing decisions etc.

(Smith, et al., 2006)

University of Aegean Department of Financial and Management Engineering

[10]

Figure 1. 1 Artificial intelligence Timeline (IBM Cloud Education, 2020)

AI applications incorporate algorithms based on deep Neural Networks. A deep

Neural Network (DNN) is a scalable machine learning algorithm that follows a

hierarchical sequence to process input data (Figure 1.2). The data passes through

nodes called neurons in which data manipulation occurs and the algorithm decides

how the data are flowing into the network and towards the final output result.

Neural Networks (NNs) have the unique characteristic to manipulate an

exceptionally large amount of data and extract meaningful information (Aggarwal,

2018). Nowadays, machine learning algorithms have evolved rapidly and have

considerable impact in fields, such as supply chain, computer vision, speech

recognition and many other fields.

1950

•Alan Turing published the first paper related to computer machinery and inteligence. He is
well known for breaking Nazi's code ENIGMA. He also introduced the Turing Test to prove

if a computer is capable to think like a human.

1956

•John MCarthy introduces the term AI in a conference at Darthmouth College. Later this
year scientists create the Logic Theorist, the first ever AI software program. This was the

beginning for the high-level computer languages such as Fortran e.t.c

1967

•Frank Rosenblatt built Mark1Perceptron, the first ever computer based on a neural
network that learned through time from the replications and the errors .

1997

•IBM introduced the first chess computer called DeepBlue that won a chess tournament
against the word champion Garry Kasparov.

2011

•Apple launches iPhone 4s with an intelligent language-based assistant. The "Siri" software
is able to recognize and process natural language .

•IBM super-computer Watson won the US quiz show Jeopardy against two humans.

2015

•Baidu AI super-computer use deep convolution NN to identify and categorize images with
a higher accuracy that the average human.

2016

•AlphaGo programm,developed by Google,beats Lee Sodal word champion Goplayer.The
win was significant due to the enormous number of possible moves at each step.The

program analyzed every move and picked the optimun one.

2018
•European Union voted and established guidance for dealing with the AI ethics.

University of Aegean Department of Financial and Management Engineering

[11]

Figure 1. 2 Deep neural network graph (IBM Cloud Education, 2020)

Machine learning and deep learning are sub-fields of AI and use neural network

models with many hundreds -or even thousands- network layers to process input

data and predict a correct outcome. These algorithms are commonly used for

natural language processing (NLP), image recognition and voice recognition (IBM

Cloud Education, 2020).

This Thesis focuses in the rather mature field of sentiment analysis using NN. More

specifically we study how a specially crafted NN can be refined and trained to

effectively extract sentiment from raw Twitter data using machine learning

algorithms. The proposed method is capable of receiving raw unstructured tweets,

process them using several techniques to clean-up the text and use it as input to the

crafted NN to output a binary classification result: a “positive” or a “negative”

sentiment. The contribution of this work, beyond reviewing and analyzing NLP, is

the application of Design of Experiments (DOE) to finetune training parameters to

improve the performance of an NN.

University of Aegean Department of Financial and Management Engineering

[12]

2 Background: Big Data and Machine Learning for sentiment
analysis

Social media platforms are used by billions as a means of daily communication. Most

people maintain an active profile account in more than one social media platforms

such as Instagram, Twitter, Facebook etc. According to a published report (Statista

Research Department, 2022) related to Twitter, for their 2nd quarter (Q2) results of

2022, 237.8 million people are actively using the platform. These people are

distributed all over the world and belong to both genders, all age groups, and social

layers. This makes Twitter a very popular platform that contains posted data from

different perspectives on several topics like politics, economics, product reviews etc.

This huge number of posted data creates valuable “Big Data”, and methods of

handling these data represent an extremely active ongoing research interest.

Big Data -when analyzed properly- can be a game-changing tool for businesses as it

reflects the consumer’s feedback in real-time. Generally, the term “Big Data”

characterizes an enormous and complex number of datasets that are impossible to

analyze and manipulate using traditional tools and processing techniques. The

special techniques that have been developed over time to interact with such data

are referred as Big Data Analytics. The big data term was introduced by industry

analyst Doug Laney (Laney, 2001):

“Big data is high-volume, high-velocity and/or high-variety information assets that

demand cost-effective, innovative forms of information processing that enable

enhanced insight, decision making, and process automation”

The 3-v’s of Big Date refer to the volume, velocity, and variety of the data:

1. Volume: The data volume refers to the size and the type of the data been

collected. Before the expansion of the memory capacity of computers,

companies, and organizations did not have a capable medium to store the

collected data. Modern computer specifications allow scientists to collect

and store data in Terabytes (TB) or even Petabytes (PT) and the stored data

structure can either be a file, a matrix, a table, a database record etc.

https://s22.q4cdn.com/826641620/files/doc_financials/2020/q3/Q3-2020-Selected-Financials-and-Metrics.pdf

University of Aegean Department of Financial and Management Engineering

[13]

2. Velocity: One of the biggest challenges is to find ways of collecting and

transferring enormous amounts of real-time data at fast rates. Modern,

optical fiber-based communication networks can meet this requirement.

3. Variety: The data collected come from various sources and in different forms.

Data can either be structured (excel file), unstructured (raw text data as in

emails, social media postings) or semi structured (comma separated values

such as in CSV files). The structured type data are highly organized and easily

decoded by most machine language, unlike unstructured data in which

human language expressions are difficult to decode and be understood by

computers (Alloghani, et al., 2019).

The following table shows the main differences between Big Data and Traditional

Data.

Table 2.1 Differences between Traditional and Big Data (Furht & Villanustre, 2016)

 Traditional Data Big Data

Volume GBs TBs and PBs

Data generation rate Per hour or day More rapid

Data structure structured Semi-structured or unstructured

Data source centralized Fully distributed

Data integration easy difficult

Data store Relational Databases No Relational Databases

Data access interactive Batch or near real-time

2.1 Introduction to Natural Language Processing (NLP)

Natural Language Processing (NLP) is about leveraging tools, techniques, and

algorithms to process and understand natural language-based data which are

usually received in unstructured forms, such as text and speech. This chapter

explains the basic mechanisms involved in building an NLP sentiment analysis

system using the TensorFlow library of tools to process and understand raw text

data. TensorFlow, is an open-source machine learning library that provides built-in

features for creating customized neural network architectures and includes several

algorithms suitable for business or educational purposes (Singh & Manure, 2019).

University of Aegean Department of Financial and Management Engineering

[14]

2.1.1 What is NLP

Computers can process structured, tabular data and spreadsheets, unlike human

beings who communicate using sentences in written or oral form. Data generated

from oral conversations and texts -such as social media postings- are examples of

unstructured data which cannot fit neatly into the traditional row and column

structure of relational databases.

NLP is the field of AI that makes computers able to read, understand and derive

meaning out of human language. Thanks to the advances in the fields of machine

learning, a big technological revolution is emerging on this topic: nowadays it is no

longer about trying to interpret text or speech based on the keywords they contain,

but rather extracting the meaning behind the words. It is now possible to detect

patterns and figures of speech like irony and enthusiasm or even perform sentiment

analysis (also called opinion mining) to extract crucial information out of raw text

data (Bianchini, et al., 2013). The NLP concept is itself fascinating but the real value

behind this technology comes from the areas that the technology can be applied to.

One of the most interesting areas for research is the sentiment analysis of tweets

posted on the Twitter social media platform and the understanding of whether a

tweet (a phrase with a maximum of 280 characters) has a positive, negative, or a

neutral sentiment. Since consumers express their opinions and feelings on social

media platforms, sentiment analysis is often used by businesses to extract consumer

feedback and monitor their brand. Data analytics techniques can be used as a

management tool to tailor products and services to meet the needs of consumers

but also provide detailed information on how the company can optimize existing

business processes, such as marketing campaigns, improving product delivery

services, forecasting consumer demand etc. (Xingyou, et al., 2016).

2.1.2 Use Cases of NLP

The wide variety of software applications where NLP algorithms are applied

indicates the impact and the potential of these algorithms. Some real word uses of

NLP algorithms are:

University of Aegean Department of Financial and Management Engineering

[15]

• Search tools, such as Google or Bing use smart NLP algorithms for crawling

the internet based on keywords that the user enters. The algorithm interacts

with the user based on these keywords and can answer questions, predict

the next keywords the user may enter or output specific requested results

even before the user asks for them

• Voice assistant applications such as Siri (by Apple) or Alexa (by Amazon), are

common embedded features in mobile phones and computers. These

features use algorithms that can be activated by voice and interact with the

user.

• Email providers such as Gmail or Hotmail, provide spam preventing features,

autocorrecting or auto-filling capabilities to their users using intelligent

algorithms that can classify data into different inboxes (important, non-

important, spam) or predict user input.

• NLP data analytics algorithms are used for predictions related to stock and

sales forecasting.

• Data analysis algorithms are widely used by marketing companies as a tool

for promoting personalized advertisements based on collected data about

specific needs of targeted populations. This is the reason users are noticing

specific products advertisements on their social media platforms after doing

a search for them.

• In health care, decision-making algorithms are effectively used to diagnose

diseases, extract reports on patient-profiles etc. (Sowmya, et al., 2020)

2.2 Natural language processing using Machine Learning

A simple look-up categorization algorithm can look up words in a dictionary (of

positive/negative words) and categorize the sentiment of the data fed to it based on

certain words included in the data. Such an algorithm has limited capabilities and its

accuracy depends on the dictionary contents. On the contrary, an NLP algorithm

based on Machine Learning (ML) can “learn” the task of identifying the sentiment of

the data fed to it because the Neural Network algorithm has been “trained” on a

relevant text data of appropriate size.

University of Aegean Department of Financial and Management Engineering

[16]

Machine Learning (ML) is a subfield of computer science. ML focuses on developing

intelligent algorithms able to process information in a way that mimics how the

human brain processes information in brain cell neurons. The exceptional feature of

these algorithms is their ability a) to handle enormous amounts of data during the

training process and b) to improve their prediction performance with every epoch

(see below). In a neural network, training is the computational process which

implements feedforward and backpropagation techniques to find and update the

appropriate weight values of the artificial neurons so that the network can

accurately predict an output. During the training process, the network computations

are repeated using new input data until the neurons conclude to the optimal weight

value. These repetitions are referred to as epochs.

The goal is to create models that perform equally well compared to human

intelligence and continuously evolve based on new data that are fed to them

without requiring modification in their architecture. To do so, machine learning

algorithms have an internal “memory” architecture that enables them to access

previously processed information so they can continuously learn new patterns from

new data (Sowmya, et al., 2020).

The ML algorithms are classified in three (3) different categories based on the way

the learning process on the input data is handled. More specifically, the learning

process can either be supervised, unsupervised or semi-supervised. The main

difference among these categories is the existence or non-existence of data labels

in the training dataset. Data labelling refers to the process of manually

tagging/labelling meaningful features in the raw data and then use those tags/labels

in the machine learning training model so that the network can learn patterns for

extracting sentiment (in our case) out of unlabeled data. In the NLP context, labelling

identifies the overall text sentiment per text sentence (i.e., positive, negative,

neutral) to generate a new training dataset and then proceed with in the NN model:

• Supervised learning occurs when predictions take into consideration the true

(manually set) labels of the dataset to measure the predicted labels accuracy.

During training, the algorithm attempts to learn patterns using the manually

University of Aegean Department of Financial and Management Engineering

[17]

set data labels. To calculate overall accuracy, the model takes into

consideration -among other parameters- the misclassified predictions and

compares them to the true labels. For example, machine learning algorithms

that classify spam emails perform supervised learning since the algorithm

was trained on many emails manually labeled as spam -or non-spam- by the

email user.

• Unsupervised learning uses unlabeled data to perform training and predict

outcomes. This method basically clusters/groups huge amounts of unlabeled

data. A simple example of this method is the post keyword prediction results

that Google search suggests to a user when doing a Google search.

• Semi-supervised learning combines both the above methods of training. The

algorithm uses both labeled and un-labeled data where usually the amount

of unlabeled data is higher than that of the labeled data. The idea is that the

labeled data can have an impact over training and the algorithm accuracy for

classifying the unlabeled data (Alloghani, et al., 2019).

The NLP and text data analysis are challenging tasks for simple neural network

algorithms. These types of data are mainly unstructured, so the unsupervised

learning technique is the preferable processing method, and deep network

architectures have been developed for the handling of similar natural language

analysis tasks. These are analyzed in the following sections.

University of Aegean Department of Financial and Management Engineering

[18]

2.3 Recurrent neural network (RNN)

2.3.1 Background for the RNN

A characteristic architecture for a simple NN model that process text data is the feed

forward (FF) mechanism (FFNN) in which the information is received in the input

layer of the Neural Network, passes through the interconnected hidden layers of the

Neural Network, and exits from the output layer and never touches a node twice:

for every individual piece of data received in the input of the NN, there is a

straightforward flow to the output node of the NN.

Figure 2. 1 Feed Forward Neural Network architecture (Dua, et al., 2019)

The RNN architecture takes a different approach; the main difference lies with the

flow of information from the input layer to the output layer. Unlike an FFNN, the

RNN model creates an internal loop mechanism so that each node output also acts

as an input for that specific node. In an RNN the information also passes from the

previous node to the current node, so the prediction involves two inputs - the one

from the previous node and the one from the current node. This feature makes the

RNN architecture suitable for handling sequential data, in which the interpretation

of each piece of data depends not only on the data itself, but also on its predecessor

data. In the case of NLP, sequential data refers to text sentences (Bianchini, et al.,

2013).

University of Aegean Department of Financial and Management Engineering

[19]

FFNN and RNN training using sequential data is based on entirely different

mechanisms: each FFNN node is trained with only the current input information,

unlike the RNN node which uses the ‘feedback’ mechanism, and the node activation

is affected by the network history/memory from the node output (Xingyou, et al.,

2016). This main difference between an RNN and a FFNN is illustrated in Figure 2.2.

Figure 2. 2 Illustration of how the information flows through an RNN vs. an FFNN (De Mulder, et al., 2015)

A simple RNN includes a short-term memory, meaning that it can pass information

only from the previous step. When working with sequential type data, it is obvious

that the sequence order must remain intact. For example, in NLP, the words cannot

move inside the sentence because this would alter the meaning of the sentence. A

simple example that illustrates how an RNN network works is the Fibonacci

sequence model: for the algorithm to guess the next number it requires as input the

previous result of the sequence.

Figure 2. 3 An unrolled recurrent neural network (Data Science Team, 2020)

University of Aegean Department of Financial and Management Engineering

[20]

In Figure 2.3, the sequence starts with the given input 𝑥0 where the node outputs

ℎ0. Both ℎ0 and 𝑥1 are the inputs for the next stage. Similarly, ℎ1 with 𝑥2 are the

inputs for the next stage and this continues until the end of the sequence. This is the

basic mechanism behind the network that enables “memorizing” the previous

context of the sequence while in the training process. An FFNN multiplies the inputs

with a weight matrix to produce an output, while the RNN shares the same weight

parameters within each layer of the network. During training, these parameters are

adjusted through the process of “backpropagation” and “gradient descent” until

they reach the optimum value (Sowmya, et al., 2020). More information on the

backpropagation method and the related calculations may be found in Appendix A.

This Appendix has been developed in collaboration with (Vitlari , 2021) as a tutorial

for students of the DeOPSyS lab that enter the NN/ML field.

There are various RNN node-architectures (Fig. 2.4), but the many-to-one

architecture is typically chosen for sentiment classification (Manaswi, 2018). To

predict if a tweet has negative or positive sentiment, the input size (number of

words in a sentence) must be flexible, since a one-hot-encoded representation is

used for each word in the sentence. The one-hot-encoded matrix is an essential pre-

processing step for converting the categorical features of the text data -so they can

be used for machine learning- and then pass them as input to the network model.

This encoding method creates a feature matrix with values 0 and 1 in each matrix

element. The value of one (1) is assigned to the element that relates to a specific

word while the value of zero (0) is assigned to the rest of the elements in the matrix.

For example, if the phrase “the MacBook died” is passed as an input to the network

then, the one-hot-encoding representation will be a 1x3 vector for each word: the=

[1 0 0], MacBook= [0 1 0] and died= [0 0 1]. More explanation about the encoding

techniques in machine learning is included in the related appendix chapter.

The output will be a single class in which (1,0) or (0,1) denotes positive or negative

sentiment, respectively.

University of Aegean Department of Financial and Management Engineering

[21]

Figure 2. 4 Different RNN architectures (Karpathy, 2015)

The RNN mechanism includes a Feed Forward Propagation step to train the neural

network and then includes a Back Propagation Thought Time (BPTT) step to adjust

the network weights and minimize the error.

The basic steps of the RNN computation are (see Fig. 2.5):

1. 𝑋𝑡 is the current input to a node at time step t, where X is a one-hot-encoded

matrix that represents a phrase that enters in the RNN network. There are 𝑡

time steps which are equal to the number of the words of the phrase

(including the paddings).

2. Calculate 𝐻𝑡, with input 𝑋𝑡 and the previous node output 𝐻𝑡−1.

3. The current node output is 𝐻𝑡 and that will also pass to the next step node

as 𝐻𝑡−1.

4. When the calculating process for all the time steps comes to an end, the

prediction 𝑌𝑡 can be calculated. This final prediction 𝑌𝑡 passes through a

SoftMax function to output probability values between 0 and 1.

5. The output is compared with the real output value and the error is identified.

6. Perform BPTT to update the weights.

7. The neural network is trained.

University of Aegean Department of Financial and Management Engineering

[22]

Figure 2. 5 Basic RNN structure

2.3.2 Unrolling a Recurrent Neural Network

In the following Section, an RNN training example will be analyzed to visualize how

the internal network mechanism of the RNN processes the input information. Figure

2.5 shows a representation of an RNN structure with three individual networks

where each one of them processes a single word. The necessary computations for

each node are shown in each step.

In the above example the given input is the sentence “The sun is shining “. The goal

is to predict the last word of the sentence: “The sun is … “. The entire vocabulary

includes four individual words [“the”,”Sun”,“is”,”shining”] and the one-hot-encoded

representation for those words are:

1 0 0 0

0 1 0 0

𝐻1=tanh
(𝑊ℎℎℎ0 +

𝑊𝑥ℎ𝑥1)

SoftMax

𝑋1

𝑌1

matrix

𝐻0

𝑌2

matrix
𝑌3

matrix

𝐻2=tanh

(𝑊ℎℎℎ1 +

𝑊𝑥ℎ𝑥2)

𝐻3=tanh

(𝑊ℎℎℎ2 +

𝑊𝑥ℎ𝑥3)

𝑋3 𝑋2

 Time step t=1 Time step t=2 Time step t=3

𝑊ℎℎ

𝑊ℎℎ

𝐻1 𝐻2

𝑊ℎℎ

 𝑊𝑥ℎ

𝑊𝑥ℎ

𝑊𝑥ℎ

𝑊ℎ𝑦

𝑊ℎ𝑦

𝑊ℎ𝑦

University of Aegean Department of Financial and Management Engineering

[23]

0 0 1 0

0 0 0 1

the sun is shining

Thus, each word of the sentence will be represented by a (4x1) vector containing

zeros (0) except from the position of that word in the sentence where the value one

(1) is assigned.

▪ Step 1: The weights of the (3x4) matrices between the input and the hidden

layer 𝑊𝑥ℎ are randomly initialized.

 Wxh = [
0.198 0.587 0.907
0.846 0.639 0.051
0.083 0.385 0.402

0.742
0.852
0.337

]

▪ Step 2: The one-hot-encoding vectors from each word of the sentence is

multiplied with 𝑊𝑥ℎ matrix.

For time step t=1: For the first word “The”, an element wise multiplication is

required between 𝑊𝑥ℎ matrix and the 𝑋𝑡 matrix to calculate the product 𝑊𝑥ℎ*𝑋1

[
0.198 0.587 0.907
0.846 0.639 0.051
0.083 0.385 0.402

0.742
0.852
0.337

] x [

1
0
0
0

] = ⌈
0.198
0.846
0.083

⌉

For time step t=2: For the second word “Sun”, the calculated product is 𝑊𝑥ℎ*𝑋2

[
0.198 0.587 0.907
0.846 0.639 0.051
0.083 0.385 0.402

0.742
0.852
0.337

] x [

0
1
0
0

] = ⌈
0.587
0.638
0.385

⌉

For time step t=3: For the third word “is”, the calculated product is 𝑊𝑥ℎ*𝑋3

[
0.198 0.587 0.907
0.846 0.639 0.051
0.083 0.385 0.402

0.742
0.852
0.337

] x [

0
0
1
0

] = ⌈
0.907
0.051
0.402

⌉

*Note: 𝑊𝑥ℎ is a (3x4) matrix and 𝑋𝑡 is a (4x1) matrix so the new matrix will be (3x1).

▪ Step 3: We proceed with computing Whh and ht parameters at every time

step t.

University of Aegean Department of Financial and Management Engineering

[24]

The network includes a hidden layer weight Whh which remains the same, for the

entire network, during the process. Whh is a (1x1) element, randomly assigned with

the value of 0.497,for this particular example. The bias term B remains the same

between the layers and is a (1x1) vector with a randomly assigned value of 0.257.

The element wise multiplication between Whh and ht−1 and then the addition of the

bias term, used for computing the hidden layer weight at every time step using the

following :

𝐖𝐡𝐡 ∗ 𝐡𝐭−𝟏 + 𝑩 (Eq. 2.1)

The current state node output ht at every time step is calculated using the following

equation:

 𝐡𝐭 = 𝐭𝐚𝐧𝐡(𝐖𝐡𝐡𝐡𝐭−𝟏 + 𝑾𝒙𝒉𝑿𝒕) (Eq. 2.2)

For time step t=1: For the initial computation there is no prior output (h0), so the

previous input (ht−1) will be a matrix with zeros equal to: h0 = [0 0 0]

Apply the (Eq. 2.1) for calculating:

Whh ∗ h0 + B =[0.497] * ⌈
0
0
0
⌉ + [

0.257
0.257
0.257

] = [
0.257
0.257
0.257

]

*Note: The element wise multiplication precedes the bias term. The Whh is a (1x1)

vector and the ht−1 is a (3x1) matrix so the output will be a (3x1) matrix.

Next step, for computing h1 apply (Eq. 2.2):

h1 = tanh(Whhh0 + WxhX1)

First,

Whhh0 + WxhX1 = [
0.257
0.257
0.257

] + ⌈
0.198
0.846
0.083

⌉ = ⌈
0.455
1.103
0.1087

⌉

Subsequently,

h1 = 𝑡𝑎𝑛ℎ ⌈
0.455
1.103
0.1087

⌉ = ⌈
0.4260
0.8018
0.1083

⌉

University of Aegean Department of Financial and Management Engineering

[25]

We remind that the tanh function, which is applied elementwise, is the following:

tanh =
2

1+𝑒−2𝑥 − 1 (Eq. 2.3)

Figure 2. 6 Tanh function graphic with values range between [-1,1]

For time step t=2: The h1output, calculated at previous step t=1, will pass as an input

to the next time step. Applying (Eq. 2.1) provides the following:

Whh ∗ h1 + B =[0.497] * ⌈
0.4260
0.8018
0.1083

⌉+ [
0.257
0.257
0.257

] = [
0.4687
0.6555
0.3108

]

To calculate h2 for time step t=2, we apply

h2 = tanh(Whhh1 + WxhX2)

Firstly,

Whhh1 + WxhX2 = [
0.4687
0.6555
0.3108

] + ⌈
0.587
0.638
0.385

⌉= ⌈
1.0557
1.2935
0.6958

⌉

Then,

h2 = 𝑡𝑎𝑛ℎ ⌈
1.0557
1.2935
0.6958

⌉ = ⌈
0.78401
0.86012
0.60169

⌉

For time step t=3:

University of Aegean Department of Financial and Management Engineering

[26]

Whh ∗ h2 + B =[0.497] * ⌈
0.78401
0.86012
0.60169

⌉+[
0.257
0.257
0.257

] = [
0.64665
0.68448
0.55604

]

Then:

Whhh2 + WxhX3 = [
0.64665
0.68448
0.55604

] + ⌈
0.907
0.051
0.402

⌉= ⌈
1.55365
0.73548
0.95804

⌉

Finally:

h3 = 𝑡𝑎𝑛ℎ ⌈
1.55365
0.73548
0.95804

⌉ = ⌈
0.91439
0.62641
0.74339

⌉

▪ Step 4: So far, we have calculated the current state ℎ𝑡 vectors at every time

step t. We can now proceed to compute the output state for every time step t=1,2,3

by applying the following equation:

 𝒚𝒕 = 𝒘𝒉𝒚𝒉𝒕 (Eq. 2.4)

where 𝑤ℎ𝑦 is a (4x3) matrix of weights between the hidden layer ℎ𝑡 and the output

𝑦𝑡. The 𝑤ℎ𝑦 matrix was randomly initialized and shares the following weights

though the entire network:

𝑤ℎ𝑦 = [

0.257
0.342
0.098
0.156

0.674
0.042
0.318
0.753

0.412
0.797
0.192
0.510

]

By applying (Eq. 2.4) for t=1,2,3 we compute output 𝑦𝑡 :

𝒚𝟏 = [

0.257
0.342
0.098
0.156

0.674
0.042
0.318
0.753

0.412
0.797
0.192
0.510

] 𝑥 ⌈
0.4260
0.8018
0.1083

⌉ = [

0.694515
0.265683
0.317514
0.725444

]

𝒚𝟐 = [

0.257
0.342
0.098
0.156

0.674
0.042
0.318
0.753

0.412
0.797
0.192
0.510

] 𝑥 ⌈
0.78401
0.86012
0.60169

⌉ = [

1.029110
0.783804
0.465876
1.076838

]

𝒚𝟑 = [

0.257
0.342
0.098
0.156

0.674
0.042
0.318
0.753

0.412
0.797
0.192
0.510

] 𝑥 ⌈
0.91439
0.62641
0.74339

⌉ = [

0.963475
0.931512
0.431539
0.993460

]

University of Aegean Department of Financial and Management Engineering

[27]

▪ Step 5: The final step of the algorithm for the prediction of the next word of

the input sentence requires for 𝑦3 to pass though the SoftMax activation function.

 SoftMax: 𝑆(𝑦𝑡) =
𝑒𝑦𝑡

∑𝑒𝑦𝑡
 (Eq. 2.5)

Thus, the algorithm predicts the probability for the last word of the sentence “The

sun is …” as follows:

 Softmax(y3) = [

0.278827
0.270056
0.163802
0.287315

]

In the probability matrix above, each element corresponds to the probability of the

last word ,one of the four words in the vocabulary, that is “the”, “sun”, “is”, “shining”

in that order (the probability of the last word been “the” is 0.278827). The highest

probability corresponds to the word “shining”. This is in this case a coincidence since

many weights were assigned randomly. However, when the network is trained

through back propagation (in this case the true matrix will be [0 0 0 1], then the

weights would be adjusted to provide, hopefully, good predictions. For example,

the trained network would result in an output probability matrix with a clear

superiority of the fourth element as compared to the other three ones.

2.4 Long Short-Term Memory (LSTM)

2.4.1 Introduction to the LSTM architecture

The previous Section analyzed the mechanism behind an RNN and why these

networks are suitable and widely used for sequential data analysis. However, their

main disadvantage is their short-term “memory” capacity since the internal

“memory” mechanism can only provide information from the previous node to the

next node in the sequence. This feature limits the ability of the algorithm to perform

well and keep track of past information when dealing with long sentences.

An LSTM network is an evolution to the RNN neural network. This network is suitable

for processing sequential data and has a similar architecture to the RNN which

means that sequential data are given as an input to the NN and then the network

processes the information to calculate the output. The major difference between

University of Aegean Department of Financial and Management Engineering

[28]

these two networks is the “memory cell” feature of the LSTM model. The RNN has

an internal mechanism to pass information to the current state from the previous

time step only. On the contrary, the LSTM internal memory mechanism (memory

cell) is based on information received from all the other previous time-steps in the

hidden layers to the current layer. This feature makes LSTM an even more suitable

method for tasks that require “learning” from past data dependencies (Aggarwal,

2018).

The generic LSTM model consists of three (3) gates, responsible to control the flow

of information through the network plus one (1) memory cell. All these components

– the three gates and the memory cell- are referred to as an LSTM cell (Fig.2.7).

Figure 2. 7 LSTM cell computations (Yan, 2016)

Every gate contributes to the processing of the input information (Note: i stands for

input, f stands for forget, c stands for cell, o stands for output and t is the time-step):

▪ The Input Gate (𝒊𝒕) :

𝐹𝑡 𝑖𝑡
𝐶’𝑡

𝐶𝑡
𝑖

𝑂𝑡

University of Aegean Department of Financial and Management Engineering

[29]

This gate is responsible for the choice of the new information that enters the

network. This gate has two separate parts, the first part 𝑎𝑖𝑡 is passing through a

sigmoid function and decides which values are valuable (keeps values close to 1 and

discards the values close to 0), and then the second part 𝑎𝑐𝑡 is passing through a

tanh function and creates a vector with the new candidate values 𝑐ˆ𝑡 which are then

given as an input to the memory cell.

Equation for this gate’s calculations:

 𝑎𝑖𝑡 = 𝑊𝑎𝑋𝑡 + 𝑈𝑎ℎ𝑡−1 + 𝑏𝑎 , 𝑖𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑎𝑖𝑡) =
1

1 + 𝑒−𝑎𝑖𝑡
 (Eq. 2.6)

act = WiXt + Uiht−1 + bi , cˆt = tanh(act) =
eact − e−act

eact + e−act
 (Eq. 2.7)

▪ Forget Gate (𝒇𝒕):

This gate’s inputs are the current state 𝑋𝑡 and the previous output ℎ𝑡−1. These

values will pass through the sigmoid function that outputs values between (1,0) to

decide whether these values are worthy to be transferred to the next gate (value

close to one) or be discarded (value close to zero).

𝑎𝑓𝑡 = 𝑊𝑓𝑋𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓 , 𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑎𝑓𝑡) =
1

1 + 𝑒
−𝑎𝑓𝑡

 (Eq. 2.8)

▪ The Memory Cell (𝒄𝒕):

The memory cell is the long-term memory of the NN which exists only in LSTM

networks and is the cell in which the NN keeps information from previous LSTM cells.

With every time-step the previous cell (𝑐𝑡−1) is combined with the forget gate and

decides the information that will be kept for the next nodes. The values from the

temporary memory cell (𝑐ˆ𝑡) are also combined with the input gate values to finally

update the memory cell.

𝑐𝑡 = (𝑖𝑡 • 𝑐ˆ𝑡) + (𝑓𝑡 • 𝑐𝑡−1) (Eq. 2.9)

Note: The • symbol refers to the Hadamard product-an element wise multiplication

between same size matrices that output a matrix with the same dimensions.

• The Output Gate (𝒐𝒕):

University of Aegean Department of Financial and Management Engineering

[30]

Following the memory update, the output gate determines the values included to

the new hidden state. This gate is responsible for filtering the cell values, passing

them through a tanh function and outputs values between (-1,1), to ensure that only

relevant information will be included to the new hidden state.

𝑎𝑜𝑡 = 𝑊𝑜𝑋𝑡 + 𝑈0ℎ𝑡−1 + 𝑏𝑜 , 𝑜𝑡 = 𝑡𝑎ℎ𝑛(𝑎𝑜𝑡) =
1

1 + 𝑒−𝑎𝑜𝑡
 (Eq. 2.10)

• The Hidden State (𝒉𝒕):

A hidden state is the temporary memory of the NN. This state is common with the

RNN network mechanism. This is responsible for caring the previous node

information to the current node and is called “short-term memory” because it

overwrites past information in every step.

ℎ𝑡 = 𝑜𝑡 • 𝑡𝑎𝑛ℎ(𝑐𝑡) (Eq. 2.11)

The number of LSTM cells is a parameter of the NN model and affects the prediction

performance of the network. Typical values found in the literature are 32, 64 and

128 (Moroney, 2020). Based on the bibliography, there are no guidelines for

determining the number of cells included in an LSTM layer. The scientist should

evaluate the complexity of the input dataset and adjust the LSTM layer based on

different factors. The LSTM cells are working similar to the CNN filters. Generally,

the length of the input data or the number of features are such factors affecting the

number of cells. For reference, if it necessary for the network to recognize complex

patters though the sentences then we should apply a higher value of LSTM cells.

The number of LSTM cells used in our model was a result of experimentation in

which different LSTM cell numbers were tested. This is described in Section 5.

2.4.2 Example to understand the mechanics of LSTM

The Feed Forward propagation

A practical overview of the LSTM algorithm with a numerical example is analyzed

below. We will examine the mathematics for the following example where we

proceed with an LSTM (units=2) layer (one LSTM layer with 2 LSTM cells) for

predicted the sentiment y of a sentence. There are two randomly assigned input

University of Aegean Department of Financial and Management Engineering

[31]

sentences x0 = [
2
4
], x1 = [

3
5
] (each sentence contains 2 embedded words). Let

Y=0.9 be the true label for the x1 sentence to be the expected value for the network

to make an accurate prediction.

The weights W, U and biases b are also randomly initialized:

Wa = [0.346 0.581] . Ua = [0.079] . ba = [0.010]

Wi = [0.842 0.697] . Ui = [0.158] . bi = [0.137]

Wf = [0.945 0.213] . Uf = [0.731] . bf = [0.089]

Wo = [0.487 0.195] . Uo = [0.454] . bo = [0.255]

Step 1: Calculation of the gate’s products for the first LSTM cell

Input Gate

The input gate contains (2) computational parts. The first part computes the

probability of the incoming information to enter the memory cell (Eq. 2.6) and the

second part computes the probability of the incoming information to update the

values of the memory cell (Eq. 2.7):

Given inputs for the first gate:

 𝑥0 , the current state input

ℎ𝑡−1, initial hidden layer value

𝑐0 , initial memory value

Note: For the first layer the ℎ𝑡−1 has a value of 0, because there is not a previous

hidden layer value.

Parameters:

Wa and Ua are the weights and ba is the bias for the input layer.

For the first time step t=0:

The input value is calculated based on (Eq. 2.6):

𝑎𝑖0 = 𝑊𝑎𝑋0 + 𝑈𝑎ℎ𝑡−1 + 𝑏𝑎

University of Aegean Department of Financial and Management Engineering

[32]

𝑎𝑖0 => [0.346 0.581] ∗ [
2
4
] + (0.079) ∗ (0) + 0.010 = 3.026

 𝑖0 = 𝜎(𝑎𝑖1) =
1

1 + 𝑒−𝑎𝑖1

𝑖0 => 𝜎(3.026) =
1

1 + 𝑒−3.026
 = 0.9537

The 𝑖0 value represents the probability that the input gate will allow 𝑋0 incoming

information into the cell memory.

The second computational part is responsible to decide whether the memory cell

will be updated with the 𝑥0 value. Using (Eq. 2.7):

𝑎𝑐0 = 𝑊𝑖𝑋0 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖

ac0 = [0.842 0.697] ∗ [
2
4
] + (0.158) ∗ (0) + 0.137 = 4.609

 𝑐ˆ0 = 𝑡𝑎𝑛ℎ(𝑎𝑐0) =
𝑒𝑎𝑐0 − 𝑒−𝑎𝑐0

𝑒𝑎𝑐0 + 𝑒−𝑎𝑐0

 cˆ0 = tanh(4.609) =
𝑒4.609 − 𝑒.−4.609

𝑒4.609 + 𝑒−4.609
= 0.9998016

Forget Gate

The network decides if the input X is valuable or not. "Valuable” X values will pass

to the next gate (values close to 1) unlike the “non-valuable” values that will be

discarded (value close to 0).

Given inputs to this gate:

𝑥0 , ℎ𝑡−1

Parameters:

Wf and Uf are the weights and bf are the biases for the forget gate layer.

The forget value is calculated as follows (Eq. 2.8):

𝑎𝑓0 = 𝑊𝑓𝑋0 + 𝑊𝑓ℎ𝑡−1 + 𝑏𝑓

𝑎𝑓0 = [0.945 0.213] ∗ [
2
4
] + (0.731) ∗ (0) + 0.089 = 2.831

University of Aegean Department of Financial and Management Engineering

[33]

 𝑓0 = 𝜎(𝑎𝑓0) =
1

1 + 𝑒−𝑎𝑓0

 𝑓0 = 𝜎(2.831) =
1

1 + 𝑒−2.831
= 0.94433

The f1 value is close to 1 so the network will pass this value to the next gate.

Memory Cell State

As mentioned before, the memory cell of the LSTM network is responsible for

remembering and passing to the next node all the valuable information.

The cell updates the values of the memory using (Eq. 2.9):

c0 = (i0 ∗ cˆ0) + (f0 ∗ c0)

c0 = (0.9537 ∗ 0.9998016) + (0.94433 ∗ 0) = 0.9535

Output Gate

The output value is used to decide whether this value will continue along as an input

to the next LSTM cell (if the value is close to 1) or if it will be discarded (value close

to 0).

Given inputs to this gate:

𝑥0 , ℎ0

Parameters:

Wo and U0 are the weights and bo are the biases for the forget gate layer.

The output gate value is calculated based on (Eq. 2.10):

ao0 = WoX0 + Uoh0 + bo

ao0 = [0.487 0.195] ∗ [
2
4
] + (0.454) ∗ (0) + 0.255 = 2.009

 o0 = 𝜎(ao0) =
1

1 + e−2.009

 o0 = 𝜎(2.009) =
1

1 + e−2.009 = 0.88174

University of Aegean Department of Financial and Management Engineering

[34]

Hidden state

The last computations for the first cell, are the computations of the hidden state

output and the predicted value Y for that same cell.

Using (Eq. 2.11) to compute the output value for ℎ𝑡−1 :

(ℎ𝑡−1) = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡)

(ℎ𝑡−1) = (0.88174) * tanh (0.9535) = 0.741364

Step 2: Calculate the gates products for the second LSTM cell

Before moving on with the computations for the second cell, a general assumption

is that the network shares the same weights across all the LSTM cells, so for every

cell the same weights W, U and b values are used. Of course, these weights will be

adjusted during training (through back propagation).

The input for the second, and final, cell is now 𝑥1

For the second time step t=1:

Input Gate

𝑎𝑖1 = 𝑊𝑎𝑋1 + 𝑈𝑎ℎt−1 + 𝑏𝑎

𝑎𝑖1 = [0.346 0.581] ∗ [
3
5
] + (0.079) ∗ (0.741364) + 0.010 =4.01157

 𝑖1 = 𝜎(𝑎𝑖1) =
1

1 + 𝑒−𝑎𝑖1

𝑖1 = 𝜎(4.01157) =
1

1 + 𝑒−4.01157
 = 0.982217

Furthermore

𝑎𝑐1 = 𝑊𝑖𝑋1 + 𝑈𝑖ℎt−1 + 𝑏𝑖

ac1 = [0.842 0.697] ∗ [
3
5
] + (0.158) ∗ (0.741364) + 0.137 = 6.26513

 𝑐ˆ1 = 𝑡𝑎𝑛ℎ(𝑎𝑐1) =
𝑒𝑎𝑐1 − 𝑒−𝑎𝑐1

𝑒𝑎𝑐1 + 𝑒−𝑎𝑐1

 cˆ1 = tanh(6.26513) =
𝑒6.26513 − 𝑒−6.26513

𝑒6.26513 + 𝑒−6.26513
= 0.999993

University of Aegean Department of Financial and Management Engineering

[35]

Forget Gate

af1 = WfX1 + Wfht−1 + bf

af1 = [0.945 0.213] ∗ [
3
5
] + (0.731) ∗ (0.741364) + 0.089 = 4.620937

 f1 = 𝜎(af1) =
1

1 + e−af1

 f1 = 𝜎(4.620937) =
1

1 + e−4.620937
= 0.9902524

Memory Cell State

c1 = (i1 ∗ cˆ1) + (f1 ∗ c0)

c1 = (0.982217 ∗ 0.999993) + (0.9902524 ∗ 0.9535) = 1.92641

Output Gate

ao1 = WoX1 + Uoht−1 + bo

ao1 = [0.487 0.195] ∗ [
3
5
] + (0.454) ∗ (0.741364) + 0.255 = 3.02758

 o1 = 𝜎(ao1) =
1

1 + e−3.02758 = 0.953805

Hidden state

(ℎ1) = 𝑜1 ∗ 𝑡𝑎𝑛ℎ(𝑐1)

(ℎ1) = (0.953805) * tanh (1.92641) = 0.914167

The remaining computation for the sequence is to compute the predicted value y’

of the LSTM cell. Again, the networks weights are randomly initialized as

W=[0.596] and bias b=[0.097].

y’= 𝑊𝑦ℎ1 + 𝑏𝑦 = 0.596(0.914167) +0.097 = 0.64184

The value y’ is the final output of the LSTM.

Assume that the true label Y for the LSTM is equal to Y=0.9. That is, after training the

network we should target to predict y=0.9.

To compute the network error, the MSE (mean squared error) metric is used. Then:

E=
1

2
(𝑦 − 𝑦′)2= 0.5 (0.9 − 0.64184)2=0.0333233

University of Aegean Department of Financial and Management Engineering

[36]

This is the error to be used during back propagation.

University of Aegean Department of Financial and Management Engineering

[37]

3 Dataset Preprocessing for the NLP System

Three (3) preprocessing steps are needed to transform Twitter data into a form

recognized by a computer. These are:

a) The Data Cleaning process (punctuations, single character words, etc.)

b) The Tokenization process and

c) The Word Embedding process.

3.1 Data Cleaning

A machine learning system needs to be fed with “clean” data to be able to pull out

the most valuable information from each dataset. Usually, raw data are

unstructured and contain redundant information. This is especially true in the

dataset that this Thesis studies, which are “tweets” generated by users posting on

the Twitter platform.

The aim of data cleaning is to go through each phrase and remove irrelevant data

such us links, images, references, #hashtags, characters (retweet “RT” texts,

emoticons), repeated words and other information that is improperly formatted and

does not add any value to the sentiment. The data cleaning process is imperative to

create a high-quality training dataset to be fed into the training model, since it has

significant impact to the training performance accuracy. Poor data can cause a good

algorithm to fail and -on the other hand- high-quality data can cause an algorithm

to output high-quality results (Pradha, et al., 2019).

Usually, a data cleaning process includes several of the steps outlined below but the

steps are strongly based on the type of NLP data to be cleaned. For the purposes of

cleaning data generated from the Twitter platform, the steps of the data cleaning

processes are the following:

A. Remove @user from the tweets

B. Remove mentions (#hashtags)

C. Convert the text into lowercase

D. Remove special characters (RT)

University of Aegean Department of Financial and Management Engineering

[38]

E. Remove commonly used words (stop words dictionary)

F. Convert abbreviations

G. Replace the short-cuts

H. Replace emoticons with words

I. Replace punctuations (“) with space

J. Replace numbers with space

K. Remove words with length=1

These steps are further detailed below. The Python code that implements them is

provided in Appendix B.

Removal of the @user

It is common practice to mention (tagging) Twitter users accounts when publishing

a tweet. These mentions are not adding any value for interpreting the sentiment.

The tagging action uses the character @ to precede the username so, it makes sense

to remove every string that starts with the special character @.

Removal of #hashtags

Twitter introduced a mentioning practice -known as #hashtag- to declare the

general context of a tweet. In practice, words that follow the # character are

considered hashtags and should be deleted from the sentence since they add little

or no value to the sentiment of the sentence.

Conversion to lowercase

The words included in a sentence are case-sensitive, but the text characters must be

written in the exact same form, using all capital or small letters to be recognizable

by the algorithm. For example, the words “Hello” and “hello” will be identified as

the same word by a human but recognized as two separates words by a machine.

Converting all text of the entire dataset into lowercase solves this problem.

Removal of special characters

Another common practice in the Twitter platform is to retweet a specific tweet. In

this case, the "RT" sequence is added in the beginning of the sentence and should

be removed from the sentence.

University of Aegean Department of Financial and Management Engineering

[39]

Removal of stop words

There are specific common words used when writing a text, such as “the”,” is”, “are”

etc., that contribute to the correct syntax of the sentence but provide no value to

the task of the analysis and should be removed from the sentence.

Conversion of abbreviations

The task is to simplify as much as possible the word components of the tweet. For

this task, abbreviations are converted to words with the help of a dictionary.

Replacing shortcuts

A machine cannot identify words written in short forms, for example using "I’d" in

the context of " I would”. For this task, short word forms are converted to non-short

form words with the help of a dictionary.

Replacing emoticons

Twitter users commonly choose to communicate feeling with emoticons instead of

words. Emoticons or emoji’s are a typographic display of a facial representation,

used to convey emotion inside a sentence. For example, the emoticon “☺” can

replace the word “happy”. These data contribute to the overall text sentiment, but

it is impossible for a computer to recognize characters so, again, a dictionary is used

to replace emojis with words.

Replace punctuations

The punctuation characters (“ ”) used in a sentence aren’t contributing to the overall

sentiment and should be removed from the sentence.

Remove numbers

Numbers included in a sentence do not contribute to the analysis process and should

be removed from the sentence.

Remove 1-character words

Single character words such as “a” do not offer any value to the sentiment analysis

and should be removed from the sentence.

University of Aegean Department of Financial and Management Engineering

[40]

Figure 3.1 displays an example of a dataset in which the cleaning steps have been

applied. The column “clean tweet” contains the data that will be passed to the

model for the Training process of the machine learning algorithm. The column

“label” indicates the true label y, representing the sentiment of the corresponding

tweet with value 1 for positive sentiment and value 0 for negative meaning.

Figure 3. 1 Format of the dataset after the data cleaning

We have implemented all above operations in Python. We used the Python code to

process all input data (Tweets) used in this work. The code is provided in Appendix

B.

3.2 Tokenization process

A “mapping” tool was used to map natural language to computer language so that

a computer can be eventually trained to perform sentiment analysis. A technique

specifically developed to map raw text data and make them readable by machines

is called one-hot encoding and pairs each word of the sentence to a unique “key”

identifier value. The identifier value assigned to a word should be unique for this

specific word and must remain intact throughout the entire process. The main idea

University of Aegean Department of Financial and Management Engineering

[41]

is that a text sentence will be mapped to a sequence of identifiers and then will be

fed as an input to the algorithm.

For example, consider the following sentence: “This is an example“. A possible

encoding would look like:

This -> 1

Is -> 2

An -> 3

Example -> 4

So, the sentence can be represented as the identifier vector: [1, 2, 3, 4]. These

unique identifier values are called tokens and the “tokenization process” described

in Appendix C is the basis of NLP neural network training.

3.3 Word Embedding Technique

3.3.1 Overview of the word embedding concept

Previously, we described the one-hot encoding technique for mapping text form

data into a numerical vector representation. This technique is suited when handling

a small dataset of input sentences. The word embedding technique is another

method that maps the dataset variables to a continuous vector form. The main

advantages over the simple one-hot encoding method are a) a reduction in overall

vector sizes as it creates low-dimensional learning vectors and b) the fact that this

method captures better each word meaning by placing related words close to each

other in the representation space (Singh & Manure, 2019).

The word embedding technique is basically a numerical representation of each word

in a vector form that corresponds to the meaning of that word rather than the word

itself. Words that appear in similar contexts will have similar vectors. For example,

vectors for “happy" and "joyfully" will have similar vector representation, unlike the

word “sad” that will be represented with a completely different vector to emphasize

the different sentiment of the word.

University of Aegean Department of Financial and Management Engineering

[42]

The word embedding technique is used to process the dataset as the first layer of

the neural network -after the preprocessing and data preparation- and creates the

numerical vectors. Following this method, associated word vectors are clustered

closely in the multi-dimensional space. The resulting embedding vectors are weights

of the first NN hidden layer trained specifically on the input dataset. (Singh &

Manure, 2019)

To recap the embedding concept, words are represented in vector forms. For

example, we can represent a 20.000 words vocabulary using a 200 numbers vector,

reducing the required representations included in the vocabulary constructed by the

one-hot-encoded vector. Furthermore, it relates words based on the context and,

thus, captures enhanced knowledge about these words.

Appendix D includes further information related to the word embedding technique.

3.3.2 Application of the concept in our case

Since our input dataset is in text form and the size of the vocabulary is 2,000, we

used the embedding technique as the first layer of the selected network architecture

(see Section 4.5) to convert the text sentences into numerical array sequences. This

layer uses trainable weight values for creating vectors of floating-point numbers to

represent each word included in the vocabulary. It also creates similarly encoded

vectors for words with similar meaning.

 The size of those encoded vectors depends on the Embedding value and the

vocabulary_size parameter. In our case we proceed with Embedding size equal to 4.

Words that appear in a higher frequency in the sentences will be placed first in the

embedding vector.

For example, based on training the Embedding (4) matrix may resemble the one in

Fig. 3.2:

University of Aegean Department of Financial and Management Engineering

[43]

Embedding vector (2.000 x 4)

Apple

iPhone

iOS

.

.

.

Technology

.

5.9 -0.96 1.3 0.76

2.6 0.82 3.2 1.83

-0.2 2.35 4.18 1.68

. . . .

. . . .

. . . .

. . . .

6.91 3.97 -2.43 1.25

Figure 3. 2 The embedding vector representation of words included in the vocabulary

University of Aegean Department of Financial and Management Engineering

[44]

4 Data preparation, structure and performance metrics for a
Twitter sentiment analysis system

The entire process employed in this Thesis -to prepare the twitter data, design, train

and validate the system- is shown in Fig. 4.1.

Figure 4. 1 Neural Network Flow diagram for the sentiment detection task

The four preparation steps of the raw dataset are the following:

a. Dataset Generation: extract raw data from the Twitter platform using the

Twitter API

b. Dataset Labelling: pass the raw data through a simple dictionary algorithm

to discard irrelevant tweets with potentially neutral sentiment and manually

label each tweet with having a positive or negative sentiment

c. Pre-processing input dataset: remove special characters from the tweets,

cleaning the raw text

d. Split the resulting dataset into Training, Validation and Testing Datasets.

In addition, the basic architecture of the sentiment detection system has been

selected. The training dataset was fed as an input to train the selected NN

architecture. The trained model can be used for sentiment detection.

Each block of the flow diagram (Fig 4.1) will be described to the respective Sections

below.

Dataset Generation

Dataset Labelling

Pre-prosesing input
dataset

Spliting the dataset

(train,validate,test)

Define NN
architecture

Train the model
Sentiment
Predictions

Evaluate model
predictions

accuracy

University of Aegean Department of Financial and Management Engineering

[45]

It is noted that we have experimented heavily with the parameters of training in

order to optimize the detection ability of the selected network architecture. This is

described in Chapter 5.

4.1 Dataset Generation

Twitter provides free access to software developers to use a variety of tools to

extract the platform’s data, such as exposing the data through their Application

Programming Interface (API). Twitter’s API was introduced in 2006 and since then,

Big Data researchers can study generated data from Twitter in real time. The API is

an intermediate “bridge” between the user and the Twitter server that allows access

based on a simple set of rules summed up as a request and response transaction: a

developer places a request to extract specific data and the Twitter server listens at

the provided API endpoint and responds with the data requested (Makice, 2009).

Twitter’s policy is to share only tweets that its platform users have made public and

limits the amount of the data that a developer is authorized to extract based on the

type of the account plan that a developer is subscribed to. To access the API service,

unique credentials (keys and tokens) are granted to the developer and can be used

to interact with the API service.

There are several “API packages” and account plans available that provide access to

different amounts of Twitter generated data. The most common are the “standard

APIs” and the “APIs for academic research” plans. These are free plans for a

developer and provide access to 500,000 Tweets per month (Standard API) and

10,000,000 Tweets per month (APIs for academic research). We proceeded with a

periodic extraction of relevant data and with a manual sorting process to maintain

the tweets that are relevant to the purposes of this Thesis. The application for

requesting the credentials keys was processed via Twitter’s developers site.

The extraction process was very laborious, since it dealt with several limitations,

related mainly to the content of the extracted data (junk, advertisements, irrelevant

text). Furthermore, the provided credentials had a limit for accessing 5,000 tweets

every 3 days. Through this laborious process, we managed to collect approximately

8.600 tweets relevant to our task (plus 1.400 more tweets for the second

University of Aegean Department of Financial and Management Engineering

[46]

experimental stage). These tweets were extracted between June 01, 2021 and

September 30, 2021. During this period, Apple’s annual release events took place in

April and September and created a buzz around their new products lines.

To begin with the data extraction process, a Python based script interacts with the

Twitter API to collect raw tweet data. The API request for extracting data requires

to specify the expected data features using two parameters that are initialized by

the developer: a) through the first parameter the user sets the period for the

extracted data and b) the second parameter requires to declare a specific hashtag

word that the tweet sentences must include, in order to collect only relevant data.

The data are characterized as “raw” because they have an unstructured format and

may contain links, symbols (@, retweets-RT etc.), #hashtags or be written with

wrong syntax which makes them difficult to handle and make sense out of them.

The extracted data are then saved in a CSV file form. The Python script that extracts

the data is included in Appendix E.

In Figure 4.2 below, a graphical representation of a WordCloud (Heimerl, et al.,

2014) visualizes the most common words that exist in our extracted dataset. The

image depicts the 100 most frequently used words in the dataset and the frequency

of a word correlates with its font size.

University of Aegean Department of Financial and Management Engineering

[47]

Figure 4. 2 Word Cloud graphic including the most common words from the collected tweets

4.2 Dataset Labelling

For training our NN model (see relevant Section), and since we are not using a pre-

labelled dataset, we needed to manually label each tweet that is included in the

dataset based on its negative or positive sentiment. To clean the data from potential

irrelevant tweets with neutral (no negative nor positive) sentiment, we developed a

simple algorithm (included in Appendix F) which, for each tweet, it looks up strong

sentiment words (either positive or negative) in a dictionary (of 813 words with

negative meaning and 921 words with positive meaning) and if the tweet in question

does not include any of the words in the dictionary, it is removed from the dataset.

After proceeding with the dictionary code, each and every tweet was labelled

manually with either positive (2,102 tweets) or negative (4,662 tweets) sentiment

as seen in Figure 4.3.

University of Aegean Department of Financial and Management Engineering

[48]

Figure 4. 3 Dataset distribution between negative (0) and positive (1) sentiments

4.3 Pre-processing input dataset

After successfully labeling the dataset, the tweets and their labels were saved in a

new CSV file containing two columns named “labels” and “tweets” for further data

pre-processing (see section 3.1) that removes special characters, twitter usernames

etc.

Figure 4. 4 Load the input dataset

University of Aegean Department of Financial and Management Engineering

[49]

The pre-processed labelled dataset is fed -as the training dataset input- to the neural

network.

4.4 Splitting the dataset

The above dataset was divided in three subsets for training (80% of the dataset),

validation (10% of the dataset) and testing (10% of the dataset). Those three

datasets serve different objectives in the NN learning task.

The algorithm uses the training dataset as an input to the network for adjusting the

model weights. Through this process the network “learns” to identify patterns out

of the input data for accurately predicting the sentiment expressed in unseen-text

data.

The validation dataset used for evaluating the model fit on the given unseen

validation dataset during the training process and also for evaluating the model

performance.

The testing dataset, which is also a subset of the total input dataset, is used on the

trained model for providing to the researcher an unbiased access of the model fit

on the given unseen test dataset (Bishop, 1995).

In our case the training data dataset consists of 5.410 tweets, the validation dataset

of 677 tweets and the testing dataset of 677 tweets. These are randomly generated

by the original input dataset of 6.764 tweets

4.5 NN architecture

The Keras library (included in TensorFlow 2.0) is used to implement a simple neural

network architecture suitable for the classification task on hand. Keras is a high-level

Deep learning application programming interface (API) which interacts with

TensorFlow and provides a convenient way to define a deep neural network model.

This library provides mathematical operations and a variety of ready-to-use

functions so users could stack multiple Keras layers and initialize their parameters

to create a customized network (Brownlee, 2016).

The chosen model architecture consists of the embedding layer, one LSTM hidden

layer, a Flatten layer and two Dense layers (Fig 4.5). This simple architecture was

University of Aegean Department of Financial and Management Engineering

[50]

selected to fit the dataset limitations, since it includes a small number of trainable

parameters. In this way we hope to avoid overfitting.

Figure 4. 5 Model layers usen in the training process

Each of these layers is described below.

Embedding (input_dim, output_dim, input_length)

The embedding layer has already been discussed in Section 3.3. In this Section, we

focus on the trainable parameters of the embedding layer.

The input dimension (input_dim) parameter equals the number of words included

in the vocabulary (vocab_size) which has been initialized in the tokenization process

and set to 2,000 (input_dim = 2,000). In the embedding process, every word has a

4-dimension embedding representation (output_dim=4), so the embedding output

size for every word will be a 4-dimensional array. Based on the above, the final

embedding layer is a 2000x4 dimensional vector. Finally, the input_length declares

the length of the input sequences. In this case we have initialized/trimmed all the

sentences to a maximum length of max_length=30 before proceeding with the

tokenization so, the embedding input sentence length will be the same size as the

max_length.

So, the embedding layer is a 3-dimensional array of size (2000, 4, 30)

LSTM (lstm_units, dropout, reccurent_dropout)

The LSTM layer has been described in Section 2.4. The lstm_units parameter

declares the number of sequential LSTM cells that are structurally identical and

include 3 control gates and the memory cell as illustrated at Figure 2.7. The

information is forwarded from one cell to the following one in the hidden layer. In

Section 5.1 we experiment with 2 different LSTM layer architectures with 8 or 32

Embedding
layer

LSTM layer Flatten layer Dense layer
Dense

output layer

University of Aegean Department of Financial and Management Engineering

[51]

LSTM layer units. Considering the first case, LSTM (8), the information that enters

the LSTM layer will be processed by 8 sequential LSTM cells, and every cell will

process and keep in its memory different features of the input data before

forwarding the information to the next cell. Figure 4.6 below illustrates the

placement of the LSTM cell in one layer.

The dropout/reccurent_dropout is a regularization/clean-up method applied to

prevent irrelevant information from entering out or coming out of the LSTM cell,

respectively. It is initialized to a value between 0 and 1. Considering Figure 2.7 of

Section 2.4, dropout operates on the LSTM input (𝑥𝑡) to avoid irrelevant information

entering the cell and the reccurent_dropout operates on the hidden state (ℎ𝑡) to

reject unnecessary information passing to the succeeding unit. As an example, if the

reccurent_dropout is set to 0.5 then, the cell will reject or ”dropout” the hidden

state values below 0.5 and stop them from exiting the LSTM cell (Srivastava, et al.,

2014). The different reccurent_dropout values that we tested in Section 5.1 are

LSTM dropout (0 , 0.5).

Figure 4. 6 Illustration of an LSTM layer with 8 cells

Flatten ()

A Flatten layer is an intermediate layer for converting multidimensional vectors into

1-dimensional arrays and feed those data to the succeed layer. Based on Section

5.1 model architecture, considering an LSTM (8) layer, the data provided to the

Flatten layer is a [𝑁𝑜𝑛𝑒 𝑥 8] vector (the first dimension None corresponds to the

University of Aegean Department of Financial and Management Engineering

[52]

batch_size and the second-dimension referees to the LSTM units). So, these data are

converted into a 1D array, passing thought the Flatten layer, to feed the Dense layer.

Each element included in the output 1D array will be fully connected (given as an

input) to every neuron of the Dense layer (Aggarwal, 2018).

Dense (units, activation)

In the Dense function, the first parameter, “units”, initializes the number of neurons

included in the dense layer and the “activation” parameter sets the default element-

wise activation function. Every Dense unit input is multiplied by the corresponding

weight and the product passes though the applied activation function.

In the neural network architecture, we used two Dense layers . Each dense layer is

fully connected with all nodes of the previous layer. The input to the first Dense layer

is the 1D array from the Flatten layer.

Considering the experimental process of Section 5.1, we used two values for the first

Dense layer (units = 20, 60, activation=” ReLu”), to process the output signals of the

Flatten layer and passes each one of them though a ReLu function.

The number of units in the last layer of the model structure (also called output layer)

equals to the number of classes that the NN will predict. In our case, which is a binary

classification task (two classes), the output layer is a Dense layer with units=1 and

activation=’sigmoid’.

4.6 Training the model

Obtaining the NN weights during training

The purpose of training is to obtain the best possible values of the weights of the

NN. This is done by modifying the weight values systematically to minimize the error

between the labels of the training data and the predictions of the NN.

 The training process of an algorithm has two main hyperparameters. The number

of epochs and the batch_size number. An epoch is one iteration for the entire

training dataset to be processed through the backward and feedforward

propagation. The training dataset is split into smaller batches. Typical batch_sizes

University of Aegean Department of Financial and Management Engineering

[53]

are 32 ,64 or 128. For every epoch, the batch_size hyperparameter will update the

network weights. As an example, if we provide 8.600 data as the training dataset to

the network and set the batch_size=64 , then during training there will be 135

weight updates- the weights will be updated for every 64 samples. As a result, one

epoch will complete after 135 batches and the epoch weights correspond to the

weight values resulting from the final batch. In Section 5.1, we proceed with testing

two different values for the epoch {10,50} and two for batch_size {8,32}.

A loss function used to measure the prediction error for every batch during the

training process. The loss function calculates the difference between the true value

and the predicted value, and the output is a number between 0 and 1. Higher loss

values, indicate that the algorithm fails to predict with accuracy the true labels

unlike a lower loss value that is a sign for efficient prediction. (Zhao, et al., 2010).

The optimizer function (see Appendix A) reduces the overall losses and improves the

model’s accuracy by changing the model’s weights and learning rate parameter “a”.

As the training process progresses, the network updates the weights taking into

consideration the values of the loss function until the model converges. The learning

rate parameter defines the size of the step with which the optimization function

updates the model weights. It receives values between 0 and 1. A high learning “a”

value allows for the model to train faster but that may result in incorrect final weight

values and high model loss metrics. On the other hand, a low “a” value will lead to

slower training because there is a small update of the weight’s values. A commonly

used default value for “a” is between 0.05 and 0.01.

While experimenting with different architectures in Section 5.1, we initialized the

learning rate “a” parameter with a smaller value equal to 0.001 in order to avoid

divergence.

University of Aegean Department of Financial and Management Engineering

[54]

Figure 4. 7 The learning rate parameter effectiveness to the model training. (Jordan, 2018)

For the loss function, we used Adam (Adaptive Moment estimator), which is a

popular gradient descent optimization algorithm. Adam uses an adaptive method

for computing individual rates. That is, the step of the learning rate “a” change and

will slowly converge while training unfolds (Bock, et al., 2018).

4.7 Model evaluation: Performance metrics

There are various metrics for assessing NN training efficiency. More specifically for

binary classification tasks, the following metrics compute the model accuracy: the

accuracy metric, the f1_score value and the confusion matrix.

Accuracy

The Accuracy metric computes the ratio of the number of correct predictions to the

total number of input samples and it is calculated for every epoch during the training

process (Chicco & Jurman , 2020).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑚𝑒𝑡𝑟𝑖𝑐 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠(𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (𝑌𝑡𝑟𝑢𝑒)
 (Eq. 4.1)

Monitoring the evolution of the accuracy values in every epoch may provide an

indication for model overfitting. More specifically, during training, the expected

behavior of the accuracy value would be to increase in every iteration. If the

accuracy value remains the same in two successive iterations and then starts to

decrease, that is an indication that the model is not training efficiently and starts to

overfit after the related epoch.

University of Aegean Department of Financial and Management Engineering

[55]

The f1_score

F1 score is a commonly adopted method for binary classification tasks. This metric

differs from the Accuracy metric since it takes into consideration both the correct

and the incorrect predictions (Lipton, et al., 2014).

f1_score =
2 𝑥 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (Eq. 4.2)

Before proceeding with further analyses of the f1_score metric we should clarify the

meaning for a true positive, true negative, false positive and false negative

predictions.

A true positive prediction is a positive label tweet (true label y=1) that the algorithm

correctly classified as positive (predicted label y’=1), so it is an accurate prediction

for positive sentiment. Unlike, the false positive prediction that occurs when a tweet

with negative label (true label y=0) had been classified as positive (predicted label

y’=1) from the algorithm. So, there is a misclassification for this specific tweet: a false

positive prediction on a negative true label.

The true negative prediction refers to a tweet with negative sentiment (true label

y=0) that the algorithm has correctly characterized it as negative (predictive label

y’=0). On the other hand, a false negative prediction is a case where a tweet with

positive sentiment (true label y=1) has been falsely predicted as negative (predicted

label y’=0).

 Precision =
True Positives

True Positives + False Positives
 (Eq. 4.3)

is a fraction for the total number of positive predictions that are correctly classified

by the algorithm (true positives) over the sum of the true positives and false

positives. Thus, precision basically counts the percentage of all positive predictions

that are (true) positives.

On the other hand, recall factor,

 Recall =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (Eq. 4.4)

is the fraction for the total number of true positives over the sum of true positives

and the number of tweets with a positive sentiment (label=1), that the algorithm

University of Aegean Department of Financial and Management Engineering

[56]

incorrectly predicted as negatives (false negatives related to α-risk). Hence, the

recall factor counts the percentage of the correct positive predictions out of the total

number of positive labeled data included to the input dataset.

The F1 score is the harmonic mean of Precision and Recall and takes values between

1 and 0.

Confusion Matrix

A confusion matrix is a 2x2 matrix that provides information about the prediction

accuracy of the model: one dimension includes the actual labels of the input data,

and the other dimension contains the model predictions (Deng, et al., 2016). An

illustration of the confusion matrix structure for binary classification is presented in

Fig. 4.8.

University of Aegean Department of Financial and Management Engineering

[57]

True Positives

Algorithm prediction
is positive, and the

true label is also
positive

False Positive

Algorithm prediction
is positive, but the

true label is negative

False Negative

Algorithm prediction
is negative, but the
true label is positive

True Negatives

Algorithm prediction
is negative, and the

true label is also
negative

Positive Negative

Figure 4.8 Confusion Matrix

Positive Negative

 N
eg

at
iv

e

 P
o

si
ti

ve

True labels

P

R

E

D

I

C

T

E

D

University of Aegean Department of Financial and Management Engineering

[58]

5 Experiments

So far, we have described the architecture of a neural network model suitable for

sentiment analysis in the selected application. In addition to selecting a model

architecture, a main goal for this Thesis is to optimize the model parameters. In this

Chapter we are addressing this goal through systematic experimentation.

We use the f1_score metric for evaluating the model’s prediction efficiency. The goal

is to deliver an f1_score value for the test dataset as close as possible to 1. To achieve

this, the model structure (e.g., the number of LSTM layers with their units e.tc.), and

some training parameter (number of epochs, batch size, etc.) will be fine-tuned. Our

method includes systematic training of model variations by adjusting the model and

training parameters. The output performance of the various experiments is

analyzed using statistical tools and finally the optimal trained model that scores the

highest f1_score value is selected

Having done so, as a second step, we examined how the characteristics of the

training dataset affect the performance of the optimized network. Specifically, we

investigate whether the balance between tweets with positive and negative

sentiments affects the performance of the trained network.

5.1 Optimization of the network and training parameters

As described above, the reference architecture of the NN model and its parameters

as follows:

Table 5.1 Model architecture of the first experiment

Model parameters Training parameters
Embedding
dimensions

(output_dim)

LSTM units LSTM
Dropout

Dense layer
units

Epochs Batch_size

16 8 0.5 60 8 8

University of Aegean Department of Financial and Management Engineering

[59]

Based on this model structure, a prediction efficiency of the testing f1_score= 0.6

(60%) was achieved. This score refers to the test dataset as all such scores related

to the experiments below.

To improve this, we ran a set of experiments by altering the architecture and

parameters of the original model, as well as some training parameters, and applied

statistical methods to study the effect of the different levels of these parameters on

the prediction efficiency. The experimentation was based on the DOE (Design of

Experiments) followed by the ANOVA (Analysis of Variance) methods. The results

were processed with the Minitab software. The six parameters of the NN model and

its training that were tested during the experiments and their levels are the

following:

• Embedding layer Dimensions (output_dim): {4,16}

• Number of LSTM units: {8,32}

• LSTM Dropout threshold: {0, 0.5}

• Number of Dense layer units {20, 60}

• Batch_size: {8, 32}: Note that a batch_size is the number of subsets out of

the training dataset . The network splits the training dataset into smaller

batches in order to completing one epoch- one forward and backward pass

of the network for updating the model weights. This continues until the

entire training dataset is processed by the network. For example, considering

a training dataset= 5.410 and a batch_size=32. The algorithm uses the first

32 tweets (1st tweet to 32nd tweet) out of the training data for the first

training step. Subsequently, the algorithm will proceed with the next 32

tweets (33rd to 65) for the next training step. The network will iterate this

process for approximately 170 times, until the entire training dataset is

processed and complete one epoch. This is a repeating process, since the

network executes this process until the network fullfeed the required

number of epochs.

• Number of Epochs: {10, 50}: When occurring one epoch , the model will

constantly update the hidden layers weight at every batch, until the total

train dataset complete one full feed forward and backward pass , using the

University of Aegean Department of Financial and Management Engineering

[60]

training dataset and then using the validation dataset for testing the model

performance on unseen data.

All possible level combinations of the above six model parameters contribute to 64

different conditions. Under all conditions, the model has the same basic architecture

that consists of one (1) Embedding layer, one (1) LSTM layer with dropout, one (1)

Flatten layer, one (1) Dense layer and one (1) output Dense layer. For binary

classification, the number of output Dense layer units is set to one (1) since the

model is expected to output one value, either 0 (negative sentiment) or 1 (positive

sentiment). The X in the following pseudocode denotes the different parameter

values of the model that we are investigating:

model = Sequential()

model.add(Embedding(output_dim= X))

model.add(LSTM(units= X , dropout= X)

model.add(Flatten())

model.add(Dense(X,activation='relu'))

model.add(Dense(1, activation='sigmoid'))

epoch = X
batch_size = X

Figure 5. 1 Model architecture for the 64 experiments.

The 64 combinations generated are shown in Table 5.2

Table 5.2 The 64 variations related to the training experiments

Table of experiments

Experiment
Embedding
Dimensions

LSTM units
LSTM

Dropout
epochs

Dense
layer
units

batch
size

1 4 8 0,0 10 20 8

2 4 8 0,0 10 20 32

3 4 8 0,0 10 60 8

4 4 8 0,0 10 60 32

5 4 8 0,0 50 20 8

6 4 8 0,0 50 20 32

7 4 8 0,0 50 60 8

8 4 8 0,0 50 60 32

9 4 8 0,5 10 20 8

10 4 8 0,5 10 20 32

University of Aegean Department of Financial and Management Engineering

[61]

Table of experiments

Experiment
Embedding
Dimensions

LSTM units
LSTM

Dropout
epochs

Dense
layer
units

batch
size

11 4 8 0,5 10 60 8

12 4 8 0,5 10 60 32

13 4 8 0,5 50 20 8

14 4 8 0,5 50 20 32

15 4 8 0,5 50 60 8

16 4 8 0,5 50 60 32

17 4 32 0,0 10 20 8

18 4 32 0,0 10 20 32

19 4 32 0,0 10 60 8

20 4 32 0,0 10 60 32

21 4 32 0,0 50 20 8

22 4 32 0,0 50 20 32

23 4 32 0,0 50 60 8

24 4 32 0,0 50 60 32

25 4 32 0,5 10 20 8

26 4 32 0,5 10 20 32

27 4 32 0,5 10 60 8

28 4 32 0,5 10 60 32

29 4 32 0,5 50 20 8

30 4 32 0,5 50 20 32

31 4 32 0,5 50 60 8

32 4 32 0,5 50 60 32

33 16 8 0,0 10 20 8

34 16 8 0,0 10 20 32

35 16 8 0,0 10 60 8

36 16 8 0,0 10 60 32

37 16 8 0,0 50 20 8

38 16 8 0,0 50 20 32

39 16 8 0,0 50 60 8

40 16 8 0,0 50 60 32

41 16 8 0,5 10 20 8

42 16 8 0,5 10 20 32

43 16 8 0,5 10 60 8

44 16 8 0,5 10 60 32

45 16 8 0,5 50 20 8

46 16 8 0,5 50 20 32

47 16 8 0,5 50 60 8

48 16 8 0,5 50 60 32

49 16 32 0,0 10 20 8

50 16 32 0,0 10 20 32

51 16 32 0,0 10 60 8

52 16 32 0,0 10 60 32

53 16 32 0,0 50 20 8

54 16 32 0,0 50 20 32

55 16 32 0,0 50 60 8

56 16 32 0,0 50 60 32

University of Aegean Department of Financial and Management Engineering

[62]

Table of experiments

Experiment
Embedding
Dimensions

LSTM units
LSTM

Dropout
epochs

Dense
layer
units

batch
size

57 16 32 0,5 10 20 8

58 16 32 0,5 10 20 32

59 16 32 0,5 10 60 8

60 16 32 0,5 10 60 32

61 16 32 0,5 50 20 8

62 16 32 0,5 50 20 32

63 16 32 0,5 50 60 8

64 16 32 0,5 50 60 32

For each of the 64 combinations, the training process is repeated twice. The

f1_score related to the testing datasets from both runs were averaged. This is done

in order to generate the necessary data to perform ANOVA. (see Section 4.4 for the

size of the training, validation and testing datasets).

Table 5.3 shows the testing f1_score for both training sessions including their

average value. These values result from running the Python script included in

Appendix G.

Table 5.3 Models accuracy metric f1_score resulting from the 64 experiments (two runs per experiment)

Table of experiments

Experiment Run 1 f1_score Run 2 f1_score Mean for f1_values

1 0.6757 0.6736 0.6746

2 0.6525 0.6685 0.6605

3 0.6578 0.6646 0.6612

4 0.6855 0.7303 0.7079

5 0.5922 0.6209 0.6065

6 0.7102 0.6835 0.6968

7 0.629 0.5994 0.6142

8 0.608 0.6225 0.6152

9 0.6761 0.671 0.6735

10 0.7325 0.7034 0.7179

11 0.6684 0.6743 0.6713

12 0.6919 0.6905 0.6912

13 0.6863 0.6507 0.6685

14 0.6495 0.6862 0.6678

University of Aegean Department of Financial and Management Engineering

[63]

Table of experiments

Experiment Run 1 f1_score Run 2 f1_score Mean for f1_values

15 0.6843 0.642 0.6631

16 0.6469 0.6702 0.6585

17 0.667 0.6504 0.6587

18 0.6959 0.6895 0.6927

19 0.7227 0.6415 0.6821

20 0.6509 0.7268 0.6889

21 0.6604 0.6021 0.6312

22 0.6538 0.6493 0.6515

23 0.6415 0.6772 0.6593

24 0.6033 0.6273 0.6153

25 0.7083 0.6772 0.6927

26 0.7098 0.688 0.6989

27 0.7171 0.7083 0.7127

28 0.6748 0.6863 0.6805

29 0.6116 0.6666 0.6391

30 0.67 0.6737 0.6718

31 0.679 0.7036 0.6913

32 0.681 0.6666 0.6738

33 0.6513 0.6737 0.6625

34 0.7107 0.6666 0.6886

35 0.6921 0.7062 0.6991

36 0.6698 0.6885 0.6791

37 0.6491 0.6835 0.6663

38 0.6122 0.6313 0.6217

39 0.6954 0.6902 0.6928

40 0.6651 0.6823 0.6737

41 0.6703 0.683 0.6766

42 0.6879 0.6829 0.6854

43 0.6811 0.6067 0.6439

44 0.647 0.6703 0.6586

45 0.6666 0.7018 0.6842

46 0.663 0.6752 0.6691

47 0.6772 0.694 0.6856

48 0.6444 0.7102 0.6773

49 0.6855 0.7098 0.6975

50 0.7297 0.6717 0.7007

51 0.6286 0.6559 0.6422

52 0.6509 0.6964 0.6736

53 0.67 0.6956 0.6828

University of Aegean Department of Financial and Management Engineering

[64]

Table of experiments

Experiment Run 1 f1_score Run 2 f1_score Mean for f1_values

54 0.6434 0.6297 0.6365

55 0.665 0.6896 0.6773

56 0.6614 0.6408 0.6511

57 0.6785 0.6648 0.6716

58 0.6564 0.7583 0.7073

59 0.6448 0.663 0.6539

60 0.7053 0.6718 0.6885

61 0.6702 0.6667 0.6684

62 0.6332 0.6877 0.6604

63 0.6835 0.6775 0.6805

64 0.7264 0.6685 0.6974

Based on these results, the significance of each experimentation parameter on

performance was analyzed by ANOVA using the Minitab software. Minitab supports

studying the effects that input variables (model factors) have over output variables

(model responses). In this Thesis we used the DoE Factorial Analysis and studied the

effects of the 6 parameters (factors) over the f1_score value (model response) to

determine the model and training parameters that optimize the f1_score of the

testing dataset.

5.1.1 Experiment 1 – Training and testing 64 different combinations

By setting up the factorial design and entering the responses of the f1_score, the

Minitab software auto-generates a worksheet with multiple data analytics graphs to

assess the factors that contribute to the model’s performance.

Table 5.4 ANOVA analysis table for 64 experimental runs

Analysis of Variance

Source DF Adj SS Adj MS
F-

Value
P-

Value

 Embedding 1 0,000852 0,000852 1,39 0,243

 LSTM 1 0,000428 0,000428 0,7 0,407

 LSTM Dropout 1 0,005493 0,005493 8,96 0,004

 epochs 1 0,013023 0,013023 21,24 0

 Dense layer 1 0,000015 0,000015 0,02 0,878

University of Aegean Department of Financial and Management Engineering

[65]

 batch_size 1 0,000936 0,000936 1,53 0,221

 2-Way Interactions 15 0,019619 0,001308 2,13 0,019

 Embedding*LSTM 1 0,000136 0,000136 0,22 0,639

 Embedding*LSTM Dropout 1 0,002684 0,002684 4,38 0,04

 Embedding*epochs 1 0,005961 0,005961 9,72 0,003

 Embedding*Dense layer 1 0,000004 0,000004 0,01 0,936

 Embedding*batch_size 1 0,001316 0,001316 2,15 0,148

 LSTM*LSTM Dropout 1 0,000179 0,000179 0,29 0,591

 LSTM*epochs 1 0,000129 0,000129 0,21 0,649

 LSTM*Dense layer 1 0,000036 0,000036 0,06 0,808

 LSTM*batch_size 1 0,00019 0,00019 0,31 0,58

 LSTM Dropout*epochs 1 0,003 0,003 4,89 0,031

 LSTM Dropout*Dense layer 1 0,000026 0,000026 0,04 0,837

 LSTM Dropout*batch_size 1 0,000211 0,000211 0,34 0,559

 epochs*Dense layer 1 0,001635 0,001635 2,67 0,107

 epochs*batch_size 1 0,003179 0,003179 5,18 0,026

 Dense layer*batch_size 1 0,000932 0,000932 1,52 0,222

 3-Way Interactions 20 0,02258 0,001129 1,84 0,035

 Embedding*LSTM*LSTM Dropout 1 0,000125 0,000125 0,2 0,653

 Embedding*LSTM*epochs 1 0,000083 0,000083 0,13 0,715

 Embedding*LSTM*Dense layer 1 0,002234 0,002234 3,64 0,061

 Embedding*LSTM*batch_size 1 0,002369 0,002369 3,86 0,054

 Embedding*LSTM Dropout*epochs 1 0,000069 0,000069 0,11 0,739

 Embedding*LSTM Dropout*Dense layer 1 0,000381 0,000381 0,62 0,434

 Embedding*LSTM Dropout*batch_size 1 0,002237 0,002237 3,65 0,061

 Embedding*epochs*Dense layer 1 0,004192 0,004192 6,84 0,011

 Embedding*epochs*batch_size 1 0,00197 0,00197 3,21 0,078

 Embedding*Dense layer*batch_size 1 0,00284 0,00284 4,63 0,035

 LSTM*LSTM Dropout*epochs 1 0,000276 0,000276 0,45 0,505

 LSTM*LSTM Dropout*Dense layer 1 0,002616 0,002616 4,27 0,043

 LSTM*LSTM Dropout*batch_size 1 0,000293 0,000293 0,48 0,492

 LSTM*epochs*Dense layer 1 0,000959 0,000959 1,56 0,216

 LSTM*epochs*batch_size 1 0,000129 0,000129 0,21 0,649

 LSTM*Dense layer*batch_size 1 0,000058 0,000058 0,09 0,76

 LSTM Dropout*epochs*Dense layer 1 0,001436 0,001436 2,34 0,131

 LSTM Dropout*epochs*batch_size 1 0,000066 0,000066 0,11 0,745

 LSTM Dropout*Dense layer*batch_size 1 0,000004 0,000004 0,01 0,932

 epochs*Dense layer*batch_size 1 0,000244 0,000244 0,4 0,53

In the ANOVA (analysis of variance) Table 5.4, the p-value variable shows the

probability to accept the null hypothesis, which assumes that there is no statistical

significance between a factor and the model’s response or -in other words- that the

observed difference in the model’s response is only due to chance. A typical null

University of Aegean Department of Financial and Management Engineering

[66]

hypothesis threshold, denoted as “a”, equals 0.05, so, for factors with P-value ≤0.05,

there is strong evidence to reject the null hypothesis and denote that the response

value depends on the corresponding factor. On the other hand, if P-value>0.05,

then, the response value does not depend on the corresponding factor.

A similar result is related to the F value. If the F value is above a critical threshold

(𝐹𝐶𝑟𝑖𝑡), then the corresponding factor or interaction is statistically significant,

otherwise it is not.

To conclude, factors with low p-value and high F-value (below and above the

corresponding threshold values, respectively) are considered to affect the output in

a statistically significant manner (Stahle & Svante, 1989).

Based on Table 5.4 the full factorial ANOVA analysis results indicate the following:

• The only single factors that affect the f_1 score is the Dropout factor with p-

value (0,004) and F-value (8,96) and the epochs factor with p-value (0) and F

value of (21,24).

• The significant two-way interactions are Embedding*Epochs (p-value=0,003

and f-value=9,72), Embedding*LSTM Dropout (p-value=0,04 and f-

value=4,38), LSTM Dropout*Epochs (p-value=0,031 and f-value=4,89) and

epochs*batch_size (p-value=0,026 and f-value=5,18). All three two-way

interactions involve the two significant factors LSTM_Dropout and Epochs.

• Significant three-way interactions are: Embedding*epochs*Dense_layer

(with p-value=0,011 and f-value=6,84), Embedding*Dense layer*batch_size

(with p-value=0,035 and f-value=4,63), and LSTM*LSTM Dropout*Dense

layer (with p-value=0,043 and f-value=4,27).

These results are also shown in the Pareto Chart of Figure 5.2, which presents the

absolute value of the standardized effect of the corresponding factor/interaction.

The factors that cross the red line are considered significant at p-0.05 for the current

experiment terms.

University of Aegean Department of Financial and Management Engineering

[67]

Figure 5. 2 Pareto chart for the 64 experimental designs

The effects for the two significant factors are shown in Fig. 5.3. Thus, the f1_score

improves when the Dropout level increases and when the number of Epochs

decreases. The first is a model factor, the second is a training factor.

Figure 5. 3 Main effects plot for the experimental design

University of Aegean Department of Financial and Management Engineering

[68]

For 2-level interactions parallel lines correspond to cases in which the interaction

between the factors does not affect the response. On the contrary, when two lines

intersect (crossing-over), this means that there is interaction between the factors

that affects the response. For example, consider the cell that corresponds to Dense

and Embedding. The blue line that corresponds to Embedding = 4 and the red line

that corresponds to Embedding = 16 are parallel between the two Dense values of

20 and 60. This indicates no significance of the interaction Embedding*Dense. On

the contrary, if we observe the interaction between the epochs and the Dense_layer

factors, the blue line corresponds to epochs=10 and the red line corresponds to

epochs=50. They intersect between the two levels for the Dense_layer factor, 20

and 60 and thus this interaction may be significant.

Figure 5. 4 Interactions plot for the 64 models design.

The ANOVA results are validated by the 2-way interaction plots of Fig. 5.4

What is interesting is to observe that the low value of Epochs and the high value of

dropout result in favorable effects for the 2-way interactions as well. This

experiment highlights that the Dropout should be set to 0.5 and Epochs should be

University of Aegean Department of Financial and Management Engineering

[69]

set to 10. The effects of the other three factors are not significant in the range that

their levels were varied.

Below we will examine whether the level variation was not adequate to fully

examine the effect for these three factors.

5.1.2 Experiment 2 – Increasing the difference between the levels of the non-

significant factors of Experiment 1

For three factors that were not identified as significant in Experiment 1, Embedding,

LSTM and batch_size, we performed a second experiment to validate the result of

Experiment 1. For this experiment, we increased the range of these three factors,

while keeping the levels of the remaining factors (Dropout, Dense and Epoch)

unchanged. This creates in total 8 different model designs. Note that the levels of

Dense were not varied, since we observed from the results of the first experiment

that the factor levels are not affecting the model performance, so their value

appears not to be relevant.

These 4 new models were trained under two batch sizes, and the experiment was

repeated 4 times for each combination to create the statistical information that is

necessary for the ANOVA (four repetitions per level combination).

Table 5.5 Factors and levels for the second experiment

Factor Name Low High

A Embedding 4 64

B LSTM 8 128

C Dropout 0.4 0.4

D Dense 60 60

E Epoch 10 10

F Batch_size 8 64

University of Aegean Department of Financial and Management Engineering

[70]

Table 5.6 The f1_score results after training the algorithm with the 8 models design.

Analysis of Variance

Table 5.7 ANOVA analysis table for 8 models design

Full interactions Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value

Model 10 0,009966 0,000997 1,49 0,213

 Blocks 3 0,001631 0,000544 0,81 0,502

 Linear 3 0,0031 0,001033 1,54 0,234

 Embedding 1 0,000347 0,000347 0,52 0,48

 LSTM units 1 0,001172 0,001172 1,75 0,2

 Batch_size 1 0,001581 0,001581 2,36 0,14

 2-Way Interactions 3 0,004385 0,001462 2,18 0,121

 Embedding*LSTM units 1 0,000494 0,000494 0,74 0,401

 Embedding*Batch_size 1 0,003182 0,003182 4,74 0,041

 LSTM units*Batch_size 1 0,00071 0,00071 1,06 0,315

 3-Way Interactions 1 0,00085 0,00085 1,27 0,273

 Embedding*LSTM units*Batch_size 1 0,00085 0,00085 1,27 0,273

Error 21 0,014091 0,000671
Total 31 0,024057

Table 5.7 shows that the three factors do not have statistical significance on the

f1_score output. The only relatively significant interaction is between the

Embedding layer and the batch_size with P-value= 0,041 and F-value= 4,47.

Experiment Embedding LSTM LSTM Dropout Epochs Dense layer batch_size Round 1 Round 2 Round 3 Round 4 F1_mean

1 4 8 0,4 10 60 8 0,713 0,6499 0,6499 0,645 0,66445

2 4 8 0,4 10 60 64 0,6883 0,7584 0,7584 0,7155 0,73015

3 4 128 0,4 10 60 8 0,6457 0,6528 0,6528 0,7026 0,663475

4 4 128 0,4 10 60 64 0,7055 0,6991 0,6991 0,659 0,690675

5 64 8 0,4 10 60 8 0,7292 0,6832 0,6832 0,6703 0,691475

6 64 8 0,4 10 60 64 0,6777 0,6941 0,6941 0,705 0,692725

7 64 128 0,4 10 60 8 0,687 0,6632 0,6632 0,67 0,67085

8 64 128 0,4 10 60 64 0,6745 0,6849 0,6849 0,6264 0,667675

Table of Experiments F1_score

University of Aegean Department of Financial and Management Engineering

[71]

Figure 5. 5 Pareto chart for 8 models design

The Pareto chart of Fig. 5.5 confirms this result.

The conclusion for this validation experiment is that the two factors originally

identified (by Experiment 1) are affecting the f1_score significantly, LSTM_Dropout

and Epochs are the only ones to be fine-tuned to optimize the network’s

performance.

As a result, the factor levels of the optimized model architecture are:

• Embedding = 4

• LSTM = 8 units

• LSTM Dropout = 0.4

• Dense layer = 60 neurons

The optimized training factor levels are

• Epochs=10

• Batch_size=64

This parameter combination reaches an f1_score value of 0,717875 for the testing

dataset.

University of Aegean Department of Financial and Management Engineering

[72]

5.2 The effects of balancing the positive and negative sentiment content
in the training dataset

We now turn our attention to the training dataset itself since the size and the quality

of the dataset have considerable impact on the training of the neural network. Our

hypothesis to be tested is that improvements over the original training dataset may

potentially improve the model’s f1_score metric.

The original dataset contains 6,764 tweets in total, of which 68% percent (4,662

tweets) have negative labels. To better balance the dataset (and examine whether

this will result in improved training), we added more positive tweets. Specifically,

we collected additional data using the Twitter API by the same method discussed in

Chapter 4 and added 1,836 new tweets of positive sentiment into the original

dataset. The new updated dataset consists of 8.600 tweets out of which 4,300 (50%)

have a positive sentiment and 4,300 (50%) have a negative sentiment.

To compare the performance (f1_score) of the network trained on the original

dataset versus the performance of the network trained on the “balanced” new

dataset, we performed an experiment that uses a simple model architecture as

follows (see also Fig. 5.8):

• Embedding (4)

• LSTM units (8)

• Dropout (0.5)

• Flatten layer

• Dense layer (60)

• Output Dense layer (1)

The model was trained for number of Epochs=10 and a Batch_size=64.

University of Aegean Department of Financial and Management Engineering

[73]

Figure 5. 6 Simple one LSTM layer model architecture

A comparison of the performance of the networks trained on the two datasets

(8,600 balanced vs 6,764 unbalanced) shows a significant improvement of the

f1_score=0.80 for the testing dataset, vs. 0.73 corresponding to the unbalanced

training data set. The confusion matrices of the two networks are shown in Fig. 5.9.

Figure 5. 7 Dataset effectiveness over the simple LSTM model

University of Aegean Department of Financial and Management Engineering

[74]

To conclude, using a larger, but most importantly, balanced dataset of positive and

negative sentiment tweets for training, significantly improves the prediction

accuracy of the network, increasing its f1_score.

University of Aegean Department of Financial and Management Engineering

[75]

6 Conclusions and Future Research

In this Thesis, we attempted to develop an efficient sentiment analysis model that

may be trained on a limited dataset of text data. For developing the custom model

architecture, we used a simple reference model and optimized the model and

training parameters systematically through Design of Experiments (DoE) to achieve

the highest possible accuracy (f1_score). The model that reached the highest

performance (f1_score = 0.80 was a simple one consisting of: Embedding (4),

number of LSTM (8) units, a Flatten layer, a Dense (60) layer and Dense (1) layers.

Moreover, we observed a strong correlation between the size and balance of the

input data with model performance. Specifically, the same model architecture

performed more efficiently when trained on an 8.600 tweets dataset that was

balanced (50% positive and 50% negative tweets) compared to the performance

achieved when the model was trained on the 6.764 tweets dataset that was not

balanced.

Nevertheless, the research for this Thesis provides a good starting point for

discussion and further research related to the mechanics for creating customized

models architectures based on characteristics of the input dataset. Future studies

could focus of new and improved methods for machine learning like the Transfer

learning or the Transformer models- like the BERT etc.

The Transfer learning is a method recommended for overcoming the data

limitations. The concept of this methods referees that the network transfers

knowledge-previously trained model layers- an incorporate it to new mode

architectures. So, this attempt might improve the overall network performance on

small datasets. Finally, the Transformer methods might constitute the object of

future studies as they are deep learning models developed for proceeding

sequential data.

University of Aegean Department of Financial and Management Engineering

[76]

References

Chicco, D. & Jurman , G., 2020. The advantages of the Matthews correlation coefficient

(MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics,

January, Issue 21.

Dua, M., Gupta, R., Khar, M. & Gonza´lez Crespo, R., 2019. Biometric iris recognition using

radial basis function neural network. Springer, January.

Lipton, Z. C., Elkan, C. & Narayanaswamy, B., 2014. w, San Diego: s.n.

Aggarwal, C. C., 2018. Neural Networks and Deep Learning. s.l.:Fountas Books.

Alloghani, M. et al., 2019. Supervised and Unsupervised Learning for Data Science.

s.l.:Springer.

Anon., n.d. Kaggle. [Online]

Available at: https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-

movie-reviews

Anyoha, R., 2017. Harvard Uni. [Online]

Available at: https://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/

[Accessed January 2022].

Argerich, M. F., n.d. https://towardsdatascience.com/5-websites-to-download-pre-trained-

machine-learning-models-6d136d58f4e7. [Online].

Bianchini, M., Maggini, M. & Jain, L. C., 2013. Handbook on Neural Information Processing.

INTELLIGENT SYSTEMS REFERENCE LIBRARY,Volume 49 ed. s.l.:Springer.

Bishop, C. M., 1995. Neural Networks for Pattern Recognition. Oxford: Oxford University

Press Inc..

Bock, S., Goppold, J. & Weiß, M., 2018. An improvement of the convergence proof of the

ADAM-Optimizer, Regensburg: s.n.

Brownlee, J., 2016. Develop Deep Learnng Models on Theano and Tensorflow using Keras.

s.l.:s.n.

Data Science Team, 2020. Data science. [Online]

Available at: https://datascience.eu/machine-learning/an-introduction-to-recurrent-

neural-networks/

[Accessed May 2022].

De Mulder, W., Bethard, S. & Moens, M.-F., 2015. A Survey on the Application of

Recurrent Neural Networks to Statistical Language Modeling. Computer Speech &

Language, March , Volume 30(Issue 1), pp. 61-98.

Deng, X., Liu, Q., Deng, Y. & Mahadevan, S., 2016. An improved method to construct basic

probability assignment based on the confusion matrix for classification problem. Elsevier,

May, Issue Volumes 340–341, pp. Pages 250-261.

University of Aegean Department of Financial and Management Engineering

[77]

DEY, V., 2011. When to Use One-Hot Encoding in Deep Learning?. When to Use One-Hot

Encoding in Deep Learning?, 25 August.

Educator, I. C., 2020. IBM. [Online]

Available at: https://www.ibm.com/cloud/learn/what-is-artificial-intelligence

[Accessed 2022].

Furht, B. & Villanustre, F., 2016. Introduction to Big Data. In: Big Data Technologies and

Applications.. Switzerland: Springer International Publishing.

Géron, A., 2019. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:

Concepts, Tools, and Techniques to Build Intelligent Systems. 2nd Edition ed. Canada:

O'Reilly Media .

Hardeniya, N. et al., 2016. Natural Language Processing: Python and NLTK.

Birmingham,UK: Packt Publishing.

Heimerl, F., Lohmann, S., Lange, S. & Ertl, T., 2014. Institute of Electrical and Electronics

Engineers, Stuttgart, Germany: Institute of Electrical and Electronics Engineers.

IBM Cloud Education, 2020. IBM. [Online]

Available at: https://www.ibm.com/cloud/learn/neural-networks

[Accessed April 2022].

Jordan, J., 2018. jeremyjordan.me. [Online]

Available at: https://www.jeremyjordan.me/nn-learning-rate/

[Accessed May 2022].

Karpathy, A., 2015. Andrej Karpathy blog. [Online]

Available at: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

[Accessed 2022].

Laney, D., 2001. 3d data management: Controlling data volume, velocity and variety.

META Group Research Note, 6, February.

Lu, J. et al., 2015. Transfer learning using computational intelligence: A survey. Knowledge-

Based Systems, May, Issue Volume 80, pp. 14-23.

Makice, K., 2009. Twitter API: Up and Running. s.l.:O'REILLY.

Manaswi, N. K., 2018. Deep Learning with Applications Using Python. s.l.:Apress, Berkeley,

CA.

Moroney, L., 2020. Coursera. [Online]

Available at: https://www.coursera.org/learn/natural-language-processing-tensorflow

Mwandau, B. N., 2018. ResearchGate. [Online]

Available at:

file:///C:/Users/%CE%98%CE%95%CE%9F%CE%A6%CE%99%CE%9B%CE%9F%CE%A3/Dow

nloads/InvestigatingKeystrokeDynamicsasaTwoFactorBiometricSecurity.pdf

[Accessed 2022].

University of Aegean Department of Financial and Management Engineering

[78]

N, L., 2019. Kaggle. [Online]

Available at: https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-

movie-reviews

Panchal, G., Ganatra, A., Shah, P. & Panchal, D., 2011. Determination of Over-Learning and

Over-Fitting Problem in Back Propagation Neural Network. International Journal on Soft

Computing (IJSC), May.

Pradha, S., N. Halgamuge, M. & Tran Quoc Vinh, N., 2019. Effective Text Data

Preprocessing Technique for Sentiment Analysis in Social Media Data. the Institute of

Electrical and Electronics Engineers.

Ramos, D., Pedroso, J. F., Diez, A. L. & Rodriguez, J. G., 2018. Deconstructing Cross-Entropy

for Probabilistic, Madrid, Spain: s.n.

Rasamoelina, A. D., Adjailia, F. & Sinčák, P., 2020. A Review of Activation Function for

Artificial Neural Network, Herlany, Slovakia: Institute of Electrical and Electronics

Engineers.

Sahoo, P., 2014. Materials and Surface Engineering. India: Woodhead.

Santos, E., Sabourin, R. & Maupin, P., 2009. Overfitting cautious selection of classifier

ensembles with genetic algorithms. April.

Shaikhina, T. & Khovanova, N. A., 2017. Handling limited datasets with neural networks in

medical applications: A small-data approach. Elsevier, January , Issue Volume 75, pp. 51-

63.

Shieber, S. M., 2004. The Turing Test: Verbal Behavior as the Hallmark of Intelligence.

s.l.:s.n.

Singh, P. & Manure, A., 2019. Learn TensorFlow 2.0: Implement Machine Learning and

Deep Learning. s.l.:Apress Media.

Smith, C., McGuire, B., Huang, T. & Yang, G., 2006. The History of Artificial Intelligence,

University of Washington: s.n.

Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, Harshit Surana, June 2020. Practical

Natural Language Processing. s.l.:O'Reilly Media, Inc..

Srivastava, N. et al., 2014. Dropout: A Simple Way to Prevent Neural Networks from

Overfitting. Journal of Machine Learning Research, pp. 1929-1958.

Stahle, L. & Svante, W., 1989. Analysis of variance (ANOVA). Chemomerrics and Intelligent

Laboratory Sysiems, 27 July, Issue Issue 4, pp. Pages 259-272.

Statista Research Department, 2022. statista.com. [Online]

Available at: https://www.statista.com/statistics/970920/monetizable-daily-active-twitter-

users-worldwide/

TensroFlow, 2022. TensroFlow. [Online]

Available at: https://www.tensorflow.org/text/guide/word_embeddings

University of Washington, 2006.

https://courses.cs.washington.edu/courses/csep590/06au/projects/history-ai.pdf. [Online]

University of Aegean Department of Financial and Management Engineering

[79]

Available at: https://courses.cs.washington.edu/courses/csep590/06au/projects/history-

ai.pdf

Vitlari , K., 2021. Hellenicus library Aegean. [Online]

Available at:

https://hellanicus.lib.aegean.gr/bitstream/handle/11610/23103/Diploma%20Thesis%20Ka

lliopi%20Vitlari.pdf?sequence=1&isAllowed=y

[Accessed August 2022].

Xingyou, W., Weijie, J. & Zhiyong, L., 2016. Combination of Convolutional and Recurrent

Neural Network for Sentiment Analysis of Short Texts. Proceedings of COLING 2016, the

26th International Conference on Computational Linguistics: Technical Papers, December,

p. 2428–2437.

Yan, S., 2016. ML Review. [Online]

Available at: https://blog.mlreview.com/understanding-lstm-and-its-diagrams-

37e2f46f1714

[Accessed May 2022].

Zhao, L., Mammadov, M. & Yearwood, J., 2010. From Convex to Nonconvex: A Loss

Function Analysis for Binary Classification, Ballarat: s.n.

University of Aegean Department of Financial and Management Engineering

[80]

Appendix A. Learning in Multilayer Perception (MLP) networks

Backpropagation and feed forward propagation are two core processes in neural

network algorithms. This tutorial illustrates how backpropagation works in an MLP

Neural Network training process by using a practical example taken from the

Coursera machine learning course (Moroney, 2020). It has been developed in

collaboration with P. Vitlari and is meant to be a tutorial for all interested students

of the DeOPSys lab of the University of the Aegean.

A.1 The MLP architecture

Figure A.1 represents the NN structure of Coursera used as the base example for

this tutorial (Machine Learning, Week 5 programming exercise). The input for the

NN is an image of a handwritten digit (0 to 9) of size 20x20 pixels and the output is

the prediction of the number represented in the image. Figure A.1 presents a simple

neural network illustration, used to understand the processes of the neural network.

Figure A. 1 Neural network model of the example

Input Layer Hidden Layer Output Layer

a(1) = x

(add a0
(1)

)

z(2) = α(1)Θ(1)T

a(2) = σ(z(2))

(add a0
(2)

)

z(3) = α(2)Θ(2)T

a(3) = σ(z(3)) = hθ(x)

University of Aegean Department of Financial and Management Engineering

[81]

The neural network illustrated at Figure A.1 consists of 3 layers, the Input, the

Hidden and the Output layer with the following sizes:

• Input_layer_size = 400 (20x20 input pixel values of digit image) - We increase

the input layer by one element 𝑎0
(1)

 in order for the matrix multiplication that

provides the output of the first layer to contain the addition of the bias. Thus,

the input layer size becomes 401.

• Hidden_layer_size = 25 (hidden units).

• Output layer size = 10 (output units) – The output vector contains the value

of 1 in the appropriate vector element (that corresponds to the digit value)

and the value 0 in all other vector elements.

• The number of labels K equals 10 (digit labels from 1 to 10).

The dimensions for the 𝛩 (weighting matrices) 𝑧 and 𝑎 matrices that are illustrated

at Figure A.1 are:

▪ Θ(1) is of size (25, 401), (the first column contains the bias elements)

▪ a(1) is of size (1,401)

▪ z(2) is of size (1,25)

▪ a(2) is of size (1,26) (be adding the bias)

▪ Θ(2) is of size (10, 26) (the first column contains the bias elements)

▪ z(3) is of size (1,10)

▪ a(3) is of size (1,10)

▪ hθ(x)= a(3) of size (1,10)

A.1.1 Calculating the 𝐚(𝟑) 𝒐𝒖𝒕𝒑𝒖𝒕 unit

Consider the following training set:

• 5,000 training samples (training set of 5,000 images of size 20x20 pixels of

handwritten digits).

• The 20 by 20 grid of pixels is “unrolled” into a 400-element row vector

• 𝑥 is a matrix of 5,000 number images of dimension (5000, 400) each image

occupies a row of the matrix.

University of Aegean Department of Financial and Management Engineering

[82]

• 𝑦 is a matrix, each row of which represents the actual value of the

corresponding sample digit. The dimension is (5000, 10) and the elements of

a row are all 0 except of the element corresponding to the actual value,

which is equal to 1.

The training data are loaded into the variables 𝑥 and 𝑦 (by the ex4.m script in our

example).

In this case (for the entire training set):

▪ a(1) = x, of size (5000, 400+1)

▪ z(2) = α(1)Θ(1)T, of size (5000, 25)

▪ a(2) = σ(z(2)), of size (5000, 25+1)

▪ z(3) = α(2)Θ(2)T, of size (5000,10)

Note: *We exclude the first row from 𝛩(2)𝑇 and 𝛩(1)𝑇, and the bias units are not

included when the exercise run in Octave for reduction reasons. So 𝑎(2) is a

(5000,25) matrix and 𝛩(2)𝑇 is a (25,10) matrix and we can multiply them to find 𝑧(3).

We are using the same mathematics to compute 𝑎(1) 𝑎𝑛𝑑 𝛩(1)𝑇.

Following, the equation used to calculate the a(3) 𝑜𝑢𝑡𝑝𝑢𝑡 .

a(3) = σ(z(3)) = hθ(x), of size (5000, 10)

Note: ** 𝜎 is the Sigmoid function with a range value between (0,1).

A.1.2 The cost function of NN training

Let us start with the case of a NN with a single output

The single output NN classifies whether the input 𝑥 belongs to a single class (value

= 1) or not (value = 0).

In this case, let the output for the i-th training sample be ℎ𝜃(𝑥(𝑖)) and the true

answer for that sample be 𝑦(𝑖). The cost function represents the sum of the errors,

which is the difference between the predicted value and the real (labeled) value.

J(θ) =
1

m
∑Cost(

m

i=1

hθ(x
(i)), y(i)) (A.1)

Where e.g., 𝑚 = 5000 is the number of training samples.

University of Aegean Department of Financial and Management Engineering

[83]

Our goal was to minimize the cost function and find min J(θ). Note that the Sigmoid

function is a “non-convex” function which means that there are multiple local

minimums. So, it’s not guaranteed to converge in the global minimum. What we

need is a “convex” function for the gradient descent algorithm to find the global

minimum (minimize J(θ)). To do that we have used the following log function.

Figure A. 2 Cost function

Cost(hθ(x), y) = {
−ylog(hθ(x)) if y = 1

−(1 − y)log(1 − hθ(x)) if y = 0

 (A.2)

Note that

▪ if y = hθ(x) = 1, then the cost is zero, since log(1) = 0

▪ if y = 1 and hθ(x) = 0, then the cost is ∞, since log(0) = −∞

Similarly

▪ if y = hθ(x) = 0, then the cost is zero, since log(1) = 0

▪ if y = 0 and hθ(x) = 1, then the cost is ∞, since log(0) = −∞

Since y (labeled value) is either 0 or 1 we could re-write the cost function as one equation.

Cost(hθ(x), y) = −ylog(hθ(x)) − (1 − y)log(1 − hθ(x)) (A.3)

For the m training samples, the cost function for this single output NN becomes:

J(θ) =
1

m
∑−y(i)log (hθ(x

(i))) − (1 − y(i))log(1 − hθ(x
(i)))

m

i=1

 (A.4)

To illustrate that the cost function is a convex function we plot a simple example

using python. Consider that the input y(i) = 1. Then,

J(θ) =
1

m
∑ −y(i)log (hθ(x

(i)))m
i=1 (A.5)

University of Aegean Department of Financial and Management Engineering

[84]

We already know that a(3) = σ(z(3)) = hθ(x). Let hθ(x
(i)) ∈ [0,1] increasing from

zero to 1 by 0.1 in every iteration of the numerical example. Then, J(θ) has the

convex form of Fig. A.2, which is hardly surprising given its logarithmic nature. This

applies only to logistic regression i.e., a neural network with no hidden layers.

Figure A. 3 The convex shape of a simple instance of the cost function

Below, we oppose the curve illustration from machine learning lectures (week 5,

Coursera):

Figure A. 4 Convex between ℎ𝜃(𝑥) and Cost(J) if y=1.

The cost function of Eq. (A.4) does not include regularization. Note that in our

example, the number of elements for the 𝛩 matrices are over 10,000 and the

number of training samples is just 5,000, which means that theoretically we have

 0 1

If y=1

University of Aegean Department of Financial and Management Engineering

[85]

more than adequate parameters to obtain a value of 0 for J(θ) (consider a system

with 10,000 unknowns, the elements of 𝛩 and 5,000 equations) that may occur for

the network to overfit. To address this overfitting risk, we reduce the

magnitude/values of θ (making many of them to be 0) by introducing a penalty term

as below.

J(θ) = −
1

m
∑[y(i)log(hθ(x

(i))) + (1 − y(i))log(1 − hθ(x
(i)))] +

λ

2m
∑θj

2

n

j=1

m

i=1

(A.6)

Equation (A.6) represents the regularized cost function.

Let’s move now to our example that has multiple outputs:

If we generalize the above for multiple NN output nodes (multiclass classification)

what we get is:

J(θ) =
1

m
∑ ∑ [−yk

(i)
log(hθ(x

(i))k) – (1 − yk
(i)

)log(1 − hθ(x
(i))k)]

K=10

k=1

m=5000

i=1

+
λ

2m
[∑ ∑(θj,n

(1)
)2

400

n=1

+ ∑ ∑(θj,n
(2)

)2

25

n=1

10

j=1

25

j=1

]

(A.7)

where in our example 𝐾 = 10 is the number of outputs/labels and m= 5000 is the

number of training samples, λ is the regularization factor, hθ(x) ∈ RK and

(hθ(x
(i))k is the value of the k-th output for the i-th training sample.

A.1.3 Gradient of the cost function (without regularization)

Gradient descent is an optimization algorithm used to minimize our cost function.

In general, the task is to find those values for the parameters for optimizing a non-

linear objective function.

In machine learning, specifically, we use gradient descent to determine the

parameters of our NN model during training. Note that the non-linear optimization

problem in this example is relatively straightforward since it does not involve any

constraints (just the objective function). We can compare the gradient as the slope

of the function. The higher the gradient, the steeper the slope and the faster a model

https://ml-cheatsheet.readthedocs.io/en/latest/glossary.html#glossary-parameters

University of Aegean Department of Financial and Management Engineering

[86]

can learn (determine the appropriate values for its parameters). If the slope equals

to value zero, the model stops learning.

Given a training set, the cost function 𝐽(𝜃) depends strictly on the values of ΝΝ

parameters, the weights 𝛩(1)and 𝛩(2). Thus, in our example training of the NN is the

process of determining the values of 𝜃 that drive the value of the cost function of

Section A.1.2 to its minimum. We should start the process by setting initial values of

the parameters, and gradient descent will iteratively adjust these values to minimize

the cost-function based on the following relationship:

θj+1 = θj − a∇J(θj) (A.8)

Where: θj+1 is the value of the next iteration

 θj is the value of the current iteration

 α is the step along the gradient

 ∇J(θj) is the gradient, i.e., the vector of partial derivatives of J with

respect to each parameter of 𝜃 at point θj. It is simply the direction of the

steepest slope of the function at this point.

The step a variable (or learning rate), should be initialized with an appropriate value,

that will be neither nor too low or nor too high. This is important because if the steps

are excessively long, the algorithm may miss the local minimum. If the learning rate

is too low, the process may take excessive time to reach the local minimum, or it

may never reach it due to excessively slow convergence.

The θ values that are corresponding to the minimum are the final values of the NN

parameters to be used thereafter and the NN has been trained. Thus, to determine

the minimum of the cost function and the values of θ that correspond to this

minimum, the most computationally intensive task is to determine ∇J(θj) at each

iteration j.

The backpropagation process uses the output of NN (h), compares it to the real

value (y) and derives the error(δ). The errors for each layer are used to calculate the

partial derivatives. In this example, starting from the final layer,L = 3, the

University of Aegean Department of Financial and Management Engineering

[87]

backpropagation algorithm attempts to define the error value δk
(L)

 where k is the

node and L is the layer.

In order to define the gradient of the cost function with respect to the parametersθ,

we will start from the single output NN, and then generalize to the K output NN. For

both cases the process was started from the last layer.

A.1.3.1 Single output NN

Consider the following neural network architecture presented at Section A.1:

Recap the dimensions of the Θ (weight) z and a matrices (for the image above):

▪ Θ(1) is of size (25, 401), (the first column contains the bias elements)

▪ a(1) is of size (1,401)

▪ z(2) is of size (1,25)

▪ a(2) is of size (1,26) (adding bias)

▪ Θ(2) is of size (1, 26) (the first column contains the bias elements)

▪ z(3) is of size (1,1)

▪ a(3) is of size (1,1)

▪ hθ(x)= a(3)is of size (1,1)

In this case (for the entire training set):

▪ a(1) = x, of size (5000, 400+1)

a(1) = x

(add a0
(1)

)

z(2) = α(1)Θ(1)T

a(2) = σ(z(2))

(add a0
(2)

)

z(3) = α(2)Θ(2)T

a(3) = σ(z(3)) = hθ(x)

University of Aegean Department of Financial and Management Engineering

[88]

▪ z(2) = α(1)Θ(1)T, of size (5000, 25)

▪ a(2) = σ(z(2)), of size (5000, 25+1)

▪ z(3) = α(2)Θ(2)T, of size (5000,1)

Note: The first row of the 𝛩(2)𝑇 and 𝛩(1)𝑇 matrices include the bias elements. We

can exclude this row without affecting our results. Additionally, this will reduce the

data and make them easier to compute. As a result, 𝑎(2) is a (5000,25) matrix, 𝛩(2)𝑇

is a (25,1) matrix and are multiplied to compute 𝑧(3). We are using the similar

operations to compute 𝑧(2) from 𝑎(1) and 𝛩(1)𝑇.

We have already mentioned and analyzed above the general cost function equation,

so for a single output NN J(θ) is:

J(θ) = −
1

m
∑[y(i)log(hθ(x

(i))) + (1 − y(i))log(1 − hθ(x
(i)))]

m

i=1

 Compute the gradient ∇𝐽(𝜃) using the chain rule:

∇J(θ) =
∂J(θ)

∂θ
=

∂J

∂α

∂α

∂z

∂z

∂θ

Now, focusing on the third layer to determine the partial derivatives with respect to

elements 𝛩𝑗
(2)

 of Θ(2), 𝑗 = 1,… ,25 :

∂J(θ)

∂𝛩𝑗
(2)

= −
1

𝑚
∑

∂[y(i)log (hθ(x
(i))) + (1 − y(i))log (1 − hθ(x

(i)))]

∂𝛩𝑗
(2)

𝑚

𝑖=1

=
1

𝑚
∑

d[−y(i) log (hθ(x
(i))) − (1 − y(i))log (1 − hθ(x

(i)))]

da(3)(i)

da(3)(i)

dz(3)(𝑖)

∂z(3)(𝑖)

∂𝛩𝑗
(2)

𝑚

𝑖=1

=
1

𝑚
∑

d𝐽𝑖
da(3)((i)

da(3)(i)

dz(3)(𝑖)

∂z(3)(𝑖)

∂𝛩𝑗
(2)

𝑚

𝑖=1

Where the notation
d𝐽𝑖

da(3)((i)
 represents the derivative

d𝐽

da(3)
 evaluated using the values

of the (i)-th training instance. The same notation was used for
da(3)(i)

dz(3)(𝑖), and
∂z(3)(𝑖)

∂𝛩𝑗
(2) .

University of Aegean Department of Financial and Management Engineering

[89]

d�̂�

da(3)
=

d�̂�

dhθ(x)
=

d

dhθ(x)
[(−ylog(hθ(x)) − (1 − y)log(1 − hθ(x))]

= −
y

hθ(x)
+

1 − y

1 − hθ(x)
= −

y

a(3)
+

1 − y

1 − a(3)

Thus,

d�̂�
𝑖

da(3)(i)
= −

y(i)

a(3)(i)
+

1 − y(i)

1 − a(3)(i)

(A.9)

da(3)

dz(3)
=

d

dz(3)

1

1 + e−z(3)
=

d

dz(3)
(1 + e−z(3))

−1

= − (1 + e−z(3))
−2

(−e−z(3))

=
e−z(3)

(1 + e−z(3)
)
−2 =

1

1 + e−z(3)
(1 −

1

1 + e−z(3)
) = σ(z(3)) (1 − σ(z(3)))

= a(3)(1 − a(3))

𝑆𝑜 ,
da(3)(𝑖)

dz(3)(𝑖)
= a(3)(𝑖)(1 − a(3)(𝑖))

(A.10)

∂z(3)

∂𝛩𝑗
(2)

=
∂

∂𝛩𝑗
(2)

(a(2)Θ(2)Τ) = a𝑗
(2)

→
∂z(3)(i)

∂𝛩𝑗
(2)

= a𝑗

(2)(𝑖)

(A.11)

Combining the equations above for the output layer:

∂J(θ)

∂𝛩𝑗
(2)

=
1

m
∑(−

y(i)

a(3)(i)
+

1 − y(i)

1 − a(3)(i)
)

m

i=1

a(3)(i)(1 − a(3)(i))a𝑗
(2)(𝑖)

=
1

m
∑(a(3)(i) − y(i))

m

i=1

a𝑗
(2)(𝑖)

∂J(θ)

∂𝛩𝑗
(2)

=
1

m
∑ δ(3)(i)

m

i=1

a𝑗
(2)(i)

(A.12)

Where δ(3)(i) = a(3)(i) − y(i) = hθ(x
(i)) − y(i) is a (1,1) vector of the error for

training instance 𝑖. Moreover, we can combine the results of the Eq. (12) for all 𝑗 =

1, … ,25 to obtain
∂J(θ)

Θ(2) , an (1,25) vector.

A.1.3.2 Multiple output NN

At this section we will generalize the NN example for the K output. Again, starting

with the chain rule:

University of Aegean Department of Financial and Management Engineering

[90]

∂J(θ)

∂θ
=

∂J

∂α

∂α

∂z

∂z

∂θ

Starting with the third, and last, layer as before:

∂J(θ)

∂𝛩𝑘𝑗
(2)

=
1

𝑚
∑

∂[−𝑦𝑘
(𝑖)

log(hθ(x
(i))k) − (1 − 𝑦𝑘

(𝑖)
)log (1 − hθ(x

(i))k)]

∂𝛩𝑘𝑗
(2)

𝑚

𝑖=1

=
1

𝑚
∑

d[−𝑦𝑘
(𝑖)

log(hθ(x
(i))k) − (1 − y(i))log (1 − hθ(x

(i))k))]

da𝑘
(3)(𝑖)

da𝑘
(3)(𝑖)

dz𝑘
(3)(𝑖)

∂z𝑘
(3)(𝑖)

∂𝛩𝑘𝑗
(2)

𝑚

𝑖=1

=
1

𝑚
∑

d𝐽𝑘𝑖

da𝑘
(3)(𝑖)

da𝑘
(3)(𝑖)

dz𝑘
(3)(𝑖)

∂z𝑘
(3)(𝑖)

∂𝛩𝑘𝑗
(2)

𝑚

𝑖=1

(A.13)

The notation
d𝐽𝑘𝑖

da𝑘
(3)(𝑖) represents the derivative

d𝐽𝑘

da𝑘
(3) evaluated using the values of the

(i)-th training instance. The same notation was used for
da𝑘

(3)(𝑖)

dz𝑘
(3)(𝑖), and

∂z𝑘
(3)(𝑖)

∂𝛩𝑘𝑗
(2) .

Note that ,the first row for Eq. (A.13) is the summation ∑ 𝐾
𝑘=1 of the cost function

but J(θ) does not appear, since
∂[−𝑦𝑛

(𝑖)
log(hθ(x(i))n)−(1−𝑦𝑛

(𝑖)
)log (1−hθ(x(i))n)]

∂𝛩𝑘𝑗
(2) is zero if

𝑛 ≠ 𝑘.

d�̂�
𝑘

da
𝑘

(3)
=

d�̂�
𝑘

dhθ(x)k

=
d

dhθ(x)k

[−𝑦
𝑘
log(hθ(x)k) − (1 − 𝑦

𝑘
)log (1 − hθ(x)k)]

= −
𝑦

𝑘

hθ(x)k

+
1 − 𝑦

𝑘

1 − hθ(x)k

= −
𝑦

𝑘

a𝑘

(3)
+

1 − 𝑦
𝑘

1 − a𝑘

(3)

Thus,

d�̂�
𝑘𝑖

da𝑘

(3)(𝑖)
= −

𝑦
𝑘

(𝑖)

a𝑘

(3)(𝑖)
+

1 − 𝑦
𝑘

(𝑖)

1 − a𝑘

(3)(𝑖)

(A.14)

From the Eq. (A.10),

University of Aegean Department of Financial and Management Engineering

[91]

da𝑘
(3)(𝑖)

dz
𝑘

(3)(𝑖)
= a𝑘

(3)(𝑖)
(1 − a𝑘

(3)(𝑖)
)

(A.15)

Furthermore,

∂z𝑘
(3)

∂𝛩𝑘𝑗
(2)

=
∂

∂𝛩𝑘𝑗
(2)

(a(2)Θ(2)Τ) = a𝑘𝑗
(2)

→
∂z𝑘

(3)(𝑖)

∂𝛩𝑘𝑗
(2)

= a𝑗

(2)(𝑖)

(A.16)

Combining the above for the output layer:

∂J(θ)

∂𝛩𝑘𝑗
(2)

=
1

𝑚
∑(−

𝑦𝑘
(𝑖)

a𝑘
(3)(𝑖)

+
1 − 𝑦𝑘

(𝑖)

1 − a𝑘
(3)(𝑖)

)a𝑘
(3)(𝑖)(1 − a𝑘

(3)(𝑖))a𝑗
(2)(𝑖)

𝑚

𝑖=1

=
1

𝑚
∑(a𝑘

(3)(𝑖) − 𝑦𝑘
(𝑖))a𝑗

(2)(𝑖)

𝑚

𝑖=1

∂J(θ)

∂Θkj
(2)

=
1

m
∑δk

(3)(i)aj
(2)(i)

m

i=1

(A.17)

with 𝛿𝑘
(3)(𝑖) = a𝑘

(3)(𝑖) − 𝑦𝑘
(𝑖) = hθ(x

(i))k − 𝑦𝑘
(𝑖) is the error of output 𝑘 = 1,… ,10 for

training instance 𝑖. Moreover, we can combine the results of Eq. (A.17) for all 𝑘 =

1, … ,10 , 𝑗 = 1,… ,25 to obtain
∂J(θ)

Θ(2)
, an (1,250) vector.

A.1.3.3 Gradient for all NN layers

For the single output NN and for the output layer L:

∂J(θ)

∂𝛩𝑗
(𝐿−1)

=
1

m
∑δ(𝐿)(i)

m

i=1

a𝑗
(𝐿−1)(i)

(A.18)

For all the other layers (𝑙) of the single output NN and for all layers (𝑙 = 1,… 𝐿) of

the multiple output NN:

University of Aegean Department of Financial and Management Engineering

[92]

∂J(θ)

∂𝛩𝑘𝑗
(𝑙)

=
1

𝑚
∑𝛿𝑘

(𝑙+1)(𝑖)a𝑗
(𝑙)(𝑖)

𝑚

𝑖=1

(A.19)

Depending on the case, using Eq. (A.18) or (A.19) we are able to compute the entire

gradient vector ∇𝐽(𝜃) from the outputs of the NN a𝑗
(𝑙)(𝑖) (from forward propagation)

using the errors 𝛿𝑘
(𝑙+1)(𝑖). The errors values calculated at a previous step referred to

the last layer 𝑙 = 𝐿, i.e. 𝛿𝑘
(𝐿)(𝑖) = ak

(3)(i)
− yk

(𝑖), again from forward propagation. For

𝑙 < 𝐿, the errors 𝛿𝑘
(𝑙)(𝑖) are obtained from backpropagation as discussed below.

A.1.4 Backpropagation

Following, the task was to compute the errors δ involved in Eq. (A.18) or (A.19)

that provide the gradients of the cost function for label 𝑘 and layer 𝑙. For

simplicity, once again we have used the example with three layers.

A.1.4.1 Errors of layer 𝑳 = 𝟑

As we have discussed above, the error for the final layer (in our example layer 3)

for output 𝑘 = 1, … , 𝐾 = 10 is determined using forward propagation by

δk
(3)

= ak
(3)

− yk

or for each training instance i

δk
(3)(i)

= ak

(3)(i)
− yk

(i)
 (A.20)

and may be obtained directly from forward propagation by subtracting the actual

value yk
(i)

 of output k of instance i from the NN output ak

(3)(i)
 of label k of instance

i.

A.1.4.2 Errors of layer l = 𝟐

Consider the single output NN. We use the following notation:

J(θ) =
1

𝑚
∑[−y(i) log (hθ(x

(i))) − (1 − y(i)) log (1 − hθ(x
(i))) =

1

𝑚
∑𝐽𝑖

𝑚

𝑖=1

𝑚

𝑖=1

Without proof the following holds:

University of Aegean Department of Financial and Management Engineering

[93]

δj
(2)(i)

=
∂𝐽(𝜃)𝑖

∂z𝑗
(2)(𝑖)

(A.21)

Where
∂𝐽(𝜃)𝑖

∂z
𝑗

(2)(𝑖) is the value of the derivative of
∂𝐽(𝜃)

∂z𝑗
(2) for training instance i. We will

evaluate this derivative for instance i.

∂𝐽(𝜃)𝑖

∂z𝑗
(2)(𝑖)

=
∂[−y(i) log (hθ(x

(i))) − (1 − y(i))log (1 − hθ(x
(i)))]

∂𝑧𝑗
(2)(𝑖)

=
d[−y(i) log (hθ(x

(i))) − (1 − y(i))log (1 − hθ(x
(i)))]

da(3)

da(3)(i)

dz(3)(𝑖)

∂z(3)(𝑖)

∂a𝑗

(2)(𝑖)

da𝑗

(2)(𝑖)

dz𝑗
(2)(𝑖)

((2)

(A.22)

Using Eq. (A.9):

d[−y(i) log (hθ(x
(i))) − (1 − y(i))log (1 − hθ(x

(i)))]

da(3)(i)
= −

y(i)

a(3)(i)
+

1 − y(i)

1 − a(3)(i)

From Eq. (A.10) :

da(3)(i)

dz(3)(𝑖)
= a(3)(𝑖)(1 − a(3)(𝑖))

∂z(3)(𝑖)

∂a𝑗

(2)(𝑖)
=

∂[α(2)(i)Θ(2)Τ]

∂a𝑗

(2)(𝑖)
= 𝛩𝑗

(2)

with Θj
(2)

the j − th element of Θ(2). In the single output NN, Θ(2) is a row vector,

e.g. (1,25).

Finally,

da𝑗
(2)(𝑖)

dz𝑗
(2)(𝑖)

= a𝑗
(2)(𝑖)(1 − a𝑗

(2)(𝑖))

Combining the above we obtain:

University of Aegean Department of Financial and Management Engineering

[94]

∂𝐽(𝜃)𝑖

∂z𝑗
(2)(𝑖)

= (−
y(i)

a(3)(i)
+

1 − y(i)

1 − a(3)(i)
)a(3)(𝑖)(1 − a(3)(𝑖))𝛩𝑗

(2)
a𝑗
(2)(𝑖)

(1 − a𝑗
(2)(𝑖)

)

= 𝛿
(3)(𝑖)𝛩𝑗

(2)
[a𝑗

(2)(𝑖)(1 − a𝑗
(2)(𝑖))]

That is,

∂𝐽(𝜃)𝑖

∂z𝑗
(2)(𝑖)

= 𝛿
(3)(𝑖)𝛩𝑗

(2)
a𝑗
(2)(𝑖)(1 − a𝑗

(2)(𝑖)) = δj
(2)(i)

(A.23)

The last equality coming from Eq. (A.21). Now if we consider,

∂𝐽(𝜃)𝑖

∂z(2)(𝑖)
= (

∂𝐽(𝜃)𝑖

∂𝑧1

(2)(𝑖)
, … ,

∂𝐽(𝜃)𝑖

∂𝑧𝑗
(2)(𝑖)

, …)

then

∂𝐽(𝜃)𝑖

∂z(2)(𝑖)
= (δ(3)(𝑖)Θ(2)).∗ (a(2)(𝑖).∗ (1 − α(2)(𝑖)))

(A.24)

where symbol (.*) represents the element-wise multiplication of two matrices

(vectors in this particular case).

Then from Eq. (A.21) :

δ(2)(𝑖) =
∂𝐽(𝜃)𝑖

∂z𝑗
(2)(𝑖)

= (δ(3)(𝑖)Θ(2)).∗ (a(2)(𝑖).∗ (1 − α(2)(𝑖)))
(A.25)

Now consider the multiple output NN.

With similar arguments we obtain the following equation:

δ(2)(𝑖) = (δ(3)(𝑖)Θ(2)).∗ (a(2)(𝑖).∗ (1 − α(2)(𝑖))) (A.26)

A.1.4.3 Errors of layer 𝒍

Generalize to error 𝛿(𝑙) for layer 𝑙 < 𝐿 in terms of the error 𝛿(𝑙+1) of layer 𝑙 + 1 .

 (A.27)

University of Aegean Department of Financial and Management Engineering

[95]

𝛿(𝑙)(𝑖) = (δ(𝑙+1)(𝑖)Θ(𝑙)).∗ (𝛼(𝑙)(𝑖).∗ (1 − 𝛼(𝑙)(𝑖)))

or

𝛿(𝑙) = (δ(𝑙+1)Θ(𝑙)).∗ (𝛼(𝑙).∗ (1 − 𝛼(𝑙)))
(A.28)

This last equation may be considered equivalent to Eq. (A.27) if 𝛿(𝑙) =
1

𝑚
∑ 𝛿(𝑙)(𝑖)𝑚

𝑖=1 .

Equation (A.28) moves the error backwards through the activation function of layer

𝑙, giving us the error 𝛿(𝑙) as the weighted sum of error 𝛿(𝑙+1)of layer 𝑙 + 1. The initial

error of the last layer was, of course, obtained directly by subtracting the actual

value of the output from the estimated value of the output (NN output).

From Eq. (A.27) we may get the δ terms of each layer. Then, we apply that with Eq.

(A.19) to obtain the partial derivative of the error function J with respect

to individual parameters of the NN and thus compute the gradient ∇J of Eq. (A. 8),

that were used in the related step of the gradient descent. This process continuous

to repeat for each step, since the θ values are updated and so are the terms a𝑗
(𝑙)(𝑖)

of forward propagation (evaluated with the new θ) and 𝛿𝑘
(𝑙+1)(𝑖) of backpropagation.

The process minimizes J with respect to the NN parameters θ and trains the NN by

obtaining the optimal values of θ.

A.1.5 Theoretical validation example

In order to obtain a hands-on understanding of the forward and backpropagation

relationships used in NN training, as well as their proofs, Appendix A.2 presents and

proves these relationships for a very simple (but theoretical) example.

A.1.6 The training algorithm

In order to put together the mathematical concepts presented at Section A.1.3

(forward propagation) and A.1.6 (backpropagation), we will analyze further the

algorithm for the original example at Section A.1.

The training process based on a set [(𝑥(1), 𝑦(1)), … , (𝑥(𝑚), 𝑦(𝑚))], where 𝑚 =

5,000, that is considered as input to the algorithm.

University of Aegean Department of Financial and Management Engineering

[96]

Step 1

Start the training process with initializing the values for 𝛩1 and 𝛩2 with small,

random numbers equal to zero or near it. Then, gradient descent will update the 𝛩1

and 𝛩2 values in an attempt to minimize the error.

Step 2

Perform forward propagation to compute α(l)(𝑖) for layers (l = 2,3) for the training

sample i (𝑖 = 1, … ,5000). Forward propagation uses the following equations:

 Input to hidden layer: a(1)(i) = 𝑥(𝑖) , of size (1,400+1)

 z(2)(i) = α(1)(i)Θ(1)(i)T, of size (1,25)

Hidden to output layer: a(2)(i) = σ(z(2)(𝑖)) , of size (1,25+1)

 z(3)(i) = α(2)(i)Θ(2)(i)T, 𝑜𝑓 𝑠𝑖𝑧𝑒 (1,10)

 a(3)(i) = σ(z(3)(𝑖)) = hθ(x), of size (1,10)

Forward propagation provides 𝑎𝑘
3(𝑖)

, 𝑘 = 1, … ,10 𝑖 = 1,… , 5000 to be used in Eq.

(A.19) and (A.20), as well as 𝑎𝑗
2(𝑖)

, 𝑗 = 1,… , 25 to be used in Eq. (A.27)

Step 3

 Compute:

δk
(3)(i)

= ak

(3)(i)
− yk

(i), 𝑘 = 1,… ,10, 𝑖 = 1,… , 5000

𝛿2(𝑖) = (δ(2)(𝑖)Θ(2)).∗ (𝛼(2)(𝑖).∗ (1 − 𝛼(2)(𝑖))), 𝑖 = 1,… , 5000)

with 𝛿2(𝑖) = (𝛿1
(2)(𝑖), … , 𝛿𝑗

(2)(𝑖), … , 𝛿25
(2)(𝑖)), an (1, 25) vector

Step 4

Combining the results from step 2 and step 3:

∂J(θ)

∂𝛩𝑘𝑗
(2)

=
1

𝑚
∑𝛿𝑘

(3)(𝑖)a𝑗
(2)(𝑖)

𝑚

𝑖=1

, 𝑘 = 1, … ,10, 𝑗 = 1,… . ,25

and

University of Aegean Department of Financial and Management Engineering

[97]

∂J(θ)

∂𝛩𝑘𝑗
(1)

=
1

𝑚
∑𝛿𝑘

(2)(𝑖)a𝑗
(1)(𝑖)

𝑚

𝑖=1

, 𝑘 = 1, … ,25, 𝑗 = 1,… . ,400

This is without regularization. We can easily add regularization.

Step 5

Obtained that, ∇J(θj) =
∂J(θ)

∂𝜃
|𝜃 = 𝜃𝑗 an (1, 10250) vector, then update 𝜃 using

θj+1 = θj − a∇J(θj)

With a variable, to represent the chosen step.

Step 6

Repeat steps 1-5 till ‖∇J(θj)‖ < 휀. Set 𝜃 equal to the values of the parameters of

the last iteration. The NN has been trained.

A.2 Feedforward and backpropagation equations

Consider a very simple neural network that has 2 input nodes, 3 hidden nodes, and

2 output nodes (see Fig. A.1). The vectors and the Θ matrices (weighting matrices)

involved are the following:

α(1) = [x1 x2] = [α1
(1)

 α2
(1)

]

θ(1) =

[

 θ11

(1)
θ12

(1)

θ21
(1)

θ22
(1)

θ31
(1)

θ32
(1)

]

z(2) = [z1
(2)

z2
(2)

z3
(2)]

α(2) = [α1
(2)

α2
(2)

α3
(2)]

θ(2) = [
θ11

(2)
θ12

(2)
θ13

(2)

θ21
(2)

θ22
(2)

θ23
(2)

]

University of Aegean Department of Financial and Management Engineering

[98]

z(3) = [z1
(3)

z2
(3)]

α(3) = [α1
(3)

α2
(3)]

A.2.1 Forward propagation

The forward propagation relationships are as follows:

Layer 2

z(2) = α(1)θ(1)Τ → z(2) = [α1
(1)

 α2
(1)

] [
θ11

(1)
θ21

(1)
θ31

(1)

θ12
(1)

θ22
(1)

θ32
(1)

]

Or,

𝑧1
(2)

= α1
(1)

θ11
(1)

+ α2
(1)

θ12
(1)

z2
(2)

= α1
(1)

θ21
(1)

+ α2
(1)

θ22
(1)

z3
(2)

= α1
(1)

θ31
(1)

+ α2
(1)

θ32
(1)

(A.29)

Then,

 a(2) = σ(z(2)) (A.30)

Or,

α1
(2)

= σ(z1
(2)

) =
1

1 + e−z1
(2)

α2
(2)

= σ(z2
(2)

) =
1

1 + e−z2
(2)

α3
(2)

= σ(z3
(2)

) =
1

1 + e−z3
(2)

University of Aegean Department of Financial and Management Engineering

[99]

Layer 3

z(3) = α(2)θ(2)Τ =>→ z(3) = [α1
(2)

α2
(2)

α3
(2)]

[

 θ11

(2)
θ21

(2)

θ12
(2)

θ22
(2)

θ13
(2)

θ23
(2)

]

Or,

z1
(3)

= α1
(2)

θ11
(2)

+ α2
(2)

θ12
(2)

+ α2
(2)

θ13
(2)

z2
(3)

= α1
(2)

θ21
(2)

+ α2
(2)

θ22
(2)

+α2
(2)

θ23
(2)

(A.31)

Then,

a(3) = σ(z(3)) = hθ(x) (A.32)

α1
(3)

= σ(z1
(3)

) =
1

1 + e−z1
(3)

α2
(3)

= σ(z2
(3)

) =
1

1 + e−z2
(3)

Note that the vector of the NN parameters is 𝜃 and contains 6+6=12 parameters

𝜃𝑘𝑗
(𝑙)

.

θ(1) =

[

 θ11

(1)
θ12

(1)

θ21
(1)

θ22
(1)

θ31
(1)

θ32
(1)

]

 θ(2) = [

θ11
(2)

θ12
(2)

θ13
(2)

θ21
(2)

θ22
(2)

θ23
(2)

]

A.2.2 The cost function

Consider now that the training set consists of two training samples(𝑖 = 1,2), which

of course is unrealistic, but it is simple enough for the theoretical example. So, the

training set is {(𝑥1
(1)

, 𝑥2
(1)

), (𝑦1
(1)

, 𝑦2
(1)

); (𝑥1
(2)

, 𝑥2
(2)

), (𝑦1
(2)

, 𝑦2
(2)

)

If we fully write our cost function with the summation we would get:

University of Aegean Department of Financial and Management Engineering

[100]

J(θ) =
1

2
∑{[−y1

(i)
log(α1

(3)(i)
) − (1 − y1

(i)
)log(1 − α1

(3)(i)
)] + [−y2

(i)
log(α2

(3)(i)
) − (1

2

i=1

− y2
(i)

)log(1 − α2
(3)(i)

)]}

(A.33)

A.2.3 Partial derivatives of 𝐉(𝛉) with respect to the weights 𝛉𝟏𝟏
(𝟐)

, . . . , 𝛉𝟐𝟑
(𝟐)

 (6

parameters)

Consider:

∂J(θ)

∂θkj
(2)

=
1

2
∑

∂{
[−y1

(i)
log(α1

(3)(i)
) − (1 − y1

(i)
)log (1 − α1

(3)(i)
)] + [−y2

(i)
log(α2

(3)(i)
)

−(1 − y2
(i)

)log(1 − α2
(3)(i)

)]
}

∂θkj
(2)

2

i=1

=
1

2
∑

𝑑 {
[−y1

(i)log(α1
(3)(i)) − (1 − y1

(i))log (1 − α1
(3)(i))] + [−y2

(i)log(α2
(3)(i))

−(1 − y2
(i)

)log(1 − α2
(3)(i)

)]
}

𝑑αk
(3)(i)

2

i=1

×
dαk

(3)(i)

dzk
(3)(i)

∂zk
(3)(i)

∂θkj
(2)

(A.34)

Let k=1 and j=2:

d {−y1
(i)log(α1

(3)(i)) − (1 − y1
(i))log(1 − α1

(3)(i))}

dα1
(3)(i)

=
−y1

(i)

α1
(3)(i)

+
(1 − y1

(i))

1 − α1
(3)(i)

The derivative from the second term of the numerator included at the first

equation of Eq. (A.34) with respect to dα1
(3)(i)

 is zero. Furthermore,

(A.35)

dα1
(3)(i)

dz1
(3)(i)

=
−1

(1 + e−z1
(3)(i)

)
2 (−e−z1

(3)(i)

) =
e−z1

(3)(i)

[1 + e−z1
(3)(i)

]
2

=
1

1 + e−z1
(3)(i) [1 −

1

1 + e−z1
(3)(i)] = α1

(3)(i)(1 − α1
(3)(i))

(A.36)

University of Aegean Department of Financial and Management Engineering

[101]

∂z1
(3)(i)

∂θ12
(2)

= α2
(2)(i)

from equation for z1
(3)

 in Eq. (A.31)

(A.37)

Thus, substituting Eq. (A-6) to (A-8) into (A-5) for k=1 and j=2, we obtain

∂J(θ)

∂θ12
(2)

=
1

2
∑(

−y1
(i)

α1
(3)(i)

+
(1 − y1

(i)
)

1 − α1
(3)(i)

) [α1
(3)(i)(1 − α1

(3)(i))] α2
(2)(i) =

2

i=1

=
1

2
∑α2

(2)(i)
{

2

i=1

− y1
(i)

(1 − α1
(3)(i)

) + (1 − y1
(i)

)α1
(3)(i)

}

=
1

2
∑α2

(2)(i)
{

2

i=1

− y1
(i)

+ y1
(i)

α1
(3)(i)

+ α1
(3)(i)

− y1
(i)

α1
(3)(i)

}

∂J(θ)

∂θ12
(2)

= α1
(3)(i)

− y1
(i)

= δ1
(3)(i)

 (A.38)

Similarly,

∂J(θ)

∂θ12
(2)

=
1

2
∑α2

(2)(i)

2

i=1

δ1
(3)(i)

 →
∂J(θ)

∂θkj
(2)

=
1

2
∑αj

(2)(i)

2

i=1

δk
(3)(i)

With,

δ1
(3)(i) = α1

(3)(i) − y1
(i)

 (A.39)

So, that was the computational process for the six partial derivatives of the cost

function 𝐽(θ).

University of Aegean Department of Financial and Management Engineering

[102]

∂J(θ)

∂θkj
(2)

=
1

2
∑αj

(2)(i)

2

i=1

δk
(3)(i)

, k = 1,2 and j = 1,2,3

(A.40)

since we know αj
(2)(i) from forward propagation Eq. (A.29), (A.30) and δk

(3)(i)
=

α1
(3)(i) − y1

(i) with α1
(3)(i) from forward propagation Eq. (A.31), (A.32).

A.2.4 Partial derivatives of previous layers

Similarly with the Section above, the following holds (same proof as above)

∂J(θ)

∂θkj
(1)

=
1

2
∑αj

(1)(i)

m

i=1

δk
(2)(i), k = 1,2,3 and j = 1,2

(A.41)

We will oppose the proof from the derivative above.

Backpropagation starts in the last layer 𝐿 and successively moves back one layer at

a time. For each visited layer it computes the error:

∂𝐽(𝜃)𝑖

∂z𝑗
(2)(𝑖)

Using the chain rule:

∂J(θ)

∂θ11
(1)

= (
∂𝐽(𝜃)𝑖

∂α1
(3)(𝑖)

∂α1
(3)(𝑖)

∂z1
(3)(𝑖)

∂z1
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ11
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α2
(3)(𝑖)

∂α2
(3)(𝑖)

∂z2
(3)(𝑖)

∂z2
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ11
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α3
(3)(𝑖)

∂α3
(3)(𝑖)

∂z3
(3)(𝑖)

∂z3
(3)(𝑖)

∂α2
(2)(𝑖)

∂α2
(2)(𝑖)

∂z2
(2)(𝑖)

∂z2
(2)(𝑖)

∂θ11
(1)

)

∂J(θ)

∂θ12
(1)

= (
∂𝐽(𝜃)𝑖

∂α1
(3)(𝑖)

∂α1
(3)(𝑖)

∂z1
(3)(𝑖)

∂z1
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ12
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α2
(3)(𝑖)

∂α2
(3)(𝑖)

∂z2
(3)(𝑖)

∂z2
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ12
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α3
(3)(𝑖)

∂α3
(3)(𝑖)

∂z3
(3)(𝑖)

∂z3
(3)(𝑖)

∂α2
(2)(𝑖)

∂α2
(2)(𝑖)

∂z2
(2)(𝑖)

∂z2
(2)(𝑖)

∂θ12
(1)

)

University of Aegean Department of Financial and Management Engineering

[103]

∂J(θ)

∂θ21
(1)

= (
∂𝐽(𝜃)𝑖

∂α1
(3)(𝑖)

∂α1
(3)(𝑖)

∂z1
(3)(𝑖)

∂z1
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ21
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α2
(3)(𝑖)

∂α2
(3)(𝑖)

∂z2
(3)(𝑖)

∂z2
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ21
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α3
(3)(𝑖)

∂α3
(3)(𝑖)

∂z3
(3)(𝑖)

∂z3
(3)(𝑖)

∂α2
(2)(𝑖)

∂α2
(2)(𝑖)

∂z2
(2)(𝑖)

∂z2
(2)(𝑖)

∂θ21
(1)

)

∂J(θ)

∂θ22
(1)

= (
∂𝐽(𝜃)𝑖

∂α1
(3)(𝑖)

∂α1
(3)(𝑖)

∂z1
(3)(𝑖)

∂z1
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ22
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α2
(3)(𝑖)

∂α2
(3)(𝑖)

∂z2
(3)(𝑖)

∂z2
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ22
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α3
(3)(𝑖)

∂α3
(3)(𝑖)

∂z3
(3)(𝑖)

∂z3
(3)(𝑖)

∂α2
(2)(𝑖)

∂α2
(2)(𝑖)

∂z2
(2)(𝑖)

∂z2
(2)(𝑖)

∂θ22
(1)

)

∂J(θ)

∂θ31
(1)

= (
∂𝐽(𝜃)𝑖

∂α1
(3)(𝑖)

∂α1
(3)(𝑖)

∂z1
(3)(𝑖)

∂z1
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ31
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α2
(3)(𝑖)

∂α2
(3)(𝑖)

∂z2
(3)(𝑖)

∂z2
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ31
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α3
(3)(𝑖)

∂α3
(3)(𝑖)

∂z3
(3)(𝑖)

∂z3
(3)(𝑖)

∂α2
(2)(𝑖)

∂α2
(2)(𝑖)

∂z2
(2)(𝑖)

∂z2
(2)(𝑖)

∂θ31
(1)

)

∂J(θ)

∂θ32
(1)

= (
∂𝐽(𝜃)𝑖

∂α1
(3)(𝑖)

∂α1
(3)(𝑖)

∂z1
(3)(𝑖)

∂z1
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ32
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α2
(3)(𝑖)

∂α2
(3)(𝑖)

∂z2
(3)(𝑖)

∂z2
(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ32
(1)

)

+ (
∂𝐽(𝜃)𝑖

∂α3
(3)(𝑖)

∂α3
(3)(𝑖)

∂z3
(3)(𝑖)

∂z3
(3)(𝑖)

∂α2
(2)(𝑖)

∂α2
(2)(𝑖)

∂z2
(2)(𝑖)

∂z2
(2)(𝑖)

∂θ32
(1)

)

Following, a closer look at one of the terms,
∂J(θ)

∂θ11
(1) :

∂J(θ)

∂θ11
(1)

= (δ1
(3)(i) ∂z1

(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ11
(1)

) + (δ2
(3)(i) ∂z2

(3)(𝑖)

∂α1
(2)(𝑖)

∂α1
(2)(𝑖)

∂z1
(2)(𝑖)

∂z1
(2)(𝑖)

∂θ11
(1)

)

+ (δ3
(3)(i) ∂z3

(3)(𝑖)

∂α2
(2)(𝑖)

∂α2
(2)(𝑖)

∂z2
(2)(𝑖)

∂z2
(2)(𝑖)

∂θ11
(1)

)

University of Aegean Department of Financial and Management Engineering

[104]

We should also compute the derivatives for
∂J(θ)

∂θ12
(1) ,

∂J(θ)

∂θ21
(1) ,

∂J(θ)

∂θ22
(1) ,

∂J(θ)

∂θ31
(1) ,

∂J(θ)

∂θ32
(1) .

Furthermore, the partial derivatives are the activation functions. So it will be:

∂J(θ)

∂θ11
(1)

= (δ1
(3)(i)

θ11
(2)

α1
(2)(i)

(1 − α1
(2)(i)

)
∂z1

(2)(𝑖)

∂θ11
(1)

) + (δ2
(3)(i)

θ21
(2)

α2
(2)(i)

(1 − α2
(2)(i)

)
∂z1

(2)(𝑖)

∂θ11
(1)

)

+ (δ3
(3)(i)

θ31
(2)

α3
(2)(i)

(1 − α3
(2)(i)

)
∂z2

(2)(𝑖)

∂θ11
(1)

)

We should also calculate
∂J(θ)

∂θ12
(1) ,

∂J(θ)

∂θ21
(1) ,

∂J(θ)

∂θ22
(1) ,

∂J(θ)

∂θ31
(1) ,

∂J(θ)

∂θ32
(1) as the partial derivative above,

like
∂J(θ)

∂θ11
(1).

Factoring out the
∂z1

(2)(𝑖)

∂θ11
(1) term, it will be:

∂J(θ)

∂θ11
(1)

=
∂z1

(2)(𝑖)

∂θ11
(1)

(δ1
(3)(i)

θ11
(2)

α1
(2)(i)

(1 − α1
(2)(i)

)) + (δ2
(3)(i)

θ21
(2)

α2
(2)(i)

(1 − α2
(2)(i)

))

+ (δ3
(3)(i)

θ31
(2)

α3
(2)(i)(1 − α3

(2)(i)))

The
∂z1

(2)(𝑖)

∂θ11
(1) partial derivative will be replaced each time with an input, in our case

x1, x2.

So,

∂J(θ)

∂θ11
(1)

=
∂z1

(2)(𝑖)

∂θ11
(1)

(δ1
(2)(i)

)

We should also calculate
∂J(θ)

∂θ12
(1) ,

∂J(θ)

∂θ21
(1) ,

∂J(θ)

∂θ22
(1) ,

∂J(θ)

∂θ31
(1) ,

∂J(θ)

∂θ32
(1) as the partial derivative above,

like
∂J(θ)

∂θ11
(1).

We know αj
(1)(i) from the input values, but we do not know δ𝑘

(2)(𝑖)
 k=1,2,3. Let’s

compute it.

We know that:

University of Aegean Department of Financial and Management Engineering

[105]

δj
(2)(i)

=
𝜕J(θ)𝑖

𝜕zj
(2)(𝐢)

δj
(2)(i)

=

∂ {
[−y1

(i)
log(α1

(3)(i)
) − (1 − y1

(i)
)log (1 − α1

(3)(i)
)] − y2

(i)
log(α2

(3)(i)
)

−(1 − y2
(i)

)log (1 − α2
(3)(i)

)]
}

∂zj
(2)(i)

=

∂ {
[−y1

(i)
log(α1

(3)(i)
) − (1 − y1

(i)
)log (1 − α1

(3)(i)
)] − y2

(i)
log(α2

(3)(i)
)

−(1 − y2
(i)

)log (1 − α2
(3)(i)

)]
}

∂α1
(3)(i)

×

×
dα1

(3)(i)

dz1
(3)(i)

∂z1
(3)(i)

∂αj
(2)(i)

dαj
(2)(i)

dz𝑗
(2)(i)

+
∂ {[−y1

(i)
log(α1

(3)(i)
) − (1 − y1

(i)
)log (1 − α1

(3)(i)
)] − y2

(i)
log(α2

(3)(i)
) − (1 − y2

(i)
)log (1 − α2

(3)(i)
)]}

∂α2
(3)(i)

×

×
dα2

(3)(i)

dz2
(3)(i)

∂z2
(3)(i)

∂αj
(2)(i)

dαj
(2)(i)

dzj

(2)(i)

(A.42)

since considering a function 𝐹(𝑥, 𝑦) where 𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡)

𝑑𝐹

𝑑𝑧
=

𝜕𝐹

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝐹

𝜕𝑦

𝑑𝑦

𝑑𝑡

Then,

∂ {
[−y1

(i)log(α1
(3)(i)) − (1 − y1

(i))log (1 − α1
(3)(i))] − y2

(i)log(α2
(3)(i))

−(1 − y2
(i))log (1 − α2

(3)(i))]
}

∂α1
(3)(i)

= [−
y1

(i)

α1
(3)(i)

+
(1 − y1

(i))

1 − α1
(3)(i)

]

Similarly

(A.43)

University of Aegean Department of Financial and Management Engineering

[106]

∂ {
−y1

(i)log(α1
(3)(i)) − (1 − y1

(i))log (1 − α1
(3)(i))] − y2

(i)log(α2
(3)(i))

−(1 − y2
(i))log (1 − α2

(3)(i))
}

∂α2
(3)(i)

= [−
y2

(i)

α2
(3)(i)

+
(1 − y2

(i)
)

1 − α2
(3)(i)

]

Additionally, from Eq. (A.35):

dα1
(3)(i)

dz1
(3)(i)

= α1
(3)(i) (1 − α1

(3)(i))

and

dα2
(3)(i)

dz2
(3)(𝑖)

= α2
(3)(i)

(1 − α2
(3)(i)

)

Finally, from Eq. (A.31):

(A.44)

∂z1
(3)(i)

∂αj
(2)(i)

= θ1j
(2)

∂z2
(3)(i)

∂αj
(2)(i)

= θ2j
(2)

(A.45)

and,

dαj
(2)(𝐢)

dzj

(2)(i)
= αj

(2)(i)(1 − αj
(2)(i))

(A.46)

Substituting Eq. (A.42) – (A.45) into Eq. (A.41) we obtain that:

δj
(2)(i) =

=
∂J(θ)i

∂zj
(2)(i)

= [−
y1

(i)

α1
(3)(i)

+
(1 − y1

(i))

1 − α1
(3)(i)

] α1
(3)(i) (1 − α1

(3)(i))θ1j
(2)

αj
(2)(i) (1 − αj

(2)(i))

(A.47)

University of Aegean Department of Financial and Management Engineering

[107]

+[−
y2

(i)

α2
(3)(i)

+
(1 − y2

(i))

1 − α2
(3)(i)

] α2
(3)(i)

(1 − α2
(3)(i)

)θ2j
(2)

αj
(2)(i)

(1 − αj
(2)(i)

)

Performing the multiplications (similarly to Eq. (A-9)) we obtain that:

δj
(2)(i)

= δ1
(3)(i)

θ1j
(2)

αj
(2)(i)

(1 − αj
(2)(i)

) + δ2
(3)(i)

θ2j
(2)

αj
(2)(i)

(1 − αj
(2)(i)

)

⇒ δj
(2)(i)

= [δ1
(3)(i) δ2

(3)(i)] [
θ1j

(2)

θ2j
(2)

]αj
(2)(i)

(1 − αj
(2)(i)

)

⇒ [δ1
(2)(i) δ2

(2)(i) δ3
(2)(i)]

= [δ1
(3)(i) δ2

(3)(i)] [
θ11

(2)
θ12

(2)
θ13

(2)

θ21
(2)

θ22
(2)

θ23
(2)

] .∗ [α
(2)(i)

.∗ (1 − α
(2)(i)

)]

⇒ δ(2)(i) = [δ(3)(i)θ(2)].∗ [α(2)(i).∗ (1 − α(2)(i))]

(A.48)

Combining the average of the two training samples 𝑖 = 1,2:

δ(2) = δ(3)θ(2).∗ (α(2).∗ (1 − α(2)))

So, we are able to compute the other six partial derivatives of the gradient vector:

∂J(θ)

∂θkj
(1)

=
1

2
∑αj

(1)(i)

m

i=1

δk
(2)(i)

, 𝑘 = 1,2,3 and 𝑗 = 1,2
(A.49)

With,

δk
(2)(i) = [δ1

(3)(i) δ2
(3)(i)] [

θ1k
(2)

θ2k
(2)

] αk
(2)(i) (1 − αk

(2)(i))

(A.50)

Finally, for any iteration we can compute the gradient ∇ J(θ) from the values of 𝜃 of

the previous iteration and the results of the forward propagation.

University of Aegean Department of Financial and Management Engineering

[108]

∇ J(θ) = [
∂J

∂θ11
(1)

, … ,
∂J

∂θ32
(1)

|
∂J

∂θ11
(2)

, … ,
∂J

∂θ23
(2)

]

Using Eq. (A.39), (A.49), (A.50)

The new values of 𝜃 are [θ11
(1)

, . . . , θ32
(1)

|θ11
(2)

, . . . , θ23
(2)

]new

= [θ11
(1)

, . . . , θ32
(1)

|θ11
(2)

, . . . , θ23
(2)

]old −a∇J

University of Aegean Department of Financial and Management Engineering

[109]

Appendix B. Raw Data preprocessing with Python

 Remove the @user character from the tweets data:

train_data['clean_tweet'] = train_data['clean_tweet']

.apply(lambax: re.sub(r'@+', '',x))

Figure B. 1 Lambda function to remove @user.

 Remove #hashtags characters from the tweets data:

train_data['clean_tweet'] = train_data['clean_tweet']

.apply(lambax: re.sub(r'#+', '',x))

Figure B. 2 Lambda function to remove #hastags.

 Convert the tweet-sentences into lowercase sentences:

train_data['clean_tweet'] = train_data['clean_tweet']

.apply(lambax: x.lower())

Figure B. 3 Lambda function to convert text into lowercase.

 Remove special characters:

train_data['clean_tweet'] = train_data['clean_tweet']

.apply(lambax: re.sub(r'rt',' ',x))
Figure B. 4 Lambda function to remove special characters.

 Remove the stopwords from every input tweet:

import nltk

nltk.download('stopwords')

from nltk.corpus import stopwords

swords = set().union(stopword.words('english'),additional)

University of Aegean Department of Financial and Management Engineering

[110]

Figure B. 5 Lambda function to remove stopwords.

 Convert the abbreviations words to their original meaning using a dictionary:

def lookup_dict(text, dictionary):

 for word in text.split():

 if word.lower() in dictionary:

 if word.lower() in text.split():

 text = text.replace(word, dictionary[word.lower()])

 return text

train_data[‘clean_tweet’] = train_data[‘clean_tweet’]

.apply(lambax: lookup_dict(x,apostrophe_dict))

Figure B. 6 Lambda function for converting the abbreviations.

 Replacing shortcuts words with their original form:

train_data['clean_tweet'] = train_data['clean_tweet']

.apply(lambax: lookup_dict(x,short_word_dict))

Figure B. 7 Lambda function for replacing shortcuts.

 Replace emoticons characters with their corresponding emotion:

train_data['clean_tweet'] = train_data['clean_tweet']

.apply(lambax: lookup_dict(x,emoticon_dict))

Figure B. 8 Lambda function for replacing the emoticons.

 Remove the punctuations marks:

train_data['clean_tweet'] = train_data['clean_tweet']

.apply(lambax: re.sub(r'[^\w\s]',' ',x))

Figure B. 9 Lambda function for removing punctuation marks.

Remove numbers or any other related characteristics that doesn’t add any value

to identify the tweet sentiment:

train_data['clean_tweet'] = train_data['clean_tweet']

.apply(lambax: re.sub(r'[^a-zA-Z]',' ',x))

Figure B. 10 Lambda function to remove numbers or special characters.

Remove words with length = 1(for example a) as it doesn’t add any value to the

tweet sentiment:

University of Aegean Department of Financial and Management Engineering

[111]

train_data['clean_tweet'] = train_data['clean_tweet']

.apply(lambax: ' '.join([w for w in x.split() if len(w)>1]))

Figure B. 11 Lambda function too remove word with len=1.

University of Aegean Department of Financial and Management Engineering

[112]

Appendix C. The tokenization process in Python

Following the data cleaning process (see Appendix B), the tokenization of the

sentence is a fundamental step in NLP text processing and the tokens act as input to

the learning algorithm (Hardeniya, et al., 2016). The Python script for the

tokenization process (Tokenizer Python method) is the following one:

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence import pad_sequence

s

sentences = [‘This is an example’]

tokenizer = Tokenizer(num_words = x, oov_token="<OOV>")

tokenizer.fit_on_texts(sentences)

word_index = tokenizer.word_index

sequences = tokenizer.texts_to_sequences(sentences)

padded = pad_sequences(sequences, maxlen=x)

print(word_index)

Figure C. 1 Python script for text tokenize.

Import necessary libraries: For data processing cases in NLP, it is necessary to import

Python libraries in order to perform various operations on the text, such as

• from TensorFlow the Keras API for text generator, which is used to define

the neural network,

• the Tokenizer library from tensorflow.keras.preprocessing.text.

• the pad_sequences from tensorflow.keras.preprocessing.sequence. It is

necessary for training a neural network to have some level of uniformity in

the size of the input text data This library is used for this purpose

Text data: It necessary as a first step to initialize a blank list, which could be filled

and contain all the row text sentences. (e.g., sentences= [])

Tokenizer: The tokenizer provides a word index property that returns a dictionary

containing key value pairs, where the key is the word, and the value is the token for

that word.

University of Aegean Department of Financial and Management Engineering

[113]

Num_words: A parameter used to set a specific size for the dictionary. This value

declares how many words are tokenized in word index by setting the parameter as

num_words=x : This variable declares that only the x most common words are

tokenized from the entire words out of those sentences.

oov_token: Instead of just ignoring the words that aren't in the word index, the

dictionary will include a special value for all those unseen words. This will be the

oov_token value (out of vocabulary token).

tokenizer.fit_on_texts(sentences): The fit_on texts method from the tokenizer is used

to translate the data and encode them. The fit_on texts method will go through the

entire body of the text and create a dictionary with the key being the word and the

value being the token for that specific word. So, by calling tokenizer.fit on texts, this

will generate the word index and initialize the tokenizer.

word_index = tokenizer.word_index: The dictionary called word_index contains the

key value pairs, of word encodings and creates vectors out of the sentences. Training

a data set based on text could contain lots of words and generally it is not ideal to

include many unique words.

sequences = tokenizer.texts_to_sequences(sentences): Executes a tokenization process

where the text_to_sequances method and will turn simple sentences into a list of

sentences that have been encoded into integer lists, with the tokens replacing the

words.

padded = pad_sequences(sequences, truncating=’post’, maxlen=5): Once the tokenizer

creates the sequences, those sequences are fed to the padding process so that, at

the end, all sequences will be of the same size. The idea behind the pad sequences

tool is that it allows accepting sentences with different lengths and use padding or

truncation to convert all the sentences to the same length.

So, a list of sentences has been padded out into a matrix and each row in the matrix

has the same length. This can be done by putting the appropriate number of zeros

before the sentence. If the sentences are longer than the maxlen (for example

maxlen=5, the sentences must have a maximum of five words), then excess

University of Aegean Department of Financial and Management Engineering

[114]

information will be removed from the beginning of the sentence. Otherwise, the

truncate parameter can also be used for removing excess characters at the end of

each sentence, by setting the truncating parameter truncating=’post’.

To recap the topics of this paragraph, it is about how to encode sentences, how to

pad them and how to use Word indexing to encode previously unseen sentences

using out of vocab tokens (OOV).

University of Aegean Department of Financial and Management Engineering

[115]

Appendix D. Analysis of the word embedding technique in Python

In this section, we analyze the embedding technique using an IMBD Review example

from Coursera (Course: Natural Language Processing with TensorFlow, Week 2). The

IMDB review dataset contains 50.000 sentences and associated sentiment labels

from a dataset of different movie reviews taken from IMDB platform users. The

training is supervised, and the reviews are pre-categorized with a binary

classification as positive or negative reviews.

Each word in the sentence has been tokenized and there is a numerical

representation for it. The embedding layer in the beginning of the NN creates the

word-vectors by placing words with similar meaning close to each other. For

example, a movie could be “interesting and fun” or “boring and sad “. Generally, the

“placement” of the words is used from the network to evaluate if a sentence has

positive or negative meaning, so the clustering of similar words expands the general

sentiment of the words.

The embedding vectors, for this example, are initialized as 16 dimensional so every

word have 16 representations in the embedding space. The output of the

embedding layer will be a 2D vector for each word, where one dimension

corresponds to the length of the sentence and other to the embedding dimension

in the transformed space, for example 16 dimensional as its size. This can be seen in

Figure D.1.

University of Aegean Department of Financial and Management Engineering

[116]

Figure D. 1 Embedding Layer.

The embedding technique may still be confusing so the schematic representation of

the above vectors may clarify the concept. At first, each sentence is represented by

a 120x1 vector. Each one of the 120 rows represent tokens for a specific word in the

sentence. So, to represent each word from the vocabulary in a matrix, it will be a

120x10,000 values matrix that for each word in the sentence a value of one (1) is

assigned to the position of that specific word in the vocabulary and all the other

positions will have a zero value.

Since embedding is a multidimensional representation of a word, each word in our

vocabulary will have a 16-dimension representation. This means that the entire

vocabulary is represented by a 10,000x16 matrix that store the weight values. When

these two matrices multiply, the result is a 120x16 matrix that contains the

embedding representation for each word of the input sentence.

There is an excerpt from the TensorFlow code referring to the tokenizing and

embedding processing:

train_data, test_data = imdb['train'], imdb['test']

training_sentences = []

training_labels = []

testing_sentences = []

testing_labels = []

University of Aegean Department of Financial and Management Engineering

[117]

str(s.tonumpy()) is needed in Python3 instead of just s.numpy(

)

for s,l in train_data:

 training_sentences.append(s.numpy().decode('utf8'))

 training_labels.append(l.numpy())

for s,l in test_data:

 testing_sentences.append(s.numpy().decode('utf8'))

 testing_labels.append(l.numpy())

training_labels_final = np.array(training_labels)

testing_labels_final = np.array(testing_labels)

Figure D. 2 Load and import the IMDb reviews dataset.

First step was to import the lists containing the training and testing datasets

(Sentences and labels) from the IMDb reviews dataset. Multiple lists have been

created for the training (training_sentences and training_labels) and for the test set

(testing_sentences and testing_labels). The test set contains labeled sentences that

the network has never seen before so, this set is used for prediction to measure the

efficient of the model. The dataset contains 25.000 sentences and labels for training

and 25.000 for test and validation. The labels are represented with value 1 as a

positive review and value 0 as the negative review.

Then using a for loop to iterate through the entire data and using index’s s and l to

extract all the information’s and assign them to the proper list.

The lists containing the train and test labels must convert into NumPy array lists, so

they could be manageable for the neural network. For that reason, the final step is

to create the training_labels_final and testing_labels_final lists using the NumPy

library.

vocab_size = 1000

embedding_dim = 16

max_length = 120

trunc_type='post'

oov_tok = "<OOV>"

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence import pad_sequence

s

University of Aegean Department of Financial and Management Engineering

[118]

tokenizer = Tokenizer(num_words = vocab_size, oov_token=oov_tok)

tokenizer.fit_on_texts(training_sentences)

word_index = tokenizer.word_index

sequences = tokenizer.texts_to_sequences(training_sentences)

training_padded = pad_sequences(sequences,maxlen=max_length, tru

ncating=trunc_type)

testing_sequences = tokenizer.texts_to_sequences(testing_sentenc

es)

testing_padded = pad_sequences(testing_sequences,maxlen=max_leng

th)

Figure D. 3 Python script for tokenization.

It is crucial to initialize the parameters before starting with the tokenizer processing.

First, the vocab_size parameter is used to define the vocabulary capacity. In this

example the vocabulary includes the 10.000 most common words from the

trainning_sentences.

Then the embedding_dim parameter indicates the number of rows from the

embedding vector including the weight parameters. The embedding_ dim

parameters declare the embedding vector representation, the number of columns

containing the weight values that will be multiplied with the words and create some

sort of vector representation.

 It is necessary to assure that all the sentences have the same length, so

max_length = 120 set to determine the maximum of each sentence, regardless of a

sentence have more or less words, every sentence will end up with 120 values. If a

sentence contains less than 120 values, the network will fill up the rest of the

sentence with zeros using the padded technique.

 Otherwise, if a sentence contains more than 120 values then using the parameter

trunc_type='post' to remove the excess values at the end of the sentence.

 The last parameter is the oov_tok to declare the words that are not included in the

vocabulary and are represented by the out of vocabulary(oov) characters.

The python code below is a simple neural network architecture with 4 hidden layers,

created to proceed with the IMDb reviews dataset:

University of Aegean Department of Financial and Management Engineering

[119]

model = tf.keras.Sequential([

 tf.keras.layers.Embedding(vocab_size, embedding_dim, input_l

ength=max_length),

 tf.keras.layers.Flatten(),

 tf.keras.layers.Dense(6, activation='relu'),

 tf.keras.layers.Dense(1, activation='sigmoid')

])

model.compile(loss='binary_crossentropy',optimizer='adam',metric

s=['accuracy'])

Figure D. 4 Model architecture for IMDb training.

We will create the new model architecture, by using from TensorFlow the tf.keras

library. Then calling the sequential function, tf.keras.Sequential to declare the

creation of successive layers, using function tf.keras.layers to define a layer of

connected neurons. The first hidden layer in this architecture will be an embedding

layer that will proceed with the training padded sentences accordingly to the

hypermeters that have been initialized at the first step (vocab_size, max_length etc.)

The output of the embedding processing should be condensed into one dimension

matrix. The function Flatten () will return a copy of the 2D embedding matrix as a 1D

vector.

As an input to the first layer there are 160.000 nodes (16 dim representation of each

word X 10.000 words in the vocabulary). In the second/hidden layer there are 6

nodes and the ReLu activation function is used to pass in the next layer only values

that are greater or equal to zero [Dense (6, activation='relu')]. At the last layer, there

is only one node used, because the NN perform binary classification so the expected

output will be one value, either 1(positive) or 0(negative).

Finally, the model.compile function used for initializing the training process

parameters. To measure the loss of a binary network it is preferable to use the

binary crossentropy function, loss='binary_crossentropy’. This specific metric is

preferable to compute the network accuracy because it takes into consideration

both the wrong classification and the diverge of the mislabeled predictions compare

to the real data labels. (Ramos, et al., 2018)

University of Aegean Department of Financial and Management Engineering

[120]

As for the optimizer metric, the algorithm uses the Adam function to measure the

network efficiency, optimizer='adam'. An optimization function used during trained

to initialize the network weights in the optimal minimum value, with the min loss.

This metric, update network weights at every iteration until reaching a local

minimum. To have a measure about the entire performance of the model the

selected function is the accuracy metric, which calculates how often the predictions

are equal to the original labels.

University of Aegean Department of Financial and Management Engineering

[121]

Appendix E. Dataset creation utilizing the Twitter API in Python
As in every python code is it necessary to start import the required libraries:

• tweepy, for accessing the Twitter API using Python.

• Csv, for loading and saving csv files

• pandas, for data manipulation and analysis

 import tweepy #To consume Twitter's API

import csv #To store the dataset

import pandas as pd #To handle data

Figure E. 1 Import required libraries.

The developer credentials for accessing the Twitter API, they are initialized and

saved as variables, as shown in the code block below:

Consume:

CONSUMER_KEY = 'XXXXXXXXXX'

CONSUMER_SECRET = 'XXXXXXXXXX'

Access:

ACCESS_TOKEN = 'XXXXXXXXXX'

ACCESS_SECRET = 'XXXXXXXXXX'

Figure E. 2 Import Twitter App credentials.

Continuously, we should authenticate the credentials and create a connection to the

Twitter Streaming API using the tweepy library:

auth = tweepy.OAuthHandler(CONSUMER_KEY, CONSUMER_SECRET)

auth.set_access_token(ACCESS_TOKEN, ACCESS_SECRET)

Return API with authentication:

api = tweepy.API(auth,wait_on_rate_limit=True)

Figure E. 3 Import Authentication and access keys.

After successfully connect to the Twitter, it’s time to extract the tweets and store

the collected data in a CSV file. We create new file “DataSetScrap.csv” to append

the extracted tweets.

csvFile = open('XXX.csv','w')

csvWriter = csv.writer(csvFile)

Figure E. Create a csv file to append the dataset.

https://tweepy.readthedocs.io/en/latest/

University of Aegean Department of Financial and Management Engineering

[122]

Create a for loop that iterates though the “data list”, collect tweets that match the

requested features and save those data as a CSV file, as follows:

for tweet in tweepy.Cursor(api.search,

q="#Apple",

lang="en",

since="XXXX").items():

Figure E. 4 Python script for data extraction.

• Tweepy.Cunsor(): The Tweepy Python package provide a tool called

“Cursor” to iterate through data making the paginated process easier and with less

complex coding.

• Api.search: This method of the API class in Tweepy module used to send a

request and fetch specific tweets. Via API access the algorithm search through the

Twitter to collect tweets that contains hashtag #Apple (q="#Apple»), written in

English language (lang="en",) published after a specific date (since="XXXX").

University of Aegean Department of Financial and Management Engineering

[123]

Appendix F. Data Labelling algorithm

The following Python script executes the labelling process of the dataset analyzed in

Section 4.2.

The tweet extraction process outputs a csv file with a large amount of data. The file

contains also junk or irrelative tweets. As a first part of the labelling process, we

have created a code for pre-processing before manually labelling the data. We

initialize the content of the csv file to an empty list called myListOfWords and import

the dictionary file.

The code will output, and pre-label tweets based of the dictionary.

with open('

 XX','r') as f: #load the positive/negative dictionary

 myListOfWords = f.read().splitlines() #read the file content

#load the exctracted dataset file

with open('ExtractedTweets.csv') as myFile:

 csvReader = csv.reader(myFile) #read the file content

 for row in csvReader: #iterate through the file

 textOfRow = row[0]

#Create a new file with tweets corresponding with the dictionary

 sentiment

 if any(word in textOfRow for word in myListOfWords):

 with open('Dictionary.csv','a') as words:

 words.writelines(textOfRow)

 words.write('\n')

 print(f'Sentence where word is found: {textOfRow}\n')

Figure F. 1 Python script of the algorithm to perform data labelling.

University of Aegean Department of Financial and Management Engineering

[124]

Appendix G. Implement a simple neural network training with one

hidden layer architecture

Let’s implement a simple neural network training using TensorFlow 2.0 tools. The

input dataset for this experiment will be the “Tweets Reviews “, includes 6,764

tweets in two classification categories posted in Twitter platform from Apple

consumers that are reviews to Apple Inc. products and services. The data are

manually classified in two categories as positive or negative. Overall, the algorithm

objective function is to perform binary classification and accurate predict the

sentiment of the input tweets with the minimum loss rate.

Out of the total 6,764 tweets the algorithm will remove the identical tweets during

the cleaning process (approximately 762 tweets are rejected) and then split the

dataset and use 80% for training-4,800 tweets, 10% for validation-601 tweets and

10% for testing-601 tweets.

Let’s start by loading the necessary modules, as follows:

import pandas as pd

import numpy as np

import re

import matplotlib.pyplot as plt

import string

import nltk

import warnings

%matplotlib inline

import tensorflow_datasets as tfds

import tensorflow as tf

warnings.filterwarnings("ignore", category=DeprecationWarning)

#Import required Libraries for NN layers structure

from keras.preprocessing.text import Tokenizer

from keras.preprocessing.sequence import pad_sequences

from keras.models import Model , Sequential, load_model

from keras.layers import Dense , Input , LSTM , Embedding, Dropout

, Activation, Flatten

from keras import initializers, regularizers, constraints, optimize

rs, layers

Figure G. 1 Import required libraries.

University of Aegean Department of Financial and Management Engineering

[125]

Load and import “Tweet’s review” file as the input data set:

#Convert from xlsx to a csv file

read_file = pd.read_excel (r'/content/gdrive/MyDrive/Machine lea

rning/NLP/Saturday 11122021/6764 dataset for inference learning_

17102021.xlsx')

read_file.to_csv (r'/content/TrainData.csv', index = None, heade

r=True)

Loading Training Dataset

df = pd.read_csv(("/content/TrainData.csv"), sep=',', error_bad_

lines=False)

train_data = df.sample(frac=1).reset_index(drop=True)

train_data = df.loc[:, ~df.columns.str.contains('^Unnamed')]

train_data.head(6000)

Figure G. 2 Load and import Apple Tweets dataset.

After exploring the data set, then the algorithm proceeds with few steps for data

“cleaning “to removing excess information’s and simplify every tweet/sentence and

made it more suitable for text processing.

Step1: Create new "clean" columns -

i.e. clean_tweet contains the same tweets but cleaned version:

from html.parser import HTMLParser

html_parser = HTMLParser()

train_data['clean_tweet'] = train_data['tweet']

.apply(lambda x: html_parser.unescape(x))

train_data['clean_tweet'] = train_data['clean_tweet']

.apply(lambda x: re.sub(r'http\S+', '',x))

train_data.head(10)

Figure G. 3 Python script to remove html/links.

Step 2: Remove "@user" from all the tweets using a lambda function and then print

for preview the first 10 tweets:

University of Aegean Department of Financial and Management Engineering

[126]

train_data['clean_tweet'] = train_data['clean_tweet']

.apply(lambda x: re.sub(r'@[A-Za-z0-9]+', '',x))

train_data.head(10)

Figure G. 4 Lambda function to remove @users.

Step 3: Remove twitter handles (#hashtag) using a lambda function and then print

for preview the first 10 tweets:

train_data['clean_tweet'] = train_data['clean_tweet']

.apply(lambda x:re.sub(r"#[AZaz09]+", '', x, flags=re.MULTILINE)

)

train_data.head(10)

Figure G. 5 Lambda function to remove #hashtag.

Step 4: Convert every tweet sentence into lowercase using a lambda function and

then print for preview the first 10 tweets:

train_data['clean_tweet'] = train_data['clean_tweet']

.apply(lambda x: x.lower())

train_data.head(10)

Figure G. 6 Lambda function to convert tweet into lowercase.

Step 5: Remove retweet character (RT) at the beginning of all the tweet’s using a

lambda function and then print for preview the first 10 tweets:

train_data['clean_tweet'] = train_data['clean_tweet']

.apply(lambda x: re.sub(r'rt',' ',x))

train_data.head(10)

University of Aegean Department of Financial and Management Engineering

[127]

Figure G. 7 Lambda function to remove RT character.

Step 6: Download a free online stop words dictionary and remove all the stop words

– commonly used words that has no attribution to the tweet’s sentiment -using a

lambda function and then print for preview the first 10 tweets:

import nltk

nltk.download('stopwords')

from nltk.corpus import stopwords

additional = ['RT','b','retweet']

swords = set().union(stopwords.words('english'),additional)

train_data.head(10)

Figure G. 8 Python script code to remove stopwords.

Step 7: Download a free online words short-cuts dictionary and convert every

shortcut in the proper form using a lambda function and then print for preview the

first 10 tweets:

train_data['clean_tweet'] = train_data['clean_tweet']

.apply(lambda x: lookup_dict(x,short_word_dict))

train_data.head(10)

Figure G. 9 Python script code for replacing shortcuts.

Step 8: Download a free online emoji’s dictionary and replace every emoji character

with a word for expressing the corresponding sentiment using a lambda function

and then print for preview the first 10 tweets:

train_data['clean_tweet'] = train_data['clean_tweet']

.apply(lambda x: lookup_dict(x,emoticon_dict))

train_data.head(10)

Figure G. 10 Python script code for replacing emoji’s.

University of Aegean Department of Financial and Management Engineering

[128]

So far, we have removed the unnecessary characters and cleaned the overall

dataset. Next step will be the tokenizing process.

First part as always, is to import the required libraries for text tokenizer:

#tensorflow is a open-

source library for various tasks in machine learning & Keras is

aneural network library

from tensorflow.keras.preprocessing.text import Tokenizer

#the tokenizer basically split the dataset into smaller units

from tensorflow.keras.preprocessing.sequence import pad_sequence

s #the pad_sequence function will transform the strings into the

 same lenght

Figure G. 11 Import required libraries.

There are several parameters that the researcher should define at this part, relative

to the vocabulary capacity that will hold the tokenized words, the maximum length

of characters for every tweet and the part that the algorithm will remove excess

characters and finally define a parameter for the words that are will not be included

in the vocabulary.

For this experiment, we initialize the vocabulary to include 2.000 tokenized words

and every tweet consist of 30 characters. In case, that a tweet sentence contains

more characters then by default the algorithm will remove them, starting from the

end of the sentence.

vocab_size = 2000

#the number of the unique words/tokens in the corpus

max_length = 30

#declare a prefixed-length for each string/tweet

oov_tok = "<OOV>"

#used to replace out of

vocabulary words during text_to_sequence calls

trunc_type='post'

#trunc_type:declare what to do with the tweets that are > from t

he max_length & post:is the method that 'cut' charachters from t

heend of the string

University of Aegean Department of Financial and Management Engineering

[129]

Figure G. 12 Tokenize parameters initialization.

Continuously, the tokenizer library from Keras will proceed with the 2.000 most used

words from the dataset and convert every sentence in an integer sequence form

could be manageable for processing with a machine.

tokenizer = Tokenizer(num_words=vocab_size, split=" ", oov_token

=oov_tok)

tokenizer.fit_on_texts(train_data['clean_tweet'].values)

word_index = tokenizer.word_index

#a dictionary of words and their uniquely assigned integers.

x =tokenizer.texts_to_sequences(train_data['clean_tweet'].values

)

#each word in the tweet will be replaced with

a corresponding integer value from the word_index dictionary

x = pad_sequences(x,maxlen=max_length, truncating=trunc_type)

#add 0 value to the end of the tweet when it

is < than max_length

Figure G. 13 Python script for text tokenize.

The input dataset will be split into 3 separate datasets training, validation, and

testing with an 80-10-10 proportion using a sklearn model function. This function

will randomly split the dataset.

from sklearn.model_selection import train_test_split

train_ratio = 0.80

test_ratio = 0.10

validation_ratio = 0.10

x_train, x_test, y_train, y_test = train_test_split(x, y, test_s

ize=test_ratio)

x_train, x_valid, y_train, y_valid = train_test_split(x_train, y

_train, test_size=validation_ratio/(train_ratio+test_ratio))

Figure G. 14 Python script for splitting the input dataset.

University of Aegean Department of Financial and Management Engineering

[130]

That was the last step for the dataset pre-processing. Next step will be to create a

customized neural network model for training the dataset.

As always, we start with import the necessary libraries to create the model

structure.

from keras.models import Sequential, Model ,load_model

from keras.layers import Dense, LSTM, Embedding, Dropout,Flatten

Figure G. 15 Import required libraries for creating a NN model.

We are handling a regularly small dataset so the target is a small amount of model

trainable parameters and for this first training experiment we will create a simple -

one LSTM layer – model.

The model structure consists of a stack of different network trainable layers. To

create this kind of structure, we will import the Sequential model from Keras to

define a sequential model and then add the 4 layers to the network.

The first layer will be an Embedding layer, then an LSTM layer with 8 units, a Flatten

layer and then two Dense layers that will output the model prediction about the

input sentiment. This specific network architecture will create 9.017 trainable

parameters. For optimization function we select the Adam optimizer function with

learning rate parameter set to a=0.001 and as for the loss function a

binary_crossentropy function had been used to compute the training error.

#Simple LSTM model

model = Sequential()

model.add(Embedding(vocab_size, 4, input_length=x.shape[1]))

model.add(LSTM(8, dropout=0.5, recurrent_dropout=0.0))

model.add(Flatten())

model.add(Dense(60,activation='relu'))

model.add(Dense(1, activation='sigmoid'))

opt = tf.keras.optimizers.Adam(learning_rate=0.001)

model.compile(optimizer=opt, loss='binary_crossentropy', metrics

=['accuracy'])

model.summary()

University of Aegean Department of Financial and Management Engineering

[131]

Figure G. 16 The NN model architecture.

Next, will be the neural network training process. To start with, we initialize the

parameters epoch=10 and batch_size=8. The model iterates thought the training

process 10 times and for every iteration the network will update the trainable

weights values until reaching the optimal values that are going to minimize the loss

function. For every epoch the model uses the total training dataset to adjust the

weights. The batches size parameter refers to the number of samples, that the total

dataset was divided to smaller batches for estimating the error value before the

network updates the weight values.

batch_size = 8

epochs = 10

history = model.fit(x_train, y_train, epochs=epochs, batch_size=

batch_size, verbose=1, validation_data=(x_valid,y_valid) , shuff

le=True)

Figure G. 17 Python script of the training process.

After performing the training process, a method for estimating the training accuracy

could be to print the training and validation loss plot and evaluate the model

efficiency for predictions. Also, from the training and validation accuracy plot the

researcher could estimate if the trained model overfit or if the addition of more

training iterations could improve the model performance.

summarize history for loss

plt.plot(history.history['loss'])

plt.plot(history.history['val_loss'])

plt.title('model loss')

plt.ylabel('loss')

plt.xlabel('epoch')

plt.legend(['train', 'validation'], loc='upper left')

plt.show()

summarize history for accuracy

plt.plot(history.history['accuracy'])

University of Aegean Department of Financial and Management Engineering

[132]

plt.plot(history.history['val_accuracy'])

plt.title('model accuracy')

plt.ylabel('accuracy')

plt.xlabel('epoch')

plt.legend(['train', 'validation'], loc='upper left')

plt.show()

Figure G. 18 Python script for plotting the model performance.

Furthermore, it is important to execute a testing experiment and check the network

efficiency with the unseen (test) dataset. From the Keras library we had select the

predict function, that uses a trained model to predict on new datasets. For this part,

the predict function will use as an input the test data, that contains 677 random

tweets and attempt to predict their sentiment.

predictions = model.predict(x_test , batch_size=10, verbose=0)

predictions[:5]

Figure G. 19 Python script for the predictions function.

The confusion matrix and the f1_value method will be used as accuracy metrics, for

the researcher to evaluate them and evaluate the overall network performance for

accurate predictions.

from sklearn.metrics import confusion_matrix

import itertools

prediction = model.predict(x_test)

y_pred = (predictions > 0.5)

cm = confusion_matrix(y_test, y_pred=y_pred)

Figure G. 20 Assign the confusion matrix variables.

def plot_confusion_matrix(cm, classes,

 normalize=False,

 title='Confusion matrix',

University of Aegean Department of Financial and Management Engineering

[133]

 cmap=plt.cm.Blues):

 """

 This function prints and plots the confusion matrix.

 Normalization can be applied by setting `normalize=True`.

 """

 plt.imshow(cm, interpolation='nearest', cmap=cmap)

 plt.title(title)

 plt.colorbar()

 tick_marks = np.arange(len(classes))

 plt.xticks(tick_marks, classes, rotation=45)

 plt.yticks(tick_marks, classes)

 if normalize:

 cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]

 print("Normalized confusion matrix")

 else:

 print('Confusion matrix, without normalization')

 print(cm)

 thresh = cm.max() / 2.

 for i, j in itertools.product(range(cm.shape[0]), range(cm.s

hape[1])):

 plt.text(j, i, cm[i, j],

 horizontalalignment="center",

 color="white" if cm[i, j] > thresh else "black")

 plt.tight_layout()

 plt.ylabel('True label')

 plt.xlabel('Predicted label')

Figure G. 21 Set up the confusion matrix function.

cm_plot_labels = ['negative','positive']

Figure G. 22 Define the axis labels of the confusion matrix.

from sklearn.metrics

import f1_score, confusion_matrix

print('F1-score: {0}'.format(f1_score(y_pred, y_test)))

print('Confusion matrix:')

cfm=confusion_matrix(y_pred, y_test)

University of Aegean Department of Financial and Management Engineering

[134]

plot_confusion_matrix(cm=cfm, classes=cm_plot_labels, title='Con

fusion Matrix')

Figure G. 23 Print the output confusion matrix and f1_score metrics.

